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Abstract—There is rising interest in probabilistic forecasting
to mitigate risks from solar power uncertainty, but the numerical
weather prediction (NWP) ensembles readily available to system
operators are often biased and underdispersed. We propose
a Bayesian model averaging (BMA) post-processing method
suitable for forecasting power from utility-scale photovoltaic (PV)
plants at multiple time horizons up to at least the day-ahead
timescale. BMA is a kernel dressing technique for NWP ensem-
bles in which the forecast is a weighted sum of member-specific
probability density functions. We tailor BMA for utility-scale
PV forecasting by modeling power clipping at the AC inverter
rating and advance the theory of BMA with a new beta kernel
parameterization that accommodates theoretical constraints not
previously addressed. BMA is demonstrated for a case study of 11
utility-scale PV plants in Texas, forecasting at hourly resolution
for the complete year 2018. BMA’s mixture-model approach
mitigates underdispersion of the raw ensemble to significantly
improve forecast calibration, while consistently outperforming an
ensemble model output statistics (EMOS) parametric approach
from the literature. At 4-hour lead time, the BMA post-processing
achieves continuous ranked probability skill scores of 2–36% over
the raw ensemble, with consistent performance at multiple lead
times suitable for power system operations.

Index Terms—solar power forecasting, probabilistic forecast-
ing, Bayesian model averaging, beta distribution, solar power
clipping

NOMENCLATURE

Input Parameters and Sets
s Solar plant index
P(s) AC power rating of solar plant at site s
k Ensemble member index
K Number of ensemble members
t Forecast time index
tl Forecast lead time
λ Clipping threshold
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Forecast Variables and Function Definitions
y

(s)
t Power at site s at time t
f

(s)
k,(t) NWP forecast from member k for site s at time t

h
(s)
k,(t) Conditional PDF from member k for site s at time t
p Probability density function
P Discrete probability
z Dummy variable
φ Standard normal PDF
Φ Standard normal CDF
Γ Gamma function
gk Member-specific beta or normal PDF
Gk Member-specific beta or normal CDF
α, β Standard beta distribution parameters
γ Beta shape parameter
µ Mean
σ Standard deviation
Bayesian Model Averaging Parameters
a0k, a1k Logistic regression coefficients for member k
bk Linear bias correction coefficient for member k
ck Variance height coefficient for member k
wk Weight of member k
τh Sliding window width
τd Time-of-day window width
Forecast Evaluation and Metrics
T Evaluation period
Ft Predictive CDF at time t
δ Average interval width
ρ Central interval
(w)CRPS (Weighted) mean Continuous Ranked Probability

Score
(w)QSξ (Weighted) Quantile Score at level ξ
ξ Level in (0,1)
wl, wc, wr Left-, center-, and right-weighting functions
SS CRPS skill score
Acronyms
NWP Numerical weather prediction
BMA Bayesian model averaging
EMOS Ensemble model output statistics
CDF Cumulative distribution function
PDF Probability density function
SLI Sliding
TOD Time-of-day
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I. INTRODUCTION

A. Motivation

AS the penetration of renewable resources such as wind
and solar photovoltaics (PV) increases in the power

system, there is also a need for improved forecasting tech-
niques [1]. Accurate and reliable forecasting can improve
the utilization of variable and uncertain renewable generators,
while mitigating the associated risks. Historically, efforts have
focused on deterministic or “point” forecasts; however, there
has been recent movement toward probabilistic forecasting to
more fully capture forecast uncertainty [2], [3]. In operational
practice, the state of the art is still to use deterministic fore-
casts, but a few system operators such as the Hawaiian Electric
Company have begun to experiment with probabilistic fore-
casts [4]. As they become more widely available, probabilistic
forecasts can be valuable for both power system operators and
market participants [5], informing adaptive reserve algorithms
[6], robust and/or stochastic unit commitment and economic
dispatch models [7], [8], and market bidding strategies [9].

When considering different solar forecasting horizons, there
are broadly two categories of techniques: statistical and time-
series methods, which are generally applicable for “very short-
term” forecasting (minutes to 6 hours ahead), and physics-
based models, such as numerical weather prediction (NWP),
which are more accurate for “short-term” hours- to days-
ahead forecasting [2]. While recent literature has developed
machine learning and time series methods for very short-term
probabilistic solar forecasting [10]–[12], these methods have
not yet translated into operations. We restrict our view to state-
of-the-art short-term NWP-based approaches currently used by
system operators for, e.g., the day-ahead unit commitment.

Post-processing NWP forecasts to develop probabilistic so-
lar forecasts is a recent area of interest. One class of techniques
post-processes a single deterministic NWP prediction to gen-
erate a probabilistic forecast [13]–[16], while a second group
uses an ensemble of NWP forecasts, by collecting a variety
of NWP models or perturbing their initial conditions [2],
[17]. These “NWP ensembles” usually require post-processing
to address weaknesses and to smooth the ensemble from a
discrete set of points to a full cumulative distribution function
(CDF). These weaknesses usually include a sunny bias and
ensemble underdispersion—that is, a tendency to underesti-
mate the uncertainty in the forecast [17]. This paper addresses
this area of interest: post-processing NWP ensembles for solar
power applications.

B. Background and Related Works

Recently, NWP ensemble post-processing methods from
the meteorology and forecasting fields that address bias and
underdispersion have been investigated for solar applications.
[18] demonstrated two NWP post-processing techniques for
solar power forecasting: variance deficit and ensemble model
output statistics (EMOS) [19], which fits a parametric trun-
cated normal distribution to the ensemble. EMOS is a state-
of-the-art approach recently applied to wind speed [20] and
electricity price [21] forecasting. [22] also investigated EMOS
as well as Bayesian model averaging (BMA) for accumulated

irradiance forecasting. BMA is a common approach from the
meteorology field [23], which has been successfully applied
to other weather variables, including precipitation [24], wind
speed [25], and visibility [26], but has not been explored for
the specific challenges of solar power forecasting.

BMA is a “kernel-dressing” method, in which each ensem-
ble member is dressed with a probability density function
(PDF) based on its historical performance. It is a relative
of non-parametric methods like kernel density estimation
(KDE), applied in [27], [28] for wind and [16], [29] for solar
applications. In KDE, the overall probability distribution is
the normalized sum of kernels (PDFs) centered at each data
point. All kernels typically have the same bandwidth, but there
is not a standard bandwidth selection method. Options range
from rules-of-thumb to plug-in methods that require prior
information [30].

BMA improves upon classic KDE by offering added cus-
tomization. First, BMA includes a bias correction step, so
that each kernel is not necessarily centered at the raw NWP
data point. Additionally, the bandwidth and relative weight
of each kernel are individually determined from that NWP
member’s historical performance, giving higher weight to
more reliable members and ensuring the spread of uncertainty
is adequately captured. With this added customization, BMA
shapes and weights each ensemble member’s kernel based on
its historical performance to generate a mixture model that
combats ensemble bias and underdispersion.

BMA is also distinguished from similarly named “Bayesian
methods” [31], [32] that use historical observations as inputs
to a time-series ARIMA model to fit a single parametric
distribution, e.g., a beta [32]. In contrast, BMA uses physics-
based NWP models, which are more accurate at longer time-
horizons, as inputs to a mixture-model that cannot be described
with a single parametric distribution.

Given that potential forecast users are system operators
and plant owners, this method produces usable solar power
forecasts, rather than irradiance forecasts. However, fore-
casting power from utility-scale PV plants does come with
specific challenges. Training data quality can be a concern,
due to plant maintenance and partial outages, as well as
system conditions, like forced curtailment due to transmission
constraints. Additionally, PV power output is determined by
a plant’s technical specifications including panel type, axis
tracking configuration, and DC and AC power ratings. In
particular, if the DC side is oversized compared to the AC
inverter rating, the plant power might be “clipped” at its AC
rating—nonlinear behavior that should be taken into account
[33]. Besides common-sense data quality control, this paper
addresses these challenges by directly incorporating clipping
into its methods.

C. Contributions

To the best of the authors’ knowledge, this is the first
demonstration of BMA post-processing for NWP ensembles
for solar power forecasting. Using a “raw” ensemble of NWP
forecasts that have been individually preprocessed into hourly
PV plant power, each ensemble member is dressed in a
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two-part mixture model that explicitly accounts for clipping.
In addition, we advance the field of BMA by addressing
theoretical constraints on applying a beta kernel that were
not addressed in previous literature [26]. Improvement from
BMA post-processing is quantified with probabilistic metrics
relative to three benchmarks: a persistence ensemble [15],
the raw NWP ensemble, and a state-of-the-art parametric
EMOS post-processed forecast from the literature [18]. The
methods comparison is replicated for 11 utility-scale (∼5–
100 MW) PV plants in Texas to illustrate the effectiveness
over multiple locations and plant specifications, including thin
film and regular silicon technologies and fixed, 1-axis, and 2-
axis tracking configurations. At each site, BMA outperforms
the three benchmarks at multiple lead times suitable for intra-
day and day-ahead forecasting. These case studies use actual
data for the complete year 2018 from power plants spanning
hundreds of acres, rather than irradiance point measurements
or kW-scale rooftop systems, as is common in the literature
[10], [13], [32], [34].

D. Organization

The rest of the paper is organized as follows: Section II out-
lines the BMA post-processing model; Section III introduces
how the model is fit to historical data; Section IV describes
forecast benchmarks and metrics; Section V introduces the
case study data; Section VI shows sensitivities on how to train
the BMA models; Section VII presents the final post-processed
forecast performance for 1 year; and Section VIII concludes.

II. BMA POST-PROCESSING METHOD

In BMA, the PDF of the quantity of interest yst for each
location s at time t is determined as a mixture of conditional
PDFs, hsk,t(y

s
t |fsk,t), one for each forecast fsk,t in an ensemble

of K members. For brevity, the indices s and t are omitted.
Each PDF hk(y|fk) can be understood to be a PDF for y,
conditional on member k. Based on that member’s relative
performance in the historical training period, each conditional
PDF is assigned a nonnegative weight wk, such that the sum
of the weights is 1. The predictive PDF determined through
BMA is then:

p(y|f1, ..., fK) =
K∑
k=1

wkhk(y|fk). (1)

The selection of an appropriate kernel for hk(y|fk) depends
on the application. Popular choices include the Gaussian
distribution for continuous variables [23] and the gamma or
truncated normal distributions for non-negative quantities [25],
[35]. In the context of solar power, the forecasted power should
obey a lower bound of zero and an upper bound of the AC
rating of the PV plant, P. A doubly truncated normal kernel
is one parsimonious option. A beta kernel is another flexible
choice bounded on the interval [0,1]; power values can be
easily translated onto this interval through normalization.

As an added complication, there could be a discrete proba-
bility that the plant is being clipped. When a PV plant has a
DC power rating higher than its AC inverter rating, clipping
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Fig. 1. Histogram of power output over 2+ years of plant operation,
normalized by the AC power rating, for two sites used in this case study.
Site A exhibits regular clipping at its AC power rating, but site B does not.

can be observed when the plant’s output is restricted to the AC
power rating. For utility-scale solar power plants, it is common
to see DC-to-AC ratios of 1.2 or more [33]. For example,
Fig. 1 illustrates the historical normalized power from two
of the utility-scale plants used in this study, one of which
exhibits regular clipping, but the other does not. Clipping can
complicate probabilistic forecasting because it implies a high
density or point mass in the PDF near the site’s AC rating.

To explicitly handle clipping, we model each conditional
PDF hk(y|fk) as a discrete-continuous mixture with two parts.
In the historical data, clipping results in some small power
fluctuations slightly under the plant’s AC rating, so clipping
is qualified here by a threshold λ at 99.5% of the AC rating.
The probability of clipping P (y ≥ λP|fk) is estimated through
logistic regression on the forecasted power:

logit (P (y ≥ λP|fk)) ≡ log
P (y ≥ λP|fk)

P (y < λP|fk)

= a0k + a1kfk

(2)

Here, P (y < λP|fk) is the conditional probability that the
solar power is not clipped, if fk is the best ensemble member
forecast at that time. In a forecast, this discrete component is
re-distributed evenly over the top 0.5% of plant AC rating.

The second part of the mixture is a continuous kernel that
models the amount of power, subject to not clipping. Both a
beta and truncated normal kernel are considered here.

Since plant power is limited by the AC power rating, a
truncated normal kernel can be defined on the interval 0 ≤
z ≤ P, using the PDF of the standard normal distribution, φ,
and CDF, Φ:

pφ(z, µ, σ) =
φ
(
z−µ
σ

)
σ
(

Φ
(

P−µ
σ

)
− Φ

(
0−µ
σ

)) . (3)

Analogously, the PDF of a beta kernel with parameters
α > 0 and β > 0 for 0 ≤ z ≤ 1 is given as:
Γ(α+β)

Γ(α)Γ(β)z
(α−1)(1−z)(β−1), where the mean is α/(α+β), and

the variance is αβ/[(α+ β)2(α+ β + 1)]. To allow a clearer
interpretation of the parameters, we follow [26] by using the
alternate formulation in [36]. By defining µ ≡ α/(α+ β) for
0 < µ < 1 and γ ≡ α + β for γ > 0 (i.e., α = µγ and
β = γ(1− µ)), the beta PDF can be defined as:

pβ(z, µ, γ) =
Γ(γ)

Γ(µγ)Γ (γ(1− µ))
zµγ−1(1− z)(1−µ)γ−1 (4)
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Fig. 2. For one ensemble member, trends in variance are illustrated by binning
3 months of estimated beta means into increments of 0.01; these fall within
[0, bk] because of the linear correction in (5). The variance of the associated
observations is modeled with a quadratic equation, shown in green. This model
must obey the theoretical limit, shown in red. Additionally, the grey area
indicates variances that result in ∪-shaped beta distributions.

These two parameters can be interpreted as a location parame-
ter (µ) associated with the forecast and a shape parameter (γ)
associated with its uncertainty.

The parameters µ and σ or γ for the two kernels are esti-
mated similarly. The historical data suggest that the observed
power has a linear relationship with the NWP forecast—note
that the “raw” NWP forecast here is already in units of power,
following the preprocessing described in the Appendix. After
preprocessing, the power forecasts can still retain some sunny
bias from the NWP model. The kernel mean is estimated from
the forecast for member k through a scaling factor, bk, which
corrects this bias from the NWP forecast:

µk =

{
bk
fk
P
, if beta kernel

bkfk, if truncated normal kernel
(5)

A constant bias correction is not included, so the mean tends
to zero as the forecast does. Previous work considered fitting
to powers of the forecast, such as the square root for visibility
[26] or cubed root for precipitation [24]. For this application,
however, a linear relationship results in an acceptable fit.

The shape parameter, γk or σk, is determined by the
distribution’s standard deviation. Previous BMA implementa-
tions have estimated standard deviation through simple power
relationships, such as σk = c0k + c1kf

1/2
k [24]–[26]. When

applying a beta kernel, however, the domain of the standard
deviation is restricted, given the restricted domain of the
distribution itself. In other words, to ensure α and β are
positive, the variance must be limited to σ2 < µ(1 − µ), a
quadratic domain with a maximum value of 0.25, as shown in
Fig. 2. An investigation of the historical data shows that the
variance of the observations follows a quadratic trend within
this domain, suggesting a quadratic model with height ck:

σ2
k = − ck

0.25
(µk − 0.5)

2
+ ck (6)

A large ck indicates a larger spread of uncertainty, while small
ck indicates high confidence. Although a similar discrete-
beta model was proposed in [26] for visibility, the authors
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Fig. 3. Some typical beta distribution shapes.

suggested a linear relationship with the standard deviation,
which could violate the theoretical limit on σ2. Restricting the
height parameter to 0 < ck < 0.25 in (6) resolves this issue
and ensures the limit on σ2 is satisfied for the beta kernel,
while also generating a σ2 estimate that is appropriate for the
truncated normal distribution.

With the standard deviation model in (6), the truncated nor-
mal kernel can be calculated directly, while a few more steps
are required for the beta kernel. The beta’s shape parameter,
γk, has a defined relationship with the standard deviation,
σk =

√
µk(1− µk)/(γk + 1), which can be substituted into

(6) and simplified to yield:

γk =
0.25− ck

ck
(7)

To further simplify and reduce computation time, the number
of parameters is reduced by holding the height parameter
constant across the ensemble members, as suggested in [24].
That is, c1 = ... = cK = c, and therefore γ1 = ... = γK = γ.

After the a, b, and c coefficients are fit as discussed in
Section III, a final adjustment to γ is applied during the
forecasting step. For different µ and γ values, the beta kernel
can take various shapes, illustrated in Figure 3. In particular,
“∪-shape” distributions emphasize the likelihoods of both
zero and maximum power at the same time, which conflicts
with forecaster intuition for a solar power application. ∪-
shapes occur when α < 1 and β < 1 and are the result of
high variance (high c) in this model. A preliminary analysis
indicated that this is not generally a major issue; a handful of
the 11 sites had <0.5% ∪-shaped member forecasts, but one
site had up to 7%. As mitigation, the beta variance estimate
is truncated during forecasting to reduce ∪ distributions to J-
or reverse-J-shapes. That is, (7) is truncated by a minimum
value, γk, based on the forecasted distribution mean:

γk =

{
1

1−µk if µk ≤ 0.5
1
µk

if µk > 0.5
(8)

This is illustrated in Fig. 2 by collapsing variance values that
fall in the shaded grey area onto the line at its boundary.

With these elements, the conditional PDF from each ensem-
ble member fk, assuming fk is the best forecast is:

hk(y|fk) =
P (y ≥ λP|fk)

(1− λ)P
1[y ≥ λP]

+
P (y < λP|fk)

Gk (y|fk)|λ
gk (y|fk)1[y < λP],

(9)
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Fig. 4. Example BMA forecasts, (a) without and (b) with a high likelihood
of clipping. The shaded circles show the NWP member forecasts, the thick
line shows the BMA forecast, the thin lines show the component forecasts
(wkhk), and the vertical dashed line shows the power at this instance.

where 1 is the indicator function and gk (y|fk) is the member
specific beta or truncated normal kernel:

gk (y|fk) =

{
pβ( yP ,µk,γk)

P
, if beta kernel

pφ (y, µk, σk) , if truncated normal
(10)

Gk(y|fk) is the corresponding CDF—this minor scaling ad-
justment is added to counterbalance estimating the discrete
component continuously over a nonzero width, (1−λ)P. With
these conditional member PDFs, the complete weighted model
can be evaluated in (1).

The end result is illustrated in Fig. 4 for two forecast times
from the case study, using a beta kernel. Fig. 4(a) shows a
time when the majority of ensemble members overestimate
power, which BMA addresses by shifting the bulk of the
probability downwards. Fig. 4(b) shows a time when the
discrete probability of clipping is high (27%), and the actual
power was indeed clipped at 99.8% of the AC rating.

The complete BMA parameter fitting, forecasting, and eval-
uation process is summarized in Fig. 5, including key steps
described further in Sections III, IV and VI.

III. BMA PARAMETER FITTING

Given a training data set for a given forecast, the a, b, c,
and w parameters of the BMA model are estimated based on
a previously published approach in [25]. The a coefficients
in (2) are estimated by maximum likelihood of a logistic
regression model. The member forecast is the predictor vari-
able, whereas the dependent variable is the binary observation
of clipping/no clipping. Because of minor deviations in the
telemetry, clipping is determined by a threshold at 99.5% of
the plant’s AC power limit. This value was selected based
on a review of the case study data, but it can be customized
based on a plant’s specifications. For this application, there
is a high incidence of complete or quasi-complete separation
in the logistic regression—that is, when the predictor at or
above a constant is associated with only one of the binary
outcomes. For example, training data for a sunrise forecast
might contain no history of clipping, or training data for an
afternoon forecast might show clipping only in some instances
when the forecast was exactly at the plant’s rated power.
Therefore, two modifications are implemented: if there is
no clipping in the training data, the discrete component is
assumed to be 0, while in the general case, penalized logistic

NWP model outputs Power telemetry

Preprocess (Appendix) Preprocess (Appendix)

Subset training data by
SLI or TOD method

Fit a0k’s and a1k’s
by logistic regression

Fit bk’s by linear regression

Fit c and wk’s by ECME

Train

Forecast

Calculate µk (5)

Calculate σ and/or γ (6–8)

Calculate member-
specific PDF’s (9–10)

Calculate weighted
mixture model (1)

Evaluate metrics

(W/m2)

yt(MW) fk,t ∀ k = 1, . . . ,K

For each t in T

Training
data

Validation
data

Fig. 5. Schematic of the parameter fitting, forecasting, and evaluation process.

regression is used instead of basic logistic regression to handle
instances of quasi-complete separation [37].

The linear bias correction slope bk in (5) is determined by
linear regression. Only time points in the training set when
the power observations are not clipped (i.e., y < 0.995 × P)
are used. The member forecast is the predictor, whereas the
observed power is the dependent variable.

Finally, the member weights, wk, and the variance coeffi-
cient c in (6) are found by maximum log-likelihood estimation,
given the a and b coefficients found in the steps above.
The maximum log-likelihood is estimated numerically using
the Expectation Conditional Maximization Either (ECME)
algorithm, which iterates between expectation (E) and con-
ditional maximization (CM) steps [38]. Briefly, the algorithm
introduces unobserved variables for each ensemble member,
which can be interpreted as the probability of the member
being the most skillful for the given time. In the E step,
these latent variables are estimated from the current weight
and variance coefficient estimates. In the first conditional
maximization step CM-1, new estimates of the weights are
developed from a maximization of the complete data log-
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likelihood. This is followed by a second step, CM-2, in which
the mixture log-likelihood is numerically maximized as a
function of the variance coefficient c, given the estimated
weights from CM-1. As suggested in [25], the CM-2 step
is performed only once per 50 iterations of the E and CM-
1 steps, which significantly reduces computation with very
similar resulting parameter estimates. These steps are iterated
until the changes in parameters are very small (<10−5). For
starting values, the members are weighted equally, though
missing members are assigned 0 weight.

IV. FORECAST EVALUATION

To evaluate the improvement from the BMA method, the
post-processed forecasts are compared to two benchmark
forecasts using appropriate metrics, as introduced here.

A. Benchmark Forecasts

The proposed method is compared to three benchmark
probabilistic forecasts: The first benchmark is a persistence
ensemble (PeEn), a commonly used benchmark that only relies
on historical observations [10], [11], [15], [18]. Following
[15], a PeEn forecast for a given time is defined as the empir-
ical CDF of the last 20 available measurements at the same
hour of the day, which captures weather-related variations in
solar power over the past three weeks. Comparing to a PeEn
can illustrate the value of using NWP models that integrate
more information than only the historical observations.

The second benchmark is the raw NWP ensemble itself,
used to illustrate the added value from post-processing. The
quantiles of both the PeEn and raw ensemble are interpolated
using the “Classical” empirical CDF approach described in
[39]. Third, an alternative NWP ensemble post-processing
technique called ensemble model output statistics (EMOS)
is implemented to benchmark BMA against a competing
method [18]. Unlike BMA which results in a more complex
mixture model, EMOS uses the NWP ensemble to fit a single
parametric distribution. In [18], EMOS was applied to fit a
non-negative, truncated normal distribution to solar irradiance.
Here, we modify that method to fit a doubly-truncated normal
distribution for solar power. The EMOS forecast is defined
using the truncated normal equation in (3) as:

p(y|f1, ..., fK) = pφ(y, a+b1f1 + ...+bKfK , c+dS2), (11)

where a + b1f1 + ... + bKfK is the bias-corrected mean of
the ensemble members and c+ dS2 is a linear function of the
ensemble variance, S2. The EMOS a, b, c, and d coefficients,
which are distinct from the BMA a, b, and c coefficients, are
fit by minimizing CRPS over the training data (Section VII)
[18], using the robust Nelder-Mead algorithm in R’s optim
function and the truncated normal CRPS calculation from the
scoringRules package.

B. Probabilistic Forecast Metrics

Several probabilistic metrics and diagnostic techniques are
used here to compare forecast performance. A probabilistic
forecaster intends to maximize forecast sharpness, subject to

calibration [40]. Sharpness measures how concentrated the
forecast is, whereas calibration is the statistical consistency
between the forecasts and observations. Sharpness can be
assessed over an evaluation period T by the average interval
width, δ, of a central (1− ρ)× 100% interval of interest [39]:

δ =
1

T

T∑
t=1

F−1
t

(
1− ρ

2

)
− F−1

t

(ρ
2

)
, (12)

where Ft is the forecast CDF at time t. Calibration can be
assessed visually using a reliability diagram [39].

The Continuous Ranked Probability Score (CRPS) captures
both sharpness and reliability in one metric [41]. Average
CRPS (CRPS) over period T can be decomposed as the
integral of the Quantile Score (QS) over all quantiles [42]:

CRPS =

∫ 1

0

1

T

T∑
t=1

QSξ
(
F−1
t (ξ), yt

)
dξ, (13)

where QS of the forecast F−1
t (ξ) at the level ξ ∈ (0, 1) is:

QSξ = 2
(
1
{
yt ≤ F−1

t (ξ)
}
− ξ
)

(F−1
t (ξ)− yt) (14)

CRPS can be weighted to focus on areas of interest within
the distribution [42]. From a utility perspective, the lower
tail of the distribution is of particular interest. The lower tail
corresponds to times when solar power is uncommonly low,
which is more likely to impact system reliability. To focus
on different areas of the distribution, three quantile-weighting
functions are applied [42]: a left tail weight function, wl(ξ) =
(1−ξ)2; a center weight function, wc(ξ) = ξ(1−ξ); or a right
tail function wr(ξ) = ξ2, for ξ ∈ (0, 1). A weighted QS of
the form wQSξ = w(ξ)QSξ can be evaluated and substituted
into (13) to calculate a weighted average CRPS, wCRPS.

Finally, to compare the forecast performance to a reference
benchmark, a CRPS skill score can be evaluated:

SS =
CRPS− CRPSref

CRPSideal − CRPSref
= 1− CRPS

CRPSref
, (15)

where CRPSref and CRPSideal (i.e., 0) are the average CRPS
values for a reference and an ideal forecast, respectively [41].
A forecast with negative SS is worse than the reference, a SS
of 0 is on par with the reference, and a SS of 1 is ideal.

V. TEXAS CASE STUDY DATA

Using the evaluation framework above, we demonstrate the
value of BMA post-processing for a case study using actual
historical forecasts and observation data. Historical 5-minute
power data are gathered from 11 utility-scale PV plants in
Texas, with ratings of ∼5–100 MW. Two-plus years of data are
used: November 2016 to December 31, 2017 data are available
for training, and January 1, 2018 to December 31, 2018 is the
test period. The Appendix details several data preprocessing
steps, including quality control for suspect values, curtailment,
and partial plant outages, and hourly averaging to match the
available hourly forecasts. For data privacy concerns of the so-
lar plant owners and to allow relative comparison among sites,
power data and the forecast metrics are shown normalized by
the plant rating, P.
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TABLE I
NUMERICAL WEATHER PREDICTION MODEL DATA USED

Output Output
Model Output Scale Horizon Interval Frequency

NOAA GFS 0.25◦ (28 km) 16 days 3 hours 6 hours
NOAA NAM 3 km 60 hours 1 hour 6 hours
NOAA HRRR 3 km 18 hours 1 hour 1 hour
ECMWF HRES 0.125◦ (14 km) 10 days 3 hours 12 hours

For the corresponding historical forecasts, a base ensemble
of four NWP models is used: the National Oceanic and At-
mospheric Administration’s (NOAA) Global Forecast System
(GFS), NOAA’s North American Mesoscale high-resolution
nest (NAM), NOAA’s High Resolution Rapid Refresh hourly
(HRRR), and the European Centre for Medium-Range Weather
Forecasts’s (ECMWF) High Resolution (HRES) models [43],
[44]. Table I gives details on each model used, including its
output resolution, the forecast horizon, the output time interval
of the forecast, and how frequently the forecast is issued.
Each ensemble member is preprocessed to generate hourly-
resolution forecasts of PV power from the weather variables;
details are available in the Appendix. These ensemble mem-
bers are the inputs for a BMA post-processed power forecast,
at a given time t with lead time of tl.

In addition to the base ensemble, a time-lagged ensemble
of 21 members is considered by including the two previous
model runs for each of the GFS, NAM, and HRES models, as
well as the previous 11 runs of the HRRR model. For example,
if the forecast includes a GFS run issued at time t− 1 with a
lead time of tl = 1, the lagged ensemble would also include
the GFS run issued at time t−7 with a lead time of tl = 7 and
the run issued at t−13 with a lead time of tl = 13. In a similar
vein to [45], this time-lagged alternative investigates the value
of a more diverse ensemble that includes older forecast runs,
which have different initial conditions.

VI. BMA TRAINING SENSITIVITIES

Before presenting the full results, this section presents a few
sensitivities to tune the data inputs for this case study.

A. Training Data Selection

The last step in the BMA post-processing algorithm is to
select training data to fit the BMA parameters and weights
(Section III). For other weather variables, BMA models have
typically been trained with a sliding window of data to capture
recent weather conditions [24]–[26]. However, solar power
also has known seasonal and diurnal trends, and other solar
uncertainty models have been trained with data from similar
seasons and/or times of day, e.g., [15].

To investigate these diurnal and weather impacts on model
training, two data selection methods are explored: a “sliding”
(SLI) window of τh hours (i.e., forecasts with the same lead
time and resulting observations for times t− τh, ..., t−1) or a
“time-of-day” (TOD) window of τd days. The TOD window
includes data for the same hour of the day from the past τd
days, plus a centered window of 2τd+1 days around the same
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Fig. 6. Sensitivity of CRPS to (left) SLI and (right) TOD training windows
widths used to select historical data for BMA coefficient fitting.

date in the previous year. Only time points in the training set
when both the telemetry and forecast data are available are
used, based on the quality control preprocessing.

The SLI and TOD selection methods are compared through
sensitivities on their window widths, τh and τd, respectively.
A SLI window up to 4 days and a TOD window up to 60 days
are considered. In the training step, the a, b, and c coefficients
are fit using the SLI or TOD training data. In the forecasting
step, the forecast of the power output 4 hours in the future is
generated by BMA post-processing of the 4-hour-ahead NWP
ensemble using those trained coefficients. This sensitivity is
repeated for two of the case study sites (A and B), using the
21-member NWP ensemble at rolling 4-hour lead time over
2018 and a beta distribution for the BMA kernel. Figs. 6 and
7 illustrate the sensitivity of CRPS and central 90% interval
width (i.e., sharpness) to the training data. First, small amounts
of training data (i.e., low τ ), typically result in sharp intervals
but high CRPS—that implies false sharpness at the expense of
reliability. Using at least the past 24 hours of training data with
the sliding window is enough achieve a flattening of CRPS,
though CRPS values show a slight 24-hour cycle with longer
training windows. With the TOD window, CRPS tapers for
windows extending back past 30 days.

While the CRPS values are similar in magnitude, the
single metric obscures different forecast characteristics. When
looking at the central 90% interval width, the SLI window is
clearly sharper than the TOD window. Given the similar CRPS,
this implies the SLI approach is sharper, but the TOD window
may be more reliable. There is a tendency for the TOD method
to err on the side of over-dispersion and broader intervals,
while the SLI method errs on the side of underdispersion
and narrower intervals. One interpretation is that the sliding
window’s reliance on recent conditions results in a smaller
standard deviation estimate and a tighter beta kernel. However,
the TOD approach is likely better suited to estimating the
clipping coefficients in (2). Additional sensitivities on the
clipping threshold and training approach that best balance
the continuous kernel and clipped components are left for
future work. Hybrid schemes could also be considered. In
the next two subsections, a 72-hour SLI window and 60-day
TOD window are selected for further analysis. These windows
achieve minimum CRPS, though most of the benefits could
likely be achieved with lower computation time using a 24-
hour SLI or 30-day TOD window.
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Fig. 7. Impact of (left) SLI and (right) TOD training window widths on
central 90% interval width, as a percentage of plant AC rating.

TABLE II
CRPS (%P) OF 4- VS. 21-MEMBER ENSEMBLE FORECASTS.

EVALUATED BY ROLLING 4-HOUR AHEAD FORECAST OVER 2018.

Site A Site B
Size Raw SLI TOD Raw SLI TOD

4 9.27 7.52 7.48 7.50 5.75 5.58
21 7.37 6.79 6.95 5.93 5.18 5.16

SS1 20.5% 9.78% 7.10% 20.8% 9.82% 7.50%
1 SS of 21-member with 4-member ensemble as reference

B. Value of Time-Lagged NWP Members

Next, the performance of the base ensemble with 4 members
is compared to the larger 21-member ensemble with time-
lagged members. The comparison is conducted for the raw
ensemble as well as BMA with the two training windows
selected above to produce a 4-hour-ahead rolling forecast for
sites A and B. Results in Table II show that the 21-member
forecast significantly improves the raw ensemble CRPS, with
skill scores of ∼20% compared to the 4-member ensemble.
The increased diversity of the larger ensemble improves the
BMA post-processed approaches as well, with CRPS SS’s of
7-10%. The larger ensemble also increases computation time
commensurately, but the total time to train and post-process
a single TOD BMA forecast takes on average 25-70 seconds
on an Intel Xeon E5-2697 v4 2.30GHz processor, which is
not prohibitive for an hour to day-ahead forecast. Therefore,
the benefits from contributing members to the more diverse
21-member ensemble by reusing older forecasts is deemed
worthwhile, and it is applied in all following analyses.

C. Beta vs. Truncated Normal Kernel

Finally, the performance of BMA with the beta kernel
is compared to its performance with a truncated normal
kernel. Similar to the sensitivities above, this sensitivity post-
processes the 21-member ensemble to generate a rolling 4-
hour-ahead forecast over 2018, replicated for sites A and
B. The two BMA kernels (beta and truncated normal) are
combined with the two training data windows from Section
VI-A (72-hour SLI or 60-day TOD) to compare four variants
on BMA post-processing.

This comparison investigates if the beta kernel’s flexible
shape lends any benefits over the truncated normal distribution,
which is slightly simpler to implement. For instance, the beta
kernel’s “reverse-J” or “J” shape as the distribution nears
one of the boundaries (0 or P) might result in different tail

TABLE III
WEIGHTED CRPS SS (%) OF 4 BMA VARIANTS COMPARED TO THE RAW
NWP ENSEMBLE FOR A ROLLING 4-HOUR-AHEAD FORECAST OVER 2018.

FOR THESE COMBINATIONS OF THE 2 KERNELS AND 2 TRAINING DATA
SELECTION METHODS, β INDICATES A BETA KERNEL AND φ INDICATES A

TRUNCATED NORMAL KERNEL.

Site A Site B

w = 1 wl wc wr w = 1 wl wc wr

β-SLI 7.87 11.4 8.35 3.25 12.7 16.2 12.0 9.73
β-TOD 5.61 8.64 5.20 2.74 13.1 16.4 12.4 10.4
φ-SLI 6.59 10.8 6.84 1.47 12.0 15.8 11.2 8.83
φ-TOD 3.15 7.47 2.61 -1.00 -1.95 4.85 -2.32 -8.85

behavior. To investigate these impacts on different areas of the
forecast distribution, Table III shows the weighted CRPS skill
scores for the four variants, shaded in order of performance
with the best skill shaded the darkest. To calculate these skill
scores, each CRPS value in (15) is replaced with wCRPS using
the left, center, or right weighting functions, then compared
to the unweighted original (w = 1).

Table III confirms the more flexible beta kernel consistently
outperforms the truncated normal kernel in all regions of
the forecast distribution. The beta kernel achieves a modest
1%–4% increase in unweighted and left-, center-, and right-
weighted CRPS skill scores over the truncated normal kernel
for site A, and a 1%–19% increase for site B. These results
also reinforce the importance of training data selection. With a
truncated normal kernel, BMA outperforms the raw ensemble
with a 12.0% skill score using SLI window training data,
but it performs 1.95% worse with the TOD approach. The
broadness of the truncated normal kernel exacerbates the
tendency of TOD selection towards over-dispersion, worsening
performance. Due to the consistent performance of BMA using
the beta kernel and 72-hour SLI window training data (β-
SLI), this variant is selected for the final methods comparison
replicated for each of the 11 sites in the next section.

VII. BMA POST-PROCESSING PERFORMANCE

The performance of BMA post-processing is compared
to the 3 benchmark methods for the validation year, 2018.
The PeEn benchmark is compared to the three NWP-based
methods using the 21-member ensemble: the raw ensemble
benchmark; the EMOS post-processed benchmark, and the
proposed BMA post-processed forecast. Based on the results
in Section VI, the “BMA” method in this section refers to the
β-SLI variant. For consistency, the 72-hour SLI training data
selection is also used to train the EMOS model coefficients.
For each of the four methods, forecasts are generated indi-
vidually for each of the 11 case study PV plants in Texas at
rolling lead times of 1, 4, 12, and 24 hours for 2018.

For a given site and lead time, each hourly probabilistic
forecast is validated with a single observation of the site’s
average hourly power. For example, Fig. 8 compares the
forecasts issued at 4-hour lead time over 2 days with mixed
clouds to the actual power, demonstrating the differences
among these four methods. Since both the PeEn and raw
NWP ensemble estimate the forecast uncertainty from 20 or
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Fig. 8. Forecasts from the (clock-wise) PeEn, raw ensemble, EMOS,
and BMA methods for a 1-axis tracking plant over two days with mixed
cloudiness. The fan plot shows the intervals predicted 4 hours ahead, from
0.2% to 99.8% nominal coverage. The orange line shows the observed power.

21 discrete values, the resulting distribution is quite coarse.
The PeEn forecast, which uses previous observations at the
same time of day, generates a very broad and slowly changing
forecast that nonetheless captures the diurnal trend in power.
The raw ensemble shows large variance on the first cloudy day,
while it is clustered and underdispersed on the second day,
failing to provide adequate coverage for the peaks on both
days. Recall that the “raw” ensemble here already accounts
for the irradiance-to-power transform of this 1-axis tracking
plant (see the Appendix). While the EMOS model adjusts
for recent bias in the raw ensemble to improve coverage
on the second day, it provides false confidence on the first
day. EMOS’s single parametric model does not fully capture
the disagreement in the raw ensemble, resulting in a very
sharp forecast with worse coverage compared to the raw
ensemble. In contrast, BMA’s mixture model captures more of
the uncertainty in the raw ensemble, while providing sharper
confidence intervals. Like EMOS, it also improves coverage
on the second day.

To compare average performance of the rolling 4-hour ahead
forecast over the entire validation year, Table IV compares
CRPS for the four methods, replicated for each site. Each
site has a different subset (T < 8760) of forecasts that
can be validated for 2018 because of data quality control,
ranging from ∼2200–4300 time-points (see the Appendix).
Sites F–I, for example, have restricted data availability because
of frequent curtailment. The best scores are in bold. First,
note that the raw NWP ensemble alone has significant skill
over the PeEn benchmark, with SS’s of 14–45%; the post-
processed forecasts have skill scores of 27–49% over the PeEn
benchmark. Looking at the raw ensemble as the reference,
post-processing with EMOS achieves skill scores of 28% for
2 sites, but skill scores ≤6% are more common, while four
sites have negative skill scores, showing worse performance
than the raw ensemble. In contrast, BMA improves over the
raw ensemble for all sites and performs as well as or better
than the EMOS technique for each site. Six sites show SS’s

TABLE IV
CRPS & SS OF ROLLING 4-HOUR AHEAD FORECASTS OVER 2018,
REPLICATED OVER THE 11 SITES. SSPEEN IS SS WITH PEEN AS THE

REFERENCE FORECAST; SSRAW IS REFERENCED TO THE RAW ENSEMBLE.

CRPS (%P) SSPeEn (%) SSraw (%)
Site PeEn Raw EMOS BMA EMOS BMA EMOS BMA

A 13.0 7.37 7.94 6.79 38.9 47.8 -7.78 7.87
B 9.55 5.93 5.61 5.18 41.3 45.7 5.47 12.7
C 9.74 8.40 6.00 6.00 38.4 38.4 28.5 28.5
D 10.2 6.74 6.70 6.46 34.4 36.8 0.52 4.13
E 13.5 7.53 8.03 7.37 40.7 45.5 -6.62 2.11
F 9.86 6.93 6.51 6.09 34.0 38.2 6.11 12.2
G 11.9 10.0 7.19 6.39 39.7 46.4 28.2 36.3
H 11.0 8.17 7.99 6.96 27.5 36.8 2.27 14.8
I 10.8 8.07 7.93 6.90 26.4 35.8 1.72 14.4
J 12.3 7.72 8.84 7.47 28.2 39.3 -14.5 3.17
K 12.6 6.91 7.34 6.44 41.9 49.0 -6.16 6.89
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Fig. 9. Average widths of the 10% to 90% central intervals for site C.

of at least 12%, with one site achieving a 36% SS.
To investigate the tension between sharpness and calibration

that can be obscured by an aggregate metric like CRPS, Figs.
9 and 10 show the interval width and reliability diagrams
for site C, which is the site where the EMOS and BMA
techniques both achieved 28.5% skill scores over the raw
ensemble. Consistent with the snapshot shown in Fig. 8, the
PeEn benchmark has poor sharpness with consistently large
intervals, while the intervals of the raw NWP ensemble are on
average half the width. In contrast, Fig. 10 shows the PeEn
benchmark has decent, though coarse, reliability, while the
raw NWP ensemble is unreliable by regularly overestimating
power, though this effect is exceptionally pronounced for
site C. In fact, this site suffered from degradation of its 2-
axis trackers over the evaluation period, which the data pre-
processing did not adequately capture. Both post-processing
techniques were able to correct for this changing behavior
and improve the forecast calibration, while smoothing the
stepped behavior of the raw ensemble. The EMOS forecast
is somewhat sharper than the raw ensemble while the BMA
forecast is somewhat broader. However, the EMOS benchmark
errs on the side of sharpness, but this is sometimes a false
sharpness that sacrifices reliability. The BMA forecast, in
contrast, provides somewhat broader forecast intervals that
provide better reliability, particularly on the lower tail of the
distribution. While these methods result in the same CRPS for
this site, this trend is consistent across the sites: by providing
better coverage than the raw ensemble, BMA outperforms both
it and the EMOS benchmark.

It is important to note that BMA does not evenly improve
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Fig. 10. Reliability diagram of the 1st to 99th forecast percentiles for site C.
The black line shows ideal calibration.

TABLE V
WEIGHTED CRPS SS (%) OF EMOS OR BMA POST-PROCESSING

COMPARED TO THE RAW ENSEMBLE AT ROLLING 4-HOUR LEAD-TIME.

EMOS BMA

Site w = 1 wl wc wr w = 1 wl wc wr

A -7.78 -3.40 -3.61 -18.4 7.87 11.4 8.35 3.25
B 5.47 7.62 7.27 0.77 12.7 16.2 12.0 9.73
C 28.5 36.9 29.0 16.6 28.5 38.7 27.6 16.2
D 0.52 4.32 2.32 -7.09 4.13 8.37 3.39 -0.37
E -6.62 -5.07 -4.03 -11.8 2.11 5.70 1.92 -1.56
F 6.11 14.2 8.25 -7.91 12.2 20.7 11.9 1.01
G 28.2 39.6 28.8 9.49 36.3 47.0 34.6 21.8
H 2.27 0.45 7.02 -2.15 14.8 19.6 15.6 8.21
I 1.72 2.69 6.66 -6.30 14.4 21.2 15.5 4.83
J -14.5 -6.00 -10.3 -31.5 3.17 8.30 2.47 -2.37
K -6.16 -0.82 -2.38 -18.1 6.89 11.0 7.13 1.46

the forecasts: the lower tail benefits most. This effect is
pronounced in Fig. 10 and is also evident in left-, center-,
and right-weighted CRPS SS’s. Across the sites, the left tail
has the highest relative improvement with BMA, followed by
the distribution center and then the right tail. Benefits from
EMOS post-processing also skew towards the left tail or the
distribution center, but for all sites, BMA’s improvement of
the left/lower tail out outweighs that from EMOS. Underes-
timation of lower-tail risk is concerning to system operators
because it is likely to result in the highest cost and reliability
impacts. BMA strongly improves tail risk estimation with left-
weighted SS’s of 6–47%, and improves the right tail estimation
for most sites as well with right-weighted SS’s as high as 22%.

To verify BMA improvements extend to other lead times
as well, Table VI reports unweighted SS’s over the raw NWP
ensemble at four rolling lead times up to 24-hours ahead. In
general, the SS’s are maintained or even increased as the lead
time increases, which is valuable as the number of available
time-lagged members reduces from 21 to 14 for the 12-hour-
ahead and 9 for the 24-hour-ahead forecast. BMA outperforms
EMOS at all lead times for all sites, except for a few lead
times at site C where the skill scores are very similar. The
consistent performance demonstrates BMA’s applicability at
multiple time horizons, from the intra-day to the day-ahead.

VIII. SUMMARY AND CONCLUSIONS

This paper proposed a new Bayesian model averaging
approach to post-process NWP ensemble estimates of utility-
scale PV power, applicable for forecasting up to the day
ahead timescales. This method uses a kernel-based mixture

TABLE VI
CRPS SS (%) OF THE BMA OR EMOS POST-PROCESSING METHODS

OVER THE RAW ENSEMBLE AT VARYING LEAD-TIMES

1-Hour 4-Hour 12-Hour 24-Hour
21 members 21 members 14 members 9 members

Site EMOS BMA EMOS BMA EMOS BMA EMOS BMA

A -12.8 7.48 -7.78 7.87 -7.81 6.03 0.33 10.3
B 5.15 12.1 5.47 12.7 8.82 14.1 12.0 16.7
C 27.8 28.4 28.5 28.5 28.0 26.2 28.9 28.1
D 1.93 5.33 0.52 4.13 -1.55 1.84 -0.79 4.16
E -9.42 0.68 -6.62 2.11 -2.18 2.56 1.64 5.54
F 8.28 14.1 6.11 12.2 7.31 12.2 13.0 17.3
G 30.0 38.4 28.2 36.3 29.6 35.7 32.4 35.8
H 0.61 14.8 2.27 14.8 3.96 14.8 11.4 18.5
I -1.47 14.6 1.72 14.4 1.96 14.2 10.8 18.9
J -19.8 3.36 -14.5 3.17 -20.2 3.77 -16.9 7.56
K -7.12 5.92 -6.16 6.89 -11.6 3.57 -5.20 7.05

model combining a discrete component for power clipped
at the inverter rating and a continuous portion for lower
output. To use beta kernels within the mixture model, a
new parametrization was developed that accommodates the
beta distribution’s theoretical constraints. In developing this
mixture model, a large variety of comparisons were examined
to justify the selections made.

For a given forecast time, the parameters of the BMA model
are trained using historical forecasts and observations. The
length of this historical data training window was selected
based on the asymptotic behavior shown in Figures 6 and
7. Training with the sliding window (SLI) approach showed
overall slightly better results than with the time of day (TOD)
approach (Table III), thus was used for all further comparisons.
Including older NWP runs to make a time-lagged ensemble
produced superior results to using only the latest runs (Table
II). Using beta functions in the mixture model was superior to
using normal distributions truncated on two sides (Table III).

Given those training and implementation selections, the
BMA post-processing achieves skill scores of 2–36% over the
raw ensemble. It generally improves forecast calibration while
broadening the interval widths compared to the underdispersed
raw ensemble, which is sharp but can be unreliable. The
BMA mixture model was also demonstrably superior to the
parametric EMOS post-processing method from the literature,
which can sometimes sacrifice reliability by erring on the side
of sharpness. (Tables IV, V, and VI). Skill benefits were shown
for a variety of forecast time horizons relevant for power
systems operations (Table VI). These comparisons were repli-
cated for 11 utility-scale PV plants in Texas, demonstrating
improvements over multiple locations and plant specifications.

The largest improvements demonstrated by the BMA mix-
ture model were in the lower tail of the distribution (Table V),
which is of greatest benefit to electric grid operators and solar
plant managers. Underestimating the lower tail risk can result
in high cost and potential power system reliability impacts.

Overall, the major findings of the article are:
• BMA post-processing contributed skill score improve-

ments of up to 36% over the raw NWP ensemble.
• Using a beta kernel in the BMA mixture model was

superior to using a doubly-truncated normal kernel.
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• Skill score improvements were consistently shown over
forecast time horizons of 1–24 hours relevant for power
systems operations.

• Post-processing with BMA mixture models was superior
to a state-of-the-art parametric EMOS treatment, by better
capturing disagreements in the NWP ensemble.

• BMA contributed the largest improvement in the lower
tail of the distribution, which is of greatest benefit due to
the higher cost of managing situations of low output.

For future work, further sensitivities can investigate clipping
behavior, including different irradiance-to-power preprocess-
ing transforms, the clipping threshold, and whether multi-
part kernels provide improvements over a single continuous
kernel. Exploring additional hybrid training methods beyond
the sliding and time-of-day windows could further improve
performance by choosing the most appropriate data that
capture both seasonal/diurnal cycles and different weather
regimes. Future work will apply these improved probabilistic
forecasts in power systems operational models, such economic
dispatch and unit commitment models, to endogenously con-
sider future generation risk through coherent risk measures
such as conditional value-at-risk (CVaR) and entropic value-
at-risk (EVaR).

APPENDIX
POWER TELEMETRY PREPROCESSING

The raw power data are screened for several data quality
issues, including stuck loggers and nonsensical values (e.g.,
< 0, > P). Suspect values are treated as missing. Times when
the solar zenith angle indicates the sun is down are ignored.
Also, times when all ensemble members forecast power less
than 500 kW are ignored to remove spurious and erratic
behavior caused by very small values around sunrise and
sunset. This threshold is < 10% of the smallest plant size and
< 1% of the largest plant size. Power data are also impacted
by the operating conditions, including involuntary curtailment
caused by transmission constraints and partial outages for
maintenance. For known partial outages, the power is scaled
to what it would have been without the outage. Curtailed data
are treated as missing. Most sites have < 10% curtailment, but
some are curtailed up to a third of the time.

Telemetry data are aggregated to hour-ending averages for
consistency with the hourly-resolution NWP ensemble mem-
bers. If any of the 12 5-minute values are missing, the entire
hour is treated as missing. If the solar zenith angle indicates
that the sun is down for part of the hour, it is assumed that
those times contribute zero power.

NWP FORECAST PREPROCESSING

The hourly or three-hourly time-averaged Global Horizontal
Irradiance (GHI) from each NWP model needs to be converted
to hourly PV plant power in preparation for the BMA treat-
ment. The preprocessing was done using the solar forecast
system in [46]. It makes small statistical corrections to the
shape and amplitude of the NWP model diurnal irradiance
curve, then calculates clear sky irradiance every 1 minute as-
suming the time-averaged forecast clear sky index (CSI) from

this corrected model is constant for the interval. Next, minute-
by-minute clear sky direct and diffuse irradiance are calculated
by prorating with this CSI and adding stochastic variations to
account for the missed variability. These direct and diffuse
irradiance data are transposed into plane-of-array irradiance
for tilted sun-tracking PV panels, then used to empirically
estimate power based on historical data. Finally, the data are
averaged into hour-ending averages. This irradiance-to-power
transform is similar to regression methods, such as that in
[47]; a PV simulation tool like the System Advisor Model is
an alternative [48]. Though not a “raw” output from an NWP
model, we refer to these preprocessed, hourly PV plant power
forecast members as the raw ensemble, which is then input
into the BMA post-processing.
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Council of Texas; and José Daniel Lara and Elina Spyrou of
NREL for providing their data, insights, and suggestions.

REFERENCES

[1] B. Kroposki, B. Johnson, Y. Zhang, V. Gevorgian, P. Denholm, B.-M.
Hodge, and B. Hannegan, “Achieving a 100% renewable grid: Operating
electric power systems with extremely high levels of variable renewable
energy,” IEEE Power and Energy Magazine, vol. 15, no. 2, pp. 61–73,
March 2017.

[2] D. van der Meer, J. Widén, and J. Munkhammar, “Review on prob-
abilistic forecasting of photovoltaic power production and electricity
consumption,” Renewable and Sustainable Energy Reviews, vol. 81, pp.
1484–1512, Jan. 2018.

[3] T. Hong, P. Pinson, S. Fan, H. Zareipour, A. Troccoli, and R. J.
Hyndman, “Probabilistic energy forecasting: Global energy forecasting
competition 2014 and beyond,” International Journal of Forecasting,
vol. 32, no. 3, pp. 896–913, 2016.

[4] D. Nakafuji and L. Gouveia, “Distributed resource energy analysis
and management system (DREAMS) development for real-time grid
operations,” Hawaiian Electric Company, Honululu, HI (United States),
Tech. Rep., 2016.
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