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Abstract

The frog model is a branching random walk on a graph in which particles branch only at unvisited
sites. Consider an initial particle density of 1 on the full d-ary tree of height n. If © = £2(d?), all of
the vertices are visited in time & (n log n) with high probability. Conversely, if ©# = O(d) the cover
time is exp(® (4/n)) with high probability.

2010 Mathematics Subject Classification: 60K35, 60J80, 60J10

1. Introduction

The frog model is a system of interacting walks that starts with one particle awake
at the root of a graph and some number, typically Poisson-distributed with mean
W, of sleeping particles at all the other vertices. Wakened particles perform simple
random walk in discrete time. They wake any sleeping particles they encounter,
which then begin their own independent random walks. A long-open problem
posed to us several years ago by Itai Benjamini has been to determine the time it
takes to visit every vertex of the full d-ary tree of height n (that is, the cover time).
One might expect a simple argument would establish fast or slow cover times
when the density of particles is very high or small. In fact, for every density of
particles, it was unknown even if this quantity was polynomial or superpolynomial
in n. Here we demonstrate that both can occur.
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C. Hoffiman, T. Johnson and M. Junge 2

If we view the process as modeling the spread of an infection, finite graphs
are its natural setting and cover time a fundamental measurement. Finite trees
are particularly interesting because of the phase transition that occurs on infinite
rooted d-ary trees with an average of y particles per site: As we increase u, the
root goes from being visited finitely to infinitely many times [HJJ17b, HJJ16].
Moreover, the companion to this work [HJJ17a] proves that when p = £2(d?), the
root is visited at a linear rate. The dramatically different regimes on infinite trees
suggest that both fast and slow cover times should occur on finite trees [Her18,
JJ16]. However, it is unclear how reflection at the leaves influences the spread
of active particles. Indeed, dealing with the boundary is the biggest obstacle to
establishing regimes for fast and slow cover times.

First we describe what was previously known. The cover time is trivially at
least n, and it is bounded above by the cover time for a single random walk on a
tree, which is exponential in n [Ald91]. Until recently, these were the only known
results. For any fixed d and particle density, Hermon improved the lower bound to
£2(nlogn) and the upper bound to exp(O (4/n)) [Her18]. In this paper, we prove
that if the density of particles is sufficiently large then Hermon’s lower bound is
sharp, and if the density is small then his upper bound is sharp. In particular, this
is the first proof that there exists a d > 2 and density of particles for which the
cover time is polynomial, or a d > 2 and density of particles for which the cover
time is superpolynomial.

We mention a few other closely related topics. The susceptibility of the frog
model on a finite graph is the minimum lifespan of frogs such that all sites are
visited. This statistic has been studied on tori and expanders [BFHM18] and on
trees [Her18]. In none of these cases does it exhibit a phase transition in the
density of particles, making it qualitatively very different from cover time.

A process resembling the frog model was proposed by Benjamini to study the
connectivity of social networks and the spread of epidemics and has been studied
on finite graphs [BH16] and infinite graphs [HMQS16]. On infinite nonamenable
graphs, there is a phase transition in the initial density for whether all particles are
eventually socially connected. For vertex-transitive amenable graphs, there is not.
This resembles the frog model, which has a phase transition between transience
and recurrence on trees [HJJ16], but not on lattices [AMPRO01].

Result. As we mentioned, [Her18] gives the first nontrivial upper and lower
bounds on the cover time, which we now state in more detail. Let Poi(it) denote a
Poisson distribution with mean p. We refer to the frog model with one frog awake
at the root, i.i.d.-Poi(u) frogs elsewhere, and frogs following independent simple
random walk paths as having i.i.d.-Poi(uw) initial conditions. We let T"; denote the
rooted, full d-ary tree of height n. This is the tree with levels O, ..., n in which
all vertices in levels O, ..., n — 1 have d children.

Downloaded from https://www.cambridge.org/core. IP address: 100.33.2.177, on 08 Jun 2020 at 18:31:16, subject to the Cambridge Core
terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2019.37


https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2019.37
https://www.cambridge.org/core

Cover time for the frog model on trees 3

Let C = C(n, d, u) denote the cover time for the frog model on T’ with i.i.d.-
Poi(x) initial conditions. In [Her18, Theorem 2], Hermon proves there exists a
constant ¢ > 0 such that for any © > Oand d > 2,

lim P[C < eV ] = 1.
n— 0o

As for the lower bound, it follows from [Her18, Theorem 1] that there exists a
constant C > 0 such that forany u > Oand d > 2,

Cnlogn} _

lim P[C >
u

We now give our main result, which demonstrates the existence of two distinct
behaviors for the cover time depending on the initial density of frogs. With a
high density, the cover time is O, (n log n/ ) with high probability. By Hermon’s
lower bound, this determines the cover time up to constant factor for each fixed
choice of d. With a low initial density of frogs, we prove that the cover time is
exp(.Q (v/nlogd )) with high probability, which is sharp up to the constant in the
exponent by Hermon’s upper bound. In fact, [Her18, Theorem 2] also gives an
upper bound for the cover time when & decays in the height of the tree; one can
take w as small as exp(—,/nlogd) and still obtain a bound of the same order.
Thus, our lower bound shows that for small but fixed values of u, the cover time
exhibits the same asymptotic behavior as when p decays rapidly as n grows.

THEOREM 1.1. Let C = C(n, d, 1) denote the cover time for the frog model on
T" with one awake frog at the root and i.i.d.-Poi(u) conditions.

(a) There exist constants By, Cy, and no(u, d) such that for alld > 2 and p >
Bod?,

P[KM}%_W
o

forn = ny(u, d).

(b) Suppose that u < min(d'~¢,d/100) for € € (0, 1]. For some absolute
constant ¢ > 0,

P[C 2 eu/enlogd] 2 1— efca/enlogd

forn >logd/c%e.
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Our full versions of these bounds, Theorems 3.1 and 4.1, are slightly stronger
in that we extend them to initial distributions other than Poisson. We note that our
lower bound, part (b), shows that the cover time is large even when p is as large
as d/100; see Corollary 4.2.

Thus, our results establish a slow cover time regime when u = O (d) and a fast
cover time regime when = $2(d?). This raises the question of what happens
in between. On the infinite tree, the threshold between recurrence and transience
occurs when p is on the order of d [JJ16]. This paper’s results are consistent with
the possibility that the slow and fast cover time regimes on the finite tree occur at
the same parameters as the transient and recurrent phases on the infinite tree. But
it is not clear this is so.

QUESTION 1.2. Are there other phases for the cover time of the frog model on
T besides those described in this paper? Is there a sharp phase transition between
phases? If so, how does the process behave at critical values of ©?

In [DMnVZ00], the activated random walk process, which is essentially the
frog model where particles fall back asleep at random, is discussed in connection
with self-organized criticality, a phenomenon in which some real physical
systems naturally push themselves toward criticality. The idea is that while
conservative systems (in which particles are neither created nor destroyed) do
not exhibit self-organized criticality, their behavior at criticality can nonetheless
be a good model for it (see also [RSZ17, Section 1.3], whose discussion is aimed
at mathematicians). This makes the frog model’s behavior at criticality on both
finite and infinite trees a particularly intriguing topic.

Description of proof. In Section 3, we tackle the cover time upper bound. The
starting point for the proof is that the infected region (that is, set of visited sites)
grows linearly for the frog model on an infinite tree, which we prove in the
companion paper [HJJ17a]. Naively, one might think that a polynomial cover
time bound would follow as an easy corollary, but we do not believe there is a
quick argument. The issue is that our strong recurrence results from [HJJ17a],
that the number of visits to the root grows linearly in time, become less powerful
as they are applied to a finite tree near its leaves. We describe our argument in
detail here to illustrate the problem at the boundary and our resolution of it. In the
rough description below, we will suppress the fact that the constants depend on d
and write O (-) rather than O,(-).

Looking toward a union bound, we must show it exponentially likely that an
arbitrary leaf vy € T/, is woken in time O(nlogn). Consider the spine vy, vy,

., U, = @ leading from v, to the root &. To T’ (vx), the subtree rooted at vy,
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Figure 1. We show that the cover time is O (n log n) by creating a cascade of frogs
that move toward an arbitrary leaf v, along the path v, . .., v, = @. Once I, frogs
build up at v, a constant stream of frogs flows to v;_;. Using strong recurrence,
we show that [,_; frogs build up at v,_; in time O (n). This sets the cascade in
motion, initiating a constant flow of frogs to v, ,. After O(I,_,) steps, we have
built up 7,_, frogs at v,_,, setting off the next stage of the cascade, and so on.
This quickly builds up £2,(n log n) frogs at distance J = O (log n) from v,, and it
is exponentially likely that at least one will visit v, in the next O (n log n) steps.

we attach a random variable /; defined as the number of frogs that must enter
T" (vx) to accumulate frogs that are frozen at v,_, at a linear rate for d* time steps.
A possibly helpful metaphor is cascading water down a stair-step fountain (see
Figure 1). Each basin needs a certain amount of water to reach a tipping point,
after which it will pour water steadily into the one below it. In our proof, we
wait until 7,_; frogs have accumulated at v,_;. By definition of 7,_,, this sets off
a linear flow of frogs which will send 7, , frogs to v, » in O(l,_,) steps. This
cascade continues until cn logn frogs have accumulated at site v,, at a distance
J ~log, n+log,logn+ C, from v,. At this point, we have built up enough frogs
that we can ignore the wake-up dynamics of the frog model and instead show it
is exponentially likely that at least one of cn log n random walks started at v; will
visit vy in the next O (nlogn) time steps. We can then apply a union bound over
all leaves of T”.

The argument outlined above shows that the cover time is roughly O(I,_; +
-+ 4+ I;4; + nlogn). Deducing a fast cover time is thus reduced to bounding
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the random variables (1;). Since I, is determined by the frogs within T’ (v), the
random variables (I;) are independent. We show that [; has an exponential tail
independent of k, which implies I,_; + --- + I;5; = O(n) with exponentially
high probability by a Chernoff bound. The proof that 7, has an exponential tail
uses strong recurrence but is not an easy corollary of it. The issue is that strong
recurrence only guarantees a steady flow of frogs out of T, (v,) up to time &, while
we need a flow up to time d¥, or else the argument would not work for v; close
to the leaves. Indeed, for k ~ J, strong recurrence yields a flow out of T, (v;)
for only O(logn) steps, rather than the d* ~ nlogn steps that we need. Thus,
our challenge is to show that a steady flow of frogs out of T’ (v,) persists for
much longer than given by strong recurrence. This argument makes up the bulk
of Section 3.

In Section 4, we give our bound for the low density case. Our argument has
no precursors in published work, as far as we know. We consider the number of

visits to the root for the frog model on ’]I‘é2 in the first 2/ steps. We inductively
assume that the expected number of visits to the root is O(1), and we then try
to prove that this estimate continues to hold for the frog model on T} “D° after
2/*1 time steps. To do this, we separate the tree into its first O(j) and its final
j* levels. We then push the induction forward by bounding the growth of frogs at
different times in the two parts of the tree by various combinations of the inductive
hypothesis, a bound given by branching random walk, and a bound of assuming
all frogs are awake in a given subtree. Theorem 1.1(b) follows from considering
n=~ j2.

As we mentioned earlier, we also obtain results when the sleeping frog
distributions at each vertex are not Poisson. These results are easy applications
of [JJ18], in which we show that increasing the initial distributions in various
stochastic orders causes certain statistics of the frog model to increase as well.
We give a further introduction to these techniques in Appendix A. Some facts
for random walk decompositions on trees and concentration inequalities are also
contained in the appendices.

2. Preliminaries

Here we describe our notation, certain variants of the frog model, and also
results that we will need from [HJJ17a].

Notation. For our purposes the frog model takes place on either the infinite
rooted d-ary tree T or on the full d-ary tree of height n denoted by T. The root
of whatever tree we are discussing will be denoted by &. Vertices at distance k
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Cover time for the frog model on trees 7

from the root are at level k of the tree. For any rooted tree 7 and vertex v € T, we
denote the subtree of T made up of v and its descendants by 7 (v).

Formally, the frog model is a pair (n, S) where for each vertex v other than the
starting one, n(v) is the number of frogs initially sleeping at v, and S = (S.(v,
i))vec,i>1 1 a collection of walks satisfying Sy (v, i) = v. The ith particle sleeping
at v on waking follows the path S.(v, 7). When we discuss the frog model on a
given graph with, say, i.i.d.-Poi(u) initial conditions, unless we say otherwise we
assume that the paths are simple random walks, and all of the random variables are
independent. The root is assumed to be the starting vertex unless stated otherwise.
The frog model evolves in discrete time, though it is easy to show that the results
of this paper hold in continuous time as well. A realization of the frog model
is called either transient or recurrent depending on whether the starting vertex
is visited infinitely often by frogs. The cover time of a given frog model is the
random variable defined as the first time all vertices in the system have been
visited. Traditionally, particles are referred to as frogs, a practice we continue.

We let Geo(p) be the distribution that places probability (1 — p)*p on k > 0
We also refer to the geometric distribution on {1, 2,...} with parameter p,
which is the same distribution shifted by one. In a mild abuse of notation,
we sometimes use Poi(u) and Bin(n, p) to refer to random variables with the
given distributions rather than the distributions themselves, as in statements like
P[Poi(i) = 0] = ™.

2.1. Modified frog models. At times in our argument, it is helpful to consider
variants of the frog model that couple to the original process. A stopped version of
a given frog model (n, S) is a frog model (n, S’) where each path S/(v, i) consists
of S.(v, i) stopped at some time 7 (v, i) € NU{oo}. These must be stopping times
for the frog model, in the sense that the decision to stop a frog at some time must
be determined from the history of the stopped process up to that time. We give
a quick sketch of how to formalize this. Following [KZ17, Section 2], let ij(n,
S) be the set of sites visited for the first time at time j in the stopped process.
Define .%, as the o -algebra representing all information about the stopped process
revealed by time 7; formally, it is generated by the sets Wi (), S) for j € {0, ..., 1},

the frog counts n(v) for v € U 0 W (1, ), and the frog paths (S} (v, z))z for
each j € {0,...,t}and v € W (n, S) We require the event {T (v, i) < t} to be
measurable w1th respect to .%,. As a consequence of this definition, for a stopped
version of a frog model with, say, simple random walk paths, we can unstop all
frogs at a given time and have them continue as independent simple random walks,
since the stopping times do not impart any conditioning on the future part of the
paths. By an easy coupling, in any given time stochastically fewer frogs are woken
in the stopped process than in the original one.
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C. Hoffiman, T. Johnson and M. Junge 8

When proving lower bounds on the growth of the frog model on the infinite
tree T,, we typically work with what we call the self-similar frog model. Roughly
speaking, it is the frog model with nonbacktracking frog paths, where frogs are
stopped so that for each subtree of the form T, (v), at most one frog from outside
the subtree is allowed to enter it. To define it rigorously, we first define a uniform
nonbacktracking random walk as a nearest neighbor path that samples uniformly
from all adjacent edges on its first step, and then thereafter samples uniformly
from all adjacent edges except the one just traversed. On T, this is particularly
simple: the path moves toward the root for some random amount of time, then
takes a random nonbacktracking step away from the root, and then follows a
uniformly sampled geodesic to co.

To define the self-similar frog model on T, first let the frog paths be
independent uniform nonbacktracking random walks. Now, we stop frogs as
follows to enforce the rule that at most one frog enters any subtree. On a given step
of the frog model, suppose that some vertex v € T, \{@} is visited for the first time.
Let v’ be the parent of v. On this step, one or more frogs move from v’ to v. Stop
all but one of them, and on all subsequent steps stop all frogs on moving from v’
to v. Additionally, stop all frogs at & at steps 1 and beyond. We refer to [HJJ17a,
Section 2.1] and [JJ16, Section 3.1.1] for more background information about
the self-similar frog model. The reason for calling it self-similar is that only one
external frog, that is, a frog initially at a vertex in T, \ T,(v), may enter each
T, (v). Because the frog paths are nonbacktracking, the process on {v'} U T, (v)
from the time a frog moves from v’ to v is identical in law as on {&} U T,(2")
from step 1 onward. Here @’ is the child of @ visited by the initial frog on its
first step.

The self-similar frog model is defined on the infinite tree T,, though we will
sometimes consider it on the finite tree T/ by freezing frogs at leaves. But in
proving our upper bound on cover time, we will usually consider a different
process we call the nonbacktracking frog model on T%. To describe it, we first
define a root-biased nonbacktracking random walk from vy on T’ as a walk
distributed as follows. We set X, = vy, and then we choose X uniformly from
the neighbors of X,. Conditionally on Xy, ..., X;, we choose X;,, as follows:
If X; = @, choose X;,; to be X;_; with probability 1/d* and to be each of the
other children of the root with probability (d + 1)/d>. If X; is a leaf, then set
X1 to be its parent (the only possibility for the next step). Otherwise, choose
X;,1 uniformly from the neighbors of X; other than X; ;. It turns out that a
simple random walk decomposes into this path plus independent excursions off
of it (see [HJJ17a, Appendix A]). The odd behavior at the root results from the
asymmetry of the tree there.
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Cover time for the frog model on trees 9

Finally, define the nonbacktracking frog model on T} as the frog model whose
paths are independent root-biased nonbacktracking random walks on the specified
tree. The following result shows that the time change for the underlying random
walks speeds up the nonbacktracking model by only a constant factor compared
to the usual frog model. This allows us to work with nonbacktracking frog models
when we prove Theorem 1.1(a).

ProproSITION 2.1 [HJJ17a, Proposition 2.2]. Let (n,S) and (n,S’) be
respectively the usual and the nonbacktracking frog models on T’ with arbitrary
initial configuration 1. There exists a coupling of the frog models (n, S) and
(n, 8") such that the following holds: For any b > logd, there exists C = C(b)
such that all vertices visited in (n, S") by time t are visited in (n, S) by time Ct
with probability 1 — e™"'.

2.2. Adaptations of results from [HJJ17a]. We start by stating the
result [HJJ17a, Theorem 3.1] which demonstrates a strong recurrence regime on
infinite d-ary trees. We define the return process to be a point process on R in
which each point at 7 represents a frog that is occupying the root at time ¢. Note
that this is supported on the nonnegative integers.

THEOREM 2.2. Consider the self-similar frog model on T, with i.i.d.-Poi(u)
initial conditions. Foranyd > 2, o > 0, and © = 3d(d+1) +a(d + 1), the return
process stochastically dominates a Poisson point process with intensity measure

Z/C:J:l o 82k.
This extends to T’, but because of the boundary, only up to time 2n — 2.

COROLLARY 2.3. Consider the self-similar frog model on T% with i.i.d.-Poi(u)
initial conditions and frogs frozen on reaching a leaf. For any d > 2, @ > 0, and
w =3d(d+ 1)+ a(d+ 1), the return process stochastically dominates a Poisson
point process with intensity measure ZZ;; Sy

Proof. Couple the processes of Theorem 2.2 and of this corollary by having all
frogs follow the same paths until reaching the boundary of the finite tree. Consider
a root visit on the process on the infinite tree occurring before time 2n. The
combined path of frogs waking the returner together with the returning path does
not reach depth n of the tree, since the return occurs before time 2n. Thus, the
return occurs in the process on the finite tree as well. The finite tree process
therefore has all of the returns of the infinite tree process before time 2n, and
the result follows from Theorem 2.2. O
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Last, we state [HJJ17a, Lemma 4.1], which helps us deduce a weaker version
of the shape theorem [HJJ17a, Theorem 1.1] for the finite tree.

LEMMA 2.4. Let 8 > 0 and consider the self-similar frog model on T, with i.i.d.-
Poi(w) frogs per site, where u = (3 + B)d(d + 1). Let &, vy, vy, V2, ... be an
arbitrary ray in Ty, and condition the initial frog to take its first step to v,. Let T;
be the number of steps after v;_, is first visited that v; is first visited. Then (t;);>,
are i.i.d. and satisfy

Plt; > 2t — 1] < e ” (1)

forte{l,2,...}.

An important corollary for our work here is that a self-similar frog model
activates half of the leaves in the active branch of any height tree in time O (k)
with probability at least 1/2 (recall that only sites in T, (2") are visited in the self-
similar model, where &' is the child of the root first visited by the initial frog).

COROLLARY 2.5. Consider a self-similar frog model on ']I";,+1 with i.i.d.-Poi(u)
initial conditions where frogs are frozen at leaves, for any k > 1. For p > (3 +
B)d(d + 1) and sufficiently large absolute constants B and C, there exists p =
p(B, C) such that d*/2 of the leaves are visited in Ck steps with probability at
least p. Moreover, p can be made arbitrarily close to 1 by choosing C and B
sufficiently large, and in particular p > 1/2 when 8 > 2 and C > 8.

Proof. Letv_; = @. Let v, be a child of &, and condition on the initial frog taking
its first step to vy. By symmetry of the tree, it suffices to prove the corollary under
this assumption. Note that the children of the root other than v, are never visited,
since frogs are frozen when they visit the root in the self-similar frog model. Thus,
our goal is to show that at least half the leaves descending from vy are visited in
Ck steps with probability at least p, for some p to be determined.

Letv_y, vy, ..., v; be the path from & = v_; to an arbitrary leaf v; descending
from vg. We will show that v, fails to be visited in Ck steps with probability at
most ¢ = q(B, C), and that g can be made arbitrarily small by choosing 8 and
C large enough. Then, the expected number of leaves descending from v, that
are not visited in time Ck is at most gd*. The lemma then follows by applying
Markov’s inequality to show that the number of unvisited leaves is larger than
d* /2 with probability at most 2g.

For i > 1, let 7/ be the number of steps after v;_; is visited that v; is first
visited. If v; is never visited, set 7/ = 0o. Now, we observe that the self-similar
frog model on TA*! with frogs frozen at leaves is identical to the first k + 1 levels
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Cover time for the frog model on trees 11

of the self-similar frog model on T, with frogs frozen at level k + 1. This frog
model can naturally be coupled with the self-similar frog model on T, with no
freezing. Putting these together yields a coupling between (tl.’)f;r 11 and the random
variables (7;)72, defined in Lemma 2.4.

We claim that if
T; <2k—i+1) foralll <i <k, )

then 7/ = ; for all 1 < i < k. Indeed, suppose that 7; < 2(k — i 4 1). From
the time v;_; is first visited in the self-similar frog model on T, it takes at most
2(k —i+1) steps for v; to be visited. Since any walk from v;_; to level k + 1 back
to v; has length at least 2(k — i 4 1) + 1, this visit to v; still occurs when frogs are
frozen at level k 4 1. Under the coupling, we then have 7/ = 7; forall 1 <i <k
as desired.

Thus, if (2) holds and 1 + Zle 7; < Ck, then v, is woken in Ck steps in the
self-similar model on T%*'. Therefore,

k
q(B,C) <P[t; > 2(k —i + 1) for some 1 gigk]+P[1+Zz,- > Ck:|.

i=1

We now bound the two terms on the right-hand side of this inequality. By
Lemma 2.4,

e P
1—e b’

k
Pz, > 2(k —i+1) for some 1 <i <k| <Y e e <
i=1

which can be made as small as desired by increasing 8.

By Lemma 2.4, the random variables (7;) are independent, and (z; + 1)/2
is stochastically dominated by the geometric distribution on {1, 2, ...} with
parameter 1 — e~#. By Proposition B.3,

k B B
P|:1 + Zri > Cki| < exp[—k(% — 1)] < exp(—% + 1),
i=1

For any given 8 > 0, this can be made arbitrarily small by increasing C. This
proves that g (B, C) is as small as desired for large enough 8 and C. In particular,
plugging in numbers, we see that g(8, C) < 1/4if B > 2 and C > 8. As 2q is the
bound on the probability of fewer than d*/2 leaves being visited, this completes
the proof. O
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3. Fast cover time for large p

We now present the most general version of the cover time upper bound.

THEOREM 3.1. Let C be the cover time for the frog model on T’) with initial frog
counts given by (n(v))veri\z). Suppose that n(v) >per Poi(u) for all v, where
w > Pod? for a sufficiently large absolute constant By. There exist constants Cy
and no(u, d) such that

P[C > Cynlogn/u] <d™"

foralln = no(u, d).

See Appendix A for the definition of the pgf stochastic order denoted by >,
Loosely speaking, the condition 7(v) >, Poi(it) means that the distribution of
n(v) is larger and more concentrated than the distribution of Poi(u). In particular,
if n(v) = k deterministically for some integer k > p, then n(v) >, Poi(it). Thus,
our result holds for the frog model with k frogs per vertex for k > Byd>.

This theorem follows from two propositions that we explain now. Fix a leaf
vy € T7. Label the path from vy to the root by vy, ..., v, = @. In general, we will
take u = (3 4+ B)d(d + 1) for some parameter 8, a convenient form for applying
Corollaries 2.3 and 2.5. The vertex v;, where

J =J(d,n, )= llog,n +log,(logn) +5log, 10 —log, 8], (3)

is far enough from v, that we can show that many frogs visit v; in time O (n log n).
It is also close enough to v, that one of these frogs at v, will visit vy in O (nlogn)
steps with high probability (see Figure 2). These two statements are the content
of Propositions 3.2 and 3.3, which we show under Poisson initial conditions. We
complete the proof by applying Lemma A.1 to relax this assumption.

Recall the definition of a stopped version of a frog model from Section 2.1.

PROPOSITION 3.2. For some constants By and C,, the following holds. Let u =
B+ B)d(d + 1) for B > By. There exists a stopped version of the frog model
on T with i.i.d.-Poi(u) initial conditions such that 10nlogn frogs have been
stopped at vertex v; by time Cynlog n/B with probability at least 1 — d =" for all
n 2= no(B, d), for some constant ny(B, d).

PROPOSITION 3.3. Suppose that 10n log n simple random walks start at vertex v,
in T% and move independently, and that n = n, for some sufficiently large absolute
constant ny. For some absolute constant C, one of the walks visits vy within
Cnlogn/B steps with probability 1 — d=".
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Cover time for the frog model on trees 13

Un

Figure 2. The basic idea of Theorem 3.1 is to show that many frogs visit v, after
O(nlogn) steps for J = log, n + log,(logn) + C. Once enough frogs are built
up at v,, one of them will visit the leaf vy with high probability within O (n logn)
steps.

The upper bound on the cover time follows from Propositions 3.2 and 3.3.

Proof of Theorem 3.1. First, assume that the sleeping frog counts (1(v)), are
i.i.d.-Poi(wt). By Proposition 3.2, there is a stopped version of the frog model
where 10n log n frogs accumulate at v; by time C,nlogn/B with probability at
least 1 —d—*". Attime |Cyn logn/B], unfreeze all frogs and let them resume their
simple random walks. By Proposition 3.3, the vertex vy is visited in this modified
process by time C/;n log n/B with probability 1 — 2d =" for some constant C/,. If
this holds in this stopped and restarted frog model, then it holds in the original frog
model as well, by an obvious coupling. As vy was arbitrary, each leaf is visited
with probability at least 1 — 2d~*", and the expected number of leaves unvisited
by time C/;nlogn/p is therefore at most 2d ~".

Now, we extend this to non-Poisson initial conditions. Let N be the number
of leaves visited by time C)nlogn/B in the Poisson frog model, which we have
shown to satisfy

EN > d" — 247>,

Let N’ be the corresponding count of visited leaves for the frog model defined
in the statement of this theorem. By Lemma A.1, we have EN’ > EN. Thus,
the expected number of unvisited leaves in this frog model is also at most 2d %",
and by Markov’s inequality there is an unvisited leaf with probability at most
2d=" < d~". Once all leaves are visited, all vertices of the tree have been visited,
completing the proof. O

3.1. Establishing Proposition 3.2. The goal of this section is to prove
it overwhelmingly likely that £2(nlogn) frogs accumulate at v; in time
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C. Hoffiman, T. Johnson and M. Junge 14

O (nlogn/pB), recalling the definitions of vy, ..., v,, J, and § from the beginning
of the section. Our argument is sequential: we show that many frogs flow from
v, to v,_1, which spurs many frogs to flow into v,_,, and so on. To make this
precise, we introduce random variables [ for J + 1 < k < n. Loosely speaking,
I is the quantity of frogs that must start at vy so that frogs flow steadily to vy,
at a rate of £2(B) per time step. Now, imagine running the frog model until 7,_,
frogs have built up at v,_;. Once this happens, frogs will flow steadily to v,_,;
allow them to build up until there are I,_, there, which will take time O ({,,_,/B).
Continuing in this way, we build up 7, frogs at v, in time

n—1
0( > Ik/ﬁ),
k=J +1
plus the time to get the first I, ; frogs to v,_;. This creates a steady flow of frogs
to vy, and after another O (nlogn/B) steps, we have produced 2 (n logn) visits
to v;. Thus, the main task is to show that ZZ;} +1 It/ B is unlikely to be large. We
do this by showing an exponential tail bound for /;, from which it follows that it
is exponentially likely that this sum is O (n).

We mention that we use nonbacktracking frogs throughout this section.
This coordinates well with our results regarding the self-similar frog model in
Section 2.2. Only at the very end will we apply Proposition 2.1 to move our
results back to the usual frog model.

3.1.1. Definition of I,. We first define a family of processes FM(vy, £), which
are frog models limited to the subtree T’ (v;) with an extra £ frogs initially at vy.
Then we define I, as the smallest £ for which FM (v, £) produces a steady stream
of frogs entering v;_;:

DEFINITION 3.4 (FM(vg, ) and I}). Let u = 3+ B)d(d +1).For J <k <n
and £ > 1, let FM(v, £) be a frog model defined as follows. We place sleeping
frogs only within T/ (vy) \ T’ (ve—;). At all of these vertices except for vy, place
Poi(p) frogs per site as usual. At vy itself, we place Poi(u) frogs plus an extra £
special frogs, as we will call them. The paths of the special frogs are root-biased
nonbacktracking walks stopped at v,_; and v, with their first steps conditioned
to move to a descendant of v (that is, to move away from v.y;). The paths of
all other frogs are root-biased nonbacktracking walks stopped at v,_; and v;;.
Vertex vy is the starting vertex for the process; all frogs there are initially awake.

For a fixed value of k, we consider FM(v;, £) to be coupled for all choices of
£ in the natural way. That is, we suppose that there is an infinite pile of special
frogs at v, and FM (v, £) uses only the first £ of them. We denote the collection
of coupled frog models (FM (v, £))¢>1 by FM(vy, »).
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Cover time for the frog model on trees 15

For J < k < n, we define the random variable /; to be the smallest integer
£ such that the number of frogs frozen at v,_; by time ¢ in FM(vy, £) is at least
Bt /10000 for all max(3, [£/87) <t < d*. Observe that this test becomes vacuous
when £ > Bd*, and therefore I, < Bd* + 1.

As we have remarked, one should think of /; as the minimum number of special
frogs at v to ensure a steady flow of frogs into v;_;. This ‘steady flow’ is at
rate §2(B) per time step. For technical reasons, we only require it to start at time
max(3, [£/B]). We require the flow to continue only up to time d* because it is
impossible for it to continue much longer, since there are only O(Bd*) frogs in
the entire system FM (v, £).

3.1.2.  Exponential tail bound for I,. The bulk of our work in Section 3 is to
prove the following exponential tail bound on /;:

PROPOSITION 3.5. For some constants ¢, C > 0, the following holds. Let u =
(B + B)d(d + 1). For B > 10000, it holds for any integers J < k < n and
1 < £ < d* that

P, > ¢] < Ce™*". 4

Once this is proven, a short argument shows that ZZ;} gl = O is
exponentially likely if the random variables (/) are assumed to be i.i.d. This is the
most important element of the proof of Proposition 3.2. To prove Proposition 3.5,
we must argue that FM(vy, £) is exponentially likely in £ to send a steady flow
of frogs to v;_;. There are two parts to this argument. From times max(3, [£/87)
to k, we obtain the necessary quantity of frogs at v,_; as a direct consequence
of Corollary 2.3 (see Lemma 3.8). To show that the flow condition is maintained
beyond this, we leverage Corollary 2.5 to prove it exponentially likely in £ that we
wake up a positive fraction of all frogs in T’ (v) by time O (k). We then show that
enough of these frogs will move to v,_; to give us our steady flow of frogs from
time 14k to d* (see Lemma 3.10). To bridge the gap between times k and 14k, we
make B large enough to build up a surplus of frogs at v;_; during the first k time
steps. This ensures that the steady flow requirement is met until time 14k even if
no additional frogs visit v;_; for times between k and 14k (see Lemma 3.9).

We now begin working toward Proposition 3.5. We start with two technical
estimates. First, we show that a frog at a leaf of ’]I"j, hits the root in ¢ steps with
probability §2(td~*).

LEMMA 3.6. Consider a root-biased nonbacktracking random walk on T
starting from a leaf for k > 2. For any integer k +2 <t < d*, the walk visits the
root in its first t steps with probability at least (t — k — 2)d % /4.
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Proof. Let T be the first time that the walk hits the root. We decompose the walk
into a sequence of independent excursions from the leaves. Since each excursion
reaches the root with probability d**!, the number of unsuccessful excursions
before hitting the root is Geo(d™ ke, Each unsuccessful excursion has length
distributed as 2G where G is a geometric random variable on {1, 2, ...} with
parameter (d — 1)/d conditioned to be less than k. Let G be 1ndependent copies
of G, and let G be independent and distributed as the unconditioned geometric
distribution on {1, 2, ...} with the same parameter. Thus,

Geo(d k1) 14+Geo(d—*+1)
TLk42 Z GV <k+2 Z G Lk 1+ 2(1 + Geo((d — 1)d ™)),

i=1 i=1
with the last step using the fact that the sum of 1 4+ Geo(p) many independent
1 + Geo(g) random variables is a 1 4+ Geo(pg) random variable. Therefore,

P[T <1]> [1+Geo((d—1)dk)<ﬂ]

2
t—k—2)d7*
=1—(1—(d—Da"Hh>1- exp(——( 5 ) )
Using the bound 1 — e™ > x/2 for x € [0, 1] along with the assumption that
t < d,
t—k—2)d*
PIT <t]> — ]

LEMMA 3.7. Suppose that m balls are placed uniformly and independently into
n bins, with m > 3n. Let Z be the number of occupied bins. Then

P[Z < 2n/3] < e ™,

Proof. Imagine that we place the balls one after another, and define Z; as the
number of bins occupied after i balls have been placed. Let T = min{i: Z; >
2n/3}. We need to bound the probability that 7 > m. We observe that (Z;);>¢
is a pure birth process with P[Z;,, = Z; + 1| Z;] =1 — Z;/n and Z, = 0.
Let (Y;)i>o be a pure birth process starting at O and increasing at each step with
probability 1/3. We can couple the two processes so that (Y;) increases only when
(Z;) does up to time T. We apply Proposition B.1 to the random variable Y,,,
which is distributed as Bin(m, 1/3), and we get

(I— 2n/m)2m) < o/
6 AN ’

using our assumption m > 3n. O

PIT > m] < P[Y,, <21/3] < exp(
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We are now ready to start on the proof of Proposition 3.5. Let X, be the number
of frogs frozen at v;_; by time ¢ in FM(vy, £). The basic idea is that if [, > £,
then X, < Bt/10000 occurs for some max(3, [¢/B]) < t < d*. Thus it suffices
to show that the probability of this event decays exponentially in £. In the next
three lemmas, we break the time interval max (3, [£/8]) < t < d* into the three
segments described on page 15, and we bound the probability that X, < 8¢/10000
on any of them.

The first time segment is for length &, which is the height of the tree rooted at
v;. As we mentioned, we use the application of strong recurrence to the finite tree
in Corollary 2.3 to accrue §2 (k) frogs at v; in time k.

LEMMA 3.8. With the conditions of Proposition 3.5,
P[X, < Bt/10000 for some max(3, [¢/B]) <t < k| < Ce™*
for some constants ¢, C > 0.

Proof. With probability 1 — d~*, some child of v; other than v,_; is visited by
one of the £ special initial frogs on the first step of FM (v, £). Call this event E.
Conditional on E, let u be a visited child, and couple FM (v, £) with the self-
similar frog model on T% with frogs frozen at the leaves, as follows. Identify vy
with the root of the self-similar model. Let u’ be the child of the root in T% first
visited by the initial frog in the self-similar model. Identify T%(x) in FM(vy, £)
with TZ (u') in the self-similar model. Make the number of initial frogs in T (u)
in FM(vy, £) identical to the number of initial frogs in Tfl (1’) in the self-similar
model. Let each of these frogs in FM(v, £) follow the corresponding frog in
the self-similar model until it is frozen. After, each frog in FM(v, £) continues
as a root-biased nonbacktracking walk independent of the self-similar model.
Similarly, let the initial frog that moved to # in FM (v, £) match the initial frog in
the self-similar model until it is frozen.

By this coupling and Corollary 2.3, the count of frogs moving from u back to
v, by time 2t is stochastically at least Poi(8d¢) for any integer 1 < ¢ < k — 1,
conditional on E. As each of these frogs moves next to v;_; with probability 1/d,
we have X,,,; > Poi(Bt). Restating this, conditional on E,

X, = Poi([(t — 1)/21B) = Poi(<§ - 1)z> (5)

forany 3 <t < 2k — 1. Let fp = max(3, [¢{/8]). By Lemma B .4,

P[X, < Bt/10000 forany 1, <t < k | E] < 2e CBIUED L2720 (6)
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Note that for simplicity we have limited the range to #, < ¢ < k, even though
(6) holds for a larger interval. Combined with P[E] = 1 — d~*, this proves the
claim. 0

Our next time segment is from & to 14k, bridging the gap between our first and
third segments. The argument here is rather simple: In proving Lemma 3.8, we
built up sufficiently many frogs at time k to keep X, large enough until time 14%.

LEMMA 3.9. With the conditions of Proposition 3.5,
P[X, < B1/10000 for some max([¢/B1, k) <t < 14k] < e~

for some constant ¢ > 0.

Proof. From (5) in the previous proof,

2
Proposition B.1 then gives

P| X, < ﬂ < e (b < e 220
10000

if 14k > [£/B], which we can assume since otherwise the lemma is vacuous.
This completes the proof, since if X, < /10000 for any k < ¢ < 14k, then
X < 148k/10000. 0

The last segment of time is the largest, from 14k to d*. The idea is to wake a
large fraction of the leaves of T, (v;) and show that this produces a steady stream
of frogs to v;_; up to time d*. Corollary 2.5 ensures that with positive probability,
the self-similar frog model with a single initial frog wakes a positive fraction of
the leaves. Essentially, we need to show that if we start the process with ¢ frogs
active at the root, then the chance of waking a positive fraction of the leaves
improves exponentially in £.

The trick to doing so is to find many independent opportunities to apply
Corollary 2.5, so that we may boost the fixed probability bound to an exponential
one. We start by letting the £ initial frogs in FM(v;, £) move a distance of
L = |log, £/3] down the tree. By a comparison to placing balls uniformly into
bins, we show that these frogs are exponentially likely in £ to cover at least 2/3
of the vertices at this level. We then apply Corollary 2.5 to the subtrees rooted
at the visited vertices to show that each independently has at least probability
1/2 of having half its leaves wake in time O (k). Since there are §2(£) of these
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Cover time for the frog model on trees 19

subtrees, it is exponentially likely in £ that this occurs for a positive fraction of
them. All together, this demonstrates that it is exponentially likely in ¢ that a
positive fraction of leaves of T’ (v;) are woken in time O (k). With this many
frogs awake, standard hitting estimates from a leaf to a root give us a steady flow
of frogs to v, up to time d*. We now make this outline precise.

LEMMA 3.10. With the assumptions of Proposition 3.5,

t
P[Xf < lo'ioofor some max([£/B1], 14k) <t < dk} < Ce 7

for some constants ¢, C > Q0.

Proof. We can assume without loss of generality that £ > 3, since the £ = 1,2
cases can be made trivial by choosing C large enough. Let L = |log,(£/3)] > 0.
Let V; and V; ,, be respectively the sets of distance L and L + 1 descendants of
v, that are not descendants of v;_;. The restriction £ < d* implies that v; has at
least L 4 1 generations of descendants.

For each v € V1, couple a self-similar frog model on T*~% with FM (v, £) in
the same way as in Lemma 3.8. This time, if «’ is the child of the root in T *
first visited by the initial frog, then T';_L (u') is identified with T’ (v), and the
root of T4 " is identified with the parent of v. If v is ever visited in FM(v, £),
then choose one of its activators and match its path up with the initial frog in the
self-similar model. All other aspects of the coupling are as in Lemma 3.8. Note
that under this coupling, the self-similar models matched for each v € V; ;| are
independent.

For v € Vp, let A, be an indicator on v being visited by one of the ¢ initial
frogs in FM(vy, ), andlet A = ) v, Av- The total number of vertices at level L
is dt < £/3, and each initial frog is equally likely to go to any of them. By
Lemma 3.7, at least 2/3 of these vertices are visited with probability 1 — e=*/%*.
On this event, A > (2/3 — 1/d)d* > d* /6. Note that all of this holds even when
L =0, when A = A,, = 1 deterministically.

Now, condition on (A,),cy, . For every child u of a vertex v € V), satistying
A, = 1, let B, be an indicator on some frog woken at v moving immediately to
u. By Poisson thinning, there are independently Poi((3 + ﬂ)d) frogs woken at v
moving to u. Hence, conditional on (A4,),cy, , the random variables B, for such u
as described above are i.i.d.-Ber(e~#4).

Call u € Vp, sustaining if in the self-similar model coupled to it, at least
d*~t=1/2 leaves are activated in 12(k — L — 1) steps. Let S, be an indicator on u
being sustaining. The random variables (S, ).y, ., are independent of each other
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and of all random variables A, and B, defined in the previous paragraph. Let

S = Z B,S,.

B
Conditional on (A,),cy,, the random variable S is the sum of independent
indicators, and E[S | A] > e C*A?Ad /2 > .48 Ad by Corollary 2.5. Conditional
on A > d" /6, we then have § > d~*! /25 with probability at least 1 —e=2@""™) >
1 —e 9O,

Now, we claim that if § > d*!/25, it is unlikely that X, < 8¢/10000 for any
[¢/B1 <t < d*. On the event {S > d“*!/25}, there are stochastically at least
Poi(ud*/50) frogs activated by time L + 12(k — L — 1) at leaves descending from
vo. As the paths of the frogs at the leaves are independent of S, conditional on
S > d'*'/25 their paths remain independent root-biased nonbacktracking walks.
By Lemma 3.6, the number of these frogs that have visited v, by time L + 12(k —
L—1)+(t+k+2) is stochastically at least Poi(¢/200) forany 0 < t < d*—k—2.
We then thin by 1/d to get the number of frogs frozen at v;_; after one more step.
Hence,

i (tB+B)d+ 1)
X > X I >P =P _ ).
13k+1 L+12(k—L—1)+1+k+3 2 Ol(ZOOd) 01( 200

Fort > k,

t3+8)d+1) < B(13k +1)
200 ~ 1000

By Lemma B .4,
dL+1

25

t

B
10000 $>

for some max ([¢/p1, 14k) <t < d*

P|:X, <

] < e~ 2BIL/B] < 2¢~ 20

Combined with the estimates on P[S > d“*'/25 | A > d*/6] and on P[A >
d" /6], this completes the proof. O

Proof of Proposition 3.5. Lemmas 3.8-3.10 combine via a union bound to prove
4). O

3.1.3.  Final steps toward Proposition 3.2. We are already done with the hard
work toward proving Proposition 3.2. As we described at the beginning of
Section 3.1, our argument requires us to feed 7, frogs into v,_; to get a steady
flow into v,_,, then wait for I,,_, frogs to flow into v,_,, and so on. What remains
is to show that this happens quickly by stitching together the processes FM(vy, )
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and applying Proposition 3.5. In our next lemma, we collect /,_; frogs at v,_; to
set things in motion.

In this section, we have elected to simplify computations by frequent use of
big-O notation. We will be very strict in our use of it: an expression O(f) or
£2(f) denotes a quantity bounded respectively from above or from below by Cf,
where 0 < C < oo is an absolute constant not depending on d, n, , or any other
parameter. For example, the expression O(Cn/f) in the next lemma could be
replaced by C’'Cn/B, where C’ is an absolute constant with no dependence on d,
n, B, or C.

LEMMA 3.11. Consider the nonbacktracking frog model on T/ with i.i.d.-Poi(u)
frogs per site where @ = (3 + B)d(d + 1). Given C > 0, there exists fy =
Bo(C) such that for B = By, there is a stopped version of the frog model with the
following property: it holds with probability at least 1 — e~ that at least Cdn
frogs whose last step was from v, = @ are frozen at v,_; by time O(Cn/pB) for
n 2 ny(C, B, d).

Proof. Suppose that some child u of the root is visited at time ¢ for the first time.
We first mention that we can couple the frog model restricted to {@} U T% (u)
from time ¢ on with the self-similar frog model on T’ with frogs frozen at leaves
from time 1 on, as we have often done before: simply have all frog paths identical
in both models up until time a frog is stopped in the self-similar model. By this
coupling and Corollary 2.3, our original frog model has stochastically at least
Poi(cdn) visits to @ from u by time ¢ + 2cn/f, assuming that § is large enough
that 2cn/B < n — 1.

We now apply this fact repeatedly to prove the lemma. Let & be the child of
the root first visited by the initial frog. The gist of the argument is to couple the
frog model on @U T (") with the self-similar model as above to obtain Poi(cdn)
visits to & in time 2cn/B. From this, we are very likely to visit, say, one third of
the children of the root by time 2cn/B + 1. For each visited child v, we couple
the frog model on {&} U T’ (v) with the self-similar frog model to get another
Poi(cdn) visits to the root after another 2cn /B steps. Summing the contributions
from all £2(d) visited children, we have Poi(cd?n) visits to the root, and after one
more step we have §2(dn) frogs at v,_;. We will write out this argument with
all details below, but we remark that the details are less enlightening than the
description we have just given.

We do the argument first in the d > 3 case. Let ¢ > 1 be a large constant,
to be specified in more detail later. In this argument, we use the phrase with
overwhelming probability to mean with probability at least 1 — e=?«" for
sufficiently large n (where the meaning of sufficiently large can depend on c, d,
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and B). Each instance of the phrase might have a different constant in the £2 (cdn)
expression. Observe that by a union bound, an intersection of a bounded number
of events holding with overwhelming probability also holds with overwhelming
probability.

Choose B, large enough that 2cn/fy < n — 1, and assume that 8 > B,. We
then have stochastically at least Poi(cdn) visits from @ to @ in time 2cn/fS by
the coupling described above. Each frog that moves from @’ to @ moves next
outside of {&, v,_,} with probability at least 1 — (d +2)/d*> = (1), recalling the
dynamics of root-biased nonbacktracking walk from Section 2.1. Thus, by time
2cn/B + 1, at least Poi(.Q(cdn)) frogs have done so. By Proposition B.1, this
quantity of frogs is at least £2(cdn) with overwhelming probability. Conditional
on this occurring, each of these frogs is equally likely to visit any of the
children of the root other than @’ and v,_;. By Lemma 3.7, the number of
these children visited is strictly greater than (d — 2)/3 with overwhelming
probability. Conditional on this, for each child of the root v # @', v,_; visited,
we couple the frog model on {@} U T/ (v) with a self-similar model. For each
v, we then obtain Poi(cdn) visits from v to & by time 2cn/f 4+ 1, giving us
Poi(.Q (cdzn)) such visits in all. Each frog moves next to v,_; with probability
(d + 1)/d?, giving us Poi(£2(cdn)) visits to v,_; from & in time 2cn/B + 2.
Finally, by Proposition B.1, this quantity is at least £2(cdn) with overwhelming
probability.

When d = 2, start the argument the same, obtaining Poi(2cn) visits from &'
to & by time cn/B. Depending on whether @’ = v,_;, each of these frogs moves
next to v,_; with probability 3/4 or 1/4. In either case, we have Poi((.Q (cn))
frogs moving from & to v,_; in time cn/B + 1, and by Proposition B.1, there are
£2(cn) of them with overwhelming probability.

Thus, in both cases, we have £2(cdn) frogs stopped at v,_; after moving there
from @ in time O(cn/B) with overwhelming probability. Choosing ¢ to equal C
multiplied by a sufficiently large constant completes the proof. O

We now prove the equivalent of Proposition 3.2 for the nonbacktracking frog
model on TY. After this, we will apply Proposition 2.1 to transfer the result
to the usual frog model. Recall from (3) that / = [log,n + log,(logn) +

Slog, 10 —log, B].

PROPOSITION 3.12. Consider the nonbacktracking frog model on T’ with i.i.d.-
Poi(p) initial conditions where u = (3 + B)d(d + 1). For any constant C, for all
B = Bo(C)andn = ny(B, d, C), there is a stopped version of the model such that
at least 10nlogn frogs are stopped at v; by time O (nlogn/B) with probability
at least 1 — e~ ¢4,
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Proof. This proof is somewhat long, but it just stitches together the estimates
made earlier in the section. We start with an informal sketch. Start with the
nonbacktracking frog model on T’ with i.i.d.-Poi(2u) frogs, splitting the frogs
at each site into two collections of Poi(u) each. With the first collection, we run
the frog model to accumulate O (Cdn) frogs at v,_;, which we can do in time
O (Cn/B) with overwhelming probability by Lemma 3.11. We then abandon this
first set of frogs and switch to the second, giving ourselves a fresh frog model
with i.i.d.-Poi(u) frogs per site but with an extra O (Cdn) frogs deposited at v,,_;.
We can now couple the process with FM(v,_;, O(Cdn)). Since I, ; < O(Cdn)
with overwhelming probability by Proposition 3.5, a steady stream of frogs flows
to v,_,. When I,_, frogs have built up there, we couple the process to FM(v,_»,
I,_,), and we know that a steady stream of frogs will flow to v,_5. Continuing in
this way, we eventually feed 1, frogs in v;,, creating a steady stream of frogs
into vy. After O(nlogn/u) steps, enough frogs have built up at v; and we are
finished.

Now, we carry out the details. We will be proving our proposition with p
replaced by 2u, which is equivalent by adjusting B,. We define a process based
on the usual frog model with i.i.d.-Poi(2u) frogs per site in which frogs are
repeatedly stopped and restarted. We refer to it as the slowed process. To define it,
separate the sleeping frogs in T’ into two independent Poi(u)-distributed batches
at each vertex. Let the initial frog at the root move as usual, as a root-biased
nonbacktracking walk. For sleeping frogs in the first batch, let their paths be root-
biased nonbacktracking walks stopped on moving from the root to v,_;. Keep all
second-batch frogs frozen for now.

Let FM(vy, ») be independent for all J + 1 < k < n. Recall that I is a function
of FM(vy, »), and hence I,,4, ..., I, are independent. Once [,_; frogs have
been frozen at v,_; in the slowed process, unfreeze all frogs accumulated there.
Halt all other first-batch frogs at this time and ignore them afterward.

We now allow the second-batch frogs to work at last. When the frogs at v,_,
are unfrozen, couple them with the special frogs in FM(v,_, ). Also couple the
numbers and paths of second-batch frogs in T/ (v,—;) \ T} (v,—,) with the normal
frogs in FM(v,_1, »). Thus, all frogs move (past the first step) as nonbacktracking
walks frozen at v,_, and v,,.

Once I, _, frogs are frozen at v, _», halt all other frogs forevermore, and unfreeze
these frogs. Couple them and the second-batch frogs in T’ (v,_,) \ T’ (v,—_3) with
FM(v,_», *) as above. Let all frogs move until /,_; frogs have been frozen at v,,_5.
We continue on in this way until 7, frogs are frozen at v;, ;. We then continue
for one last step, unfreezing the frogs at v, , halting all other ones permanently,
and coupling the process with FM(v,, 1, ¢). Finally, we run the process until
10n log n frogs are frozen at v;.
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We claim that to prove this proposition, it suffices to prove the same bound for
the slowed process. This is intuitively very clear: If we remove all of the stops
and restarts at vertices other than v, the resulting model is a stopped version of
the nonbacktracking frog model. Furthermore, every frog that is stopped at v,
by a given time in the slowed process will also be stopped at v; by this time in
the stopped process. Hence, it suffices to prove that at least 10n logn frogs are
stopped at v; in the slowed process at time O(Cnlogn/B) with probability at
least 1 — =€,

The rest of the proof is to show this. We claim that at least 10n log n frogs are
stopped at v; in the slowed process at time O (nlogn/g) if all of the following
events occur:

Event A;: The time to accumulate 7, frogs at v,_; in the first step of the process
is at most O (Cn/p).

Event A,: Forall J + 1 < k < n — 1, it holds that I, < d*.
Event A;: Itholdsthat 7, |+ ---+ I, < nlogn.

Indeed, suppose all these events occur. For J +2 < k <n — 1, let

T, = max<3, ’7—1000011(_1—‘, IVE—D
B B

From event A,, there will be I, , frogs at v, , by time O(Cn/B) or
sooner, starting the stage of the slowed process in which it evolves according
to FM(v,_;,+). By Definition 3.4, the process FM(v,_;, I,_;) sends at least
Bt/10000 frogs to v,_, in ¢ steps for all max(3, [I,_1/B]) < t < d"~'. From
event A,, we have I,_; < d"'and I,_, < d"2. Hence T,_, lies between max(3,
[1,_1/B]) and d"~', and therefore FM(v;_,, I;_,) sends at least I,_, frogs to v,_,
in 7,_, steps. By our construction of the slowed process, this kicks off the next
stage of the process, which is coupled to FM(v,_,, ¢). By identical reasoning,
FM(v,_», I,_») sends at least I,_3 frogs to v,_; in T,_, steps. Continuing in
this way, we send at least I, 4 frogs to v,_4 in another 7, 3 steps, and so on,
culminating with the arrival of I, frogs to v;,. Finally, let

1051 I
= (o [ [ 52)

By the definition of J, we have 10°nlogn/B < d’*'. From A,, we have I,,; <
d’*!'. Thus T, lies between max(3, [1,,,/87) and d’*', from which it follows
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that FM (v, 1, I;,1) sends at least 10n logn frogs to v, in 7, steps. All together,
we send at least 10n log n frogs to v; in time

Cn
0(?)+Tn—l+"'+T‘/+l' 3

Assuming event A; holds, wehave 7, _; +--- 4+ T, = O(nlogn/B). Thus, (8) is
O (nlogn/pB) for large enough n (depending on C), completing the proof of the
claim.

All that remains is to show that A; N A, N Az occurs with probability at least 1 —
e~C" Let ¢ be a constant to be chosen later (it will depend only on C). To bound
the probability of A, observe that cdn frogs are frozen at v,_; in the first stage of
the process by time O (cn/B) with probability at least 1 — e=“" by Lemma 3.11.
By Proposition 3.5, we have P[1,_; < cdn] > 1 — O(1)e=  These two facts
together show that AS occurs with probability O (1)e=?“"  provided the implicit
constant in big-O expression in the definition of A, is chosen large enough.

To bound the probability of A,, first observe that d’ > 10°nlogn/B. Then
apply Proposition 3.5 and obtain the inequality

P[I, > d*]1 < P[I, > d* ' (10)°nlogn/p]
< O exp(—£2(d* 'nlogn/B))
forall J + 1 < k < n — 1. Hence, by a union bound,

n—1
PlAS] < > O(l)exp(—2(d*/nlogn/B)) = O(1)e 2 men/d),

k=J+1

For large enough n (depending only on ¢ and B), this is bounded by e,
Last, we consider the event A;. Let I, = min([;, d*), so that I, has an
exponential tail by Proposition 3.5. By Proposition B.2,

P[Tn_] +oot I > nlogn] L emedn

once n is large enough relative to d and c. If A, holds and Toi+---+1 J1 <
nlogn, then A; holds as well, showing that P[A5] < 2¢~“/" for large enough n,
depending on ¢ and 8. We now have

P[AS]+ P[AS] + P[AS] = O(1)e 2.

The proof is now completed by choosing c¢ large enough that this is smaller than
o—Cdn_ O

Proof of Proposition 3.2. Set b = 4logd and apply Proposition 2.1 to the result
of Proposition 3.12. O
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3.2. [Establishing Proposition 3.3. In this section we prove Proposition 3.3.
Note that this is a result about random walks on trees, not the frog model. It
will be based on the following random walk estimate. Recall from (3) that J =
llog,(10°nlogn/B) |, where u = (3 + B)d(d + 1).

PROPOSITION 3.13. Consider a single random walk on T started at v; and
assume that n > ng for some sufficiently large absolute constant ny. The walk
visits vy in less than 4(10)°n log n/ B steps with probability at least 1/3 log, n.

Using this, the proof of Proposition 3.3 is easy:

Proof of Proposition 3.3. By Proposition 3.13 the probability that none of the
10n log n frogs at v, reaches v, in 4(10)°n logn/p steps is at most

1 10n logn
1— < e*3ﬂlogd' O
3log, n

Now we devote the rest of this section to establishing the random walk estimate.
Its proof works by decomposing the random walk as a simple random walk on the
spine {vy, ..., v,} with excursions off of it. We start with a preliminary lemma to
compute the expected length of the excursions.

LEMMA 3.14. Let 1, be the number of steps to hit either vy_y or vy, for a simple
random walk on T" starting at v. Then Et, = d*~'(d — 1)/2.

Proof. The time to hit v;_; or v, is the same as the time by random walk starting
at v, on the weighted graph shown in Figure 3 to hit the leftmost vertex, {v;_1,
vr+1}- The random walk moves at each step to a neighbor chosen with probability
proportionate to the weight of the edge. The graph has been obtained from T,
by identifying v;_; and v;., identifying all children of v; other than v,_;, and
identifying all distance k descendants of v, for each k > 2.

The expected hitting time is easily computed using electrical network theory.
By [LP16, Proposition 2.20], which is a result first obtained in [Tet91], the hitting
time has expectation ) | (x)v(x), where the sum is over all vertices in the graph,
7 (x) denotes the sum of the weights of edges incident to x, and v is the voltage
that assigns 0 to the vertex {v;_;, vi,1} and that creates a unit current flow from
v to {vg_1, vy} This voltage assigns 1/2 to all vertices other than {v,_{, vi4}.
The expected hitting time is then

1 k—1

| A 1 1
5 > (d'@d=D+d"d=D)+5d+1)=2d""d-D, O
i=0
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{Ukrflv 'Uk+1} Vg

[ L 4 _—— 9

2 d—1  dd-1) d1(d—1)

Figure 3. The following collections of vertices from T’, have been identified in
this graph: v;_; and v ; all children of v, other than v;_;; and the distance k
descendants of v, for each k > 2. Random walk moving with probability
proportionate to the edge weights starting at v, and stopping at {v;_1, vy} is the
same as random walk on the original graph, viewing vertices as blocked together.

Next, we compute the expected number of visits to each vertex along the spine
before v, is hit. We condition on the walk hitting vy before v;,, as this will
simplify our eventual proof.

LEMMA 3.15. Consider a random walk on T, starting at v;. Let oy be the first

time that the walk hits vi. Let V. be the total number of visits to v, up to time oy,.
Forl1 <k<J,

k
E[V, =2kl1 — ——).
[Vi | oo < 0y41] < J-|-1)

Proof. Let E = {0y < o0y41}. Recall that Ploy, < o,4] = 1/(J + 1 — k).
Conditioned on E, the walk will visit v, at least once for all £ < J. The number

of returns to vy after first visiting it is a geometric random variable with parameter
1 —P[V, = 1| E]. We can then write

1 P
B[V, | E] o0 < 0y41]

T PVi=1lop <ol  Plog <oy and Vi = 1]
1
" (J+DPlog < oy and V, = 1]

(€))

We claim that

1

P dVi=1]=———"—"—.
o9 < 041 and V; ] 27 +1— Ik

(10)

This is because to reach v, before v, |, the walk necessarily visits v; before v, i,
which occurs with probability 1/(J + 1 — k). To visit v, only once, on arriving at
vy it must immediately move to v;_;, which occurs with probability 1/2. Then it
must reach vy before v;, which occurs with probability 1/k. Combining (9) and
(10) gives the claimed formula. O
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Proof of Proposition 3.13. Let (S;) be a simple random walk on T starting at
vi. Define S = {uy, ..., v,}. The Markov property of random walk shows that
the restriction to S of the path of (S;) is distributed as the path of a simple
random walk on S. Let o, = inf{z: S, = uv;}, the hitting time of v, as in
Lemma 3.15. Set

F = {0y < 4(10)°n logn/ ),

E ={op <oy}
Our goal is to bound P[F'] from below. A simple estimate gives

P[F | E]

P[F]>P[FNE]=P[F | EIPIE] = 7

1D

In light of (11) it suffices to prove that P[F | E] > 1/2.

Let Vi, = |{t < 09: S; = v;}], the total number of visits to v, before the walk
hits v,. Let 7, (i) be the number of steps it takes the walk to reach v,_; or vy,
starting from the ith time the walk arrives at v,. We then decompose oy as

n

Vi
o= Y u(j).

k=1 j=1

Conditional on E, the random variables V; and 7;(j) are mutually independent
for all j and k. By Wald’s lemma,

J
Eloy | E] = Y E[V; | E1E[%n()) | E]. (12)
k=1

We need only consider J summands in (12), since conditional on E the walk
does not move beyond v; before hitting vy. For all j, the random variable 7 ()
is independent of E and is distributed as 7; from Lemma 3.14. Therefore, by
Lemmas 3.14 and 3.15,

J

Elo, | E] = Zk(l - JLH)dk—l(d —1).

k=1

We claim that this is O (d”). Indeed, using the bound k(1 —k/(J+1)) < J+1—k
and making the substitution j = J 4+ 1 — k in the second line,
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J
Elog | E]< (=D ) (J +1—kd""

k=1

J
=d’'d-1))_jd"
j=1
d’+!

d—1

2

<d7'd-1) jd' TV =d""d-D(1-d7") " =

j=1

Notice that d’*' < 10°dn logn/B and apply Markov’s inequality to obtain
Ploy > 4(10)°nlogn/p | E] < d <!
° s Sid-1n 72

Applying this to (11) gives

1 1
Plo, < 16(10)°n1 > — > ,
[0 (10)°’nlogn/B] 37 7 3log,n

with the last inequality holding for all sufficiently large n, with no dependence
ond. O

4. Slow cover time for small

We now give our lower bound on the cover time for small enough 1.

THEOREM 4.1. Let C be the cover time for the frog model on T’ with initial
Jfrog counts given by an independent collection of random variables (1(v))ver\(2),
where En(v) < u for all vertices v. Suppose that i < min(d'~¢, d/100) for any
0 < € < 1. For some absolute constant ¢ > 0,

P[C < eca/enlogd] g e—c'alenlogd
forn > logd/c’e.
This bound is effective even for u as large as d/100:

COROLLARY 4.2. Let C be the cover time as above, assuming only that p <
d/100. Then for some absolute constant ¢ > 0,

P[C < ecﬁ] <e vt
forn > ((logd)/c)>
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Proof. Apply Theorem 4.1 with € = log, 100. O

We extend the usual notion of the distribution Ber(u) to ;# > 1 by setting it to
be the unique distribution on {|[u ], [1]} with mean p. For most of this section,
we consider the frog model with i.i.d.-Ber(x) initial conditions. We then apply
Lemma A.1 to allow for more general initial conditions.

The proof hinges on the following result that we will prove inductively. Define
Tf * to be the d-ary tree of height H with an extra vertex, y, attached to the root.

PROPOSITION 4.3. For some absolute constant C > 0, the following statement
holds for all d > 2 and n < d/100. Consider the frog model on TH* with one
initially active frog at the root, none at y, and i.i.d.-Ber(u) sleeping frogs at the
remaining vertices, and with frogs frozen on moving to y. Let XY be the number
of frogs frozen at y by time 27. Define H; = H;(d, ) by

Hl = 15
Cj(og(l + )+ j) .
H; = { - . iz
og(5;)
Forany j > 1, ifn > H;, then
EXV" < L. (13)
1+ %,u

Most of this section is devoted to proving Proposition 4.3. Before we turn to
this, we prove Theorem 4.1 from it. First, it is a small task to remove the freezing
of frogs from Proposition 4.3, showing that the expected number of returns to the

root within time 2/ in our usual frog model on Tj’ is O(1).

COROLLARY 4.4. Suppose that u < d /100, and let
j=jld,n,u)=max{i: H; <n—1},

where H; is the sequence defined in Proposition 4.3. Let R be the total number
of visits to the root of T% within time 2/ in the frog model with initial frog counts
given by n(v) forv e T\ {&}. If En(v) < u for all vertices v, then ER < 4.

Proof. 1t suffices to prove this result under i.i.d.-Ber(u) initial conditions, by
Lemma A.l and the maximality of Ber(u) in the pgf order mentioned in
Appendix A. Now, consider the following modification of the frog model. Let
the initial frog take a step. Next, run the frog model for 2/ steps with frogs frozen
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at the root, and kill all frogs that were woken but did not reach the root. Let R,
be the number of frogs frozen at the root. Now, let each of these frogs take one
more step, and then run the frog model for another 2/ steps with frogs frozen at
the root, and then again kill any frogs that were woken but did not reach the root.
Let R, be the number of frogs frozen at the root after this stage. Continue in this
way to define R; for i > 3. As every frog is allowed to run for at least 2/ steps
before being Killed, every visit to the root in the usual frog model in the first 2/
steps occurs eventually in this modified process. Hence, R < ) | R;.
Defining Ry = 1, we claim that

ER; < (1 +)EXY""VER, (14)

for all i > 0. We prove this statement now. After the ith step of the process,
there are R; frogs at the root. Let N; be the number of active frogs at level 1
after they take their next steps. Fix 1 < k < N,, and suppose that the kth of
these frogs follows the path (Sy, S, .. .) from this point on. Consider the original
(unmodified) frog model with the following changes:

(i) Add an initially active frog with path (Sy, S, . ..);
(i1) delete all other frogs at vertex Sy, and delete the frog at the root;
(iii) freeze frogs on moving to the root.

Let X, be the number of frogs frozen at the root after 2/ steps in this modified
process. By a subadditivity property of the frog model, R;;; < Z,iv: | Xi. Now,
we think of the root vertex as y, and we think of X; as counting the number of
visits to y in a frog model on Tfi”fl)* with frogs frozen at y, except that because
of killing frogs, some vertices of ’IFI(;H)* have no sleeping frogs on them. Thus,
conditional on N;, we have X; < XY~ Hence,

E[R;1 | Ni] < (EXY"" V)N,

Taking expectations and observing that E[N; | R;] < (1 + w)R; completes the
proof of (14).

By Proposition 4.3 and our choice of j,

. 8(1
1+ wExU) < SUE g
1+ 5u
It now follows from (14) that
ER< ) ER <) (8) =4 O
i i=1

i=1
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Corollary 4.4 shows that in the frog model on T’ there are few visits to the
root by time 2/@®_To bound the cover time, we observe that once all frogs are
active, many visits to the root will occur. We first give a random walk estimate.

LEMMA 4.5. For some absolute constants a, b > 0 the following statement holds.
Suppose that nlogd/a < t < d". Then a random walk on T’ with arbitrary
starting position has probability at least btd™ of hitting the root in its first t
steps.

Proof. One could prove more precise estimates in the same way as Lemma 3.6.
Since we do not need any precise formula, we take a simpler approach. We can
assume the walk starts at a leaf, as this is the worst-case scenario. Now, partition
the walk into excursions away from level n. The length of each excursion has an
exponential tail, since the probability that a random walk on Z from O with a bias
to the right is negative after k steps decays exponentially in k. By Proposition B.2,
the probability of having e or fewer excursions from level # in time ¢ is at most
e~ for absolute constants € and c¢. On each excursion, the walk has probability
d— 1)/d" — 1) = d™" of visiting the root. Thus, in [e?] excursions, the
probability that the root will not be visited is at most

(1 _d—n)[eﬂ < e—etdf".

Combining these two estimates, the root is visited in time ¢ with probability at
least

Since t < d", we can apply the inequality 1 — e™* > x/2, which holds for
x € [0, 1], to get

1— e—etd“" _ e—ct 2 €td” _ e—ct.
2
Choosing a small enough, this is £2(¢td™"). 0

Proof of Theorem 4.1. Define j = j(d,n, ) as in Corollary 4.4. We start by
estimating j. Directly calculating from the definition of H; in Proposition 4.3, we
find that if i > logd, then

Ci?
= elogd
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for some absolute constant C. If we set i = [cy/enlogd] for ¢ = (2C)~'/? and
assume n > ¢ 2logd/e so that i > logd, then we have H; < n — 1. Hence
Jj = c¢/enlogd. It is also straightforward to see that j = O(\/nlogd).

It does us no harm to assume that x4 > .01. For technical reasons, we will
also assume that the expected number of sleeping frogs is exactly u at each site,
rather than just being bounded by w. To see that it suffices to prove the theorem
under this extra assumption, for each site with expected count strictly smaller than
W, independently add a random number of extra frogs (distributed arbitrarily) to
bring the mean up to u, and observe that this can only decrease the cover time.

Define the event A = {C < 2/~!'}. We will prove that P[A] < C2~/ for some
absolute constant C. By the lower bounds on j, this proves the theorem with an
extra constant C in front of the bound, which we can eliminate by decreasing c,
or ¢ slightly. Conditional on A, all frogs are awake at time 2/~!, and they move
from this time on as independent simple random walks. We can apply Lemma 4.5
with t = 2/7! since nlogd/a < 2/~! < d" for large enough n, showing that each
walk hits the root by time 2/ with probability at least b2/~'d~". Let R be the total
number of visits to the root by time 2/ and let U be the total number of frogs in
the system. Bounding R from below by counting the visits to the root only for
times in [2/7!, 2/], we obtain

E[R | A] > b2/7'd"E[U | Al.

By a simple coupling, the event A is more likely the larger U is. That is, the
random variables 14 and U are positively associated, from which it follows that
E[U | A] > EU > pd", recalling that we have assumed that each site has exactly
mean u sleeping frogs. Thus, E[R | A] > b2/~ 1. But by Corollary 4.4, we have
ER < 4. Rearranging the simple bound ER > E[R | A]JP[A] gives

P[A] < p

4 =02
e 27,

under our assumption that u > .01. O

4.1. Tagging frogs. The remainder of Section 4 is devoted to proving
Proposition 4.3. Fix integers H, i, j > 1, and consider the frog model on ']I‘f,H+h)*
with frogs frozen on moving to y, starting with one frog at the root, and with
ii.d.-Ber(u) frogs per site at all vertices besides the root and y. Let £; denote the
set of vertices at level i of T;HM)*, taking O as the level of the root and —1 as the
level of y.

Our plan is to advance the induction in Proposition 4.3 by supposing that X /-
satisfies the inductive hypothesis and then showing that XV*1-#+" does as well,
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for a good choice of 4. The idea of the proof is to assign each frog a tag that
changes at various times in the process. When one frog wakes another, the newly
woken frog starts with the same tag as its waker. If a frog is woken by two
frogs with different tags arriving simultaneously, choose any procedure to decide
between the frogs; this detail will prove irrelevant. In the following set of rules,
when a frog changes its tag on arriving at a given vertex, the newly woken frogs
inherit the new tag, not the old one.

e The initially active frog at the root has tag A.

If an A-tagged frog reaches L, its tag changes to By.

If a B;-tagged frog moves from L£;,_, to L, its tag changes to B, .

If a B;-tagged frog moves from L, to £;_, at time 2/ or after, its tag changes
to C().

If a C;-tagged frog moves from £, _; to L, its tag changes to C;, ;.

o Attime 2/*! + 1, all frogs are stripped of their tags.

Note that frogs are retagged every time they move forward in the tree to L.
The only other time a frog receives a new tag is when a B;-tagged frog moves
backward from L, to £;,_; at time 2/ or later, in which case its tag changes to Cj.

We will use three different estimates to bound the number of tagged frogs.
When frogs with any tag are between the root and £, we dominate them by
branching random walks using the estimates in Lemmas 4.8 and 4.9. When a frog
moves forward in the tree to a vertex v € £, and is given tag B;, we estimate
the number of B;-tagged frogs emerging from v back to £;,_; using (13), the
inductive hypothesis. We have very little control over the number of Cy-tagged
particles emerging from v back to £,_;. Here, we use Lemma 4.6, which we call
the all-awake bound since it simply assumes that all frogs in the subtree rooted
at v are initially awake. The key to the argument is that we retain control over
the number of C;,-tagged frogs: Whenever a C;-tagged frog moves forward to
a vertex v € L, and is retagged as C;,y, it does so after time 2/. Since we only
care about the process up to time 2/7!, we can control the number of C,,-tagged
frogs emerging from v back to £, using the inductive hypothesis rather than the
all-awake bound. Thus, although there will be many Cy-tagged frogs, the number
of C;-tagged frogs for i > 1 will not spiral out of control.

4.2. Branching random walk and all-awake bounds. As mentioned above,
we control the frog model by dominating it by branching random walk and by
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simply assuming that all frogs in a given subtree are initially awake. We start with
this second bound.

LEMMA 4.6 (All-awake bound). Consider T* for arbitrary H > 1 with one
particle at the root, none at y, and i.i.d.-Ber () particles at the remaining vertices.
Let all particles perform discrete-time random walks frozen at y. Let W be the
total number of particles frozen at y after t time steps. For some constant cy,

EW < cjut.

Proof. For any 0 < k < H — 1, a particle initially at level k of the tree visits
y before the leaves with probability no more than d—*~!. Initially, there is one
particle at level 0 and an expected ud* particles at level k foreach 1 <k < H — 1.
Only particles starting at level + — 1 or less can reach y in time ¢. Hence, the
expected number of particles that reach the root in ¢ steps without ever being at a
leaf is at most

min(H,1)—1 1+[
a7+ Y pdta < ——F y al (15)
k=1

Now, consider a particle at a leaf. It has probability no more than d~ of visiting
y before revisiting level H. In time ¢, it makes no more than ¢ of these excursions
from the leaves. Thus, the probability that a given particle at a leaf visits y in its
next ¢ steps is at most

1—(1—d ¥y <1—e " < ota ¥,

The first inequality above uses the bound 1 —x > ¢~2*, which holds for all x € [0,
1/2]. The total expected number of particles in the tree is 1 + u(d + - - - + d).
The expected number of particles that visit y before time ¢, starting from a leaf or
after visiting a leaf, is therefore at most

2ed (1 +pnd+---+d") < 2t<dH + 1 _“d_l). (16)

Combining (15) and (16),
W<t (Bypoany 22 ),
d 1 —d!

+(%+1+4u)t:0(ut). O

N = =

<
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Next, we prove several bounds whose proofs are essentially comparisons
of the frog model to branching random walk. The first step is to describe a
supermartingale wg(&,) given as a function of the frog model.

LEMMA 4.7. Consider T"* with a single active frog at a specified vertex vy, no
frogs at the ancestors of v, (including y), and i.i.d.-Ber(u) sleeping frogs at the
other vertices. Run the frog model with frogs frozen on arrival to y and to L,.
(When a frog arrives at L, we consider the frogs there woken but immediately
frozen.) Let F, be the o-algebra representing the information revealed after t
steps of this process. Let & be a point process on T'* made up of the locations of
each woken frog after t steps. For any v € &, let L(v) denote the level of v in the
tree, and define

wy(&) =Y 07+

veg&;

If 1 < (d — 1)2/4d, then there exist positive real numbers 0y and 0, satisfying

b <1+ -—pu, a7
bh=2d———n (18)

such that wg, (&) and wy, (&) are supermartingales with respect to the filtration
.

Proof. Observe that

| A+wd
E%@D:(d+ﬁ+ dfﬁg’

)we (%0)-

Solving a quadratic equation, we see that Ew, (&;) = wq (&) if

_d+1+Jd+1)?—4(0+wd

0
2

Let 6, and 0, be the smaller and larger of these solutions, respectively, which
are positive real numbers if 0 < u < (d — 1)?/4d. Let .%, be the o-algebra
generated by the frog model up to time . Now, suppose that § = 6, or § = 6,
and we will show that wy (&) is a supermartingale. Consider a nonfrozen frog in
& at level i. It jumps backward with probability 1/(d + 1), waking no frogs, and
forward with probability d/(d + 1), possibly waking a Ber(u)-distributed number
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of frogs. Thus, its expected contribution to wy(&,,) is at most

U pin (L+d

- Q—i—lze—i’
d+1 d+1

exactly its current contribution. The contribution to wy(&;,) of each frozen frog
in &, is the same as its contribution to wy (&,), showing that

Elwe(§41) | F1] < wp(&).

To prove (17) and (18), observe that \/(a’ +1)2 —4(1 + p)d is a concave
function of . It therefore lies above its secant line from 0 to (d — 1)?/4d, yielding

A+ 1?40 +wd>d—1— ——p.
Applying this to the definitions of 8, and 6, gives the desired bounds. O

LEMMA 4.8 (BRW bound, starting at root). Consider T"* with one initially active
frog at the root, no frogs at y, and i.i.d.-Ber(u) sleeping frogs at the other vertices.
Run the frog model with frogs frozen at y and L. Let X and N be the number
of particles eventually frozen at y and L, respectively. (The random variable N

includes in its count the frogs that are woken at L, and immediately frozen.) If
w < (d — 1)2/4d, then

2d \" 2 \\
ENS|(14+——u), and EX L |d(]1 - —— .
d—1 d—1

Proof. Let T be the first time when all frogs are frozen. By Lemma 4.7, the
process wy(&;) is a supermartingale for 6 = 6,, ;. It is bounded at all times by
OT]|Th|, since the total number of frogs in the system is at most [w1|T/*| and
no frog goes below level —1. Hence, the optional stopping theorem applies and
shows that Ewgy (§7) < 1. The expected contribution to wg,(§7) by frogs frozen at
Ly is

6, "EN < Ewg, (&7) < 1.

Then (17) gives the bound on EN. Similarly, the expected contribution to wy, (§7)
by frogs frozen at y is

0, EX < Ewy, (§7) < 1,
and (18) gives us the bound on EX. ]
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The previous lemma bounds the expected number of frogs at £, and at y when
we have an initially active frog at the root. The next lemma makes similar bounds
when the initially active frog is at £,_;.

LEMMA 4.9 (BRW bound, starting at level 4 — 1). Consider the frog model on
T" with one initially active frog at some vertex vy € Ly, no frogs at ancestors
of vy (including y), and i.i.d.-Ber(u) sleeping frogs elsewhere. Run the frog model
with frogs frozen at y and L. Let X and N be the number of particles eventually
frozen at y and L,, respectively. (Again, the frogs woken at L, and immediately
frozen are included in the count N.) If u < (d — 1)*/4d, then

2d 2 \\ "
EN <14 -—pu, and EX < (d[1- -2 .
oo (( d—1>>

Proof. This has the same proof as Lemma 4.8 except that the initial value of the
supermartingale wj (&) is @ ~"*! rather than 1. We then have

h+1
)

<6
91EX g 97h+I,

and (17) and (18) from Lemma 4.7 give the bounds on EN and EX. O

4.3. Estimates on tagged frogs. Again, fix j, H, and A, and consider the frog
model on T;HH)* with the system of tags given previously. Recall that all frogs
lose their tags at time 2/*! + 1, and so all of the following random variables count

frogs only up to time 2/*!. See Figure 4.

e For ¢ € {A, By, By, ...,Cy, Cy, ...}, let X, be the number of £-tagged frogs
eventually frozen at y.

e Forl{ =B;,i >20,or{ =C;,i > 1, let N, be the number of frogs that received
an £ tag at £;,. These are the frogs that move from £;,_; to £, and change their
tags to £, as well as the frogs sleeping at £, woken by them.

e For{ =B;,i > 0,0orl = C;,i > 1, let M, be the number of ¢-tagged frogs that
move from £, back to £;,_, not counting B;-tagged frogs that do so at times
2/ and on.

e Let Mc, be the number of B;-tagged frogs for any i that move from £, to £,
at time 2/ or later. These are the frogs that change tags to Cy.

Downloaded from https://www.cambridge.org/core. IP address: 100.33.2.177, on 08 Jun 2020 at 18:31:16, subject to the Cambridge Core
terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2019.37


https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2019.37
https://www.cambridge.org/core

Cover time for the frog model on trees 39

M, —

y(—Xg

Figure 4. X, counts the number of £-tagged frogs frozen at y; N, counts the
number of frogs that move from £, ; to £, and are retagged as ¢, plus the ¢-
tagged frogs awoken by these frogs at £,; and M, counts how many ¢-tagged
frogs move from £, to £;,_;. This decomposes the total number of visits to y as
in (19).

Recall that the total number of frogs frozen at y by time 2/+! is XU+LH+M We
have just decomposed this quantity as

XUFLHD — Z(XB,- + X¢). (19)
i=0

Our eventual goal is bound this in expectation under the assumption that (13)
holds for X, thus advancing the induction by a step.

LEMMA 4.10. If u < (d — 1)*/4d, then

2d \" 2\
ENpg, < 1+ﬁﬂ , and EX, <|dl1— —— .

Proof. This follows immediately from Lemma 4.8. O

LEMMA 4.11. For anyi > 0, suppose either that £ = B; and ™ = B;,, or that
L=Ciand t* = Cipy. If u < (d — 1)?/4d, then

2d 2\
EN@-%— < 1+ﬁﬂ EM[, and EX@ < d l—d—l EM@

Proof. Enumerate the ¢-tagged frogs that return from £, to £,_; as frogs 1, ...,
M,. Let vy, ..., vy, € L; be the vertices that the frogs emerge from. For each
1 < k < M,, we define random variables N (k) and X (k) that give the portions of
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N+ and X, that are attributable to frog k, in a sense that we will explain. We then
estimate N (k) and X (k) using the branching random walk bounds.

To define N (k) and X (k), consider the following modified frog model on
T;H+h)*:

e at all vertices at levels 1 to & except for the ones on the path from the root to vy,
place the same sleeping frogs as in the current realization of the original frog
model on T{"*"*;

e place an initially active frog at v, that follows the path of frog k starting from
when it moves from v, back to £;,_;;

e freeze all frogs on arrival at £, and at y.

We define N (k) and X (k) as the number of frogs eventually frozen at £, and vy,
respectively, in this frog model. As usual, we include the frogs woken at £, and
immediately frozen in the count of N (k). We claim that N,+ < 224:’ , N (k). This
is because any ¢-tagged frog counted by N+ either is one of frogs 1, ..., k or is
spawned by a sequence of frogs at levels 1, ..., n originating with one of frogs
I,..., k. Hence, any frog counted by N,+ must also be counted by X (k) for at
leastone k € {1, ..., M,}. By the same argument, X, < Zfﬁl X (k).

The conditional distributions given M, of N (k) and X (k), respectively, are
exactly those of N and X from Lemma 4.9. Applying this lemma,

2d
E[Ng | M ] < |1+ dTlM M,,

21 h
E[X, | M] < |d[]1 - —— M,.
d—1
Now take expectations to complete the proof. OJ

LEMMA 4.12. Suppose that (13) holds for the fixed j and H used in the
definitions of Xy, Ny, and M,. If p < (d — 1)2/4d, then for ¢ = B;, i > 0, or

E = Ci; i 2 ])
.8EN,
EM, < ———.
I+ 5n
Proof. We claim that
8N,
EIM, | N < s (20)
d—1
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from which the lemma follows by taking expectations. Roughly speaking, we
want to show that for each frog acquiring an £ tag at v € £;, the expected number
of ¢-tagged frogs moving from v back to £;_; is at most .8/(1 + 2du/(d — 1)).
This follows from (13), as we will now show in detail.

Enumerate the frogs counted by N, as frogs 1, ..., N,. Recall that these include
both the frogs that move from £,_; to £, and receive an £ tag, as well as the frogs
woken at £, by them. For 1 < k < Ny, let vy € L, be the vertex where frog k
received its £ tag. Note that the same vertices will appear multiple timesin vy, .. .,
vy,, though all frogs in the list are unique. For each k, we will define a random
variable M (k) that gives the number of frogs counted by M, attributable to frog k.
As we did in the previous lemma, we then bound M (k), this time using (13).

To define M (k), let y, be the parent of v, and consider the following frog
model on {y;} U TH*" (v,):

e at all descendants of v, place the same sleeping frogs as in the current
realization of the original frog model on ’]I‘le‘Lh)*;

e place an initially active frog at v, that follows that path of frog k starting from
its arrival at vy;

e freeze all frogs on visiting y;.

We then define M (k) as the number of frogs frozen at y; in the first 2/ steps of
this frog model. We claim that M, < vazil M (k). To justify this, we first observe
that any return from vy to y; counted by M, must occur within 2/ steps of when
vy s first visited by a frog that changes its label to £. When £ = B;, this is because
M, only counts returns up to time 2/. When ¢ = C;, it is because the first visit to
v by a frog receiving an £ tag occurs after time 2/, and M, only counts returns
up to time 27!, Now, any £-tagged frog counted by M, is either one of frogs
1,..., N, or is spawned by a sequence of frogs at level # + 1 and beyond in
T;H o originating with one of these frogs. It is thus counted by M (k) for some
1<k <N,

Observe that the frog model defining M (k) is just a disguised version of the
frog model on T#* considered in Proposition 4.3. Hence, the distribution of M (k)
conditional on N, is exactly that of XV-"). Applying (13), we have

EIM () | N < 1

a—1
Summing this over all k to bound E[M, | N,] proves (20). O

Lemma 4.11 gives bounds on ENg,  and ENg,, in terms of EMjp and
EM¢,, and Lemma 4.12 gives bounds on EMp, and EM¢, in terms of ENy,
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and EN¢,. Together, these bounds show that ENg,, EN¢,, EMp,, and EN(, decay
exponentially in i.

LEMMA 4.13. For anyi > 0, suppose either that £ = B; and £+ = B, ,, or that
L=Ciand t* = Cip. If u < (d — 1)?/4d, then

EM,- < .8EM,,
EN,+ < .8EN,.

Consequently,

[o¢] [e¢]
> EMj, < SEMp,, > EMc, < SEMq,,
i—0 i=0

Y "ENj, <SENg,, and ) ENc < 5EN,.
i=0 i=0

Proof. The bounds on EM,+ and EN,+ follow immediately from Lemmas 4.11
and 4.12. The other bounds are consequences of summing geometric series. [

LEMMA 4.14.

EMC() < C1M2j+l ZENBi'

i=0

Proof. This proof is just as for Lemmas 4.11 and 4.12, except we use the all-
awake bound in place of the branching random walk bounds or the inductive
hypothesis. In more detail, fix a nonnegative integer i, and number the frogs that

received a B; tag at £, as 1, ..., Np,. These are made up of the B;_;-tagged frogs
that moved from £,_; to £, (where B_; = A), as well as the frogs at £, that
these frogs woke up. Let vy, ..., Uny, € L, be the sites where these frogs get

their B; tags. In a similar argument as we used in Lemmas 4.11 and 4.12, we
define a random variable M (k) giving the number of frogs counted by M, that
are attributable to frog k. Let y, be the parent of v;, and define a frog model on
{yyuT# " (v,) exactly as in Lemma 4.12. Define M (k) as the number of frogs
frozen at y; in the first 2/*" steps of this frog model. Let M¢, be the number of
B;-tagged frogs in the original model that move from L, to £;_; between times
2/ + 1 and 2/*! and change tags to Cy. By similar reasoning as in the previous
lemmas, we have M, < S M (k).

Conditional on Ng,, the distribution of M (k) is stochastically dominated by the
random variable W from Lemma 4.6. Applying the bound from Lemma 4.6 and
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summing over all k, we get
E[M{, | N5, | < ciNgu2'*.

Therefore,

M, = Y EM, < 2 3B, :
i i=0

We are now ready to advance the induction in Proposition 4.3.

PROPOSITION 4.15. There exists an absolute constant C so that the following
statement holds. Suppose that for some specific choice of j, H, d, and u with
J,H>1,d > 2, and u < d/100, the inductive hypothesis (13) holds. Then, for
any

C(j +log(l + w))

IOg( 1+4n )

h > ; 21

we have

Ex(j+1 H+h) < .
1+ 2 l,u

Proof. Using the decomposition of XV*1-#+" given in (19), our goal is to show
that

.8

|:XA+ZXB,+Z ] _1+d1M

In successive lines, we apply Lemmas 4.11, 4.13, 4.12 and 4.10 to obtain
o0 —h o0
S EX,, < <d<1 )) S e,
i=0

(o 2)) o
S 2))
d—1 +

1+ == h 14 24
(i) ()< Gt s) ()
d(1—24) 1+ 2 d(1—24) 1+2u
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Applying Lemmas 4.11, 4.13 and 4.14,

[ee] —h ©0
Y EX, < (d(l - %)) Y EM,
i=0

i=0

—h
<s(af1- ) Eum
= d—1 o

and then applying Lemmas 4.13 and 4.10,

0 2 —h )
Y EX, < 25(d<1 - ﬁ)) 12 ENG,
i=0

1+ 2uN\"
< 25<+21:1") e 2t
d(1—74)

Applying these bounds together with the estimate on EX 4 from Lemma 4.10,

E[X +§:X +§:X ]< ! +(1+"2d1” )h< 4 +25¢ 2”1)
! i=0 ’ i=0 “ \d(l_zi) d(l_i) 1+2u W

d—1 d—1

1 14+ap\" .
<—+< + “) (4 + 50¢,1427).

.96d .96d
From (21),

() <ol (o2 () i)
96 ) S TP\ ) T 2 log(L)

<exp[—.9C(j + log(1 + )] = e (1 + )=,

A bit of asymptotic analysis now shows that we can choose C large enough that
forallu > 0and j > 1,

|:XA+ZXB +ZXC,:|\% 2 ,

+4u

and
1+4 14.04d
1+ 2 =%;‘+2<+%d+2< 8 _ 8
96d  1+4u  T+4p T 14d4n 44 1+ Mp

O
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Proof of Proposition 4.3. We start by establishing (13) when j = 1l andn > 1
Consider the frog model on T}*. Fix any n > 1. If the initial frog moves
immediately to y, then X" = 1. If instead it moves to a child of the root, then no
frogs can make it to y by time 2, and X" = 0. Hence, EX!"" = 1/(d + 1), and
this is easily seen to be less than the right-hand side of (13) using our assumption
that u < d/100.

Applying Proposition 4.15 inductively, (13) holds for j > 2 so long as we can
show that

S 14 Z "C(z +log(dl +M))—"

i=2 0g(1+4u)

where C is the constant from Proposition 4.15. Indeed, it is straightforward to
compute that

1+iF("+l°g“+“”]=o(1 +110g(1+M)) -
=1 log(nF) log(77)
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Appendix A. Stochastic comparison results for the frog model

In this section, we outline the results of [JJ18], which allow us to compare two
frog models on the same graph with different initial conditions. If the distribution
of frog counts in the first model stochastically dominates the distribution in the
other, then certain statistics of the first model will dominate the corresponding
statistics in the other. This is a trivial fact with the typical definition of stochastic
domination. The strength of these results is that they apply to less conventional
stochastic orders, one of which is the probability generating function order, whose
name we abbreviate to pgf order.

For two probability measures 7r; and 77, on the nonnegative real numbers, we
say that 77, is smaller than 7, in the pgf order, denoted 7, < 72, if for X ~ m,
and Y ~ m, and all ¢ € (0, 1), it holds that Er¥ > Er”. We also write X <,
Y to mean that the law of X is stochastically smaller in the pgf order than the
law of Y, and we also use mixed expressions like X <, 7, in the obvious way.
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See the introduction of [JJ18] for more on the pgf order and its relations to other
stochastic orders.
We now present the result from [JJ18] as we will apply it in this paper.

LEMMA A.1. Consider two frog models on T?, with initial frog counts given by
(n())y and (7' (v)), for v € T \ {D}. Assume that both counts are independent.
Suppose that n(v) =, 1n'(v) for all v. Let N and N’ be the number of leaves
visited in the two models by some given time, and let R and R' be the number
of visits to the root in the two models by some given time. Then N <,,s N' and
R <, R

Proof. By [JJ18, Theorem 3], this holds once we prove that the number of leaves
visited by time ¢ and the number of visits to the root by time ¢ are continuous
pgf statistics. For the first statistic, this is a very slight variation of [JJ18,
Proposition 21] and has a nearly identical proof. For the second statistic, it is
a consequence of [JJ18, Proposition 4], if we think of the frog models as having
frog paths stopped at time ¢. O

‘We mention two basic facts about the pgf order. First, if X <, Y, then EX <
EY. Second, for any distribution 7 with expectation p or less, we have m <.
Ber(w), recalling our definition of Ber(u) for > 1 as the unique distribution
on {| ], ]} with mean w. This fact is proven in [JJ18, Proposition 15(b)] for a
different stochastic relation known as the increasing concave order, and it follows
that it holds for the pgf order since domination in the increasing concave order
implies domination in the pgf order (see [JJ18, Section 2]).

Appendix B. Miscellaneous concentration inequalities

The following two bounds appear verbatim in [HJJ17a, Appendix C]. Both are
standard results that follow from bounding the moment generating function and
applying Markov’s inequality.

PROPOSITION B.1. Let EY = A, and suppose either that Y is Poisson or that Y is
a sum of independent random variables supported on [0, 1]. Forany 0 < a < 1,

( (1—a)2,\)
PY < oh] S exp(———— ).

and for any o > 1,

(a— 1A
P[Y > ar] <exp(—5—— ).
5tao
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PROPOSITION B.2. Let (X;)?_, be a collection of independent random variables
satisfying
P[X; > €] < Ce™

forsome C andb > 0and all £ > 1. Then for any b’ > 0, there exists C' depending
on C, b, and b’ such that

P[Z X, > C/n] <e
i=1
We can take C' = 2(b’' + C)/b.

Next, we give a more refined version of the previous proposition that applies to
random variables that are exactly geometrically distributed.

PROPOSITION B.3. Let (G;);>: be a collection of independent random variables
with G; geometrically distributed on {1,2, ...} with parameter p. Let n :=
EG; =1/p. Forany ) > 2,

A
PG+ -+ G, > Anul < exp[—n(z _ 1)]

Proof. f G|+ ---+ G, > k, then in the first of k independent trials with success
probability p, there were at most n successes. Thus, by Proposition B.1,

- n/kp)zkp>

P(G, + -+ G, > k] = P[Bin(k, p) < n] <eXp<_ 2

Substituting k = Anp and p = 1/u gives

A—242171 A—2
PG+ ---+G, 2 k] < exp(—#) < exp(—%). O

Last, we extend the exponential concentration bound for a single Poisson or
binomial random variable to an entire sequence, via a union bound:

LEMMA B.4. Let yy = 2y, > 0, and let y; > 8. Suppose that X; is Poisson or

binomial with mean yyi for all i > k, with no assumption on the joint distribution
Of(Xl‘),'>k. Then

1— 2yik
P[X; < yi for somei > k] < 26Xp(—%)
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Proof. By Proposition B.1,

1 - )/2/]/1)2)/1i>

P[Xl < )/21] < exp(— )

Applying a union bound over all i > k and summing the geometric series gives

and

exp(— (lfyz/zm)zynk)

P[X; < i forsomei > k] <
1— exp(

_ A=p/v)?n ) ’
2

_ 2 _ 2

Conflict of Interest:

[Ald91]

[AMPROI1]

[BFHMI18]
[BH16]
[DMnVZ00]

[Her18]
[HMQS16]

[HI116]
[HII17a]
[HJJ17b]
[J716]
[J718]

[KZ17]

Downloaded from https://www.cambridge.org/core. IP address: 100.33.2.177, on 08 Jun 2020 at 18:31:16, subject to the Cambridge Core

2 2 2

None.

References

D. J. Aldous, ‘Random walk covering of some special trees’, J. Math. Anal. Appl.
157(1) (1991), 271-283.

0. S. M. Alves, F. P. Machado, S. Yu. Popov and K. Ravishankar, ‘The shape theorem
for the frog model with random initial configuration’, Markov Process. Related
Fields 7(4) (2001), 525-539.

I. Benjamini, L. R. Fontes, J. Hermon and F. P. Machado, ‘On an epidemic model on
finite graphs’, Preprint, 2018, arXiv:1610.04301.

I. Benjamini and J. Hermon, ‘Rapid social connectivity’, Preprint, 2016, arXiv:1608
.07621.

R. Dickman, M. A. Muiioz, A. Vespignani and S. Zapperi, ‘Paths to self-organized
criticality’, Braz. J. Phys. 30 (2000), 27-41. (en).

J. Hermon, ‘Frogs on trees?’, Electron. J. Probab. 23 (2018), Paper No. 17, 40.

J. Hermon, B. Morris, C. Qin and A. Sly, ‘The social network model on infinite
graphs’, Preprint, 2016, arXiv:1610.04293.

C. Hoffman, T. Johnson and M. Junge, ‘From transience to recurrence with Poisson
tree frogs’, Ann. Appl. Probab. 26(3) (2016), 1620-1635.

C. Hoffman, T. Johnson and M. Junge, ‘Infection spread for the frog model on trees’,
Electron. J. Probab. 24(112) (2019), 1-29.

C. Hoffman, T. Johnson and M. Junge, ‘Recurrence and transience for the frog model
on trees’, Ann. Probab. 45(5) (2017), 2826-2854.

T. Johnson and M. Junge, ‘The critical density for the frog model is the degree of the
tree’, Electron. Commun. Probab. 21 (2016), Paper No. 82, 12.

T. Johnson and M. Junge, ‘Stochastic orders and the frog model’, Ann. Inst. Henri
Poincaré Probab. Stat. 54(2) (2018), 1013-1030.

E. Kosygina and M. P. W. Zerner, ‘A zero-one law for recurrence and transience of
frog processes’, Probab. Theory Related Fields 168(1-2) (2017), 317-346.

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2019.37


http://www.arxiv.org/abs/1610.04301
http://www.arxiv.org/abs/1610.04301
http://www.arxiv.org/abs/1610.04301
http://www.arxiv.org/abs/1610.04301
http://www.arxiv.org/abs/1610.04301
http://www.arxiv.org/abs/1610.04301
http://www.arxiv.org/abs/1610.04301
http://www.arxiv.org/abs/1610.04301
http://www.arxiv.org/abs/1610.04301
http://www.arxiv.org/abs/1610.04301
http://www.arxiv.org/abs/1610.04301
http://www.arxiv.org/abs/1610.04301
http://www.arxiv.org/abs/1610.04301
http://www.arxiv.org/abs/1610.04301
http://www.arxiv.org/abs/1610.04301
http://www.arxiv.org/abs/1610.04301
http://www.arxiv.org/abs/1608.07621
http://www.arxiv.org/abs/1608.07621
http://www.arxiv.org/abs/1608.07621
http://www.arxiv.org/abs/1608.07621
http://www.arxiv.org/abs/1608.07621
http://www.arxiv.org/abs/1608.07621
http://www.arxiv.org/abs/1608.07621
http://www.arxiv.org/abs/1608.07621
http://www.arxiv.org/abs/1608.07621
http://www.arxiv.org/abs/1608.07621
http://www.arxiv.org/abs/1608.07621
http://www.arxiv.org/abs/1608.07621
http://www.arxiv.org/abs/1608.07621
http://www.arxiv.org/abs/1608.07621
http://www.arxiv.org/abs/1608.07621
http://www.arxiv.org/abs/1608.07621
http://www.arxiv.org/abs/1610.04293
http://www.arxiv.org/abs/1610.04293
http://www.arxiv.org/abs/1610.04293
http://www.arxiv.org/abs/1610.04293
http://www.arxiv.org/abs/1610.04293
http://www.arxiv.org/abs/1610.04293
http://www.arxiv.org/abs/1610.04293
http://www.arxiv.org/abs/1610.04293
http://www.arxiv.org/abs/1610.04293
http://www.arxiv.org/abs/1610.04293
http://www.arxiv.org/abs/1610.04293
http://www.arxiv.org/abs/1610.04293
http://www.arxiv.org/abs/1610.04293
http://www.arxiv.org/abs/1610.04293
http://www.arxiv.org/abs/1610.04293
http://www.arxiv.org/abs/1610.04293
https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2019.37
https://www.cambridge.org/core

Cover time for the frog model on trees 49

[LP16] R. Lyons and Y. Peres, Probability on Trees and Networks, Cambridge Series
in Statistical and Probabilistic Mathematics, 42 (Cambridge University Press,
New York, 2016).
[RSZ17] L. T. Rolla, V. Sidoravicius and O. Zindy, ‘Critical density for activated random
walks’, Preprint, 2017, arXiv:1707.06081.
[Tet91] P. Tetali, ‘Random walks and the effective resistance of networks’, J. Theoret.
Probab. 4(1) (1991), 101-109.

Downloaded from https://www.cambridge.org/core. IP address: 100.33.2.177, on 08 Jun 2020 at 18:31:16, subject to the Cambridge Core
terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2019.37


http://www.arxiv.org/abs/1707.06081
http://www.arxiv.org/abs/1707.06081
http://www.arxiv.org/abs/1707.06081
http://www.arxiv.org/abs/1707.06081
http://www.arxiv.org/abs/1707.06081
http://www.arxiv.org/abs/1707.06081
http://www.arxiv.org/abs/1707.06081
http://www.arxiv.org/abs/1707.06081
http://www.arxiv.org/abs/1707.06081
http://www.arxiv.org/abs/1707.06081
http://www.arxiv.org/abs/1707.06081
http://www.arxiv.org/abs/1707.06081
http://www.arxiv.org/abs/1707.06081
http://www.arxiv.org/abs/1707.06081
http://www.arxiv.org/abs/1707.06081
http://www.arxiv.org/abs/1707.06081
https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2019.37
https://www.cambridge.org/core

	Introduction
	Preliminaries
	Modified frog models
	Adaptations of results from HJJshape

	Fast cover time for large µ
	Establishing Proposition 3.2
	Definition of Ik.
	Exponential tail bound for Ik.
	Final steps toward Proposition 3.2.

	Establishing Proposition 3.3

	Slow cover time for small µ
	Tagging frogs
	Branching random walk and all-awake bounds
	Estimates on tagged frogs

	Stochastic comparison results for the frog model
	Miscellaneous concentration inequalities
	References

