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Abstract

The frog model is a branching random walk on a graph in which particles branch only at unvisited
sites. Consider an initial particle density of µ on the full d-ary tree of height n. If µ = Ω(d2), all of
the vertices are visited in time Θ(n log n) with high probability. Conversely, if µ = O(d) the cover
time is exp(Θ(

√
n)) with high probability.

2010 Mathematics Subject Classification: 60K35, 60J80, 60J10

1. Introduction

The frog model is a system of interacting walks that starts with one particle awake
at the root of a graph and some number, typically Poisson-distributed with mean
µ, of sleeping particles at all the other vertices. Wakened particles perform simple
random walk in discrete time. They wake any sleeping particles they encounter,
which then begin their own independent random walks. A long-open problem
posed to us several years ago by Itai Benjamini has been to determine the time it
takes to visit every vertex of the full d-ary tree of height n (that is, the cover time).
One might expect a simple argument would establish fast or slow cover times
when the density of particles is very high or small. In fact, for every density of
particles, it was unknown even if this quantity was polynomial or superpolynomial
in n. Here we demonstrate that both can occur.
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C. Hoffman, T. Johnson and M. Junge 2

If we view the process as modeling the spread of an infection, finite graphs
are its natural setting and cover time a fundamental measurement. Finite trees
are particularly interesting because of the phase transition that occurs on infinite
rooted d-ary trees with an average of µ particles per site: As we increase µ, the
root goes from being visited finitely to infinitely many times [HJJ17b, HJJ16].
Moreover, the companion to this work [HJJ17a] proves that whenµ=Ω(d2), the
root is visited at a linear rate. The dramatically different regimes on infinite trees
suggest that both fast and slow cover times should occur on finite trees [Her18,
JJ16]. However, it is unclear how reflection at the leaves influences the spread
of active particles. Indeed, dealing with the boundary is the biggest obstacle to
establishing regimes for fast and slow cover times.

First we describe what was previously known. The cover time is trivially at
least n, and it is bounded above by the cover time for a single random walk on a
tree, which is exponential in n [Ald91]. Until recently, these were the only known
results. For any fixed d and particle density, Hermon improved the lower bound to
Ω(n log n) and the upper bound to exp(O(

√
n)) [Her18]. In this paper, we prove

that if the density of particles is sufficiently large then Hermon’s lower bound is
sharp, and if the density is small then his upper bound is sharp. In particular, this
is the first proof that there exists a d > 2 and density of particles for which the
cover time is polynomial, or a d > 2 and density of particles for which the cover
time is superpolynomial.

We mention a few other closely related topics. The susceptibility of the frog
model on a finite graph is the minimum lifespan of frogs such that all sites are
visited. This statistic has been studied on tori and expanders [BFHM18] and on
trees [Her18]. In none of these cases does it exhibit a phase transition in the
density of particles, making it qualitatively very different from cover time.

A process resembling the frog model was proposed by Benjamini to study the
connectivity of social networks and the spread of epidemics and has been studied
on finite graphs [BH16] and infinite graphs [HMQS16]. On infinite nonamenable
graphs, there is a phase transition in the initial density for whether all particles are
eventually socially connected. For vertex-transitive amenable graphs, there is not.
This resembles the frog model, which has a phase transition between transience
and recurrence on trees [HJJ16], but not on lattices [AMPR01].

Result. As we mentioned, [Her18] gives the first nontrivial upper and lower
bounds on the cover time, which we now state in more detail. Let Poi(µ) denote a
Poisson distribution with mean µ. We refer to the frog model with one frog awake
at the root, i.i.d.-Poi(µ) frogs elsewhere, and frogs following independent simple
random walk paths as having i.i.d.-Poi(µ) initial conditions. We let Tn

d denote the
rooted, full d-ary tree of height n. This is the tree with levels 0, . . . , n in which
all vertices in levels 0, . . . , n − 1 have d children.
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Cover time for the frog model on trees 3

Let C = C(n, d, µ) denote the cover time for the frog model on Tn
d with i.i.d.-

Poi(µ) initial conditions. In [Her18, Theorem 2], Hermon proves there exists a
constant c > 0 such that for any µ > 0 and d > 2,

lim
n→∞

P
[
C 6 ec

√
n log d]

= 1.

As for the lower bound, it follows from [Her18, Theorem 1] that there exists a
constant C > 0 such that for any µ > 0 and d > 2,

lim
n→∞

P
[
C >

Cn log n
µ

]
= 1.

We now give our main result, which demonstrates the existence of two distinct
behaviors for the cover time depending on the initial density of frogs. With a
high density, the cover time is Od(n log n/µ) with high probability. By Hermon’s
lower bound, this determines the cover time up to constant factor for each fixed
choice of d . With a low initial density of frogs, we prove that the cover time is
exp

(
Ω(
√

n log d)
)

with high probability, which is sharp up to the constant in the
exponent by Hermon’s upper bound. In fact, [Her18, Theorem 2] also gives an
upper bound for the cover time when µ decays in the height of the tree; one can
take µ as small as exp(−

√
n log d) and still obtain a bound of the same order.

Thus, our lower bound shows that for small but fixed values of µ, the cover time
exhibits the same asymptotic behavior as when µ decays rapidly as n grows.

THEOREM 1.1. Let C = C(n, d, µ) denote the cover time for the frog model on
Tn

d with one awake frog at the root and i.i.d.-Poi(µ) conditions.

(a) There exist constants β0, Cd , and n0(µ, d) such that for all d > 2 and µ >
β0d2,

P
[
C 6

Cdn log n
µ

]
> 1− d−n

for n > n0(µ, d).

(b) Suppose that µ 6 min(d1−ε, d/100) for ε ∈ (0, 1]. For some absolute
constant c > 0,

P
[
C > ec

√
εn log d] > 1− e−c

√
εn log d

for n > log d/c2ε.
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C. Hoffman, T. Johnson and M. Junge 4

Our full versions of these bounds, Theorems 3.1 and 4.1, are slightly stronger
in that we extend them to initial distributions other than Poisson. We note that our
lower bound, part (b), shows that the cover time is large even when µ is as large
as d/100; see Corollary 4.2.

Thus, our results establish a slow cover time regime when µ = O(d) and a fast
cover time regime when µ = Ω(d2). This raises the question of what happens
in between. On the infinite tree, the threshold between recurrence and transience
occurs when µ is on the order of d [JJ16]. This paper’s results are consistent with
the possibility that the slow and fast cover time regimes on the finite tree occur at
the same parameters as the transient and recurrent phases on the infinite tree. But
it is not clear this is so.

QUESTION 1.2. Are there other phases for the cover time of the frog model on
Tn

d besides those described in this paper? Is there a sharp phase transition between
phases? If so, how does the process behave at critical values of µ?

In [DMnVZ00], the activated random walk process, which is essentially the
frog model where particles fall back asleep at random, is discussed in connection
with self-organized criticality, a phenomenon in which some real physical
systems naturally push themselves toward criticality. The idea is that while
conservative systems (in which particles are neither created nor destroyed) do
not exhibit self-organized criticality, their behavior at criticality can nonetheless
be a good model for it (see also [RSZ17, Section 1.3], whose discussion is aimed
at mathematicians). This makes the frog model’s behavior at criticality on both
finite and infinite trees a particularly intriguing topic.

Description of proof. In Section 3, we tackle the cover time upper bound. The
starting point for the proof is that the infected region (that is, set of visited sites)
grows linearly for the frog model on an infinite tree, which we prove in the
companion paper [HJJ17a]. Naively, one might think that a polynomial cover
time bound would follow as an easy corollary, but we do not believe there is a
quick argument. The issue is that our strong recurrence results from [HJJ17a],
that the number of visits to the root grows linearly in time, become less powerful
as they are applied to a finite tree near its leaves. We describe our argument in
detail here to illustrate the problem at the boundary and our resolution of it. In the
rough description below, we will suppress the fact that the constants depend on d
and write O(·) rather than Od(·).

Looking toward a union bound, we must show it exponentially likely that an
arbitrary leaf v0 ∈ Tn

d is woken in time O(n log n). Consider the spine v0, v1,

. . . , vn = ∅ leading from v0 to the root ∅. To Tn
d(vk), the subtree rooted at vk ,
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Cover time for the frog model on trees 5

Figure 1. We show that the cover time is O(n log n) by creating a cascade of frogs
that move toward an arbitrary leaf v0 along the path v0, . . . , vn = ∅. Once Ik frogs
build up at vk , a constant stream of frogs flows to vk−1. Using strong recurrence,
we show that In−1 frogs build up at vn−1 in time O(n). This sets the cascade in
motion, initiating a constant flow of frogs to vn−2. After O(In−2) steps, we have
built up In−2 frogs at vn−2, setting off the next stage of the cascade, and so on.
This quickly builds upΩd(n log n) frogs at distance J = O(log n) from v0, and it
is exponentially likely that at least one will visit v0 in the next O(n log n) steps.

we attach a random variable Ik defined as the number of frogs that must enter
Tn

d(vk) to accumulate frogs that are frozen at vk−1 at a linear rate for dk time steps.
A possibly helpful metaphor is cascading water down a stair-step fountain (see
Figure 1). Each basin needs a certain amount of water to reach a tipping point,
after which it will pour water steadily into the one below it. In our proof, we
wait until In−1 frogs have accumulated at vn−1. By definition of In−1, this sets off
a linear flow of frogs which will send In−2 frogs to vn−2 in O(In−2) steps. This
cascade continues until cn log n frogs have accumulated at site vJ , at a distance
J ≈ logd n+ logd log n+Cd from v0. At this point, we have built up enough frogs
that we can ignore the wake-up dynamics of the frog model and instead show it
is exponentially likely that at least one of cn log n random walks started at vJ will
visit v0 in the next O(n log n) time steps. We can then apply a union bound over
all leaves of Tn

d .
The argument outlined above shows that the cover time is roughly O(In−1 +

· · · + IJ+1 + n log n). Deducing a fast cover time is thus reduced to bounding
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C. Hoffman, T. Johnson and M. Junge 6

the random variables (Ik). Since Ik is determined by the frogs within Tn
d(vk), the

random variables (Ik) are independent. We show that Ik has an exponential tail
independent of k, which implies In−1 + · · · + IJ+1 = O(n) with exponentially
high probability by a Chernoff bound. The proof that Ik has an exponential tail
uses strong recurrence but is not an easy corollary of it. The issue is that strong
recurrence only guarantees a steady flow of frogs out of Td(vk) up to time k, while
we need a flow up to time dk , or else the argument would not work for vk close
to the leaves. Indeed, for k ≈ J , strong recurrence yields a flow out of Td(vk)

for only O(log n) steps, rather than the dk
≈ n log n steps that we need. Thus,

our challenge is to show that a steady flow of frogs out of Tn
d(vk) persists for

much longer than given by strong recurrence. This argument makes up the bulk
of Section 3.

In Section 4, we give our bound for the low density case. Our argument has
no precursors in published work, as far as we know. We consider the number of
visits to the root for the frog model on T j2

d in the first 2 j steps. We inductively
assume that the expected number of visits to the root is O(1), and we then try
to prove that this estimate continues to hold for the frog model on T( j+1)2

d after
2 j+1 time steps. To do this, we separate the tree into its first O( j) and its final
j 2 levels. We then push the induction forward by bounding the growth of frogs at
different times in the two parts of the tree by various combinations of the inductive
hypothesis, a bound given by branching random walk, and a bound of assuming
all frogs are awake in a given subtree. Theorem 1.1(b) follows from considering
n ≈ j 2.

As we mentioned earlier, we also obtain results when the sleeping frog
distributions at each vertex are not Poisson. These results are easy applications
of [JJ18], in which we show that increasing the initial distributions in various
stochastic orders causes certain statistics of the frog model to increase as well.
We give a further introduction to these techniques in Appendix A. Some facts
for random walk decompositions on trees and concentration inequalities are also
contained in the appendices.

2. Preliminaries

Here we describe our notation, certain variants of the frog model, and also
results that we will need from [HJJ17a].

Notation. For our purposes the frog model takes place on either the infinite
rooted d-ary tree Td or on the full d-ary tree of height n denoted by Tn

d . The root
of whatever tree we are discussing will be denoted by ∅. Vertices at distance k
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Cover time for the frog model on trees 7

from the root are at level k of the tree. For any rooted tree T and vertex v ∈ T , we
denote the subtree of T made up of v and its descendants by T (v).

Formally, the frog model is a pair (η, S) where for each vertex v other than the
starting one, η(v) is the number of frogs initially sleeping at v, and S = (S•(v,
i))v∈G,i>1 is a collection of walks satisfying S0(v, i) = v. The i th particle sleeping
at v on waking follows the path S•(v, i). When we discuss the frog model on a
given graph with, say, i.i.d.-Poi(µ) initial conditions, unless we say otherwise we
assume that the paths are simple random walks, and all of the random variables are
independent. The root is assumed to be the starting vertex unless stated otherwise.
The frog model evolves in discrete time, though it is easy to show that the results
of this paper hold in continuous time as well. A realization of the frog model
is called either transient or recurrent depending on whether the starting vertex
is visited infinitely often by frogs. The cover time of a given frog model is the
random variable defined as the first time all vertices in the system have been
visited. Traditionally, particles are referred to as frogs, a practice we continue.

We let Geo(p) be the distribution that places probability (1 − p)k p on k > 0.
We also refer to the geometric distribution on {1, 2, . . .} with parameter p,
which is the same distribution shifted by one. In a mild abuse of notation,
we sometimes use Poi(µ) and Bin(n, p) to refer to random variables with the
given distributions rather than the distributions themselves, as in statements like
P[Poi(µ) = 0] = e−µ.

2.1. Modified frog models. At times in our argument, it is helpful to consider
variants of the frog model that couple to the original process. A stopped version of
a given frog model (η, S) is a frog model (η, S′) where each path S′

•
(v, i) consists

of S•(v, i) stopped at some time T (v, i) ∈ N∪{∞}. These must be stopping times
for the frog model, in the sense that the decision to stop a frog at some time must
be determined from the history of the stopped process up to that time. We give
a quick sketch of how to formalize this. Following [KZ17, Section 2], let W ′

j(η,

S) be the set of sites visited for the first time at time j in the stopped process.
Define Ft as the σ -algebra representing all information about the stopped process
revealed by time t ; formally, it is generated by the sets W ′

j(η, S) for j ∈ {0, . . . , t},
the frog counts η(v) for v ∈

⋃t
j=0 W ′

j(η, S), and the frog paths (S′k(v, i))t− j
k=0 for

each j ∈ {0, . . . , t} and v ∈ W ′

j(η, S). We require the event {T (v, i) 6 t} to be
measurable with respect to Ft . As a consequence of this definition, for a stopped
version of a frog model with, say, simple random walk paths, we can unstop all
frogs at a given time and have them continue as independent simple random walks,
since the stopping times do not impart any conditioning on the future part of the
paths. By an easy coupling, in any given time stochastically fewer frogs are woken
in the stopped process than in the original one.
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C. Hoffman, T. Johnson and M. Junge 8

When proving lower bounds on the growth of the frog model on the infinite
tree Td , we typically work with what we call the self-similar frog model. Roughly
speaking, it is the frog model with nonbacktracking frog paths, where frogs are
stopped so that for each subtree of the form Td(v), at most one frog from outside
the subtree is allowed to enter it. To define it rigorously, we first define a uniform
nonbacktracking random walk as a nearest neighbor path that samples uniformly
from all adjacent edges on its first step, and then thereafter samples uniformly
from all adjacent edges except the one just traversed. On Td , this is particularly
simple: the path moves toward the root for some random amount of time, then
takes a random nonbacktracking step away from the root, and then follows a
uniformly sampled geodesic to∞.

To define the self-similar frog model on Td , first let the frog paths be
independent uniform nonbacktracking random walks. Now, we stop frogs as
follows to enforce the rule that at most one frog enters any subtree. On a given step
of the frog model, suppose that some vertex v ∈ Td\{∅} is visited for the first time.
Let v′ be the parent of v. On this step, one or more frogs move from v′ to v. Stop
all but one of them, and on all subsequent steps stop all frogs on moving from v′

to v. Additionally, stop all frogs at ∅ at steps 1 and beyond. We refer to [HJJ17a,
Section 2.1] and [JJ16, Section 3.1.1] for more background information about
the self-similar frog model. The reason for calling it self-similar is that only one
external frog, that is, a frog initially at a vertex in Td \ Td(v), may enter each
Td(v). Because the frog paths are nonbacktracking, the process on {v′} ∪ Td(v)

from the time a frog moves from v′ to v is identical in law as on {∅} ∪ Td(∅′)
from step 1 onward. Here ∅′ is the child of ∅ visited by the initial frog on its
first step.

The self-similar frog model is defined on the infinite tree Td , though we will
sometimes consider it on the finite tree Tn

d by freezing frogs at leaves. But in
proving our upper bound on cover time, we will usually consider a different
process we call the nonbacktracking frog model on Tn

d . To describe it, we first
define a root-biased nonbacktracking random walk from v0 on Tn

d as a walk
distributed as follows. We set X0 = v0, and then we choose X1 uniformly from
the neighbors of X0. Conditionally on X0, . . . , X i , we choose X i+1 as follows:
If X i = ∅, choose X i+1 to be X i−1 with probability 1/d2 and to be each of the
other children of the root with probability (d + 1)/d2. If X i is a leaf, then set
X i+1 to be its parent (the only possibility for the next step). Otherwise, choose
X i+1 uniformly from the neighbors of X i other than X i−1. It turns out that a
simple random walk decomposes into this path plus independent excursions off
of it (see [HJJ17a, Appendix A]). The odd behavior at the root results from the
asymmetry of the tree there.
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Cover time for the frog model on trees 9

Finally, define the nonbacktracking frog model on Tn
d as the frog model whose

paths are independent root-biased nonbacktracking random walks on the specified
tree. The following result shows that the time change for the underlying random
walks speeds up the nonbacktracking model by only a constant factor compared
to the usual frog model. This allows us to work with nonbacktracking frog models
when we prove Theorem 1.1(a).

PROPOSITION 2.1 [HJJ17a, Proposition 2.2]. Let (η, S) and (η, S′) be
respectively the usual and the nonbacktracking frog models on Tn

d , with arbitrary
initial configuration η. There exists a coupling of the frog models (η, S) and
(η, S′) such that the following holds: For any b > log d, there exists C = C(b)
such that all vertices visited in (η, S′) by time t are visited in (η, S) by time Ct
with probability 1− e−bt .

2.2. Adaptations of results from [HJJ17a]. We start by stating the
result [HJJ17a, Theorem 3.1] which demonstrates a strong recurrence regime on
infinite d-ary trees. We define the return process to be a point process on R in
which each point at t represents a frog that is occupying the root at time t . Note
that this is supported on the nonnegative integers.

THEOREM 2.2. Consider the self-similar frog model on Td with i.i.d.-Poi(µ)
initial conditions. For any d > 2, α > 0, and µ > 3d(d+1)+α(d+1), the return
process stochastically dominates a Poisson point process with intensity measure∑
∞

k=1 αδ2k .

This extends to Tn
d , but because of the boundary, only up to time 2n − 2.

COROLLARY 2.3. Consider the self-similar frog model on Tn
d with i.i.d.-Poi(µ)

initial conditions and frogs frozen on reaching a leaf. For any d > 2, α > 0, and
µ > 3d(d + 1)+α(d + 1), the return process stochastically dominates a Poisson
point process with intensity measure

∑n−1
k=1 αδ2k .

Proof. Couple the processes of Theorem 2.2 and of this corollary by having all
frogs follow the same paths until reaching the boundary of the finite tree. Consider
a root visit on the process on the infinite tree occurring before time 2n. The
combined path of frogs waking the returner together with the returning path does
not reach depth n of the tree, since the return occurs before time 2n. Thus, the
return occurs in the process on the finite tree as well. The finite tree process
therefore has all of the returns of the infinite tree process before time 2n, and
the result follows from Theorem 2.2.

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2019.37
Downloaded from https://www.cambridge.org/core. IP address: 100.33.2.177, on 08 Jun 2020 at 18:31:16, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2019.37
https://www.cambridge.org/core


C. Hoffman, T. Johnson and M. Junge 10

Last, we state [HJJ17a, Lemma 4.1], which helps us deduce a weaker version
of the shape theorem [HJJ17a, Theorem 1.1] for the finite tree.

LEMMA 2.4. Let β > 0 and consider the self-similar frog model on Td with i.i.d.-
Poi(µ) frogs per site, where µ = (3 + β)d(d + 1). Let ∅, v0, v1, v2, . . . be an
arbitrary ray in Td , and condition the initial frog to take its first step to v0. Let τi

be the number of steps after vi−1 is first visited that vi is first visited. Then (τi)i>1

are i.i.d. and satisfy

P[τi > 2t − 1] 6 e−βt (1)

for t ∈ {1, 2, . . .}.

An important corollary for our work here is that a self-similar frog model
activates half of the leaves in the active branch of any height tree in time O(k)
with probability at least 1/2 (recall that only sites in Td(∅′) are visited in the self-
similar model, where ∅′ is the child of the root first visited by the initial frog).

COROLLARY 2.5. Consider a self-similar frog model on Tk+1
d with i.i.d.-Poi(µ)

initial conditions where frogs are frozen at leaves, for any k > 1. For µ > (3 +
β)d(d + 1) and sufficiently large absolute constants β and C, there exists p =
p(β,C) such that dk/2 of the leaves are visited in Ck steps with probability at
least p. Moreover, p can be made arbitrarily close to 1 by choosing C and β
sufficiently large, and in particular p > 1/2 when β > 2 and C > 8.

Proof. Let v−1 = ∅. Let v0 be a child of ∅, and condition on the initial frog taking
its first step to v0. By symmetry of the tree, it suffices to prove the corollary under
this assumption. Note that the children of the root other than v0 are never visited,
since frogs are frozen when they visit the root in the self-similar frog model. Thus,
our goal is to show that at least half the leaves descending from v0 are visited in
Ck steps with probability at least p, for some p to be determined.

Let v−1, v0, . . . , vk be the path from ∅ = v−1 to an arbitrary leaf vk descending
from v0. We will show that vk fails to be visited in Ck steps with probability at
most q = q(β,C), and that q can be made arbitrarily small by choosing β and
C large enough. Then, the expected number of leaves descending from v0 that
are not visited in time Ck is at most qdk . The lemma then follows by applying
Markov’s inequality to show that the number of unvisited leaves is larger than
dk/2 with probability at most 2q .

For i > 1, let τ ′i be the number of steps after vi−1 is visited that vi is first
visited. If vi is never visited, set τ ′i = ∞. Now, we observe that the self-similar
frog model on Tk+1

d with frogs frozen at leaves is identical to the first k + 1 levels
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Cover time for the frog model on trees 11

of the self-similar frog model on Td with frogs frozen at level k + 1. This frog
model can naturally be coupled with the self-similar frog model on Td with no
freezing. Putting these together yields a coupling between (τ ′i )

k+1
i=1 and the random

variables (τi)
∞

i=1 defined in Lemma 2.4.
We claim that if

τi 6 2(k − i + 1) for all 1 6 i 6 k, (2)

then τ ′i = τi for all 1 6 i 6 k. Indeed, suppose that τi 6 2(k − i + 1). From
the time vi−1 is first visited in the self-similar frog model on Td , it takes at most
2(k− i+1) steps for vi to be visited. Since any walk from vi−1 to level k+1 back
to vi has length at least 2(k− i + 1)+ 1, this visit to vi still occurs when frogs are
frozen at level k + 1. Under the coupling, we then have τ ′i = τi for all 1 6 i 6 k
as desired.

Thus, if (2) holds and 1 +
∑k

i=1 τi 6 Ck, then vk is woken in Ck steps in the
self-similar model on Tk+1

d . Therefore,

q(β,C) 6 P
[
τi > 2(k − i + 1) for some 1 6 i 6 k

]
+ P

[
1+

k∑
i=1

τi > Ck
]
.

We now bound the two terms on the right-hand side of this inequality. By
Lemma 2.4,

P
[
τi > 2(k − i + 1) for some 1 6 i 6 k

]
6

k∑
i=1

e−β(k−i+1) 6
e−β

1− e−β
,

which can be made as small as desired by increasing β.
By Lemma 2.4, the random variables (τi) are independent, and (τi + 1)/2

is stochastically dominated by the geometric distribution on {1, 2, . . .} with
parameter 1− e−β . By Proposition B.3,

P
[

1+
k∑

i=1

τi > Ck
]
6 exp

[
−k
(

C(1− e−β)
2

− 1
)]

6 exp
(
−

C(1− e−β)
2

+ 1
)
.

For any given β > 0, this can be made arbitrarily small by increasing C . This
proves that q(β,C) is as small as desired for large enough β and C . In particular,
plugging in numbers, we see that q(β,C) < 1/4 if β > 2 and C > 8. As 2q is the
bound on the probability of fewer than dk/2 leaves being visited, this completes
the proof.

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2019.37
Downloaded from https://www.cambridge.org/core. IP address: 100.33.2.177, on 08 Jun 2020 at 18:31:16, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2019.37
https://www.cambridge.org/core


C. Hoffman, T. Johnson and M. Junge 12

3. Fast cover time for large µ

We now present the most general version of the cover time upper bound.

THEOREM 3.1. Let C be the cover time for the frog model on Tn
d with initial frog

counts given by (η(v))v∈Tn
d\{∅}. Suppose that η(v) �pgf Poi(µ) for all v, where

µ > β0d2 for a sufficiently large absolute constant β0. There exist constants Cd

and n0(µ, d) such that

P[C > Cdn log n/µ] 6 d−n

for all n > n0(µ, d).

See Appendix A for the definition of the pgf stochastic order denoted by �pgf.
Loosely speaking, the condition η(v) �pgf Poi(µ) means that the distribution of
η(v) is larger and more concentrated than the distribution of Poi(µ). In particular,
if η(v) = k deterministically for some integer k > µ, then η(v) �pgf Poi(µ). Thus,
our result holds for the frog model with k frogs per vertex for k > β0d2.

This theorem follows from two propositions that we explain now. Fix a leaf
v0 ∈ Tn

d . Label the path from v0 to the root by v0, . . . , vn = ∅. In general, we will
take µ = (3+ β)d(d + 1) for some parameter β, a convenient form for applying
Corollaries 2.3 and 2.5. The vertex vJ , where

J = J (d, n, β) = blogd n + logd(log n)+ 5 logd 10− logd βc, (3)

is far enough from v0 that we can show that many frogs visit vJ in time O(n log n).
It is also close enough to v0 that one of these frogs at vJ will visit v0 in O(n log n)
steps with high probability (see Figure 2). These two statements are the content
of Propositions 3.2 and 3.3, which we show under Poisson initial conditions. We
complete the proof by applying Lemma A.1 to relax this assumption.

Recall the definition of a stopped version of a frog model from Section 2.1.

PROPOSITION 3.2. For some constants β0 and Cd , the following holds. Let µ =
(3 + β)d(d + 1) for β > β0. There exists a stopped version of the frog model
on Tn

d with i.i.d.-Poi(µ) initial conditions such that 10n log n frogs have been
stopped at vertex vJ by time Cdn log n/β with probability at least 1− d−3n for all
n > n0(β, d), for some constant n0(β, d).

PROPOSITION 3.3. Suppose that 10n log n simple random walks start at vertex vJ

in Tn
d and move independently, and that n > n0 for some sufficiently large absolute

constant n0. For some absolute constant C, one of the walks visits v0 within
Cn log n/β steps with probability 1− d−3n .
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Cover time for the frog model on trees 13

Figure 2. The basic idea of Theorem 3.1 is to show that many frogs visit vJ after
O(n log n) steps for J ≈ logd n + logd(log n) + C . Once enough frogs are built
up at vJ , one of them will visit the leaf v0 with high probability within O(n log n)
steps.

The upper bound on the cover time follows from Propositions 3.2 and 3.3.

Proof of Theorem 3.1. First, assume that the sleeping frog counts (η(v))v are
i.i.d.-Poi(µ). By Proposition 3.2, there is a stopped version of the frog model
where 10n log n frogs accumulate at vJ by time Cdn log n/β with probability at
least 1−d−3n . At time bCdn log n/βc, unfreeze all frogs and let them resume their
simple random walks. By Proposition 3.3, the vertex v0 is visited in this modified
process by time C ′dn log n/β with probability 1− 2d−3n for some constant C ′d . If
this holds in this stopped and restarted frog model, then it holds in the original frog
model as well, by an obvious coupling. As v0 was arbitrary, each leaf is visited
with probability at least 1 − 2d−3n , and the expected number of leaves unvisited
by time C ′dn log n/β is therefore at most 2d−2n .

Now, we extend this to non-Poisson initial conditions. Let N be the number
of leaves visited by time C ′dn log n/β in the Poisson frog model, which we have
shown to satisfy

EN > dn
− 2d−2n.

Let N ′ be the corresponding count of visited leaves for the frog model defined
in the statement of this theorem. By Lemma A.1, we have EN ′ > EN . Thus,
the expected number of unvisited leaves in this frog model is also at most 2d−2n ,
and by Markov’s inequality there is an unvisited leaf with probability at most
2d−2n 6 d−n . Once all leaves are visited, all vertices of the tree have been visited,
completing the proof.

3.1. Establishing Proposition 3.2. The goal of this section is to prove
it overwhelmingly likely that Ω(n log n) frogs accumulate at vJ in time
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C. Hoffman, T. Johnson and M. Junge 14

O(n log n/β), recalling the definitions of v0, . . . , vn , J , and β from the beginning
of the section. Our argument is sequential: we show that many frogs flow from
vn to vn−1, which spurs many frogs to flow into vn−2, and so on. To make this
precise, we introduce random variables Ik for J + 1 6 k 6 n. Loosely speaking,
Ik is the quantity of frogs that must start at vk so that frogs flow steadily to vk−1

at a rate of Ω(β) per time step. Now, imagine running the frog model until In−1

frogs have built up at vn−1. Once this happens, frogs will flow steadily to vn−2;
allow them to build up until there are In−2 there, which will take time O(In−2/β).
Continuing in this way, we build up IJ+1 frogs at vJ+1 in time

O
( n−1∑

k=J+1

Ik/β

)
,

plus the time to get the first In−1 frogs to vn−1. This creates a steady flow of frogs
to vJ , and after another O(n log n/β) steps, we have produced Ω(n log n) visits
to vJ . Thus, the main task is to show that

∑n−1
k=J+1 Ik/β is unlikely to be large. We

do this by showing an exponential tail bound for Ik , from which it follows that it
is exponentially likely that this sum is O(n).

We mention that we use nonbacktracking frogs throughout this section.
This coordinates well with our results regarding the self-similar frog model in
Section 2.2. Only at the very end will we apply Proposition 2.1 to move our
results back to the usual frog model.

3.1.1. Definition of Ik . We first define a family of processes FM(vk, `), which
are frog models limited to the subtree Tn

d(vk) with an extra ` frogs initially at vk .
Then we define Ik as the smallest ` for which FM(vk, `) produces a steady stream
of frogs entering vk−1:

DEFINITION 3.4 (FM(vk, •) and Ik). Let µ = (3 + β)d(d + 1). For J < k < n
and ` > 1, let FM(vk, `) be a frog model defined as follows. We place sleeping
frogs only within Tn

d(vk) \ Tn
d(vk−1). At all of these vertices except for vk , place

Poi(µ) frogs per site as usual. At vk itself, we place Poi(µ) frogs plus an extra `
special frogs, as we will call them. The paths of the special frogs are root-biased
nonbacktracking walks stopped at vk−1 and vk+1 with their first steps conditioned
to move to a descendant of vk (that is, to move away from vk+1). The paths of
all other frogs are root-biased nonbacktracking walks stopped at vk−1 and vk+1.
Vertex vk is the starting vertex for the process; all frogs there are initially awake.

For a fixed value of k, we consider FM(vk, `) to be coupled for all choices of
` in the natural way. That is, we suppose that there is an infinite pile of special
frogs at vk , and FM(vk, `) uses only the first ` of them. We denote the collection
of coupled frog models (FM(vk, `))`>1 by FM(vk, •).
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Cover time for the frog model on trees 15

For J < k < n, we define the random variable Ik to be the smallest integer
` such that the number of frogs frozen at vk−1 by time t in FM(vk, `) is at least
βt/10000 for all max(3, d`/βe) 6 t 6 dk . Observe that this test becomes vacuous
when ` > βdk , and therefore Ik 6 βdk

+ 1.

As we have remarked, one should think of Ik as the minimum number of special
frogs at vk to ensure a steady flow of frogs into vk−1. This ‘steady flow’ is at
rate Ω(β) per time step. For technical reasons, we only require it to start at time
max(3, d`/βe). We require the flow to continue only up to time dk because it is
impossible for it to continue much longer, since there are only O(βdk) frogs in
the entire system FM(vk, `).

3.1.2. Exponential tail bound for Ik . The bulk of our work in Section 3 is to
prove the following exponential tail bound on Ik :

PROPOSITION 3.5. For some constants c,C > 0, the following holds. Let µ =
(3 + β)d(d + 1). For β > 10000, it holds for any integers J < k < n and
1 6 ` 6 dk that

P[Ik > `] 6 Ce−c`. (4)

Once this is proven, a short argument shows that
∑n−1

k=J+1 Ik = O(n) is
exponentially likely if the random variables (Ik) are assumed to be i.i.d. This is the
most important element of the proof of Proposition 3.2. To prove Proposition 3.5,
we must argue that FM(vk, `) is exponentially likely in ` to send a steady flow
of frogs to vk−1. There are two parts to this argument. From times max(3, d`/βe)
to k, we obtain the necessary quantity of frogs at vk−1 as a direct consequence
of Corollary 2.3 (see Lemma 3.8). To show that the flow condition is maintained
beyond this, we leverage Corollary 2.5 to prove it exponentially likely in ` that we
wake up a positive fraction of all frogs in Tn

d(vk) by time O(k). We then show that
enough of these frogs will move to vk−1 to give us our steady flow of frogs from
time 14k to dk (see Lemma 3.10). To bridge the gap between times k and 14k, we
make β large enough to build up a surplus of frogs at vk−1 during the first k time
steps. This ensures that the steady flow requirement is met until time 14k even if
no additional frogs visit vk−1 for times between k and 14k (see Lemma 3.9).

We now begin working toward Proposition 3.5. We start with two technical
estimates. First, we show that a frog at a leaf of Tk

d hits the root in t steps with
probability Ω(td−k).

LEMMA 3.6. Consider a root-biased nonbacktracking random walk on Tk
d

starting from a leaf for k > 2. For any integer k + 2 6 t 6 dk , the walk visits the
root in its first t steps with probability at least (t − k − 2)d−k/4.
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C. Hoffman, T. Johnson and M. Junge 16

Proof. Let T be the first time that the walk hits the root. We decompose the walk
into a sequence of independent excursions from the leaves. Since each excursion
reaches the root with probability d−k+1, the number of unsuccessful excursions
before hitting the root is Geo(d−k+1). Each unsuccessful excursion has length
distributed as 2G̃, where G̃ is a geometric random variable on {1, 2, . . .} with
parameter (d−1)/d conditioned to be less than k. Let G̃(i) be independent copies
of G̃, and let G(i) be independent and distributed as the unconditioned geometric
distribution on {1, 2, . . .} with the same parameter. Thus,

T d
= k + 2

Geo(d−k+1)∑
i=1

G̃(i)
� k + 2

1+Geo(d−k+1)∑
i=1

G(i) d
= k + 2(1+ Geo((d − 1)d−k)),

with the last step using the fact that the sum of 1 + Geo(p) many independent
1+ Geo(q) random variables is a 1+ Geo(pq) random variable. Therefore,

P[T 6 t] > P
[

1+ Geo
(
(d − 1)d−k

)
6

t − k
2

]
= 1− (1− (d − 1)d−k)b(t−k)/2c > 1− exp

(
−
(t − k − 2)d−k

2

)
.

Using the bound 1 − e−x > x/2 for x ∈ [0, 1] along with the assumption that
t 6 dk ,

P[T 6 t] >
(t − k − 2)d−k

4
.

LEMMA 3.7. Suppose that m balls are placed uniformly and independently into
n bins, with m > 3n. Let Z be the number of occupied bins. Then

P[Z 6 2n/3] 6 e−m/54.

Proof. Imagine that we place the balls one after another, and define Z i as the
number of bins occupied after i balls have been placed. Let T = min{i : Z i >
2n/3}. We need to bound the probability that T > m. We observe that (Z i)i>0

is a pure birth process with P[Z i+1 = Z i + 1 | Z i ] = 1 − Z i/n and Z0 = 0.
Let (Yi)i>0 be a pure birth process starting at 0 and increasing at each step with
probability 1/3. We can couple the two processes so that (Yi) increases only when
(Z i) does up to time T . We apply Proposition B.1 to the random variable Ym ,
which is distributed as Bin(m, 1/3), and we get

P[T > m] 6 P[Ym 6 2n/3] 6 exp
(
−
(1− 2n/m)2m

6

)
6 e−m/54,

using our assumption m > 3n.
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Cover time for the frog model on trees 17

We are now ready to start on the proof of Proposition 3.5. Let X t be the number
of frogs frozen at vk−1 by time t in FM(vk, `). The basic idea is that if Ik > `,
then X t < βt/10000 occurs for some max(3, d`/βe) 6 t 6 dk . Thus it suffices
to show that the probability of this event decays exponentially in `. In the next
three lemmas, we break the time interval max(3, d`/βe) 6 t 6 dk into the three
segments described on page 15, and we bound the probability that X t < βt/10000
on any of them.

The first time segment is for length k, which is the height of the tree rooted at
vk . As we mentioned, we use the application of strong recurrence to the finite tree
in Corollary 2.3 to accrue Ω(k) frogs at v j in time k.

LEMMA 3.8. With the conditions of Proposition 3.5,

P
[
X t < βt/10000 for some max(3, d`/βe) 6 t 6 k

]
6 Ce−c`

for some constants c,C > 0.

Proof. With probability 1 − d−`, some child of vk other than vk−1 is visited by
one of the ` special initial frogs on the first step of FM(vk, `). Call this event E .
Conditional on E , let u be a visited child, and couple FM(vk, `) with the self-
similar frog model on Tk

d with frogs frozen at the leaves, as follows. Identify vk

with the root of the self-similar model. Let u ′ be the child of the root in Tk
d first

visited by the initial frog in the self-similar model. Identify Tn
d(u) in FM(vk, `)

with Tk
d(u
′) in the self-similar model. Make the number of initial frogs in Tn

d(u)
in FM(vk, `) identical to the number of initial frogs in Tk

d(u
′) in the self-similar

model. Let each of these frogs in FM(v, `) follow the corresponding frog in
the self-similar model until it is frozen. After, each frog in FM(v, `) continues
as a root-biased nonbacktracking walk independent of the self-similar model.
Similarly, let the initial frog that moved to u in FM(vk, `)match the initial frog in
the self-similar model until it is frozen.

By this coupling and Corollary 2.3, the count of frogs moving from u back to
vk by time 2t is stochastically at least Poi(βdt) for any integer 1 6 t 6 k − 1,
conditional on E . As each of these frogs moves next to vk−1 with probability 1/d ,
we have X2t+1 � Poi(βt). Restating this, conditional on E ,

X t � Poi
(
d(t − 1)/2eβ

)
� Poi

((
β

2
− 1

)
t
)

(5)

for any 3 6 t 6 2k − 1. Let t0 = max(3, d`/βe). By Lemma B.4,

P
[
X t < βt/10000 for any t0 6 t 6 k

∣∣ E
]
6 2e−Ω(βd`/βe) 6 2e−Ω(`). (6)
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C. Hoffman, T. Johnson and M. Junge 18

Note that for simplicity we have limited the range to t0 6 t 6 k, even though
(6) holds for a larger interval. Combined with P[E] = 1 − d−`, this proves the
claim.

Our next time segment is from k to 14k, bridging the gap between our first and
third segments. The argument here is rather simple: In proving Lemma 3.8, we
built up sufficiently many frogs at time k to keep X t large enough until time 14k.

LEMMA 3.9. With the conditions of Proposition 3.5,

P
[
X t < βt/10000 for some max(d`/βe, k) < t 6 14k

]
6 e−c`

for some constant c > 0.

Proof. From (5) in the previous proof,

Xk � Poi
((

β

2
− 1

)
k
)
.

Proposition B.1 then gives

P
[

Xk <
14βk
10000

]
6 e−Ω(βk) 6 e−Ω(`)

if 14k > d`/βe, which we can assume since otherwise the lemma is vacuous.
This completes the proof, since if X t < βt/10000 for any k 6 t 6 14k, then
Xk < 14βk/10000.

The last segment of time is the largest, from 14k to dk . The idea is to wake a
large fraction of the leaves of Td(vk) and show that this produces a steady stream
of frogs to vk−1 up to time dk . Corollary 2.5 ensures that with positive probability,
the self-similar frog model with a single initial frog wakes a positive fraction of
the leaves. Essentially, we need to show that if we start the process with ` frogs
active at the root, then the chance of waking a positive fraction of the leaves
improves exponentially in `.

The trick to doing so is to find many independent opportunities to apply
Corollary 2.5, so that we may boost the fixed probability bound to an exponential
one. We start by letting the ` initial frogs in FM(vk, `) move a distance of
L = blogd `/3c down the tree. By a comparison to placing balls uniformly into
bins, we show that these frogs are exponentially likely in ` to cover at least 2/3
of the vertices at this level. We then apply Corollary 2.5 to the subtrees rooted
at the visited vertices to show that each independently has at least probability
1/2 of having half its leaves wake in time O(k). Since there are Ω(`) of these
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Cover time for the frog model on trees 19

subtrees, it is exponentially likely in ` that this occurs for a positive fraction of
them. All together, this demonstrates that it is exponentially likely in ` that a
positive fraction of leaves of Tn

d(vk) are woken in time O(k). With this many
frogs awake, standard hitting estimates from a leaf to a root give us a steady flow
of frogs to vk up to time dk . We now make this outline precise.

LEMMA 3.10. With the assumptions of Proposition 3.5,

P
[

X t <
βt

10000
for some max

(
d`/βe, 14k

)
6 t 6 dk

]
6 Ce−c` (7)

for some constants c,C > 0.

Proof. We can assume without loss of generality that ` > 3, since the ` = 1, 2
cases can be made trivial by choosing C large enough. Let L = blogd(`/3)c > 0.
Let VL and VL+1 be respectively the sets of distance L and L + 1 descendants of
vk that are not descendants of vk−1. The restriction ` 6 dk implies that vk has at
least L + 1 generations of descendants.

For each v ∈ VL+1, couple a self-similar frog model on Tk−L with FM(vk, `) in
the same way as in Lemma 3.8. This time, if u ′ is the child of the root in Tk−L

d
first visited by the initial frog, then Tk−L

d (u ′) is identified with Tn
d(v), and the

root of Tk−L
d is identified with the parent of v. If v is ever visited in FM(vk, `),

then choose one of its activators and match its path up with the initial frog in the
self-similar model. All other aspects of the coupling are as in Lemma 3.8. Note
that under this coupling, the self-similar models matched for each v ∈ VL+1 are
independent.

For v ∈ VL , let Av be an indicator on v being visited by one of the ` initial
frogs in FM(vk, `), and let A =

∑
v∈VL

Av. The total number of vertices at level L
is d L 6 `/3, and each initial frog is equally likely to go to any of them. By
Lemma 3.7, at least 2/3 of these vertices are visited with probability 1 − e−`/54.
On this event, A > (2/3− 1/d)d L > d L/6. Note that all of this holds even when
L = 0, when A = Avk = 1 deterministically.

Now, condition on (Av)v∈VL . For every child u of a vertex v ∈ VL satisfying
Av = 1, let Bu be an indicator on some frog woken at v moving immediately to
u. By Poisson thinning, there are independently Poi

(
(3 + β)d

)
frogs woken at v

moving to u. Hence, conditional on (Av)v∈VL , the random variables Bu for such u
as described above are i.i.d.-Ber

(
e−(3+β)d

)
.

Call u ∈ VL+1 sustaining if in the self-similar model coupled to it, at least
dk−L−1/2 leaves are activated in 12(k − L − 1) steps. Let Su be an indicator on u
being sustaining. The random variables (Su)u∈VL+1 are independent of each other
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and of all random variables Av and Bu defined in the previous paragraph. Let

S =
∑

u child of v
v∈VL , Av=1

Bu Su.

Conditional on (Av)v∈VL , the random variable S is the sum of independent
indicators, and E[S | A] > e−(3+β)d Ad/2 > .48Ad by Corollary 2.5. Conditional
on A > d L/6, we then have S > d L+1/25 with probability at least 1− e−Ω(d

L+1) >
1− e−Ω(`).

Now, we claim that if S > d L+1/25, it is unlikely that X t < βt/10000 for any
d`/βe 6 t 6 dk . On the event {S > d L+1/25}, there are stochastically at least
Poi(µdk/50) frogs activated by time L+12(k− L−1) at leaves descending from
v0. As the paths of the frogs at the leaves are independent of S, conditional on
S > d L+1/25 their paths remain independent root-biased nonbacktracking walks.
By Lemma 3.6, the number of these frogs that have visited vk by time L+12(k−
L−1)+(t+k+2) is stochastically at least Poi(tµ/200) for any 0 6 t 6 dk

−k−2.
We then thin by 1/d to get the number of frogs frozen at vk−1 after one more step.
Hence,

X13k+t > X L+12(k−L−1)+t+k+3 � Poi
(

tµ
200d

)
= Poi

(
t (3+ β)(d + 1)

200

)
.

For t > k,

t (3+ β)(d + 1)
200

>
β(13k + t)

1000
.

By Lemma B.4,

P
[

X t <
βt

10000
for some max

(
d`/βe, 14k

)
< t 6 dk

∣∣∣∣ S >
d L+1

25

]
6 2e−Ωβd`/βe 6 2e−Ω(`).

Combined with the estimates on P[S > d L+1/25 | A > d L/6] and on P[A >
d L/6], this completes the proof.

Proof of Proposition 3.5. Lemmas 3.8–3.10 combine via a union bound to prove
(4).

3.1.3. Final steps toward Proposition 3.2. We are already done with the hard
work toward proving Proposition 3.2. As we described at the beginning of
Section 3.1, our argument requires us to feed In−1 frogs into vn−1 to get a steady
flow into vn−2, then wait for In−2 frogs to flow into vn−2, and so on. What remains
is to show that this happens quickly by stitching together the processes FM(vk, •)
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Cover time for the frog model on trees 21

and applying Proposition 3.5. In our next lemma, we collect In−1 frogs at vn−1 to
set things in motion.

In this section, we have elected to simplify computations by frequent use of
big-O notation. We will be very strict in our use of it: an expression O( f ) or
Ω( f ) denotes a quantity bounded respectively from above or from below by C f ,
where 0 < C <∞ is an absolute constant not depending on d , n, µ, or any other
parameter. For example, the expression O(Cn/β) in the next lemma could be
replaced by C ′Cn/β, where C ′ is an absolute constant with no dependence on d ,
n, β, or C .

LEMMA 3.11. Consider the nonbacktracking frog model on Tn
d with i.i.d.-Poi(µ)

frogs per site where µ = (3 + β)d(d + 1). Given C > 0, there exists β0 =

β0(C) such that for β > β0, there is a stopped version of the frog model with the
following property: it holds with probability at least 1 − e−Cdn that at least Cdn
frogs whose last step was from vn = ∅ are frozen at vn−1 by time O(Cn/β) for
n > n0(C, β, d).

Proof. Suppose that some child u of the root is visited at time t for the first time.
We first mention that we can couple the frog model restricted to {∅} ∪ Tn

d(u)
from time t on with the self-similar frog model on Tn

d with frogs frozen at leaves
from time 1 on, as we have often done before: simply have all frog paths identical
in both models up until time a frog is stopped in the self-similar model. By this
coupling and Corollary 2.3, our original frog model has stochastically at least
Poi(cdn) visits to ∅ from u by time t + 2cn/β, assuming that β is large enough
that 2cn/β 6 n − 1.

We now apply this fact repeatedly to prove the lemma. Let ∅′ be the child of
the root first visited by the initial frog. The gist of the argument is to couple the
frog model on ∅∪Tn

d(∅′)with the self-similar model as above to obtain Poi(cdn)
visits to ∅ in time 2cn/β. From this, we are very likely to visit, say, one third of
the children of the root by time 2cn/β + 1. For each visited child v, we couple
the frog model on {∅} ∪ Tn

d(v) with the self-similar frog model to get another
Poi(cdn) visits to the root after another 2cn/β steps. Summing the contributions
from allΩ(d) visited children, we have Poi(cd2n) visits to the root, and after one
more step we have Ω(dn) frogs at vn−1. We will write out this argument with
all details below, but we remark that the details are less enlightening than the
description we have just given.

We do the argument first in the d > 3 case. Let c > 1 be a large constant,
to be specified in more detail later. In this argument, we use the phrase with
overwhelming probability to mean with probability at least 1 − e−Ω(cdn) for
sufficiently large n (where the meaning of sufficiently large can depend on c, d ,
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C. Hoffman, T. Johnson and M. Junge 22

and β). Each instance of the phrase might have a different constant in theΩ(cdn)
expression. Observe that by a union bound, an intersection of a bounded number
of events holding with overwhelming probability also holds with overwhelming
probability.

Choose β0 large enough that 2cn/β0 6 n − 1, and assume that β > β0. We
then have stochastically at least Poi(cdn) visits from ∅′ to ∅ in time 2cn/β by
the coupling described above. Each frog that moves from ∅′ to ∅ moves next
outside of {∅, vn−1} with probability at least 1− (d+2)/d2

= Ω(1), recalling the
dynamics of root-biased nonbacktracking walk from Section 2.1. Thus, by time
2cn/β + 1, at least Poi

(
Ω(cdn)

)
frogs have done so. By Proposition B.1, this

quantity of frogs is at least Ω(cdn) with overwhelming probability. Conditional
on this occurring, each of these frogs is equally likely to visit any of the
children of the root other than ∅′ and vn−1. By Lemma 3.7, the number of
these children visited is strictly greater than (d − 2)/3 with overwhelming
probability. Conditional on this, for each child of the root v 6= ∅′, vn−1 visited,
we couple the frog model on {∅} ∪ Tn

d(v) with a self-similar model. For each
v, we then obtain Poi(cdn) visits from v to ∅ by time 2cn/β + 1, giving us
Poi
(
Ω(cd2n)

)
such visits in all. Each frog moves next to vn−1 with probability

(d + 1)/d2, giving us Poi
(
Ω(cdn)

)
visits to vn−1 from ∅ in time 2cn/β + 2.

Finally, by Proposition B.1, this quantity is at least Ω(cdn) with overwhelming
probability.

When d = 2, start the argument the same, obtaining Poi(2cn) visits from ∅′
to ∅ by time cn/β. Depending on whether ∅′ = vn−1, each of these frogs moves
next to vn−1 with probability 3/4 or 1/4. In either case, we have Poi

(
(Ω(cn)

)
frogs moving from ∅ to vn−1 in time cn/β + 1, and by Proposition B.1, there are
Ω(cn) of them with overwhelming probability.

Thus, in both cases, we have Ω(cdn) frogs stopped at vn−1 after moving there
from ∅ in time O(cn/β) with overwhelming probability. Choosing c to equal C
multiplied by a sufficiently large constant completes the proof.

We now prove the equivalent of Proposition 3.2 for the nonbacktracking frog
model on Tn

d . After this, we will apply Proposition 2.1 to transfer the result
to the usual frog model. Recall from (3) that J = blogd n + logd(log n) +
5 logd 10− logd βc.

PROPOSITION 3.12. Consider the nonbacktracking frog model on Tn
d with i.i.d.-

Poi(µ) initial conditions where µ = (3+ β)d(d + 1). For any constant C, for all
β > β0(C) and n > n0(β, d,C), there is a stopped version of the model such that
at least 10n log n frogs are stopped at vJ by time O(n log n/β) with probability
at least 1− e−Cdn .
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Cover time for the frog model on trees 23

Proof. This proof is somewhat long, but it just stitches together the estimates
made earlier in the section. We start with an informal sketch. Start with the
nonbacktracking frog model on Tn

d with i.i.d.-Poi(2µ) frogs, splitting the frogs
at each site into two collections of Poi(µ) each. With the first collection, we run
the frog model to accumulate O(Cdn) frogs at vn−1, which we can do in time
O(Cn/β) with overwhelming probability by Lemma 3.11. We then abandon this
first set of frogs and switch to the second, giving ourselves a fresh frog model
with i.i.d.-Poi(µ) frogs per site but with an extra O(Cdn) frogs deposited at vn−1.
We can now couple the process with FM(vn−1, O(Cdn)). Since In−1 6 O(Cdn)
with overwhelming probability by Proposition 3.5, a steady stream of frogs flows
to vn−2. When In−2 frogs have built up there, we couple the process to FM(vn−2,

In−2), and we know that a steady stream of frogs will flow to vn−3. Continuing in
this way, we eventually feed IJ+1 frogs in vJ+1, creating a steady stream of frogs
into vJ . After O(n log n/µ) steps, enough frogs have built up at vJ and we are
finished.

Now, we carry out the details. We will be proving our proposition with µ
replaced by 2µ, which is equivalent by adjusting β0. We define a process based
on the usual frog model with i.i.d.-Poi(2µ) frogs per site in which frogs are
repeatedly stopped and restarted. We refer to it as the slowed process. To define it,
separate the sleeping frogs in Tn

d into two independent Poi(µ)-distributed batches
at each vertex. Let the initial frog at the root move as usual, as a root-biased
nonbacktracking walk. For sleeping frogs in the first batch, let their paths be root-
biased nonbacktracking walks stopped on moving from the root to vn−1. Keep all
second-batch frogs frozen for now.

Let FM(vk, •) be independent for all J + 1 6 k < n. Recall that Ik is a function
of FM(vk, •), and hence IJ+1, . . . , In−1 are independent. Once In−1 frogs have
been frozen at vn−1 in the slowed process, unfreeze all frogs accumulated there.
Halt all other first-batch frogs at this time and ignore them afterward.

We now allow the second-batch frogs to work at last. When the frogs at vn−1

are unfrozen, couple them with the special frogs in FM(vn−1, •). Also couple the
numbers and paths of second-batch frogs in Tn

d(vn−1) \ Tn
d(vn−2) with the normal

frogs in FM(vn−1, •). Thus, all frogs move (past the first step) as nonbacktracking
walks frozen at vn−2 and vn .

Once In−2 frogs are frozen at vn−2, halt all other frogs forevermore, and unfreeze
these frogs. Couple them and the second-batch frogs in Tn

d(vn−2) \ Tn
d(vn−3) with

FM(vn−2, •) as above. Let all frogs move until In−3 frogs have been frozen at vn−3.
We continue on in this way until IJ+1 frogs are frozen at vJ+1. We then continue
for one last step, unfreezing the frogs at vJ+1, halting all other ones permanently,
and coupling the process with FM(vJ+1, •). Finally, we run the process until
10n log n frogs are frozen at vJ .
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C. Hoffman, T. Johnson and M. Junge 24

We claim that to prove this proposition, it suffices to prove the same bound for
the slowed process. This is intuitively very clear: If we remove all of the stops
and restarts at vertices other than vJ , the resulting model is a stopped version of
the nonbacktracking frog model. Furthermore, every frog that is stopped at vJ

by a given time in the slowed process will also be stopped at vJ by this time in
the stopped process. Hence, it suffices to prove that at least 10n log n frogs are
stopped at vJ in the slowed process at time O(Cn log n/β) with probability at
least 1− e−Cdn .

The rest of the proof is to show this. We claim that at least 10n log n frogs are
stopped at vJ in the slowed process at time O(n log n/β) if all of the following
events occur:

Event A1: The time to accumulate In−1 frogs at vn−1 in the first step of the process
is at most O(Cn/β).

Event A2: For all J + 1 6 k 6 n − 1, it holds that Ik 6 dk .

Event A3: It holds that In−1 + · · · + IJ+1 6 n log n.

Indeed, suppose all these events occur. For J + 2 6 k 6 n − 1, let

Tk = max
(

3,
⌈

10000Ik−1

β

⌉
,

⌈
Ik

β

⌉)
.

From event A1, there will be In−1 frogs at vn−1 by time O(Cn/β) or
sooner, starting the stage of the slowed process in which it evolves according
to FM(vn−1, •). By Definition 3.4, the process FM(vn−1, In−1) sends at least
βt/10000 frogs to vn−2 in t steps for all max(3, dIn−1/βe) 6 t 6 dn−1. From
event A2, we have In−1 6 dn−1 and In−2 6 dn−2. Hence Tn−1 lies between max(3,
dIn−1/βe) and dn−1, and therefore FM(vk−1, Ik−1) sends at least In−2 frogs to vn−2

in Tn−1 steps. By our construction of the slowed process, this kicks off the next
stage of the process, which is coupled to FM(vn−2, •). By identical reasoning,
FM(vn−2, In−2) sends at least In−3 frogs to vn−3 in Tn−2 steps. Continuing in
this way, we send at least In−4 frogs to vn−4 in another Tn−3 steps, and so on,
culminating with the arrival of IJ+1 frogs to v j+1. Finally, let

TJ+1 = max
(

3,
⌈

105n log n
β

⌉
,

⌈
IJ+1

β

⌉)
.

By the definition of J , we have 105n log n/β 6 d J+1. From A2, we have IJ+1 6
d J+1. Thus TJ+1 lies between max(3, dIJ+1/βe) and d J+1, from which it follows
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Cover time for the frog model on trees 25

that FM(vJ+1, IJ+1) sends at least 10n log n frogs to vJ in TJ+1 steps. All together,
we send at least 10n log n frogs to vJ in time

O
(

Cn
β

)
+ Tn−1 + · · · + TJ+1. (8)

Assuming event A3 holds, we have Tn−1 + · · · + TJ = O(n log n/β). Thus, (8) is
O(n log n/β) for large enough n (depending on C), completing the proof of the
claim.

All that remains is to show that A1∩ A2∩ A3 occurs with probability at least 1−
e−Cdn . Let c be a constant to be chosen later (it will depend only on C). To bound
the probability of A1, observe that cdn frogs are frozen at vn−1 in the first stage of
the process by time O(cn/β) with probability at least 1 − e−cdn by Lemma 3.11.
By Proposition 3.5, we have P[In−1 6 cdn] > 1− O(1)e−Ω(cdn). These two facts
together show that Ac

1 occurs with probability O(1)e−Ω(cdn), provided the implicit
constant in big-O expression in the definition of A1 is chosen large enough.

To bound the probability of A2, first observe that d J > 105n log n/β. Then
apply Proposition 3.5 and obtain the inequality

P[Ik > dk
] 6 P[Ik > dk−J (10)5n log n/β]

6 O(1) exp
(
−Ω

(
dk−J n log n/β

))
for all J + 1 6 k 6 n − 1. Hence, by a union bound,

P[Ac
2] 6

n−1∑
k=J+1

O(1) exp
(
−Ω

(
dk−J n log n/β

))
= O(1)e−Ω(dn log n/β).

For large enough n (depending only on c and β), this is bounded by e−cdn .
Last, we consider the event A3. Let I k = min(Ik, dk), so that I k has an

exponential tail by Proposition 3.5. By Proposition B.2,

P
[
I n−1 + · · · + I J+1 > n log n

]
6 e−cdn

once n is large enough relative to d and c. If A2 holds and I n−1 + · · · + I J+1 6
n log n, then A3 holds as well, showing that P[Ac

3] 6 2e−cdn for large enough n,
depending on c and β. We now have

P[Ac
1] + P[Ac

2] + P[Ac
3] = O(1)e−Ω(cdn).

The proof is now completed by choosing c large enough that this is smaller than
e−Cdn .

Proof of Proposition 3.2. Set b = 4 log d and apply Proposition 2.1 to the result
of Proposition 3.12.
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C. Hoffman, T. Johnson and M. Junge 26

3.2. Establishing Proposition 3.3. In this section we prove Proposition 3.3.
Note that this is a result about random walks on trees, not the frog model. It
will be based on the following random walk estimate. Recall from (3) that J =
blogd(105n log n/β)c, where µ = (3+ β)d(d + 1).

PROPOSITION 3.13. Consider a single random walk on Tn
d started at vJ and

assume that n > n0 for some sufficiently large absolute constant n0. The walk
visits v0 in less than 4(10)5n log n/β steps with probability at least 1/3 logd n.

Using this, the proof of Proposition 3.3 is easy:

Proof of Proposition 3.3. By Proposition 3.13 the probability that none of the
10n log n frogs at vJ reaches v0 in 4(10)5n log n/β steps is at most(

1−
1

3 logd n

)10n log n

6 e−3n log d .

Now we devote the rest of this section to establishing the random walk estimate.
Its proof works by decomposing the random walk as a simple random walk on the
spine {v0, . . . , vn} with excursions off of it. We start with a preliminary lemma to
compute the expected length of the excursions.

LEMMA 3.14. Let τk be the number of steps to hit either vk−1 or vk+1 for a simple
random walk on Tn

d starting at vk . Then Eτk = dk−1(d − 1)/2.

Proof. The time to hit vk−1 or vk+1 is the same as the time by random walk starting
at vk on the weighted graph shown in Figure 3 to hit the leftmost vertex, {vk−1,

vk+1}. The random walk moves at each step to a neighbor chosen with probability
proportionate to the weight of the edge. The graph has been obtained from Tn

d
by identifying vk−1 and vk+1, identifying all children of vk other than vk−1, and
identifying all distance k descendants of vk for each k > 2.

The expected hitting time is easily computed using electrical network theory.
By [LP16, Proposition 2.20], which is a result first obtained in [Tet91], the hitting
time has expectation

∑
x π(x)v(x), where the sum is over all vertices in the graph,

π(x) denotes the sum of the weights of edges incident to x , and v is the voltage
that assigns 0 to the vertex {vk−1, vk+1} and that creates a unit current flow from
vk to {vk−1, vk+1}. This voltage assigns 1/2 to all vertices other than {vk−1, vk+1}.
The expected hitting time is then

1
2

k−1∑
i=0

(
d i(d − 1)+ d i+1(d − 1)

)
+

1
2
(d + 1) =

1
2

dk−1(d − 1).
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Cover time for the frog model on trees 27

Figure 3. The following collections of vertices from Tn
d have been identified in

this graph: vk−1 and vk+1; all children of vk other than vk−1; and the distance k
descendants of vk for each k > 2. Random walk moving with probability
proportionate to the edge weights starting at vk and stopping at {vk−1, vk+1} is the
same as random walk on the original graph, viewing vertices as blocked together.

Next, we compute the expected number of visits to each vertex along the spine
before v0 is hit. We condition on the walk hitting v0 before vJ+1, as this will
simplify our eventual proof.

LEMMA 3.15. Consider a random walk on Tn
d starting at vJ . Let σk be the first

time that the walk hits vk . Let Vk be the total number of visits to vk up to time σ0.
For 1 6 k 6 J ,

E[Vk | σ0 < σJ+1] = 2k
(

1−
k

J + 1

)
.

Proof. Let E = {σ0 < σJ+1}. Recall that P[σk < σJ+1] = 1/(J + 1 − k).
Conditioned on E , the walk will visit vk at least once for all k 6 J . The number
of returns to vk after first visiting it is a geometric random variable with parameter
1− P[Vk = 1 | E]. We can then write

E[Vk | E] =
1

P[Vk = 1 | σ0 < σJ+1]
=

P[σ0 < σJ+1]

P[σ0 < σJ+1 and Vk = 1]

=
1

(J + 1)P[σ0 < σJ+1 and Vk = 1]
. (9)

We claim that

P[σ0 < σJ+1 and Vk = 1] =
1

2(J + 1− k)k
. (10)

This is because to reach v1 before vJ+1, the walk necessarily visits vk before vJ+1,
which occurs with probability 1/(J + 1− k). To visit vk only once, on arriving at
vk it must immediately move to vk−1, which occurs with probability 1/2. Then it
must reach v0 before vk , which occurs with probability 1/k. Combining (9) and
(10) gives the claimed formula.
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Proof of Proposition 3.13. Let (St) be a simple random walk on Tn
d starting at

vk . Define S = {v0, . . . , vn}. The Markov property of random walk shows that
the restriction to S of the path of (St) is distributed as the path of a simple
random walk on S . Let σk = inf{t : St = vk}, the hitting time of vk , as in
Lemma 3.15. Set

F = {σ0 6 4(10)5n log n/β},
E = {σ0 < σJ+1}.

Our goal is to bound P[F] from below. A simple estimate gives

P[F] > P[F ∩ E] = P[F | E]P[E] =
P[F | E]

J
. (11)

In light of (11) it suffices to prove that P[F | E] > 1/2.
Let Vk = |{t 6 σ0 : St = vk}|, the total number of visits to vk before the walk

hits v0. Let τk(i) be the number of steps it takes the walk to reach vk−1 or vk+1

starting from the i th time the walk arrives at vk . We then decompose σ0 as

σ0 =

n∑
k=1

Vk∑
j=1

τk( j).

Conditional on E , the random variables Vk and τk( j) are mutually independent
for all j and k. By Wald’s lemma,

E[σ0 | E] =
J∑

k=1

E[Vk | E]E[τk( j) | E]. (12)

We need only consider J summands in (12), since conditional on E the walk
does not move beyond vJ before hitting v0. For all j , the random variable τk( j)
is independent of E and is distributed as τk from Lemma 3.14. Therefore, by
Lemmas 3.14 and 3.15,

E[σ0 | E] =
J∑

k=1

k
(

1−
k

J + 1

)
dk−1(d − 1).

We claim that this is O(d J ). Indeed, using the bound k(1−k/(J+1)) 6 J+1−k
and making the substitution j = J + 1− k in the second line,
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E[σ0 | E] 6 (d − 1)
J∑

k=1

(J + 1− k)dk−1

= d J−1(d − 1)
J∑

j=1

jd1− j

6 d J−1(d − 1)
∞∑
j=1

jd1− j
= d J−1(d − 1)

(
1− d−1)−2

=
d J+1

d − 1
.

Notice that d J+1 6 105dn log n/β and apply Markov’s inequality to obtain

P[σ0 > 4(10)5n log n/β | E] 6
d

4(d − 1)
6

1
2
.

Applying this to (11) gives

P[σ0 6 16(10)5n log n/β] >
1

2J
>

1
3 logd n

,

with the last inequality holding for all sufficiently large n, with no dependence
on d .

4. Slow cover time for small µ

We now give our lower bound on the cover time for small enough µ.

THEOREM 4.1. Let C be the cover time for the frog model on Tn
d with initial

frog counts given by an independent collection of random variables (η(v))v∈Tn
d\{∅},

where Eη(v) 6 µ for all vertices v. Suppose that µ 6 min(d1−ε, d/100) for any
0 < ε < 1. For some absolute constant c > 0,

P
[
C < ec

√
εn log d] 6 e−c

√
εn log d

for n > log d/c2ε.

This bound is effective even for µ as large as d/100:

COROLLARY 4.2. Let C be the cover time as above, assuming only that µ 6
d/100. Then for some absolute constant c > 0,

P
[
C < ec

√
n
]
6 e−c

√
n

for n > ((log d)/c)2.
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Proof. Apply Theorem 4.1 with ε = logd 100.

We extend the usual notion of the distribution Ber(µ) to µ > 1 by setting it to
be the unique distribution on {bµc, dµe} with mean µ. For most of this section,
we consider the frog model with i.i.d.-Ber(µ) initial conditions. We then apply
Lemma A.1 to allow for more general initial conditions.

The proof hinges on the following result that we will prove inductively. Define
TH∗

d to be the d-ary tree of height H with an extra vertex, y, attached to the root.

PROPOSITION 4.3. For some absolute constant C > 0, the following statement
holds for all d > 2 and µ 6 d/100. Consider the frog model on TH∗

d with one
initially active frog at the root, none at y, and i.i.d.-Ber(µ) sleeping frogs at the
remaining vertices, and with frogs frozen on moving to y. Let X ( j,H) be the number
of frogs frozen at y by time 2 j . Define H j = H j(d, µ) by

H1 = 1,

H j =

⌈
C j (log(1+ µ)+ j)

log
(

d
1+µ

) ⌉
, j > 2.

For any j > 1, if n > H j , then

EX ( j,n) 6
.8

1+ 2d
d−1µ

. (13)

Most of this section is devoted to proving Proposition 4.3. Before we turn to
this, we prove Theorem 4.1 from it. First, it is a small task to remove the freezing
of frogs from Proposition 4.3, showing that the expected number of returns to the
root within time 2 j in our usual frog model on TH j

d is O(1).

COROLLARY 4.4. Suppose that µ 6 d/100, and let

j = j (d, n, µ) = max{i : Hi 6 n − 1},

where Hi is the sequence defined in Proposition 4.3. Let R be the total number
of visits to the root of Tn

d within time 2 j in the frog model with initial frog counts
given by η(v) for v ∈ Tn

d \ {∅}. If Eη(v) 6 µ for all vertices v, then ER 6 4.

Proof. It suffices to prove this result under i.i.d.-Ber(µ) initial conditions, by
Lemma A.1 and the maximality of Ber(µ) in the pgf order mentioned in
Appendix A. Now, consider the following modification of the frog model. Let
the initial frog take a step. Next, run the frog model for 2 j steps with frogs frozen
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at the root, and kill all frogs that were woken but did not reach the root. Let R1

be the number of frogs frozen at the root. Now, let each of these frogs take one
more step, and then run the frog model for another 2 j steps with frogs frozen at
the root, and then again kill any frogs that were woken but did not reach the root.
Let R2 be the number of frogs frozen at the root after this stage. Continue in this
way to define Ri for i > 3. As every frog is allowed to run for at least 2 j steps
before being killed, every visit to the root in the usual frog model in the first 2 j

steps occurs eventually in this modified process. Hence, R 6
∑
∞

i=1 Ri .
Defining R0 = 1, we claim that

ERi+1 6 (1+ µ)EX ( j,n−1)ERi (14)

for all i > 0. We prove this statement now. After the i th step of the process,
there are Ri frogs at the root. Let Ni be the number of active frogs at level 1
after they take their next steps. Fix 1 6 k 6 Ni , and suppose that the kth of
these frogs follows the path (S0, S1, . . .) from this point on. Consider the original
(unmodified) frog model with the following changes:

(i) Add an initially active frog with path (S0, S1, . . .);

(ii) delete all other frogs at vertex S0, and delete the frog at the root;

(iii) freeze frogs on moving to the root.

Let Xk be the number of frogs frozen at the root after 2 j steps in this modified
process. By a subadditivity property of the frog model, Ri+1 6

∑Ni
k=1 Xk . Now,

we think of the root vertex as y, and we think of Xk as counting the number of
visits to y in a frog model on T(n−1)∗

d with frogs frozen at y, except that because
of killing frogs, some vertices of T(n−1)∗

d have no sleeping frogs on them. Thus,
conditional on Ni , we have Xk � X ( j,n−1). Hence,

E[Ri+1 | Ni ] 6 (EX ( j,n−1))Ni .

Taking expectations and observing that E[Ni | Ri ] 6 (1 + µ)Ri completes the
proof of (14).

By Proposition 4.3 and our choice of j ,

(1+ µ)(EX ( j,n−1)) 6
.8(1+ µ)
1+ 2d

d−1µ
6 .8.

It now follows from (14) that

ER 6
∞∑

i=1

ERi 6
∞∑

i=1

(.8)i = 4.
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Corollary 4.4 shows that in the frog model on Tn
d , there are few visits to the

root by time 2 j (d,n,µ). To bound the cover time, we observe that once all frogs are
active, many visits to the root will occur. We first give a random walk estimate.

LEMMA 4.5. For some absolute constants a, b > 0 the following statement holds.
Suppose that n log d/a 6 t 6 dn . Then a random walk on Tn

d with arbitrary
starting position has probability at least btd−n of hitting the root in its first t
steps.

Proof. One could prove more precise estimates in the same way as Lemma 3.6.
Since we do not need any precise formula, we take a simpler approach. We can
assume the walk starts at a leaf, as this is the worst-case scenario. Now, partition
the walk into excursions away from level n. The length of each excursion has an
exponential tail, since the probability that a random walk on Z from 0 with a bias
to the right is negative after k steps decays exponentially in k. By Proposition B.2,
the probability of having εt or fewer excursions from level n in time t is at most
e−ct for absolute constants ε and c. On each excursion, the walk has probability
(d − 1)/(dn

− 1) > d−n of visiting the root. Thus, in dεte excursions, the
probability that the root will not be visited is at most

(1− d−n)dεte 6 e−εtd−n
.

Combining these two estimates, the root is visited in time t with probability at
least

1− e−εtd−n
− e−ct .

Since t 6 dn , we can apply the inequality 1 − e−x > x/2, which holds for
x ∈ [0, 1], to get

1− e−εtd−n
− e−ct >

εtd−n

2
− e−ct .

Choosing a small enough, this is Ω(td−n).

Proof of Theorem 4.1. Define j = j (d, n, µ) as in Corollary 4.4. We start by
estimating j . Directly calculating from the definition of Hi in Proposition 4.3, we
find that if i > log d , then

Hi 6
Ci2

ε log d
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for some absolute constant C . If we set i = dc
√
εn log de for c = (2C)−1/2 and

assume n > c−2 log d/ε so that i > log d , then we have Hi 6 n − 1. Hence
j > c

√
εn log d . It is also straightforward to see that j = O(

√
n log d).

It does us no harm to assume that µ > .01. For technical reasons, we will
also assume that the expected number of sleeping frogs is exactly µ at each site,
rather than just being bounded by µ. To see that it suffices to prove the theorem
under this extra assumption, for each site with expected count strictly smaller than
µ, independently add a random number of extra frogs (distributed arbitrarily) to
bring the mean up to µ, and observe that this can only decrease the cover time.

Define the event A = {C < 2 j−1
}. We will prove that P[A] 6 C2− j for some

absolute constant C . By the lower bounds on j , this proves the theorem with an
extra constant C in front of the bound, which we can eliminate by decreasing cε
or c slightly. Conditional on A, all frogs are awake at time 2 j−1, and they move
from this time on as independent simple random walks. We can apply Lemma 4.5
with t = 2 j−1, since n log d/a 6 2 j−1 6 dn for large enough n, showing that each
walk hits the root by time 2 j with probability at least b2 j−1d−n . Let R be the total
number of visits to the root by time 2 j and let U be the total number of frogs in
the system. Bounding R from below by counting the visits to the root only for
times in [2 j−1, 2 j

], we obtain

E[R | A] > b2 j−1d−nE[U | A].

By a simple coupling, the event A is more likely the larger U is. That is, the
random variables 1A and U are positively associated, from which it follows that
E[U | A] > EU > µdn , recalling that we have assumed that each site has exactly
mean µ sleeping frogs. Thus, E[R | A] > b2 j−1µ. But by Corollary 4.4, we have
ER 6 4. Rearranging the simple bound ER > E[R | A]P[A] gives

P[A] 6
4

b2 j−1µ
= O(2− j),

under our assumption that µ > .01.

4.1. Tagging frogs. The remainder of Section 4 is devoted to proving
Proposition 4.3. Fix integers H, h, j > 1, and consider the frog model on T(H+h)∗

d
with frogs frozen on moving to y, starting with one frog at the root, and with
i.i.d.-Ber(µ) frogs per site at all vertices besides the root and y. Let Li denote the
set of vertices at level i of T(H+h)∗

d , taking 0 as the level of the root and −1 as the
level of y.

Our plan is to advance the induction in Proposition 4.3 by supposing that X ( j,H)

satisfies the inductive hypothesis and then showing that X ( j+1,H+h) does as well,
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for a good choice of h. The idea of the proof is to assign each frog a tag that
changes at various times in the process. When one frog wakes another, the newly
woken frog starts with the same tag as its waker. If a frog is woken by two
frogs with different tags arriving simultaneously, choose any procedure to decide
between the frogs; this detail will prove irrelevant. In the following set of rules,
when a frog changes its tag on arriving at a given vertex, the newly woken frogs
inherit the new tag, not the old one.

• The initially active frog at the root has tag A.

• If an A-tagged frog reaches Lh , its tag changes to B0.

• If a Bi -tagged frog moves from Lh−1 to Lh , its tag changes to Bi+1.

• If a Bi -tagged frog moves from Lh to Lh−1 at time 2 j or after, its tag changes
to C0.

• If a Ci -tagged frog moves from Lh−1 to Lh , its tag changes to Ci+1.

• At time 2 j+1
+ 1, all frogs are stripped of their tags.

Note that frogs are retagged every time they move forward in the tree to Lh .
The only other time a frog receives a new tag is when a Bi -tagged frog moves
backward from Lh to Lh−1 at time 2 j or later, in which case its tag changes to C0.

We will use three different estimates to bound the number of tagged frogs.
When frogs with any tag are between the root and Lh , we dominate them by
branching random walks using the estimates in Lemmas 4.8 and 4.9. When a frog
moves forward in the tree to a vertex v ∈ Lh and is given tag Bi , we estimate
the number of Bi -tagged frogs emerging from v back to Lh−1 using (13), the
inductive hypothesis. We have very little control over the number of C0-tagged
particles emerging from v back to Lh−1. Here, we use Lemma 4.6, which we call
the all-awake bound since it simply assumes that all frogs in the subtree rooted
at v are initially awake. The key to the argument is that we retain control over
the number of Ci+1-tagged frogs: Whenever a Ci -tagged frog moves forward to
a vertex v ∈ Lh and is retagged as Ci+1, it does so after time 2 j . Since we only
care about the process up to time 2 j+1, we can control the number of Ci+1-tagged
frogs emerging from v back to Lh−1 using the inductive hypothesis rather than the
all-awake bound. Thus, although there will be many C0-tagged frogs, the number
of Ci -tagged frogs for i > 1 will not spiral out of control.

4.2. Branching random walk and all-awake bounds. As mentioned above,
we control the frog model by dominating it by branching random walk and by
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simply assuming that all frogs in a given subtree are initially awake. We start with
this second bound.

LEMMA 4.6 (All-awake bound). Consider TH∗
d for arbitrary H > 1 with one

particle at the root, none at y, and i.i.d.-Ber(µ) particles at the remaining vertices.
Let all particles perform discrete-time random walks frozen at y. Let W be the
total number of particles frozen at y after t time steps. For some constant c1,

EW 6 c1µt.

Proof. For any 0 6 k 6 H − 1, a particle initially at level k of the tree visits
y before the leaves with probability no more than d−k−1. Initially, there is one
particle at level 0 and an expected µdk particles at level k for each 1 6 k 6 H−1.
Only particles starting at level t − 1 or less can reach y in time t . Hence, the
expected number of particles that reach the root in t steps without ever being at a
leaf is at most

d−1
+

min(H,t)−1∑
k=1

µdkd−k−1 6
1+ tµ

d
. (15)

Now, consider a particle at a leaf. It has probability no more than d−H of visiting
y before revisiting level H . In time t , it makes no more than t of these excursions
from the leaves. Thus, the probability that a given particle at a leaf visits y in its
next t steps is at most

1− (1− d−H )t 6 1− e−2d−H t 6 2td−H .

The first inequality above uses the bound 1−x > e−2x , which holds for all x ∈ [0,
1/2]. The total expected number of particles in the tree is 1 + µ(d + · · · + d H ).
The expected number of particles that visit y before time t , starting from a leaf or
after visiting a leaf, is therefore at most

2td−H
(
1+ µ(d + · · · + d H )

)
6 2t

(
d−H
+

µ

1− d−1

)
. (16)

Combining (15) and (16),

EW 6
1
d
+

(
µ

d
+ 2d−H

+
2µ

1− d−1

)
t

6
1
2
+

(
µ

2
+ 1+ 4µ

)
t = O(µt).
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Next, we prove several bounds whose proofs are essentially comparisons
of the frog model to branching random walk. The first step is to describe a
supermartingale wθ (ξt) given as a function of the frog model.

LEMMA 4.7. Consider Th∗
d with a single active frog at a specified vertex v0, no

frogs at the ancestors of v0 (including y), and i.i.d.-Ber(µ) sleeping frogs at the
other vertices. Run the frog model with frogs frozen on arrival to y and to Lh .
(When a frog arrives at Lh , we consider the frogs there woken but immediately
frozen.) Let Ft be the σ -algebra representing the information revealed after t
steps of this process. Let ξt be a point process on Th∗

d made up of the locations of
each woken frog after t steps. For any v ∈ ξt , let L(v) denote the level of v in the
tree, and define

wθ (ξt) =
∑
v∈ξt

θ−L(v).

If µ 6 (d − 1)2/4d, then there exist positive real numbers θ0 and θ1 satisfying

θ0 6 1+
2d

d − 1
µ, (17)

θ1 > d −
2d

d − 1
µ (18)

such that wθ0(ξt) and wθ1(ξt) are supermartingales with respect to the filtration
Ft .

Proof. Observe that

Ewθ (ξ1) =

(
1

d + 1
θ +

(1+ µ)d
d + 1

θ−1

)
wθ (ξ0).

Solving a quadratic equation, we see that Ewθ (ξ1) = wθ (ξ0) if

θ =
d + 1±

√
(d + 1)2 − 4(1+ µ)d

2
.

Let θ0 and θ1 be the smaller and larger of these solutions, respectively, which
are positive real numbers if 0 6 µ 6 (d − 1)2/4d . Let Ft be the σ -algebra
generated by the frog model up to time t . Now, suppose that θ = θ0 or θ = θ1,
and we will show that wθ (ξt) is a supermartingale. Consider a nonfrozen frog in
ξt at level i . It jumps backward with probability 1/(d + 1), waking no frogs, and
forward with probability d/(d+1), possibly waking a Ber(µ)-distributed number
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of frogs. Thus, its expected contribution to wθ (ξt+1) is at most

1
d + 1

θ−i+1
+
(1+ µ)d

d + 1
θ−i−1

= θ−i ,

exactly its current contribution. The contribution to wθ (ξt+1) of each frozen frog
in ξt is the same as its contribution to wθ (ξt), showing that

E[wθ (ξt+1) |Ft ] 6 wθ (ξt).

To prove (17) and (18), observe that
√
(d + 1)2 − 4(1+ µ)d is a concave

function of µ. It therefore lies above its secant line from 0 to (d−1)2/4d , yielding√
(d + 1)2 − 4(1+ µ)d > d − 1−

4d
d − 1

µ.

Applying this to the definitions of θ0 and θ1 gives the desired bounds.

LEMMA 4.8 (BRW bound, starting at root). Consider Th∗
d with one initially active

frog at the root, no frogs at y, and i.i.d.-Ber(µ) sleeping frogs at the other vertices.
Run the frog model with frogs frozen at y and Lh . Let X and N be the number
of particles eventually frozen at y and Lh , respectively. (The random variable N
includes in its count the frogs that are woken at Lh and immediately frozen.) If
µ 6 (d − 1)2/4d, then

EN 6

(
1+

2d
d − 1

µ

)h

, and EX 6

(
d
(

1−
2µ

d − 1

))−1

.

Proof. Let T be the first time when all frogs are frozen. By Lemma 4.7, the
process wθ (ξt) is a supermartingale for θ = θ0, θ1. It is bounded at all times by
θdµe|Th∗

d |, since the total number of frogs in the system is at most dµe|Th∗
d | and

no frog goes below level −1. Hence, the optional stopping theorem applies and
shows that Ewθ (ξT ) 6 1. The expected contribution to wθ0(ξT ) by frogs frozen at
Lh is

θ−h
0 EN 6 Ewθ0(ξT ) 6 1.

Then (17) gives the bound on EN . Similarly, the expected contribution to wθ1(ξT )

by frogs frozen at y is

θ1EX 6 Ewθ1(ξT ) 6 1,

and (18) gives us the bound on EX .
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The previous lemma bounds the expected number of frogs at Lh and at y when
we have an initially active frog at the root. The next lemma makes similar bounds
when the initially active frog is at Lh−1.

LEMMA 4.9 (BRW bound, starting at level h − 1). Consider the frog model on
Th∗

d with one initially active frog at some vertex v0 ∈ Lh−1, no frogs at ancestors
of v0 (including y), and i.i.d.-Ber(µ) sleeping frogs elsewhere. Run the frog model
with frogs frozen at y and Lh . Let X and N be the number of particles eventually
frozen at y and Lh , respectively. (Again, the frogs woken at Lh and immediately
frozen are included in the count N.) If µ 6 (d − 1)2/4d, then

EN 6 1+
2d

d − 1
µ, and EX 6

(
d
(

1−
2µ

d − 1

))−h

.

Proof. This has the same proof as Lemma 4.8 except that the initial value of the
supermartingale wθ (ξt) is θ−h+1 rather than 1. We then have

θ−h
0 EN 6 θ−h+1

0 ,

θ1EX 6 θ−h+1
1 ,

and (17) and (18) from Lemma 4.7 give the bounds on EN and EX .

4.3. Estimates on tagged frogs. Again, fix j , H , and h, and consider the frog
model on T(H+h)∗

d with the system of tags given previously. Recall that all frogs
lose their tags at time 2 j+1

+1, and so all of the following random variables count
frogs only up to time 2 j+1. See Figure 4.

• For ` ∈ {A, B0, B1, . . . ,C0,C1, . . .}, let X` be the number of `-tagged frogs
eventually frozen at y.

• For ` = Bi , i > 0, or ` = Ci , i > 1, let N` be the number of frogs that received
an ` tag at Lh . These are the frogs that move from Lh−1 to Lh and change their
tags to `, as well as the frogs sleeping at Lh woken by them.

• For ` = Bi , i > 0, or ` = Ci , i > 1, let M` be the number of `-tagged frogs that
move from Lh back to Lh−1, not counting Bi -tagged frogs that do so at times
2 j and on.

• Let MC0 be the number of Bi -tagged frogs for any i that move from Lh to Lh−1

at time 2 j or later. These are the frogs that change tags to C0.
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Figure 4. X` counts the number of `-tagged frogs frozen at y; N` counts the
number of frogs that move from Lh−1 to Lh and are retagged as `, plus the `-
tagged frogs awoken by these frogs at Lh; and M` counts how many `-tagged
frogs move from Lh to Lh−1. This decomposes the total number of visits to y as
in (19).

Recall that the total number of frogs frozen at y by time 2 j+1 is X ( j+1,H+h). We
have just decomposed this quantity as

X ( j+1,H+h)
= X A +

∞∑
i=0

(X Bi + XCi ). (19)

Our eventual goal is bound this in expectation under the assumption that (13)
holds for X ( j,H), thus advancing the induction by a step.

LEMMA 4.10. If µ 6 (d − 1)2/4d, then

ENB0 6

(
1+

2d
d − 1

µ

)h

, and EX A 6

(
d
(

1−
2µ

d − 1

))−1

.

Proof. This follows immediately from Lemma 4.8.

LEMMA 4.11. For any i > 0, suppose either that ` = Bi and `+ = Bi+1, or that
` = Ci and `+ = Ci+1. If µ 6 (d − 1)2/4d, then

EN`+ 6

(
1+

2d
d − 1

µ

)
EM`, and EX` 6

(
d
(

1−
2µ

d − 1

))−h

EM`.

Proof. Enumerate the `-tagged frogs that return from Lh to Lh−1 as frogs 1, . . . ,
M`. Let v1, . . . , vM`

∈ Lh be the vertices that the frogs emerge from. For each
1 6 k 6 M`, we define random variables N (k) and X (k) that give the portions of
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N`+ and X` that are attributable to frog k, in a sense that we will explain. We then
estimate N (k) and X (k) using the branching random walk bounds.

To define N (k) and X (k), consider the following modified frog model on
T(H+h)∗

d :

• at all vertices at levels 1 to h except for the ones on the path from the root to vk ,
place the same sleeping frogs as in the current realization of the original frog
model on T(H+h)∗

d ;

• place an initially active frog at vk that follows the path of frog k starting from
when it moves from vk back to Lh−1;

• freeze all frogs on arrival at Lh and at y.

We define N (k) and X (k) as the number of frogs eventually frozen at Lh and y,
respectively, in this frog model. As usual, we include the frogs woken at Lh and
immediately frozen in the count of N (k). We claim that N`+ 6

∑M`

k=1 N (k). This
is because any `-tagged frog counted by N`+ either is one of frogs 1, . . . , k or is
spawned by a sequence of frogs at levels 1, . . . , n originating with one of frogs
1, . . . , k. Hence, any frog counted by N`+ must also be counted by X (k) for at
least one k ∈ {1, . . . ,M`}. By the same argument, X` 6

∑M`

k=1 X (k).
The conditional distributions given M` of N (k) and X (k), respectively, are

exactly those of N and X from Lemma 4.9. Applying this lemma,

E[N`+ | M`] 6

(
1+

2d
d − 1

µ

)
M`,

E[X` | M`] 6

(
d
(

1−
2µ

d − 1

))−h

M`.

Now take expectations to complete the proof.

LEMMA 4.12. Suppose that (13) holds for the fixed j and H used in the
definitions of X`, N`, and M`. If µ 6 (d − 1)2/4d, then for ` = Bi , i > 0, or
` = Ci , i > 1,

EM` 6
.8EN`

1+ 2d
d−1µ

.

Proof. We claim that

E[M` | N`] 6
.8N`

1+ 2d
d−1µ

, (20)
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from which the lemma follows by taking expectations. Roughly speaking, we
want to show that for each frog acquiring an ` tag at v ∈ Lh , the expected number
of `-tagged frogs moving from v back to Lh−1 is at most .8/

(
1 + 2dµ/(d − 1)

)
.

This follows from (13), as we will now show in detail.
Enumerate the frogs counted by N` as frogs 1, . . . , N`. Recall that these include

both the frogs that move from Lh−1 to Lh and receive an ` tag, as well as the frogs
woken at Lh by them. For 1 6 k 6 N`, let vk ∈ Lh be the vertex where frog k
received its ` tag. Note that the same vertices will appear multiple times in v1, . . . ,

vN` , though all frogs in the list are unique. For each k, we will define a random
variable M(k) that gives the number of frogs counted by M` attributable to frog k.
As we did in the previous lemma, we then bound M(k), this time using (13).

To define M(k), let yk be the parent of vk , and consider the following frog
model on {yk} ∪ TH+h

d (vk):

• at all descendants of vk , place the same sleeping frogs as in the current
realization of the original frog model on T(H+h)∗

d ;

• place an initially active frog at vk that follows that path of frog k starting from
its arrival at vk ;

• freeze all frogs on visiting yk .

We then define M(k) as the number of frogs frozen at yk in the first 2 j steps of
this frog model. We claim that M` 6

∑N`
i=1 M(k). To justify this, we first observe

that any return from vk to yk counted by M` must occur within 2 j steps of when
vk is first visited by a frog that changes its label to `. When ` = Bi , this is because
M` only counts returns up to time 2 j . When ` = Ci , it is because the first visit to
vk by a frog receiving an ` tag occurs after time 2 j , and M` only counts returns
up to time 2 j+1. Now, any `-tagged frog counted by M` is either one of frogs
1, . . . , N` or is spawned by a sequence of frogs at level h + 1 and beyond in
T(H+h)∗

d originating with one of these frogs. It is thus counted by M(k) for some
1 6 k 6 N`.

Observe that the frog model defining M(k) is just a disguised version of the
frog model on TH∗

d considered in Proposition 4.3. Hence, the distribution of M(k)
conditional on N` is exactly that of X ( j,H). Applying (13), we have

E[M(k) | N`] 6
.8

1+ 2d
d−1µ

.

Summing this over all k to bound E[M` | N`] proves (20).

Lemma 4.11 gives bounds on ENBi+1 and ENCi+1 in terms of EMBi and
EMCi , and Lemma 4.12 gives bounds on EMBi and EMCi in terms of ENBi
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and ENCi . Together, these bounds show that ENBi , ENCi , EMBi , and ENCi decay
exponentially in i .

LEMMA 4.13. For any i > 0, suppose either that ` = Bi and `+ = Bi+1, or that
` = Ci and `+ = Ci+1. If µ 6 (d − 1)2/4d, then

EM`+ 6 .8EM`,

EN`+ 6 .8EN`.

Consequently,

∞∑
i=0

EMBi 6 5EMB0,

∞∑
i=0

EMCi 6 5EMC0,

∞∑
i=0

ENBi 6 5ENB0, and
∞∑

i=0

ENCi 6 5ENC0 .

Proof. The bounds on EM`+ and EN`+ follow immediately from Lemmas 4.11
and 4.12. The other bounds are consequences of summing geometric series.

LEMMA 4.14.

EMC0 6 c1µ2 j+1
∞∑

i=0

ENBi .

Proof. This proof is just as for Lemmas 4.11 and 4.12, except we use the all-
awake bound in place of the branching random walk bounds or the inductive
hypothesis. In more detail, fix a nonnegative integer i , and number the frogs that
received a Bi tag at Lh as 1, . . . , NBi . These are made up of the Bi−1-tagged frogs
that moved from Lh−1 to Lh (where B−1 = A), as well as the frogs at Lh that
these frogs woke up. Let v1, . . . , vNBi

∈ Lh be the sites where these frogs get
their Bi tags. In a similar argument as we used in Lemmas 4.11 and 4.12, we
define a random variable M(k) giving the number of frogs counted by MC0 that
are attributable to frog k. Let yk be the parent of vk , and define a frog model on
{yk} ∪ TH+h

d (vk) exactly as in Lemma 4.12. Define M(k) as the number of frogs
frozen at yk in the first 2 j+1 steps of this frog model. Let M i

C0
be the number of

Bi -tagged frogs in the original model that move from Lh to Lh−1 between times
2 j
+ 1 and 2 j+1 and change tags to C0. By similar reasoning as in the previous

lemmas, we have M i
C0

6
∑NBi

k=1 M(k).
Conditional on NBi , the distribution of M(k) is stochastically dominated by the

random variable W from Lemma 4.6. Applying the bound from Lemma 4.6 and
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summing over all k, we get

E
[
M i

C0
| NBi

]
6 c1 NBiµ2 j+1.

Therefore,

EMC0 =

∞∑
i=0

EM i
C0

6 c1µ2 j+1
∞∑

i=0

ENBi .

We are now ready to advance the induction in Proposition 4.3.

PROPOSITION 4.15. There exists an absolute constant C so that the following
statement holds. Suppose that for some specific choice of j , H, d, and µ with
j, H > 1, d > 2, and µ 6 d/100, the inductive hypothesis (13) holds. Then, for
any

h >
C( j + log(1+ µ))

log
(

d
1+4µ

) , (21)

we have

EX ( j+1,H+h) 6
.8

1+ 2d
d−1µ

.

Proof. Using the decomposition of X ( j+1,H+h) given in (19), our goal is to show
that

E
[

X A +

∞∑
i=0

X Bi +

∞∑
i=0

XCi

]
6

.8
1+ 2d

d−1µ
.

In successive lines, we apply Lemmas 4.11, 4.13, 4.12 and 4.10 to obtain

∞∑
i=0

EX Bi 6

(
d
(

1−
2µ

d − 1

))−h ∞∑
i=0

EMBi

6 5
(

d
(

1−
2µ

d − 1

))−h

EMB0

6 5
(

d
(

1−
2µ

d − 1

))−h
.8ENB0

1+ 2d
d−1µ

6 5
( 1+ 2d

d−1µ

d
(
1− 2µ

d−1

))h(
.8

1+ 2d
d−1µ

)
6

( 1+ 2d
d−1µ

d
(
1− 2µ

d−1

))h( 4
1+ 2µ

)
.
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Applying Lemmas 4.11, 4.13 and 4.14,

∞∑
i=0

EXCi 6

(
d
(

1−
2µ

d − 1

))−h ∞∑
i=0

EMCi

6 5
(

d
(

1−
2µ

d − 1

))−h

EMC0

6 5
(

d
(

1−
2µ

d − 1

))−h

c1µ2 j+1
∞∑

i=0

ENBi ,

and then applying Lemmas 4.13 and 4.10,

∞∑
i=0

EXCi 6 25
(

d
(

1−
2µ

d − 1

))−h

c1µ2 j+1ENB0

6 25
( 1+ 2d

d−1µ

d
(
1− 2µ

d−1

))h

c1µ2 j+1.

Applying these bounds together with the estimate on EX A from Lemma 4.10,

E
[

X A +

∞∑
i=0

X Bi +

∞∑
i=0

XCi

]
6

1
d
(
1− 2µ

d−1

) + ( 1+ 2d
d−1µ

d
(
1− 2µ

d−1

))h( 4
1+ 2µ

+ 25c1µ2 j+1

)

6
1
.96d

+

(
1+ 4µ
.96d

)h

(4+ 50c1µ2 j ).

From (21),(
1+ 4µ
.96d

)h

6 exp
[(
− log

(
d

1+ 4µ

)
+ log

(
25
24

))
C( j + log(1+ µ))

log
(

d
1+4µ

) ]
6 exp

[
−.9C

(
j + log(1+ µ)

)]
= e−.9C j(1+ µ)−.9C .

A bit of asymptotic analysis now shows that we can choose C large enough that
for all µ > 0 and j > 1,

E
[

X A +

∞∑
i=0

X Bi +

∞∑
i=0

XCi

]
6

1
.96d
+

.2
1+ 4µ

,

and

1
.96d
+

.2
1+ 4µ

=

1+4µ
.96d + .2
1+ 4µ

6
1+.04d
.96d + .2
1+ 4µ

6
.8

1+ 4µ
6

.8
1+ 2d

d−1µ
.
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Proof of Proposition 4.3. We start by establishing (13) when j = 1 and n > 1.
Consider the frog model on T1∗

d . Fix any n > 1. If the initial frog moves
immediately to y, then X (1,n)

= 1. If instead it moves to a child of the root, then no
frogs can make it to y by time 2, and X (1,n)

= 0. Hence, EX (1,n)
= 1/(d + 1), and

this is easily seen to be less than the right-hand side of (13) using our assumption
that µ 6 d/100.

Applying Proposition 4.15 inductively, (13) holds for j > 2 so long as we can
show that

H j > 1+
j∑

i=2

⌈
C(i + log(1+ µ))

log
(

d
1+4µ

) ⌉
,

where C is the constant from Proposition 4.15. Indeed, it is straightforward to
compute that

1+
j∑

i=2

⌈
C(i + log(1+ µ))

log
(

d
1+4µ

) ⌉
= O

(
j 2
+ j log(1+ µ)

log
(

d
1+µ

) )
.
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Appendix A. Stochastic comparison results for the frog model

In this section, we outline the results of [JJ18], which allow us to compare two
frog models on the same graph with different initial conditions. If the distribution
of frog counts in the first model stochastically dominates the distribution in the
other, then certain statistics of the first model will dominate the corresponding
statistics in the other. This is a trivial fact with the typical definition of stochastic
domination. The strength of these results is that they apply to less conventional
stochastic orders, one of which is the probability generating function order, whose
name we abbreviate to pgf order.

For two probability measures π1 and π2 on the nonnegative real numbers, we
say that π1 is smaller than π2 in the pgf order, denoted π1 �pgf π2, if for X ∼ π1

and Y ∼ π2 and all t ∈ (0, 1), it holds that Et X > EtY . We also write X �pgf

Y to mean that the law of X is stochastically smaller in the pgf order than the
law of Y , and we also use mixed expressions like X �pgf π2 in the obvious way.
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See the introduction of [JJ18] for more on the pgf order and its relations to other
stochastic orders.

We now present the result from [JJ18] as we will apply it in this paper.

LEMMA A.1. Consider two frog models on Tn
d with initial frog counts given by

(η(v))v and (η′(v))v for v ∈ Tn
d \ {∅}. Assume that both counts are independent.

Suppose that η(v) �pgf η
′(v) for all v. Let N and N ′ be the number of leaves

visited in the two models by some given time, and let R and R′ be the number
of visits to the root in the two models by some given time. Then N �pgf N ′ and
R �pgf R′.

Proof. By [JJ18, Theorem 3], this holds once we prove that the number of leaves
visited by time t and the number of visits to the root by time t are continuous
pgf statistics. For the first statistic, this is a very slight variation of [JJ18,
Proposition 21] and has a nearly identical proof. For the second statistic, it is
a consequence of [JJ18, Proposition 4], if we think of the frog models as having
frog paths stopped at time t .

We mention two basic facts about the pgf order. First, if X �pgf Y , then EX 6
EY . Second, for any distribution π with expectation µ or less, we have π �pgf

Ber(µ), recalling our definition of Ber(µ) for µ > 1 as the unique distribution
on {bµc, dµe} with mean µ. This fact is proven in [JJ18, Proposition 15(b)] for a
different stochastic relation known as the increasing concave order, and it follows
that it holds for the pgf order since domination in the increasing concave order
implies domination in the pgf order (see [JJ18, Section 2]).

Appendix B. Miscellaneous concentration inequalities

The following two bounds appear verbatim in [HJJ17a, Appendix C]. Both are
standard results that follow from bounding the moment generating function and
applying Markov’s inequality.

PROPOSITION B.1. Let EY = λ, and suppose either that Y is Poisson or that Y is
a sum of independent random variables supported on [0, 1]. For any 0 < α < 1,

P[Y 6 αλ] 6 exp
(
−
(1− α)2λ

2

)
,

and for any α > 1,

P[Y > αλ] 6 exp
(
−
(α − 1)λ
2
3 +

2
α−1

)
.
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PROPOSITION B.2. Let (X i)
n
i=1 be a collection of independent random variables

satisfying

P[X i > `] 6 Ce−b`

for some C and b > 0 and all `> 1. Then for any b′ > 0, there exists C ′ depending
on C, b, and b′ such that

P
[ n∑

i=1

X i > C ′n
]
6 e−b′n.

We can take C ′ = 2(b′ + C)/b.

Next, we give a more refined version of the previous proposition that applies to
random variables that are exactly geometrically distributed.

PROPOSITION B.3. Let (G i)i>1 be a collection of independent random variables
with G i geometrically distributed on {1, 2, . . .} with parameter p. Let µ :=
EG i = 1/p. For any λ > 2,

P[G1 + · · · + Gn > λnµ] 6 exp
[
−n
(
λ

2
− 1

)]
.

Proof. If G1+ · · · +Gn > k, then in the first of k independent trials with success
probability p, there were at most n successes. Thus, by Proposition B.1,

P[G1 + · · · + Gn > k] = P[Bin(k, p) 6 n] 6 exp
(
−
(1− n/kp)2kp

2

)
.

Substituting k = λnµ and p = 1/µ gives

P[G1 + · · · + Gn > k] 6 exp
(
−
(λ− 2+ λ−1)n

2

)
6 exp

(
−
(λ− 2)n

2

)
.

Last, we extend the exponential concentration bound for a single Poisson or
binomial random variable to an entire sequence, via a union bound:

LEMMA B.4. Let γ1 > 2γ2 > 0, and let γ1 > 8. Suppose that X i is Poisson or
binomial with mean γ1i for all i > k, with no assumption on the joint distribution
of (X i)i>k . Then

P[X i < γ2i for some i > k] 6 2 exp
(
−
(1− γ2/γ1)

2γ1k
2

)
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Proof. By Proposition B.1,

P[X i < γ2i] 6 exp
(
−
(1− γ2/γ1)

2γ1i
2

)
.

Applying a union bound over all i > k and summing the geometric series gives

P[X i < γ2i for some i > k] 6
exp

(
−
(1−γ2/γ1)

2γ1k
2

)
1− exp

(
−
(1−γ2/γ1)2γ1

2

) ,
and

1− exp
(
−
(1− γ2/γ1)

2γ1

2

)
> 1− exp

(
−
(1− 1/2)2(8)

2

)
>

1
2
.
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