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Abstract

We analyze effective approximation of unitary
matrices. In our formulation, a unitary matrix
is represented as a product of rotations in two-
dimensional subspaces, so-called Givens rota-
tions. Instead of the quadratic dimension depen-
dence when applying a dense matrix, applying
such an approximation scales with the number
factors, each of which can be implemented effi-
ciently. Consequently, in settings where an ap-
proximation is once computed and then applied
many times, such a representation becomes ad-
vantageous. Although effective Givens factoriza-
tion is not possible for generic unitary operators,
we show that minimizing a sparsity-inducing ob-
jective with a coordinate descent algorithm on
the unitary group yields good factorizations for
structured matrices. Canonical applications of
such a setup are orthogonal basis transforms. We
demonstrate numerical results of approximating
the graph Fourier transform, which is the matrix
obtained when diagonalizing a graph Laplacian.

1. Introduction

Unitary operators are ubiquitous in many areas, from numer-
ical linear algebra to quantum computing and cryptography.
Celebrated applications include the QR-decomposition and
the diagonalization of symmetric matrices (Golub & Van
Der Vorst, 2000). Without any assumptions on the struc-
ture of the matrix, applying a unitary transformation in d
dimensions requires O(d?) operations for the matrix-vector
product. In scenarios where a given unitary operator needs
to be intensively applied many times, using approximations
that trade-off accuracy with a better scaling behavior in the
dimension is desirable.

In this paper, we develop a method to compute approxima-
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tions of unitary matrices in the form of Givens factorization
(Givens, 1958). Givens rotations are localized in a two-
dimensional subspace of predefined coordinates. Therefore,
computations with Givens sequences scale with the number
of factors and the computational cost for applying each fac-
tor can be kept low since efficient implementations are possi-
ble (Golub & Van Loan, 2012). Our main motivation comes
from the success story of the Fast Fourier transform (FFT)
(Cooley & Tukey, 1965), which brought down the computa-
tional cost of applying a Fourier transform to O(d log(d))
operations. This reduction led to a revolution in signal pro-
cessing and was recognized by Sullivan & Dongarra (2000)
as one of the most important algorithms of the 20th century.
However, this speed-up relies on the fact that the classical
Fourier transform is defined over a periodic grid, which pro-
vides many symmetries leveraged in the butterfly structure
of the FFT.

These symmetries do not carry over to unstructured domains
such as graphs and general unitary operators. In fact, using
simple covering bounds, we show that generic unitary ma-
trices require O(d?/log d) Givens factors to be effectively
approximated. However, the question of approximating
with fewer factors in the presence of structure remains open:
given an element U € U(d), how to produce the best pos-
sible N-term sequence of Givens rotations G ... Gy that

minimizesHU -1, GjH ?

Due to the combinatorial nature of selecting Givens sub-
spaces, this is an NP-hard optimization problem. In this
paper, we propose a relaxation based on sparsity-inducing
norms over the unitary group. In essence, given a point
U € U(d), we use the gradient flow of a potential func-
tion f : U(d) — R to define a path that links U to its
nearest signed permutation matrix, the sparsest elements of
the group and thus the global minimizers of f. Then, our
algorithm tries to approximately follow this path using coor-
dinate descent with the Givens factors acting as generators
of the group.

We validate our algorithm on a family of structured orthog-
onal operators, constructed with a planted random sequence
of K Givens factors and demonstrate that effective approxi-
mation is possible in the regime K = O(dlogd). Finally,
we apply our algorithm to approximate a graph Fourier
transform (GFT), the orthogonal matrix obtained when di-
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agonalizing a graph Laplacian.

For ease of exposition, we restrict our discussion to approx-
imating orthogonal group elements. However, this does
not impose a restriction on the outlined approaches, as they
equally apply to the complex unitary group as well as the
real orthogonal group.

2. Related Work

Givens rotations were introduced by (Givens, 1958) to fac-
torize the unitary matrix that transforms a square matrix
into triangular form. The elementary operation of rotating
in a two-dimensional subspace led to numerous successful
applications in numerical linear algebra (Golub & Van Loan,
2012), in particular, for eigenvalue problems (Golub & Van
Der Vorst, 2000). In this context, a Givens sequence fac-
torizes a unitary basis transform, which is an operation of
paramount importance to signal processing.

In contrast to signal processing on a Euclidean domain, re-
cently there has been increased interest in signal processing
on irregular domains such as graphs (Shuman et al., 2013;
Bronstein et al., 2017). In this setting, Magoarou et al.
(2018) considered a truncated version of the classical Ja-
cobi algorithm (Jacobi, 1846) to approximate the orthogonal
matrix that diagonalizes a graph Laplacian. Other notable
strategies to efficiently approximate large matrices with pre-
sumed structure include multiresolution analysis (Kondor
et al., 2014) and sparsity (Kyng & Sachdeva, 2016).

In quantum computation, approximate representation of uni-
tary operators is a fundamental problem. Here, a unitary
operation that performs a computation on a quantum state
needs to be represented by or approximated with few ele-
mentary single- and two-qubit gates, ideally polynomial in
the number of qubits. In the literature of quantum comput-
ing, a Givens rotation is commonly referred to as a two-level
unitary matrix; a generic n-qubit unitary operator can be fac-
torized in such two-level matrices with O (4™) elementary
quantum gates (Vartiainen et al., 2004).

An alternative viewpoint on Givens sequences was ana-
lyzed by Shalit & Chechik (2014). The authors considered
manifold coordinate descent over the orthogonal group as
sequentially applying Givens factors. Consequently, the
minimizing sequence of this algorithm yields a Givens fac-
torization of the initial orthogonal matrix.

In this work, we analyze information theoretic properties
of approximating unitary matrices via Givens factorization.
We then propose to minimize a sparsity-inducing objective
via manifold coordinate descent in a regime where effec-
tive approximation is possible. Subsequently, we apply
this approach to approximate the graph Fourier transform
and demonstrate that the proposed method can find better

sequences compared to a truncated Jacobi algorithm. This
allows to efficiently transform a graph signal into the graph’s
approximate Fourier basis, an essential operation in graph
signal processing.

3. Givens Factorization and Elimination

Givens matrices represent rotations in a two-dimensional
subspace, while leaving all other dimensions invariant
(Givens, 1958; Golub & Van Loan, 2012). Such a counter-
clockwise rotation in the (i, j)-plane by an angle « can be
written as applying G7 (i, j, ), where

ri ... 0 0 - 07
0 Cos'(a) . sin.(a) 0
G(i,j,a) = | : S : (1)
0 -+ —sin(a) -+ cos(a) -+ 0
o 6 0 il

The trigonometric expressions appear in the i-th and j-th
rows and columns. Any orthogonal matrix U € R**¢ that
is arotation, U € SO(d), can be decomposed into a product
of at most d(d — 1)/2 Givens rotations. In general, there
exist many possible factorizations. If U € O(d) \ SO(d),
then it cannot be represented directly by a sequence of
Givens rotations. However, a factorization can be obtained
up to permutation with a negative sign, e.g., by flipping two
columns.

In numerical linear algebra, Givens factors are often used to
selectively introduce zero matrix entries by controlling the
rotation angle. This leads to a constructive factorization al-
gorithm, which demonstrates a d(d — 1) /2-factorization. To
this end, we start with the matrix U € SO(d) and introduce
zeros on the lower diagonal column-wise from left to right
and bottom to top within every column. This is achieved by
choosing the rotation subspace (7, j) and a suitable rotation
angle to zero-out the matrix element (7, j). The elimination
order is illustrated for d = 4 by
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After N = d(d — 1)/2 steps, we have G%,...GTU = D,
where D is a diagonal matrix with Dy = —1 for an even
number of values and Dy, = 1 otherwise. This result can
be reduced to the identity by selecting two subspaces with
values D;; = D;; = —1 and applying a rotation by an angle
a = 7. We refer to this algorithm by structured elimination.

Apart from this sign ambiguity, we consider factorizations
in the broader sense up to signed permutation of the re-
sulting matrix columns. To be explicit, the set of signed
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permutation matrices is defined as P, := {P € R™4|P;; €
{~1,0,1}, %2, |Pij| = 14,3, | Pij| = 1 Vi}. For a ma-
trix U € O(d), to measure approximation quality, we denote
an approximation by U and use a symmetrized Frobenius
norm criterion up to a signed permutation matrix as follows:

‘= min

o=, = miz

v-Up| . ®
F,sym F
The range of (3) over the orthogonal group is [0,+/2d)
as the maximum is obtained for the distance be-
tween Hadamard' matrices H(d) and the identity with

| H(d) - IHESym JVd = /2 as d — co. Since || A% =

Esnr0,1) U\Axﬂg} , the criterion measures the average ap-

proximation quality over random Gaussian vectors when
applying U instead of U. The motivation for this defini-
tion is twofold. First, this definition allows us to discuss
Givens factorizations of orthogonal matrices with negative
determinant and henceforth we consider factorization over
the orthogonal group O(d) rather than the special orthogo-
nal group SO(d). Second, it enlarges the class of possible
factorization algorithms to those that cannot distinguish be-
tween signed permutation matrices. Observe that since the
cost of multiplying by a signed permutation matrix is O (d)
(Knuth, 1998), the computational efficiency arguments in
this paper are not affected by the permutation equivalence
class as we are discussing approximations in the regime of
O (dlog(d)) factors.

4. Information Theoretic Rate of Givens
Representation

The elimination algorithm discussed in Section 3 guarantees
to factorize any orthogonal matrix in at most d(d — 1)/2
Givens factors, which corresponds to the dimension of the
orthogonal group. Since each Givens factor is parametrized
by a single angle, it immediately follows that exact Givens
factorization for arbitrary elements U € O(d) necessarily
requires d(d — 1)/2 factors.

Hence, this leads to the question of approximate factoriza-
tion: if one tolerates a certain error |[U — Ul|p < e, is
it possible to find approximations U = IL,<n Gn with
N = o(d?), ideally with N = O(dlogd)? A covering
argument shows that generic orthogonal matrices in d di-
mensions require at least ©(d?/log(d)) Givens factors to
achieve an e-approximate factorization. We denote by p
the uniform Haar measure on the unitary group, which we
normalize for each d, u(U(d)) = 1. For notational sim-
plicity, we carry out the proof for the operator 2-norm. An
analogous argument holds by replacing the operator 2-norm
with the Frobenius norm while re-scaling the error by v/d.

' A Hadamard matrix is an orthogonal matrix Hwhose entries
satisfy |H; ;| = 1/+/d for all 4, j.

Lemma 1. Let [ [, . Gn be a product of Givens factors

with rotation angles o, and G, be the respective perturbed
factors with rotation angles o, + §,, and perturbations
0 <4, <6. Then,

H Gn_

n<N

< 2N§ . 4)

F
Proof. For any orthogonal matrices U, U’, V, V', we have

UV —uv||, =[|[U+U -0)V' -UV|,
<o =l + W =0,
=V =Vlp v =vlle.

by using the fact that the Frobenius norm is invariant to
orthogonal matrix multiplication. By iterating this relation,
we obtain

116G -1I ¢

<G -Gy - ©

n<N n<N n<N

Since G,, and G,, rotate in the same subspace,
|Gn = Gnl|, = 2¢/1 — cos(4y,) . )

Inequality (4) follows from /1 — cos(d,,) < 0, <4§. O

Theorem 1. Let ¢ > 0. If N =o(d?/log(d)), then as
d — o0,

m {U € U(d)'clgggN U =T] Gnll2 < e} —0.

Proof. Consider an e-covering of the unitary group, i.e.,
a discrete set X such that infxcx ||U — X||2 < € for all
U € U(d). Since the manifold dimension of the unitary
group is d(d — 1)/2, we need |X| = O(e~44=1)/2) many
balls for that cover. Let N := N (d) be the number of avail-
able Givens factors for approximation at dimension d, and
An ={X € U(d)|infg, ..oy |X —IL,<n Gnll2 < €/2}
denote the set of unitary operators which can be effectively
approximated with NV Givens terms. Now, suppose that
w(An) > ¢ > 0, i.e., the set of group elements admitting
an ¢/2-approximation has positive measure. This implies
that any e-cover of Ay must be of size ©(¢~44=1)/2), Let
us build such an e-cover.

If we discretize the rotation angle to a value § > 0, then
there are (d(d — 1)/26) many different quantized Givens
factors, denoted by G, and consequently (d(d — 1)/26)™
many different sequences. It follows that if § := ;5, the
discrete set ) = {[ [,y Gi, } containing all possible se-
quences of length N of quantized Givens rotations is an



Approximating Orthogonal Matrices with Effective Givens Factorization

e-cover of A . Indeed, by using Lemma 1 and the fact that
the operator 2-norm is bounded by the Frobenius norm, we
have VX € Ay,

_ €
IX =] Gnll2 < X =] Gnll2+2Ns < gty =¢

n<N n<N

€

2
. 2d(d-)N\ N .

Since |Y| = (f> , it follows that

(200N _ g s,

which implies N = O (d?/log d). O

An immediate consequence of Theorem 1 is that generic
effective approximation, i.e., with a number of factors
N = O (dlogd), is information theoretically impossible.
However, the situation may be entirely different for struc-
tured distributions of unitary operators. For that purpose,
we develop an algorithm to obtain effective approximations
based on sparsity-inducing norms.

5. Givens Factorization and Coordinate
Descent on O(d)

In this section, we offer an alternative viewpoint presented
by Shalit & Chechik (2014) that interprets Givens factoriza-
tion as manifold coordinate descent on the orthogonal group
over a certain potential energy.

The orthogonal group O(d) is a matrix Lie group with as-
sociated Lie algebra o(d) = Skew(d) = {X € R4 X =
-X T}, the set of d x d skew-symmetric matrices (Hall,
2003). The tangent space at an element U is TyO(d) =
{XU|X € Skew(d)} and the Riemannian directional
derivative of a differentiable function f in the direction
XU € TyO(d) is given by

Dx f(U) = & f(Exp(aX)U)| ®)

a=0

where Exp : 0(d) — O(d) is the matrix exponential. If we
choose the basis {X;; = e;e] —eje] |1 <i < j < d} for
the tangent space, then D, f(U) represents the directional
derivative in such a coordinate direction. A coordinate
descent algorithm uses a criterion to choose coordinates

(i,7) and a step size (rotation angle) « to iteratively update
UM = Exp(—aX;;)U* . )

A greedy criterion determines the best descent on f by a
search over all possible coordinate directions {X;; }i<j<d
with the optimal step size obtained by a line search.

A Givens factor can be interpreted as a coordinate descent
step over the orthogonal group. This follows from the rela-
tion

Exp(—aX;;) = GT(i,j,a) . (10)

In d = 3, an explicit example of the correspondence be-
tween Lie algebra and Lie group elements is

0 0 O 1 0 0
0 0 —a | — | 0 cos(ar) —sin(a)
0 a O 0 sin(a) cos(a)

(1)

Suppose we want to minimize a function f over the orthog-
onal group,

Ureng(ld)f(U) : (12)
Then minimizing (12) with manifold coordinate descent
iterations (9) yields a Givens factorization of the initial
point U, A truncated sequence leads to an approximate
factorization. From this viewpoint, the quality of a Givens
factorization can be controlled by properties of the function
f. In the following, we construct an objective function that
results in approximate factorization with less than O(d?)
factors.

6. Sparsity-Inducing Dynamics

To factorize a matrix U € O(d) one may choose it as an
initial value to problem (12) when minimizing a suitable
potential function f with manifold coordinate descent. We
want to find a factorization up to signed permutation of the
matrix columns. As the signed permutation matrices are
the sparsest orthogonal matrices, we consider an energy
function that quickly enforces sparsity, the element-wise
L1-norm of a matrix,

d
FU)=d Y U|, =d" Z U35 - (13)

ij=1

Although f is convex in R% (since it is a norm), due to the
non-convexity of the domain, the problem mingco(qy f(U)
is non-convex . The landscape of f characterizes the class
of orthogonal matrices that admit effective Givens approxi-
mation. It is easy to see that the global minima of f in O(d)
consist of signed permutation matrices, with min f(U) = 1,
and the global maxima are located at Hadamard matrices,
with max f(U) = v/d. A more involved question concern-
ing the presence or absence of spurious local minima of f
is of interest. The following proposition partially addresses
this question by showing that critical points of f are neces-
sarily located at U € O(d) with some of its entries set to
Zero.
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Proposition 1. Let v € R?>*? and let
(14

be a counter-clockwise rotation in the plane by an angle «.
Consider the function g(«) = ||R(oz)x”1 Then, at every
local minimum o* of g there exist indices k,l such that

(R(a*)z) o =0

Proof. We show equivalently that any stationary point a*
with (R(a*)z),, # 0 Vk,[ is a local maximum. At any
such point the function g is twice continuously differentiable
and the second derivative is

P9
oa?|, _

=—g(a") <0. (15)

a*

Consequently, any stationary point under this assumption
must be a local maximum. [

Proposition | implies that for a given subspace (4, j), the
best rotation angle can be found by checking all axis tran-
sitions for the 2D points (w;x, u;x), k € {1,...d} and se-
lecting the angle that most minimizes the objective among
them. It also implies that any local minimum of f must
correspond to an orthogonal matrix with at least d zeros
placed at specific entries, such that no two rows or columns
have the same support. Indeed, Proposition 1 implies that
there exists a continuous path ¢t — U(t) = G(i, j, a(t))
with a(0) = 0, generated by a Givens rotation of angle
a(t), such that f(U(t)) is non-increasing at t = 0, provided
one can find two rows or columns of U with the same sup-
port. However, this result does not exclude the possibility
that f has spurious local minima at matrices U with the
above special sparsity pattern. In fact, we conjecture that
the landscape of f does have spurious local minima.

A manifold coordinate descent on the objective function
f is explicitly stated in Algorithm 1. The crucial step in-
volves optimizing this objective in the rotation angle « for a
given subspace (4, j), which is a non-convex optimization
problem. Nevertheless, the global optimum can be found as
stated by Proposition 1. In d dimensions, this step requires
d operations. Consequently, due to the squared dimension
dependence of the double for-loop, a naive implementation
of Algorithm 1 would require O (d®) operations . However,
applying the selected Givens factor in each step changes
only two rows of the matrix; thus, in the subsequent iter-
ation, only those pairs of rows that involve the previously
modified ones need to be re-computed. These are O (d)
rows and altogether the runtime of an iteration is O (d?).

Algorithm 1 Coordinate descent on the L-criterion
Input: initial value U° € O(d), f(U) =||U]||,
repeat

fori =1toddo
for j = 1toddo
if aj; not up-to-date then
Oé:(] = argmina f(GT (% j? a)Uk)
end if
end for
end for
i*,j* = argmin, f(GT(Lj,afj)Uk)
Uk'+1 — GT(i*,j*, Ozf*j*)Uk
until | — IHF,sym < ¢ or maxIter is reached

7. Numerical Experiments
7.1. Planted Models

Theorem 1 shows that we cannot expect to find good
approximations to Haar-sampled matrices with less than
O (d?/log(d)) Givens factors. Therefore, we focus on a
distribution for which we can control approximability. We
use the uniform distribution over the set {U € SO(d)|U =
Gy Gg,Gy = G(ig, jk,ax)}, where each Gy, is ob-
tained by first sampling a subspace uniformly at random
(with replacement), and then sampling the corresponding
angle uniformly from (0, 27). We denote the resulting dis-
tribution by the K -planted distribution v . While this dis-
tribution may be sparse in the number of Givens factors for
K < d(d — 1)/2, this does not imply that the resulting
matrices are sparse. In fact, products of Givens matrices be-
come dense quickly. It follows from the Coupon Collector’s
Lemma that matrices generated with ©(dlog,(d)) Givens
factors are already dense with high probability. To visualize
this effect, Figure 1 shows the Ly-norm as a function of
planted Givens factors.

We compare the following factorization algorithms. A
greedy baseline iteratively finds the Givens factor that most
minimizes the objective (3). The structured elimination al-
gorithm described in Section 3 yields a sequence of Givens
factors that eliminate matrix entries in the order (2) and is
guaranteed to find a perfect factorization with d(d — 1)/2
factors. Our sparsity-inducing algorithm minimizes the L-
criterion (13) via a manifold coordinate descent scheme.?

In an initial experiment, we demonstrate the approximation
effectiveness of these algorithms; the results are shown in
Figure 2. They indicate that minimizing the L;-criterion im-
proves over directly minimizing the Frobenius norm (greedy

% An implementation of these algorithms can be found at
https://github.com/tfrerix/
givens-factorization
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Figure 1. Average sparsity based on 100 samples of matrices drawn
from the K-planted distribution over SO(d) for increasing K.
Standard deviation is negligible and not shown. Matrices become
dense quickly as the number of planted Givens factors grows. In
particular, matrices sampled from the d log, (d)-planted distribu-
tion are already dense.

baseline). Next, we analyze the approximability of samples
drawn from the K -planted distribution v as a function of
K. To obtain a Givens sequence, we factorize these sam-
ples with manifold coordinate descent on the L;-objective
(13). Along the optimization path, we define N (U) as the
number of Givens factors for which the normalized approxi-
mation error (3) is smaller than e = 0.1, i.e.,

U-G,...G
N (U) == min {N‘l ! NHF’Sym < e} (16)

Vd

We refer to a Givens sequence with such N, (U) factors as an
e-factorizing sequence of U. In Figure 3, the sample average
N. =n=tY" | N.(U;) for n = 10 samples is shown as
a function of K. We are interested in the rate at which N,
grows for increasing K. The data in Figure 3 show that
for K = adlog,(d) and N, = Bdlog,(d), the ratio 5/« is
not independent of d. For the shown dimension regime this
implies that for K = O (dlog(d)), N. grows polynomial
in d, albeit with small rate for few planted factors. To make
this relation more precise, we extract the exponent 7 of a
model N, ~ d". Figure 4 shows that the growth is slightly
superlinear in the few-factor regime and becomes quadratic
towards K = dlog,(d). Analytically characterizing such
growth is left for future work.

That said, our initial results suggest the existence of a
computational-to-statistical gap for the recovery (or detec-
tion) of sparse planted Givens factors. Indeed, Theorem 1
proves that recovery with K = O (d2 / log d) planted
factors is information-theoretically possible, whereas
our greedy recovery strategy is only effective for

0.8

0.6

[|U = Ullpsym / Vd

0.4+

0.2+

0.0 T T T T T
0 10 20 30 40 50

N/dlogy(d)

— 1 structured elimination === greedy baseline

Figure 2. Average Frobenius norm approximation error in
d = 1024 dimensions when factorizing 10 samples drawn from
the dlog,(d)-planted distribution over SO(d) with d(d — 1)/2
factors. Shaded area denotes standard deviation.

K = O/(dlogd). The mathematical analysis of our co-
ordinate descent algorithm in the regime where effective
approximation is feasible is beyond the scope of the present
paper. In particular, proving that N. = O (dlog d) is suffi-
cient when K < dlog d remains an open question.

7.2. Application: Graph Fourier Transform

The method introduced in this paper is useful in situations
where one at first computes an approximation to a unitary
operator, which is subsequently applied many times. Hence,
the trade-off between initial computation and approximation
on the one hand and efficient application on the other hand
is in favor of the latter. Canonical examples for this scenario
are orthogonal basis transforms. In this paper, we draw mo-
tivation from the FFT, which yields a speed-up of applying
a Fourier transformation over a regular grid domain from
O(d?) to O(dlog(d)) time complexity (Cooley & Tukey,
1965). However, these speed-ups do not carry over when
the domain is unstructured, such as general graphs. Here,
we compute an effective approximation of the graph Fourier
transformation (GFT). Consider a simple, undirected graph
with degree matrix D and adjacency matrix A. The unnor-
malized graph Laplacian is defined as L := D — A, which
is a positive semi-definite, symmetric matrix. The GFT is
represented by the orthogonal matrix that diagonalizes L.

A baseline for our method is the Jacobi algorithm (Jacobi,
1846), which diagonalizes a symmetric matrix L by greedily
minimizing the off-diagonal squared Frobenius norm,

d
off (L) =|L|7 = > Ly - (17)
k=1
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Figure 3. Average number of Givens factors necessary to factorize
a K-planted matrix in d € {256,512,1024} dimensions up to
desired accuracy as a function of K. Here, e = 0.1 is the accuracy
as defined in expression (16). Note that the x-axis is shown with
unequal spacing to highlight the relevant regime of the data. The
inset plot shows a zoom of the first data points.

This is achieved by zeroing-out the largest matrix element
in absolute value at every iteration. To this end, a Givens
matrix similarity transformation with a suitably chosen rota-
tion subspace and rotation angle is applied. However, the
Jacobi algorithm does not guarantee factorization in a fi-
nite number of steps; in particular, it may take more than
N = d(d —1)/2 iterations. In fact, the algorithm converges
linearly (Golub & Van Loan, 2012),

off(L*+1) < (1 - ;f) off(L*) . (18)

If the iteration number k is large enough, quadratic conver-
gence was shown by Schonhage (1964). Hence, the method
is ineffective for small iteration numbers and in high dimen-
sions. A truncated version of this algorithm was used by
Magoarou et al. (2018) to obtain an approximation to the
GFT. The objective (17) of the Jacobi method is motivated
by approximating the spectrum of the symmetric matrix
through the Gershgorin circle theorem (Gershgorin, 1931).
However, we argue here that a criterion focused on approx-
imating the eigenbasis of the symmetric matrix directly
yields a more effective approximation to this orthogonal
basis transformation. We consider the eigendecomposition
L = UAUT and compute an approximation of the orthog-
onal matrix U with the algorithms outlined in Section 7.1.
We demonstrate this procedure on Barabdasi-Albert random
graphs and several real world graphs.

The Barabasi-Albert model starts with ng unconnected ver-
tices and iteratively adds vertices to the graph, which are
connected to a number m of already existing ones with
a probability proportional to the degree of these vertices.

1.8

Figure 4. Polynomial growth rate 7 of the model N, ~ d" as a
function of the number of planted factors estimated from d &€
{256,512,1024}. Note that the x-axis is shown with unequal
spacing to highlight the relevant regime of the data.

Table 1. Construction of Barabasi-Albert graphs. An n-vertex
graph is constructed by choosing ng = my, initial vertices, then
adding vertices and connecting them to my, of already existing
ones with a probability proportional to the degree of these ver-
tices. my, is chosen such that the number of resulting edges is
approximatly k - 0.25n(n — 1)/2.

n 64 128 256 512 1024
mi1 54 109 218 437 874
mz 36 69 136 267 528

This construction is known as preferential attachment and
induces a scale-free degree distribution found in real world
graphs (Barabasi & Albert, 1999). The details of gener-
ating these graphs are described in Table 1. We approx-
imate the corresponding graph Laplacians with n log,(n)
factors leading to the results shown in Figure 5. While our
sparsity-inducing algorithm yields better factorizations in
most cases, there exist scenarios, where the greedy base-
line results in better approximations (d € {512,2014} for
~ 0.25nlog,(n) edges). Finally, we demonstrate approx-
imate factorization of the graph Laplacian of various real
world graphs listed in Table 2. Our L;-algorithm yiels the
best factorization for the Minnesota, HumanProtein, and
EMail graphs, while the greedy baseline algorithm is supe-
rior for the Facebook graph.

A simple strategy to improve the performance of our L
greedy method with mild computational overhead is to per-
form beam-search, which is beyond the scope of this paper.
Overall, it remains an open question to more closely charac-
terize the graphs for which our sparsity-inducing algorithm
yields effective approximations of the GFT.
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Figure 5. Approximate factorization of the graph Laplacian of n-
vertex Barabdsi-Albert graphs with n log,(n) factors. Data points
are averages of 10 samples, vertical lines denote standard de-
viation. The solid (-) lines show factorizations of graphs with
~ 0.5n(n — 1)/2 edges, while the dashed (- -) lines show factor-
izations of graphs with ~ 0.25n(n — 1)/2 edges.

Table 2. GFT approximation for real world graphs with n vertices
and n. edges.

n Ne
MINNESOTA 2642 3304
(Defferrard et al.)
HUMANPROTEIN 3133 6726
(Rual et al., 2005)
EMAIL 1133 5451
(Guimera et al., 2003)
FACEBOOK 2888 2981

(McAuley & Leskovec, 2012)

8. Discussion

We analyzed the problem of approximating orthogonal ma-
trices with few Givens factors. While a perfect factorization
in O (dz) is always possible, an approximation with fewer
factors is advantageous if the orthogonal matrix is applied
many times. We showed that effective Givens factorization
of generic orthogonal matrices is impossible and inspected
a distribution of planted factors, which allows us to control
approximability. Our initial results suggest that sparsity in-
ducing factorization is promising beyond the sparse matrix
regime. However, it remains an open problem to further
characterize the matrices that admit effective factorization
using manifold coordinate descent on an L;-criterion.

This work opens up questions we believe are important both
from a theoretical and an applied perspective. On the theory
side, important problems arising from our analysis are: (i)
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Figure 6. Approximate factorization of the graph Laplacian of var-
ious n-vertex real world graphs with n log, (n) factors.

a complete description of the landscape of f(U) = ||U]||1
over the orthogonal and unitary groups, (ii) a precise classi-
fication of the detection threshold K (d) below which it is
possible to discriminate a K -planted sample from a Haar
sample in polynomial time, and (iii) a guarantee that the
proposed sparse Givens coordinate descent algorithm re-
quires N = O(dlogd) terms for K < Cdlogd for some
constant C' > 0. These questions suggest a learning ap-
proach whereby our sparsity promoting potential f would
be replaced by a classifier fy trained to discriminate be-
tween K -planted and Haar distributions. From an applied
perspective, the method allows to approximately invert a
time-varying symmetric linear operator H (¢). Similar to
the Woodbury formula for low-rank updates of an inverse,
one could set up an approximate Givens factorization of the
eigenbasis of H (ty), and update it efficiently at subsequent
times. If successful, this could dramatically improve the ef-
ficiency of second-order optimization schemes, where H (t)
is the Hessian of a loss function.
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