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Abstract

Graph neural networks (GNNs) have achieved lots of success on graph-structured
data. In the light of this, there has been increasing interest in studying their rep-
resentation power. One line of work focuses on the universal approximation of
permutation-invariant functions by certain classes of GNNs, and another demon-
strates the limitation of GNN5s via graph isomorphism tests.

Our work connects these two perspectives and proves their equivalence. We further
develop a framework of the representation power of GNNs with the language
of sigma-algebra, which incorporates both viewpoints. Using this framework,
we compare the expressive power of different classes of GNNs as well as other
methods on graphs. In particular, we prove that order-2 Graph G-invariant networks
fail to distinguish non-isomorphic regular graphs with the same degree. We then
extend them to a new architecture, Ring-GNNs, which succeeds on distinguishing
these graphs as well as for social network datasets.

1 Introduction

Graph structured data naturally occur in many areas of knowledge, including computational biology,
chemistry and social sciences. Graph neural networks, in all their forms, yield useful representations
of graph data partly because they take into consideration the intrinsic symmetries of graphs, such as
invariance and equivariance with respect to a relabeling of the nodes [25, 7, 14, 8, 10, 26, 3].

All these different architectures are proposed with different purposes (see [29] for a survey and
references therein), and a priori it is not obvious how to compare their power. The recent work [30]
proposes to study the representation power of GNNs via their performance on graph isomorphism
tests. They developed the Graph Isomorphism Networks (GINs) that are as powerful as the one-
dimensional Weisfeiler-Lehman (1-WL or just WL) test for graph isomorphism [28], and showed
that no other neighborhood-aggregating (or message passing) GNN can be more powerful than the
1-WL test. Variants of message passing GNNs include [25, 9].

On the other hand, for feed-forward neural networks, many results have been obtained regarding
their ability to approximate continuous functions, commonly known as the universal approximation
theorems, such as the seminal works of [6, 12]. Following this line of work, it is natural to study
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the expressivity of graph neural networks in terms of function approximation. Since we could argue
that many if not most functions on a graph that we are interested in are invariant or equivariant to
permutations of the nodes in the graph, GNNs are usually designed to be invariant or equivariant,
and therefore the natural question is whether certain classes GNNs can approximate any continuous
and invariant or equivariant functions. Recent work [18] showed the universal approximation of
G-invariant networks, constructed based on the linear invariant and equivariant layers studied in
[17], if the order of the tensor involved in the networks can grow as the graph gets larger. Such a
dependence on the graph size was been theoretically overcame by the very recent work [13], though
there is no known upper bound on the order of the tensors involved. With potentially very-high-order
tensors, these models that are guaranteed of univeral approximation are not quite feasible in practice.

The foundational part of this work aims at building the bridge between graph isomorphism testing
and invariant function approximation, the two main perspectives for studying the expressive power
of graph neural networks. We demonstrate an equivalence between the the ability of a class of
GNN s to distinguish between any pairs of non-isomorphic graph and its power of approximating
any (continuous) invariant functions, for both the case with finite feature space and the case with
continuous feature space. Furthermore, we argue that the concept of sigma-algebras on the space
of graphs is a natural description of the power of graph neural networks, allowing us to build
a taxonomy of GNNs based on how their respective sigmas-algebras interact. Building on this
theoretical framework, we identify an opportunity to increase the expressive power of order-2 G-
invariant networks with computational tractability, by considering a ring of invariant matrices under
addition and multiplication. We show that the resulting model, which we refer to as Ring-GNN,
is able to distinguish between non-isomorphic regular graphs where order-2 G-invariant networks
provably fail. We illustrate these gains numerically in synthetic and real graph classification tasks.

Summary of main contributions:

e We show the equivalence between graph isomorphism testing and approximation of
permutation-invariant functions for analyzing the expressive power of graph neural networks.

e We introduce a language of sigma algebra for studying the representation power of graph
neural networks, which unifies both graph isomorphism testing and function approximation,
and use this framework to compare the power of some GNNs and other methods.

e We propose Ring-GNN, a tractable extension of order-2 Graph G-invariant Networks that
uses the ring of matrix addition and multiplication. We show this extension is necessary and
sufficient to distinguish Circular Skip Links graphs.

2 Related work

Graph Neural Networks and graph isomorphism. Graph isomorphism is a fundamental problem
in theoretical computer science. It amounts to deciding, given two graphs A, B, whether there exists a
permutation 7 such that 1A = Bm. There exists no known polynomial-time algorithm to solve it, but
recently Babai made a breakthrough by showing that it can be solved in quasi-polynomial-time [1].
Recently [30] introduced graph isomorphism tests as a characterization of the power of graph neural
networks. They show that if a GNN follows a neighborhood aggregation scheme, then it cannot
distinguish pairs of non-isomorphic graphs that the 1-WL test fails to distinguish. Therefore this
class of GNNss is at most as powerful as the 1-WL test. They further propose the Graph Isomorphism
Networks (GINs) based on approximating injective set functions by multi-layer perceptrons (MLPs),
which can be as powerful as the 1-WL test. Based on k-WL tests [4], [19] proposes k-GNN, which
can take higher-order interactions among nodes into account. Concurrently to this work, [16] proves
that order-k invariant graph networks are at least as powerful as the k-WL tests, and similarly to us, it
and augments order-2 networks with matrix multiplication. They show they achieve at least the power
of 3-WL test. [20] proposes relational pooling (RP), an approach that combines permutation-sensitive
functions under all permutations to obtain a permutation-invariant function. If RP is combined with
permutation-sensitive functions that are sufficiently expressive, then it can be shown to be a universal
approximator. A combination of RP and GINs is able to distinguish certain non-isomorphic regular
graphs which GIN alone would fail on. A drawback of RP is that its full version is intractable
computationally, and therefore it needs to be approximated by averaging over randomly sampled
permutations, in which case the resulting functions is not guaranteed to be permutation-invariant.



Universal approximation of functions with symmetry. Many works have discussed the func-
tion approximation capabilities of neural networks that satisfy certain symmetries. [2] studies the
symmetry in neural networks from the perspective of probabilistic symmetry and characterizes the
deterministic and stochastic neural networks that satisfy certain symmetry. [24] shows that equivari-
ance of a neural network corresponds to symmetries in its parameter-sharing scheme. [31] proposes a
neural network architecture with polynomial layers that is able to achieve universal approximation
of invariant or equivariant functions. [17] studies the spaces of all invariant and equivariant linear
functions, and obtained bases for such spaces. Building upon this work, [18] proposes the G-invariant
network for a symmetry group (G, which achieves universal approximation of G-invariant functions

if the maximal tensor order involved in the network to grow as "("2_1) , but such high-order tensors
are prohibitive in practice. Upper bounds on the approximation power of the G-invariant networks
when the tensor order is limited remains open except for when G = A,, [18]. The very recent
work [13] extends the result to the equivariant case, although it suffers from the same problem of
possibly requiring high-order tensors. Within the computer vision literature, this problem has also
been addressed, in particular [11] proposes an architecture that can potentially express all equivariant

functions.

To the best our knowledge, this is the first work that shows an explicit connection between the two
aforementioned perspectives of studying the representation power of graph neural networks - graph
isomorphism testing and universal approximation. Our main theoretical contribution lies in showing
an equivalence between them, for both finite and continuous feature space cases, with a natural
generalization of the notion of graph isomorphism testing to the latter case. Then we focus on the
Graph G-invariant network based on [17, 18], and showed that when the maximum tensor order
is restricted to be 2, then it cannot distinguish between non-isomorphic regular graphs with equal
degrees. As a corollary, such networks are not universal. Note that our result shows an upper bound
on order 2 G-invariant networks, whereas concurrently to us, [16] provides a lower bound by relating
to k-WL tests. Concurrently to [16], we propose a modified version of order-2 graph networks to
capture higher-order interactions among nodes without computing tensors of higher-order.

3 Graph isomorphism testing and universal approximation

In this section we show that there exists a very close connection between the universal approximation
of permutation-invariant functions by a class of functions, and its ability to perform graph isomor-
phism tests. We consider graphs with nodes and edges labeled by elements of a compact set X C R.
We represent graphs with n nodes by an n by n matrix G € X™*", where a diagonal term G;
represents the label of the ith node, and a non-diagonal G;; represents the label of the edge from the
ith node to the jth node. An undirected graph will then be represented by a symmetric G.

Thus, we focus on analyzing a collection C of functions from X"*™ to R. We are especially
interested in collections of permutation-invariant functions, defined so that f(77G7) = f(G), for
all G € X™*" and all * € S,,, where S, is the permutation group of n elements. For classes of
functions, we define the property of being able to discriminate non-isomorphic graphs, which we call
Glso-discriminating, which as we will see generalizes naturally to the continuous case.

Definition 1. Let C be a collection of permutation-invariant functions from X™*™ to R. We say C is
GlIso-discriminating if for all non-isomorphic G1,Go € X™*" (denoted G1 # Gs), there exists a
function h € C such that h(G1) # h(G2). This definition is illustrated by figure 2 in the appendix.

Definition 2. Let C be a collection of permutation-invariant functions from X™*™ to R. We say C is
universally approximating if for all permutation-invariant function f from X™*" to R, and for all
€ > 0, there exists hy . € C such that || f — hy c||oc := supgexnxn |[(G) — h(G)| < €

3.1 Finite feature space

As a warm-up we first consider the space of graphs with a finite set of possible features for nodes and
edges, X = {1,...,M}.

Theorem 1. Universally approximating classes of functions are also Glso-discriminating.

Proof. Given G1, G2 € X™*", we consider the permutation-invariant function T~g, : X™*" — R
such that 1~¢, (G) = 1 if G is isomorphic to G; and 0 otherwise. Therefore, it can be approximated



with e = 0.1 by a function h € C. Then h is a function that distinguishes G from G, as in
Definition 1. Hence C is GlIso-discriminating. O

To obtain a result on the reverse direction, we first introduce the concept of an augmented collection
of functions, which is especially natural when C is a collection of neural networks.

Definition 3. Given C, a collection of functions from X™*" to R, we consider an augmented
collection of functions also from X™*" to R consisting of functions that map an input graph G to
NN ([hi(G), ..., ha(G)]) for some finite d, where NN is a feed-forward neural network / multi-layer
perceptron, and h1, ..., hq € C. When N'N is restricted to have L layers, we denoted this augmented
collection by CHL. In this work, we consider ReLU as the nonlinear activation function in the neural
networks.

Remark 1. If Cp, is the collection of feed-forward neural networks with Lo layers, then CE’OL
represents the collection of feed-forward neural networks with Lo + L layers.

Remark 2. IfC is a collection of permutation-invariant functions, so is C*t.

Theorem 2. IfC is Glso-discriminating, then C2 is universal approximating.

The proof is simple and it is a consequence of the following lemmas that we prove in Appendix A.
Lemma 1. If C is Glso-discriminating, then for all G € X"*", there exists a function hg € CHl
such that for all G',h(G') = 0if and only if G ~ G'.

Lemma 2. Let C be a class of permutation-invariant functions from X™*" to R satisfying the
consequences of Lemma 1, then C*' is universally approximating.

3.2 Extension to the case of continuous (Euclidean) feature space

Graph isomorphism is an inherently discrete problem, whereas universal approximation is usually
more interesting when the input space is continuous. With our definition 1 of Glso-discriminating,
we can achieve a natural generalization of the above results to the scenarios of continuous input space.
All proofs for this section can be found in Appendix A.

Let X be a compact subset of R, and we consider graphs with n nodes represented by G € K =
X"*"™; that is, the node features are {G; }i—1,... » and the edge features are {G; }i j=1,... n;ij-

Theorem 3. [fC is universally approximating, then it is also Glso-discriminating

The essence of the proof is similar to that of Theorem 1. The other direction - showing that pairwise
discrimination can lead to universal approximation - is less straightforward. As an intermediate step
between, we make the following definition:

Definition 4. Let C be a class of functions K — R. We say it is able to locate every isomorphism
class if for all G € K and for all € > 0 there exists hg € C such that:

e forall G' € K,hg(G') > 0;
o forallG' € K, if G' ~ G, then hg(G') = 0; and
o there exists 0 > 0 such that if hg < d¢, then 3w € Sy, such that d(w(G'), G) < €, where

d is the Euclidean distance defined on R™*™

Lemma 3. IfC, a collection of continuous permutation-invariant functions from K to R, is Glso-
discriminating, then C*1 is able to locate every isomorphism class.

Heuristically, we can think of the h¢ in the definition above as a “loss function” that penalizes the
deviation of G’ from the equivalence class of G. In particular, the second condition says that if the
loss value is small enough, then we know that G’ has to be close to the equivalence class of G.

Lemma 4. Let C be a class of permutation-invariant functions K — R. If C is able to locate every
isomorphism class, then C*2 is universally approximating.
Combining the two lemmas above, we arrive at the following theorem:

Theorem 4. If C, a collection of continuous permutation-invariant functions from K to R, is Glso-
discriminating, then C*3 is universaly approximating.



4 A framework of representation power based on sigma-algebra

4.1 Introducing sigma-algebra to this context

Let K = X™*™ be a finite input space. Let Q := K/~ be the set of isomorphism classes under
the equivalence relation of graph isomorphism. That is, forall 7 € Qx, 7 = {aTGm : 7 € T',,} for
some G € K.

Intuitively, a maximally expressive collection of permutation-invariant functions, C, will allow us to
know exactly which isomorphism class 7 a given graph G belongs to, by looking at the outputs of
certain functions in the collection applied to GG. Heuristically, we can consider each function in C as a
“measurement”’, which partitions that graph space K according to the function value at each point. If
C is powerful enough, then as a collection it will partition K to be as fine as (). If not, it is going to
be coarser than @ . These intuitions motivate us to introduce the language of sigma-algebra.

Recall that an algebra on a set K is a collection of subsets of K that includes K itself, is closed
under complement, and is closed under finite union. Because K is finite, we have that an algebra
on K is also a sigma-algebra on K, where a sigma-algebra further satisfies the condition of being
closed under countable unions. Since Q) i is a set of (non-intersecting) subsets of K, we can obtain
the algebra generated by () k', defined as the smallest algebra that contains () k', and use o(Q k) to
denote the algebra (and sigma-algebra) generated by Q) k.

Observation 1. If f : X™*™ — R is a permutation-invariant function, then f is measurable with
respect to 0(Q i ), and we denote this by f € M[o(Q k)]

Now consider a class of functions C that is permutation-invariant. Then forall f € C, f € M[o(QKk)].
We define the sigma-algebra generated by f as the set of all the pre-images of Borel sets on R under
f, and denote it by o(f). It is the smallest sigma-algebra on K that makes f measurable. For a
class of functions C, o(C) is defined as the smallest sigma-algebra on K that makes all functions
in C measurable. Because here we assume K is finite, it does not matter whether C is a countable
collection.

4.2 Reformulating graph isomorphism testing and universal approximation with
sigma-algebra

We restrict our attention to the case of finite feature space. Given a graph G € X"™*", we use £(G) to
denote its isomorphism class, {G' € X™"*™ : G’ ~ G}. The following results are proven in Section B

Theorem 5. IfC is a class of permutation-invariant functions on X™*"™ and C is Glso-discriminating,

then o(C) = 0(Qxk)

Together with Theorem 1, the following is an immediate consequence:

Corollary 1. IfC is a class of permutation-invariant functions on X™*™ and C achieves universal
approximation, then 0(C) = 0(Qk).

Theorem 6. Let be C a class of permutation-invariant functions on X™*" with o(C) = o(Qk).
Then C is Glso-discriminating.

Thus, this sigma-algebra language is a natural notion for characterizing the power of graph neural
networks, because as shown above, generating the finest sigma-algebra o (Q i ) is equivalent to being
Glso-discriminating, and therefore to universal approximation.

Moreover, when C is not GIso-discriminating or universal, we can evaluate its representation power
by studying o (C), which gives a measure for comparing the power of different GNN families. Given
two classes of functions Cy, Ca, there is (C1) C o(Cs) if and only if M[c(C1)] € Mo (Cs)] if and
only if C; is less powerful than C, in terms of representation power.

In Appendix C we use this notion to compare the expressive power of different families of GNNs as
well as other algorithms like 1-WL, linear programming and semidefinite programming in terms of
their ability to distinguish non-isomorphic graphs. We summarize our findings in Figure 1.
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Figure 1: Relative comparison of function classes in terms of their ability to solve graph isomorphism.

*Note that, on one hand GIN is defined by [30] as a form of message passing neural network justifying the
inclusion GIN — MPNN. On the other hand [17] shows that message passing neural networks can be expressed
as a modified form of order 2 G-invariant networks (which may not coincide with the definition we consider in
this paper). Therefore the inclusion GIN < order 2 G-invariant networks has yet to be established rigorously.

5 Ring-GNN: a GNN defined on the ring of equivariant functions

We now investigate the G-invariant network framework proposed in [18] (see Appendix D for its
definition and a description of an adapted version that works on graph-structured inputs, which
we call the Graph G-invariant Networks). The architecture of G-invariant networks is built by
interleaving compositions of equivariant linear layers between tensors of potentially different orders
and point-wise nonlinear activation functions. It is a powerful framework that can achieve universal

approximation if the order of the tensor can grow as @, where n is the number of nodes in the
graph, but less is known about its approximation power when the tensor order is restricted. One
particularly interesting subclass of G-invariant networks is the ones with maximum tensor order 2,
because [17] shows that it can approximate any Message Passing Neural Network [8]. Moreover, it is
both mathematically cumbersome and computationally expensive to include equivariant linear layers
involving tensors with order higher than 2.

Our following result shows that the order-2 Graph G-invariant Networks subclass of functions is
quite restrictive. The proof is given in Appendix D.

Theorem 7. Order-2 Graph G-invariant Networks cannot distinguish between non-isomorphic
regular graphs with the same degree.

Motivated by this limitation, we propose a GNN architecture that extends the family of order-2 Graph
G-invariant Networks without going into higher order tensors. In particular, we want the new family
to include GNNs that can distinguish some pairs of non-isomorphic regular graphs with the same
degree. For instance, take the pair of Circular Skip Link graphs G 2 and Gj 3, illustrated in Figure 5.
Roughly speaking, if all the nodes in both graphs have the same node feature, then because they all
have the same degree, the updates of node states in both graph neural networks based on neighborhood
aggregation and the WL test will fail to distinguish the nodes. However, the power graphs' of Gg2
and G 3 have different degrees. Another important example comes from spectral methods that

operate on normalized operators, such as the normalized Laplacian A = I — D='/2AD~1/2 where
D is the diagonal degree operator. Such normalization preserves the permutation symmetries and in
many clustering applications leads to dramatic improvements [27].

This motivates us to consider a polynomial ring generated by the matrices that are the outputs of
permutation-equivariant linear layers, rather than just the linear space of those outputs. Together
with point-wise nonlinear activation functions such as ReLLU, power graph adjacency matrices like
min (A2, 1) can be expressed with suitable choices of parameters. We call the resulting architecture
the Ring-GNN 2.

'If A is the adjacency matrix of a graph, its power graph has adjacency matrix min(A?, 1). The matrix
min(A?, 1) has been used in [5] in graph neural networks for community detection and in [21] for the quadratic
assignment problem.

2We call it Ring-GNN since the main object we consider is the ring of matrices, but technically we can
express an associative algebra since our model includes scalar multiplications.



Figure 2: The Circular Skip Link graphs GG, ;, are undirected graphs in n nodes qo, . . ., ¢,—1 so that
(1,j) € Eifand only if [i — j| = 1 or k (mod n). In this figure we depict (left) Gg » and (right)
Gs,s. It is very easy to check that G, i, and G,/ are not isomorphic unless n = n’ and k = +k’
(mod n). Both 1-WL and G-invariant networks fail to distinguish them.

Definition 5 (Ring-GNN). Given a graph in n nodes with both node and edge features in
R?, we represent it with a matrix A € R™*"*_ []7] shows that all linear equivariant lay-
ers from R™™™ to R™"*™ can be expressed as Lg(A) = 21121 0;,L;(A) + Zl 16 9:L;, where
the {L;};,=1,.. 15 are the 15 basis functions of all linear equivariant functions from R"*" to
R™™ " L. and L7 are the basis for the bias terms, and 0 € R'7 are the parameters that
determine L. Generalizing to an equivariant linear layer from R "%d o Rnxnxd’ o gor

Lo(A).,. _Zk 121 1Ok i Li (A )+Zz 16 Ok i L, with 6 € Raxd' 17

With this formulation, we now define a Ring-GNN with T layers. First, set A) = A. In the t'" layer,
let

B = p(Lon(A))
BY = p(Lg (AD) - L (AD))
AlFY) kit)Bgt)+k§t)B§t)

where k:gt), két) e R, a®,pl 4B ¢ R A" X7 gre Jearnable parameters. If a scalar out-
put is desired, then in the general form, we set the output to be 0g ) . j AZ(-JT) + 0 Zl i A(T) +

> 0; )i (ATD), where 05,0p,61,...,60, € R are trainable parameters, and \i(A™)) is the i-th
eigenvalue of AL).

Note that each layer is equivariant, and the map from A to the final scalar output is invariant. A
Ring-GNN can reduce to an order-2 Graph G-invariant Network if két) = 0. With J + 1 layers

and suitable choices of the parameters, it is possible to obtain min(AQJ, 1) in the (J + 1)" layer.
Therefore, we expect it to succeed in distinguishing certain pairs of regular graphs that order-2 Graph
G-invariant Networks fail on, such as the Circular Skip Link graphs. Indeed, this is verified in the
synthetic experiment presented in the next section. The normalized Laplacian can also be obtained,
since the degree matrix can be inverted by taking the reciprocal on the diagonal, and then entry-wise
inversion and square root on the diagonal can be approximated by MLPs.

The terms in the output layer involving eigenvalues are optional, depending on the task. For example,
in community detection spectral information is commonly used [15]. We could also take a fixed
number of eigenvalues instead of the full spectrum. In the experiments, Ring-GNN-SVD includes
the eigenvalue terms while Ring-GNN does not, as explained in appendix E. Computationally, the
complexity of running the forward model grows as O(n?), dominated by matrix multiplications and
possibly singular value decomposition for computing the eigenvalues. We note also that Ring-GNN
can be augmented with matrix inverses or more generally with functional calculus on the spectrum of
any of the intermediate representations * while keeping O(n?) computational complexity. Finally,
note that a Graph G-invariant Network with maximal tensor order d will have complexity at least
O(n?). Therefore, the Ring-GNN explores higher-order interactions in the graph that order-2 Graph
G-invariant Networks neglects while remaining computationally tractable.

6 Experiments

The different models and the detailed setup of the experiments are discussed in Appendix E.

3When A = A© is an undirected graph, one easily verifies that AW contains only symmetric matrices for
each ¢.



6.1 Classifying Circular Skip Links (CSL) graphs

The following experiment on synthetic data demonstrates the connection between function fitting
and graph isomorphism testing. The Circular Skip Links graphs are undirected regular graphs with
node degree 4 [20], as illustrated in Figure 5. Note that two CSL graphs G, ;, and G,/ are not
isomorphic unless n = n’ and k = +k’ (mod n). In the experiment, which has the same setup as in
[20], we fix n = 41, and set k € {2,3,4,5,6,9,11,12,13,16}, and each k corresponds to a distinct
isomorphism class. The task is then to classify a graph G, ;. by its skip length k.

Note that since the 10 classes have the same size, a naive uniform classifier would obtain 0.1 accuracy.
As we see from Table 1, both GIN and G-invariant network with tensor order 2 do not outperform
the naive classifier. Their failure in this task is unsurprising: WL tests are proved to fall short of
distinguishing such pairs of non-isomorphic regular graphs [4], and hence neither can GIN [30]; by
the theoretical results from the previous section, order-2 Graph G-invariant network are unable to
distinguish them either. Therefore, their failure as graph isomorphism tests is consistent with their
failure in this classification task, which can be understood as trying to approximate the function that
maps the graph to their class labels.

It should be noted that, since graph isomorphism tests are not entirely well-posed as classfication
tasks, the performance of GNN models could vary due to randomness. But the fact that Ring-GNNs
achieve a relatively high maximum accuracy (compared to RP for example) demonstrates that as a
class of GNNss it is rich enough to contain functions that distinguish the CSL graphs to a large extent.

Circular Skip Links IMDBB IMDBM

GNN architecture max min std mean std | mean std
RP-GIN { 533 10 12.9 - - - -

GIN 10 10 0 75.1 5.1 523 2.8
Order 2 G-invariant f | 10 10 0 7127 45| 48.55 3.9
sGNN-5 80 80 0 72.8 38 | 494 3.2
SGNN-2 30 30 0 73.1 52 | 49.0 2.1
SGNN-1 10 10 0 72.7 49 | 49.0 2.1
LGNN [5] 30 30 0 74.1 4.6 | 50.9 3.0
Ring-GNN 80 10 15.7 73.0 5.4 | 482 2.7
Ring-GNN-SVD 100 100 O 73.1 33 | 49.6 3.0

Table 1: (left) Accuracy of different GNNGs at classifying CSL (see Section 6.1). We report the best
performance and worst performance among 10 experiments. (right) Accuracy of different GNNs at
classifying real datasets (see Section 6.1). We report the best performance among all epochs on a
10-fold cross validation dataset, as was done in [30]. {: Reported performance by [20], [30] and [17].

6.2 IMDB datasets

We use the two IMDB datasets (IMDBBINARY, IMDBMULTI) to test different models in real-
world scenarios. Since our focus is on distinguishing graph structures, these datasets are suitable
as they do not contain node features, and hence the adjacency matrix contains all the input data.
IMDBBINARY dataset has 1000 graphs, with average number of nodes 19.8 and 2 classes. The
dataset is randomly partitioned into 900/100 for training/validation. IMDBMULTI dataset has 1500
graphs, with average number of nodes 13.0 and 3 classes. The dataset is randomly partitioned into
1350/150 for training/validation. All models are evaluated via 10-fold cross validation and best
accuracy is calculated through averaging across folds followed by maximizing along epochs [30].
Importantly, the architecture hyper-parameter of Ring-GNN we use is close to that provided in [17]
to show that order-2 G-invariant Network is included in model family we propose. The results
show that Ring-GNN models achieve higher performance than Order-2 G-invariant networks in both
datasets. Admittedly its accuracy does not reach that of the state-of-the-art. However, the main goal
of this part of our work is not necessarily to invent the best-performing GNN through hyperparameter
optimization, but rather to propose Ring-GNN as an augmented version of order-2 Graph G-invariant
Networks and show experimental results that support the theory.



7 Conclusions

In this work we address the important question of organizing the fast-growing zoo of GNN architec-
tures in terms of what functions they can and cannot represent. We follow the approach via the graph
isomorphism test, and show that is equivalent to the other perspective via function approximation.
We leverage our graph isomorphism reduction to augment order-2 G-invariant nets with the ring of
operators associated with matrix multiplication, which gives provable gains in expressive power with
complexity O(n?), and is amenable to efficiency gains by leveraging sparsity in the graphs.

Our general framework leaves many interesting questions unresolved. First, a more comprehensive
analysis on which elements of the algebra are really needed depending on the application. Next, our
current GNN taxonomy is still incomplete, and in particular we believe it is important to further
discern the abilities between spectral and neighborhood-aggregation-based architectures. Finally,
and most importantly, our current notion of invariance (based on permutation symmetry) defines a
topology in the space of graphs that is too strong; in other words, two graphs are either considered
equal (if they are isomorphic) or not. Extending the theory of symmetric universal approximation to
take into account a weaker metric in the space of graphs, such as the Gromov-Hausdorff distance, is a
natural next step, that will better reflect the stability requirements of powerful graph representations
to small graph perturbations in real-world applications.
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A Proofs on universal approximation and graph isomorphism

Lemma 1. If C is G}so—discriminating, then for all G € X™*", there exists a function iLG e Ct!
such that for all G', hg(G') = 0 if and only if G ~ G'.

Proof of Lemma 1. Given G,G’ € X™*" with G # G, let hg ¢ € C be the function that distin-
guishes this pair, i.e. hg ¢/ (G) # hg,c(G'). Then define a function hg g by

haa(G*) = |ha,a (G¥) = ha,o (G)) 0
= max(hg,c (G*) — hg,¢' (G),0) + max(hg ¢ (G) — hg,c (G*),0)

Note that if G* ~ G, then h¢,¢/(G*) = hg,c/(G), and so he.q(G*) = 0. If G* ~ (', then

hG’G/(G*) > (. Otherwise, hG,G/(G*) > 0.

Next, define a function hg by ha(G*) = Y erexnsn qrpc haca (GF). If G* ~ G, we have
ha(G*) = 0, whereas if G* 2 G then hg(G*) > 0.

Thus, it suffices to show that iz(; € C*!. We take the finite subcollection of functions,
{ha,¢'}ereaxnxn grcr» and feed the input graph G’ to each of them to obtain a vector of out-

puts. By equation 1, hg ¢/ (G*) can be obtained from h¢ ¢ (G*) by passing through one ReLU layer.
Finally, a finite summation across G’ % G yields hg(G*). Therefore, hg € CT1,VG € x™*". [0

Lemma 2 Let C be a class of permutation-invariant functions from X XM to R so that for all
G € XX, there exists hg € C satisfying hg(G’) = 0 if and only if G ~ G’. Then C*! is
universally approximating.

Proof of Lemma 2. In fact, in the finite feature setting we can obtain a stronger result: for all f that
is permutation-invariant, f € C*1, and so no approximation is needed.

We first use the izg’s to construct all the indicator functions 1g~g+ as functions of G* on X"*™. To
achieve this, because X™*" is finite, VG, we let 6 = 3 ming/cynxn grvq |ha(G')| > 0. We then
introduce a “bump” function from R to R with parameters a and b, ¢, ,(z) = ¥ ((x — b)/a), where

P(z) = max(x — 1,0) + max(x + 1,0) — 2max(z, 0). Then 1, ,(b) = 0, and supp(te ) = (b —
a,b+ a). Now, we define a function ¢ from X = {1,..., M} to R by vc(G*) = s4.0(ha(G*)).
Note that p5(G*) = Lg~g+ as a function of G* on X"*™.

Given f, thanks to the finiteness of the input space X"™*™, we decompose it as f(G*) =
1 * 1 1 *
(37 Xgexnsn Lome ) [(GY) = 57 Xgeansn [(G)laxar = 157 Lgeancn f(G)ea(GY).

The right hand side can be realized in C*1, since we can first take the finite collection of functions

{hc}exnxn and obtain {hg(G*)}gexnxn. Then, with an MLP with one hidden layer, we can
obtain {¢¢(G*)}geanxn, alinear combination of which gives the right hand side, since each “f(G)”
within the summation is a constant. O

Theorem 3. If C is universally approximating, then it is also GIso-discriminating

Proof of Theorem 3. YG1,G2 € K, if G1 # Go, define f1(G) = mingcg, d(G1,77Gn). Itis a
continuous and permutation-invariant function on K, and therefore can be approximated by a function
h € C to within € = % f1(G2) > 0 accuracy. Then h is a function that can discriminate between G4
and Gs. O

Lemma 3. If C, a collection of continuous permutation-invariant functions from K to R, is pairwise
distinguishing, then C*! is able to locate every isomorphism class.

Proof of Lemma 3. Fix any G € K. VG' # G € K,3hg, € C such that hg o (G) #
ha.c(G"). For each G’, define a set Ag- as h@}c,((hg,g/(G’) _ lheor(@ );hG’G/(G)I Jhea (G +
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Figure 3: Illustrating the definition of Glso-discriminating. G,G’ and G” are mutually non-
isomorphic, and each of the big circles with dashed boundary represents an equivalence class
under graph isomorphism. hg, ¢ is a permutation-invariant function that obtains different values on
equivalence class of G and on that of G’, and similar hg . If the graph space has only these three
equivalence classes of graphs, then C = {h¢,¢’, ha,g } is GIso-discriminating.

ho.o (G )Q_hG’Gl(G)‘ )) € K. Obviously G’ € Ag and G does not. Since he ¢ is assumed continu-
ous, Az, is an open set for each G’ ¢ G. If G’ ~ G, define Agr = B(G', ¢), the open e-ball in K’
under the Euclidean distance.

Thus, {A¢ }erex is an open cover of K. Since K is compact, 3 a finite subset K of K such that
{A¢ }arek, also covers K.

Hence, VG* € K,3G" € Ko such that G* € Agr. Moreover, VG* € K \ (Ugrcg(q) 4a’) =
K\ (U,es, B(mTGT,€)), where £(G) represents the equivalence class of graphs in K consisting
of graphs isomorphic to G, 3G’ € Ky \ £(G) such that G* € Agr.

Now define a function hg on K by hg(G*) = D GrEKo\E(G) ha,q'(G*), where hg o (G*) =
max(Z|ha,c (G) — ha,e (G')| = |ha,e (G*) = he,er(G')],0). Since each he, ¢ in continuous,
hg is also continuous. Thus, we can show that h¢ is the desired function in Definition 4:

o hg ¢ is nonnegative VG, G', and hence h¢ is nonnegative on K

e If G* ~ @, then as each h¢ ¢ is permutation invariant, there is hg ¢ (G*) = hg,c/ (G),
and hence hg ¢/ (G*) = 0. Thus, hg(G*) = 0.

o If Vr € S, d(n7G"m,G) > € then G* € K\ Ugicge) Ac'- Therefore, 3G" €
K \ £(G) such that G* € Ag/, which implies that |hg.c (G*) — ha,e (G')| <
%|hG7G/(G) — hG7G/(G/)| < %|hg,gl(G) — hG,G’(G/)L Therefore, %“L(Z,G/(G) —
hG7Gr(G/)‘—|hG7G/(G*)—hG7G/ (G/)| > %|hG7Gf(G)—hG7G/ (Gl)‘ > 0, and so h(;(G*) >
hec/(G*) > §lhe,cr(G) — ha,e(G')]. Define ég = §mingrex\ec) lhe.c(G) -
ha,c'(G')| > 0. Then if he(G*) < g, it has to be the case that G* € Ugrcg(q) Acr =
Ures, B(mTGm, ¢), implying that 37 € S, such that d(G*, 7TGT) < e.

Finally, it is clear that iLG can be realized in C*!.
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Lemma 4. Let C be a class of permutation-invariant functions & — R. If C is able to locate every
isomorphism class, then C*? is universally approximating.

Proof of Lemma 4. Consider any f that is continuous and permutation-invariant. Since K is compact,
f is uniformly continuous on K. Therefore, Ve > 0, 3r > 0 such that VG1,Gs € K, if d(G1,G2) <
r,then | f(G1) — f(Ga)| <

Given VG € K, choose the function h¢ in definition 2. Use h;'(a) to denote h;'([0,a)). Then
36 such that h ;' (3g) € B(G,r), where B(G, ) is the ball in K centered at G with radius 7 (in
Euclidean distance). Since hg is continuous, hc_;l((S(;) is open. Therefore, {h&l(ég)}GeK is an

open cover of K. Because K is compact, 3 a finite subset Ky C K such that {h' (6¢)}cex, also
covers K.

VGy € Ky, define another function ¢, (G’) = dg, — ha,(G') if hg,(G') < d¢, and 0 oth-
erwise. Therefore, supp(¢g,) = hai(éco). Let (G") = > g.ck, Pc-(G'), and then define

Y6, (G = wg?c(f)/)- Note that VG’ € K, since {hg'(dc)}cer, covers K, 3G* € Kj such

that G’ € hgt(dg-) = supp(pg+), and so the denominator > 0. Therefore, ¢, is well defined
on K, and supp(¢¢,) = supp(pg,) = ha;(égo). Moreover, VG' € K, o cx, VG, (G') = 1.
Therefore, the set of functions {9g, }¢,ck, i @ “partition of unity”, with respect to the open cover
{hg' (6c)}cero-

Back to the function f that we want to approximate. We want to express it in away that resembles
what a neural network can do. With the set of functions {¢¢, }¢,ck,, We have

Z f ’(/)Go G/) Z f(G/)z/)Go (Gl)
GoeKo GoeKo
G’ehaé (6cq)

If G' € ha;(égg, then d(G', Gy) > r, and therefore | f(G') — f(Go)| < e. Hence, we can use
h(G") = > coek, f(Go)a, (G) to approximate f(G"), because

F@) = Y (G, (@) =)~ S J(Go)e, (@)

Go€Ko Go€eKo
G'ehg, (36,)
= 3G~ F(Go)lda, (@) @)
GoEKp

G/ehgj) (5cg)

<€

Finally, we need to show how to approximate h with functions from C augmented with a multi-layer
perceptron. We start with {h¢, }¢,ex C C, and apply them to the input graph G’. Then, for each of
he,G'() apply an MLP with one hidden layer to obtain ¢, (G’), and use one node to store. their
sum, ¢(G"). We then use an MLP with one hidden layer to approximate division, obtaining ¥ ¢, (G’).
Finally, h(G’) is approximated by a linear combination of {¢c,(G")}c,ck since each f(Gy) is a
constant.

O

B Proofs of Section 4.2

Theorem 5. If C is a class of permutation-invariant functions on X”*™ and C is GIso-discriminating,
then 0(C) = 0(Qk)

Proof of Theorem 5. Tf C is Glso-discriminating, then given a G € X™"*" VG’ % G, 3he € C and
be: € R such that £(G) = Ngreahg! ({b}), which is a finite intersection of sets in o(C). Hence,
E(G) € o(fa) C o(C). Therefore, Qx C o(C), and hence 0(Qk) C o(C). Moreover, since
0(g) Co(Qxk)forall g € C, thereis 0(C) C 0(Qxk) O
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Theorem 6. Let be C a class of permutation-invariant functions on X™*" with 0(C) = 0(Qx). Then
C is Glso-discriminating.

Proof of Theorem 6. Suppose not. This implies that @  o(C), and hence 37 = £(G) € Qk such
that 7 ¢ o(C). Note that 7 is an equivalence class of graphs that are isomorphic to each other. Then
consider the smallest subset in o(C) that contains 7, defined as S(7) = ﬂ T.
Teo(C)
TCT

Since K is a finite space, o(C) is also finite, and hence this is a finite intersection. Since a sigma-
algebra is closed under finite intersection, there is S(7) € o(C). As 7 ¢ o(C), we know that
7 C S(7). Then, 3G’ # G such that G’ € S(7). Then there does not exist any function / in C such
that h(G) # h(G"), since otherwise the pre-image of some interval in R under h will intersect with
only £(G) but not £(G”). Contradiction. O

C Comparison of expressive power of families of functions via graph
isomorphism

Given two classes of functions Cy,Cs, such as two classes of GNNG, there are four possibilities
regarding their relative representation power, using the language of sigma-algebra developed in the
main text:

e 0(C1) =0(Cy)
e 0(C1) S a(C2)
e (C2) C o(C1)
e Not comparable / None of the above (i.e., 0(C1) € (C2) and (C1) € o(C2))

In this section we summarize some results from the literature and show partial relationships between
different GNNs architectures in terms of their ability to distinguish non-isomorphic graphs (in the
context of the sigma algebra introduced in Section 4). For simplicity, in this section we assume that
graphs are given by an adjacency matrix (no node nor edge features are considered). We illustrate our
findings in Figure 1.

e sSGNN(M). We consider spectral GNNs as the ones used in [5] for community detection.
In this context we focus on the simplified version where the GNNs are defined as

00 =1,

vt =p < Z Mfut95\4> where 6%, € R%*9+1 Jearnable parameters, v' € R"*%
MeM

dr
output : Z vZ-L .
i=1

Usually M is a set of operators related to the graph. In this context we consider M = {I, A}
and M) = {I,D, A, min{A2,1}, t = 2,...}. The operators min{A2", 1} allow the
model to distinguish regular graphs that order 2 G-invariant networks cannot distinguish,
such as the Circular Skip Link graphs.

e Linear Programming (LP). This is not a GNN but the natural linear programming re-
laxation for graph isomorphism. Namely given a pair graphs with adjacency matrix
A, B € {0,1}m*"

LP(A, B) = min |PA — BP||; subject to P1,, = 1,,, PT1, = 1,, P > 0.

The natural sigma algebra to consider here is o(Uecynxn{LP(A,-)}). Two graphs are
said to be fractionally isomorphic is LP(A, B) = 0 (i.e. the LP cannot distinguish them).
[23] showed that two graphs are fractionally isomorphic if and only if they cannot be
distinguished by 1-WL.

14



o Semidefinite Programming (SDP). The semidefinite programming relaxation of quadratic
assignment from [32] is based on the following observation: ||PA — BP||% = ||PA||% +
| BP||% — 2trace(PAPTBT) and trace(vec(P) vec(P)T A ® BT) where ® is the Kro-
necker product operator and vec takes an n x n matrix and flattens it into an n? x 1 vector.
The resulting semidefinite relaxation considers the vector | := [1, vec(P) "] and relaxes
the rank 1 matrix 2z | into a positive semidefinite matrix. By including the constraints
corresponding to the LP in z2 " one makes sure that solution of the SDP is always in the
feasible set of the LP, therefore the LP is less expressive than the SDP.

o Sum-of-Squares (SoS) hierarchy. One can consider the hierarchy of relaxations coming
from sum-of-squares (SoS). In the context of graph isomorphism, it is known that graph
isomorphism is a hard problem for this hierarchy [22]. In particular the Lasserre/SoS
hierarchy requires 2*(n) to solve graph isomorphism (in the same sense that o(n)-WL fails
to solve graph isomorphism [4]).

e Spectral methods. If we consider the function that takes a graph and outputs the set of
eigenvalues of its adjacency matrix, such function is permutation invariant. A priori one
may think that such function, being highly non-linear, is more expressive than any form
message passing GNN. In fact, regular graphs are not distinguished by 1-WL or order 2
G-invariant networks and may be distinguished by their eigenvalues (like the Circular Skip
Link graphs). However, 1-WL and this particular spectral method are not comparable (a
simple example is provided in Figure 2 of [23]).

D Graph G-invariant Networks with maximum tensor order 2

In this section we prove Theorem 7 that says that graph G-invariant Networks with tensor order 2
cannot distinguish between non-isomorphic regular graphs with the same degree.

First, we need to state our definition of the order-2 Graph G-invariant Networks. In general, given
G e RV welet A® =@, d® =1, and

A — 5(L®(AD))

(t)
a7

and outputs m o h o A, where each L® is an equivariant linear layer from R”*"* 0

(t+1) . . . . . . . . . .
Rnxnxd , 0 is a point-wise activation function, h is an invariant linear layer from R™*" to
R, and m is an MLP.

d® is the feature dimension in layer ¢, interpreted as the dimension of the hidden state attached to
each pair of nodes. For simplicity of notations, in the following proof we assume that d(*) = 1,Vt =
1,..., L, and thus each A(*) is essentially a matrix. The following results can be extended to the cases
where d(¥) > 1, by adding more subscripts in the proof.

Given an unweighted graph G, let E C [n]? be the edge set of G, i.e., (u,v) € E if u # v and
Guv = 1iset S C [n]? tobe {(u, u) }yepny2: and let N = [n]* \ (EU S). Thus, EUN U S = [n]?.

Lemma 5. Let G, G’ be the adjacency matrices of two unweighted regular graphs with the same
degree d, and let A®) | E. N, S and A'") E' N'. S’ be defined as above for G and G', respectively.
Then¥n < L,3¢\", ¢, 6" € R such thar AS) = €01y vyep + 6 wyen + 671 (u0)es, and

Agi(f)) = £§t)1(u,v)€E’ + gét)‘ﬂ(u,v)GN’ + gét)ﬂ(uﬂ))es’

Proof. We prove this lemma by induction. For t = 0, A = G and A’(®) = G’. Since the graph is
unweighted, G, = 1 if u # v and (u,v) € E, and 0 otherwise. Similar is true for G’. Therefore,

we can set 5%0) = 1and ﬁéo) = éo) =0.

Next, we consider the inductive steps. Assume that the conditions in the lemma are satisfied for
layer t — 1. To simplify the notation, we use A, A’ to stand for A~ A’*=1) and we assume to
satisfy the inductive hypothesis with &7, &2 and &3. We thus want to show that if L is any equivariant
linear, then o (L(A)), o(L(A")) also satisfies the inductive hypothesis. Also, in the following, we use
D1, P2, q1, g2 to refer to nodes, a, b to refer to pairs of nodes, A to refer to any equivalence class of
2-tuples (i.e. pairs) of nodes, and u to refer to any equivalence class of 4-tuples of nodes.
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Va = (p1,p2),b = (q1,q2) € [n]? let £(a,b) denote the equivalence class of 4-tuples containing
(p1,p2,q1,q2), and let £(b) represent the equivalence class of 2-tuples containing (g1, g2). Two 4-
tuples (u, v, w, ), (u',v’,w’, 2') are considered equivalent if 3 € S,, such that 7(u) = v/, 7w(v) =
v, m(w) = w',w(x) = «’. Similarly is equivalence between 2-tuples defined. By equation 9(b) in
[17], using the notations of T, B, C, w, 8 defined there, L is described by, given A as an input as b as
the subscript index on the output,

(n,n)

LAp= Y TopA+Y

a=(p1,p2)=(1,1)

- X;; w, B Aa + ; BACY 3)

= Z( Z Ag)wy + Be )

Ho a€n]?
(a,b)ep

First, let
> A
2
(a,b)ep
By the inductive hypothesis,

Sh = ZA+ZA+ZA

a€[n]? a€ln]? a€[n]?
(a,b)Ep (a,b)Ep (a,b)Ep
ackE a€EN a€sS
Z G+ Y b+ > & )
a€n]? a€n]?
(a b)G# (a,b)ep (a,b)ep
acE acN acsS

= mE(b, M)fl + mN(ba N)§2 +mg (ba /1’)53

where m g (b, 11) is defined as the total number of distinct a € [n]? that satisfies (a,b) € pand a € E,
and similarly for mx (b, 1) and mg(b, j1). Formally, for example, mg(b, ) = card{a € [n]* :
(a,b) € p,a € E}.

Since EU N U S = [n]?, b belongs to one of E, N and S. Thus, let 7(b) = Fifbe€ E,7(b) = N
ifb € Nand 7(b) = Sifb € S. It turns out that if A is the adjacency matrix of a undirected
regular graph with degree d, then mg(b, p), my (b, ), mg(b, u) can be instead written (with an
abuse of notation) as mg (7(b), u), my (7(b), 1), ms(7(b), 1), meaning that for a fixed , the values
of mg, my and mg only depend on which of the three sets (£, N or S) b is in, and changing b to a
different member in the set 7(b) won’t change the three numbers. In fact, for each 7(b) and p, the
three numbers can be computed as functions of n and d using simple combinatorics, and their values
are seen in the three tables 2, 3 and 4. An illustration of these numbers is given in Figure D.

Therefore, we have L(A), = >, wu(me(7(b), ) +mn (7(b), ) +ms(7(b), 1)) +Bev)- Moreover,
notice that 7(b) determines £(b): if 7(b) = FE or N, then £(b) = £(1,2); if 7(b) = S, then
E(b) = £(1,1). Hence, we can write 3, instead of ¢ (;) without loss of generality. Then in
particular, this means that L(A), = L(A)y if 7(b) = 7(b'). Therefore, L(A), = & Lpep+ELpen+
E3lves, where &y = 3, w (mp(E, p)+my (B, p)+ms(E, 1)+ B, & = 32, wu(mp(N, p)+
my (N, ) +ms(N,p)) + By, and & = 32, wu(mp(S, 1) +my (S, p) +ms(S, 1)) + Bs.
Similarly, L(A"), = & lpep + &9lpens + E51pes. But importantly, ¥V equivalence class of
4-tuples, u, and VA1, Ao € {E, N, S}, my, (A2, 1) = m/\l()\g i), as both of them can be obtained
from the same entry of the same table. Therefore, &, = £/1,&, = &5, &5 = 5.

Finally, let & = o(€,),& = o(&,), and & = o(&3). Then, there is o(L(A))y = & lyer +
&lven + & lbes, and o(L(A"))y = e rr + E Lpen' + {3 Lbes, as desired. O
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Figure 4: mp(E,£(1,2,3,4)), mp(E,£(1,2,3,2)), mp(E,£(1,2,3,1)), mg(E,£(1,2,2,3))
and mg(F,£(1,2,1,3)) of Gs 2 and Gy 3. In either graph, twice the total number of black edges
equal mg(FE, £(1,2,3,4)) = 18 (it is twice because each undirected edge corrspond to two pairs
(p1,p2) and (p2, p1), which combined with (g1, g2) both belongs to £(1, 2, 3,4)); the total number
of of red edges, 3, equals both mg(E,£(1,2,2,3)) and mg(FE,£(1,2,1, 3)); the total number of
green edges, also 3, equals both mp(F, £(1,2,3,2)), mg(E,£(1,2,3,1)).

" mp(B,p)  mp(N.p)  mp(S,p)
1,2,3,H) | (n—4Hd+2 (n—4)d 0
(1,1,2,3) | O 0 0
(1,2,2,3) | d—1 d 0
(1,2,1,3) | d—1 d 0
(1,2,3,2) | d—1 d 0
(1,2,3,) | d—1 d 0
(1,1,1,2) | O 0 0
(1,1,2,1) | O 0 0

(1,2, 1,2) | 1 0 0
(1,2,2,) | 1 0 0
(1,2,3,3) | 0 0 (n—2)d
(1,1,2,2) | O 0 0
(1,2,2,2) | 0 0 d
(1,2,1,H) |0 0 d
(1,1,1,1) | O 0 0

Total nd nd nd

Table 2: mg

Since h is an invariant function, h acting on A(%) essentially computes the sum of all the diagonal
terms (i.e., for b € S) and the sum of all the off-diagonal terms (i.e., for b € EUN) of A" separately
and then adds the two sums with two weights. If G, G’ are regular graphs with the same degree, then
|E| = |E’|,|S| = |S'| and |N| = | N’|. Therefore, by the lemma, there is h(A)) = h(A'(F)), and
as a consequence m(h(A®))) = m(h(A'F)).
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17 my (E, p) mn (N, ) m (S, p)
1,2,3,4) | (n—4)(n—-d—-1) (n—4)(n—-d—-1)+2 0
(1,1,2,3) | 0 0 0
(1.2.2.3) | n—d—1 n—d—2 0
(1,2,1,3) | n—d—1 n—d—2 0
(1.2.3.2) | n—d—1 n—d—2 0
(1,2,3,1) | n—d—1 n—d—2 0
(.1,1,2) | 0 0 0
(1,1,2,1) 0 0
(1,2,1,2) | O 1 0
(1,2,2,1) | 0 1 0
(1,2,3,3) | 0 0 (n—2)(n—d—1)
(1,1,2,2) | 0 0 0
(1,2,2,2) | 0 0 n—d—1
(1.2.1.1) | 0 0 n—d—1
(LLL1D |0 0 0
Total nin—d—1) nn—d-—1) nn—d-—1)
Table 3: my

p ms(E,p)  ms(N,p)  ms(S, p)

(1,2,3,4) | 0 0 0

(1,1,2,3) | n—2 n—2 0

(1,2,2,3) | 0 0 0

(1,2,1,3) | O 0 0

(1,2,3,2) | O 0 0

(1,2,3,1) | O 0 0

(1,1,1,2) | 1 1 0

(1,1,2,1) | 1 1 0

(1,2,1,2) | O 0 0

(1,2,2,1) | O 0 0

(1,2,3,3) | 0 0 0

(1,1,2,2) | O 0 n—1

(1,2,2,2) | 0 0 0

(1,2,1,1) | O 0 0

(1,1,1,1) | O 0 1

Total n n n

Table 4: mg

E Specific GNN Architectures

In section 6, we show experiments on synthetic and real datasets with several related architectures.
Here are some explanations for them.

e SGNN-i: sGNNs with operators from family {7, D, min(42°,1),...,min(42 ", 1)},i €
{1,2,5}. In our experiments, the sGN N models have 5 layers and hidden layer dimension
(i.e. d¥) 64. They are trained using the Adam optimizer with learning rate 0.01.

e LGNN: Line Graph Neural Networks proposed by [5]. In our experiments, the sGN N

models have 5 layers and hidden layer dimension (i.e. d*) 64. They are trained using the
Adam optimizer with learning rate 0.01.

e GIN: Graph Isomorphism Network by [30]. We took their performance results on the IMDB
datasets reported in [30], and their performance results on the Circular Skip Link graphs
experiments reported in [20] .

e RP-GIN: Graph Isomorphism Network combined with Relational pooling by [20]. We took
the reported results reported in [20] for the Circular Skip Link graphs experiment.

e Order-2 Graph G-invariant Networks: G-invariant networks based on [17] and [18], as
implemented in https://github.com/Haggaim/InvariantGraphNetworks.
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e Ring-GNN: As defined in the main text. The architecture (number of hidden layers, feature
dimensions) is taken to be the same os the Order-2 Graph G-invariant Networks. For the

experiments on the IMDB datasets, each kzgt) is initialized independently under N (0, 1),
and each két) is initialized independently under A/(0,0.01). They are trained using the

Adam optimizer with learning rate 0.00001. The initialization of két) and the learning rate
were manually tuned, following the heuristic that Ring-GNN reduces to Order-2 Graph

G-invariant Networks when két) = 0, and that since Ring-GNN added more operators, a
smaller learning rate is likely more appropriate.

e Ring-GNN-SVD: Compared with above Ring-GNN model, a Singular Value Decomposi-
tion layer is added between Ring layers and fully-connected layers. SVD layer takes as
input batch-size x channels matrices and as output batch-size x channels x5 top eigenvalues.
Considering computation complexity and condition numbers, this model has only two Ring
layers and careful initialization. For IMDB datasets, Ring layers have numbers of channels
in {16, 32} and the model is trained using Adam optimizer with learning rate of 0.001 for
350 epochs. For CSL dataset, Ring layers have numbers of channels in {4, 8} and the
model is trained using Adam optimizer with learning rate of 0.001 for 1000 epochs. In

both cases, each k;t) is initializated independently under A/ (0, 0.5) and each kg’) is initial-
izated independently under A/(0,0.005). It is also noted, since often easily dropping into
ill condition when using back propagation of SVD, we clip gradient values when training.
Moreover, from prospective of computation resources, Nvidia V100 and P40 are much more
numerically robust than 1080Ti and CPU in this task.

For the experiments with Circular Skip Links graphs, each model is trained and evaluated using

5-fold cross-validation. For Ring-GNN, in particular, we performed training + cross-validation 20
times with different random seeds.
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