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ABSTRACT

The critical locus of the loss function of a neural network is determined by the
geometry of the functional space and by the parameterization of this space by
the network’s weights. We introduce a natural distinction between pure critical
points, which only depend on the functional space, and spurious critical points,
which arise from the parameterization. We apply this perspective to revisit and
extend the literature on the loss function of linear neural networks. For this type
of network, the functional space is either the set of all linear maps from input to
output space, or a determinantal variety, i.e., a set of linear maps with bounded
rank. We use geometric properties of determinantal varieties to derive new results
on the landscape of linear networks with different loss functions and different
parameterizations. Our analysis clearly illustrates that the absence of “bad” local
minima in the loss landscape of linear networks is due to two distinct phenomena
that apply in different settings: it is true for arbitrary smooth convex losses in the
case of architectures that can express all linear maps (“filling architectures’) but
it holds only for the quadratic loss when the functional space is a determinantal
variety (“non-filling architectures”). Without any assumption on the architecture,
smooth convex losses may lead to landscapes with many bad minima.

1 INTRODUCTION

A fundamental goal in the theory of deep learning is to explain why the optimization of the non-
convex loss function of a neural network does not seem to be affected by the presence of non-
global local minima. Many papers have addressed this issue by studying the landscape of the loss
function (Baldi & Hornik, 1989; Choromanska et al., 2015; Kawaguchi, 2016; Venturi et al., 2018).
These papers have shown that, in certain situations, any local minimum for the loss is in fact always
a global minimum. Unfortunately, it is also known that this property does not apply in more general
realistic settings (Yun et al., 2018; Venturi et al., 2018). More recently, researchers have begun
to search for explanations based on the dynamics of optimization. For example, in certain limit
situations, the gradient flow of over-parameterized networks will avoid local minimizers (Chizat &
Bach, 2018; Mei et al., 2018). We believe however that the study of the szatic properties of the loss
function (the structure of its critical locus) is not settled. Even in the case of linear networks, the
existing literature paints a purely analytical picture of the loss, and provides no sort of explanation as
to “why” such architectures exhibit no bad local minima. A complete understanding of the critical
locus should be a prerequisite for investigating the dynamics of the optimization.

The goal of this paper is to revisit the loss function of neural networks from a geometric perspective,
focusing on the relationship between the functional space of the network and its parameterization.
In particular, we view the loss as a composition

{parameter space} £ {functional space} 5LR.

In this setting, the function ¢ is almost always convex, however the composition L = ¢ o y is not.
Critical points for L can in fact arise for two distinct reasons: either because we are applying ¢
to a non-convex functional space, or because the parameterizing map p is locally degenerate. We
distinguish these two types of critical points by referring to them, respectively, as pure and spurious.

*Equal contribution.
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Table 1: Bad local minima in loss landscapes for linear networks

quadratic loss | other smooth convex loss I
filling | no bad minima no bad minima — [convex optlmlzatlon]
non-filling | no bad minima over vector space
T
( special property of
determinantal varieties

Intuitively, pure critical points actually reflect the geometry of the functional space associated with
the network, while spurious critical points arise as “artifacts” from the parameterization. After
defining pure and critical points for arbitrary networks, we investigate in detail the classification
of critical points in the case of linear networks. The functional space for such networks can be
identified with a family of linear maps, and we can describe its geometry using algebraic tools.
Many of our statements rely on a careful analysis of the differential of the matrix multiplication map.
In particular, we prove that non-global local minima are necessarily pure critical points for convex
losses, which means that many properties of the loss landscape can be read from the functional
space. On the other hand, we emphasize that even for linear networks it is possible to find many
smooth convex losses with non-global local minima. This happens when the functional space is a
determinantal variety, i.e., a (non-smooth and non-convex) family of matrices with bounded rank. In
this setting, the absence of non-global minima actually holds in the particular case of the quadratic
loss, because of very special geometric properties of determinantal varieties that we discuss.

Related Work. Baldi & Hornik (1989) first proved the absence of non-global (“bad”) local min-
ima for linear networks with one hidden layer (autoencoders). Their result was generalized to the
case of deep linear networks by Kawaguchi (2016). Many papers have since then studied the loss
landscape of linear networks under different assumptions (Hardt & Ma, 2016; Yun et al., 2017; Zhou
& Liang, 2017; Laurent & von Brecht, 2017; Lu & Kawaguchi, 2017; Zhang, 2019). In particular,
Laurent & von Brecht (2017) showed that linear networks with “no bottlenecks” have no bad local
minima for arbitrary smooth loss functions. Lu & Kawaguchi (2017) and Zhang (2019) argued that
“depth does not create local minima”, meaning that the absence of local minima of deep linear net-
works is implied by the same property of shallow linear networks. Our study of pure and spurious
critical points can be used as a framework for explaining all these results in a unified way. The opti-
mization dynamics of linear networks are also an active area of research (Arora et al., 2019; 2018),
and our analysis of the landscape in function space sets the stage for studying gradient dynamics on
determinantal varieties, as in Bah et al. (2019). Our work is also closely related to objects of study
in applied algebraic geometry, particularly determinantal varieties and ED discriminants (Draisma
et al., 2013; Ottaviani et al., 2013). Finally, we mention other recent works that study neural net-
works using algebraic-geometric tools (Mehta et al., 2018; Kileel et al., 2019; Jaffali & Oeding,
2019).

Main contributions.

e We introduce a natural distinction between “pure” and “spurious” critical points for the loss func-
tion of networks. These notions provide an intuitive and useful language for studying a central
aspect in the theory of neural networks, namely the (over)parameterization of the functional space
and its effect on the optimization landscape. While most of the paper focuses on linear networks,
this viewpoint applies to more general settings as well (see also our discussion in Appendix A.3).

e We study the pure and critical locus for linear networks and arbitrary loss functions. We show
that non-global local minima are always pure for convex losses, unifying many known properties
on the landscape of linear networks.

e We explain that the absence of “bad” local minima in the loss landscape of linear networks is due
to two distinct phenomena and does not hold in general: it is true for arbitrary smooth convex
losses in the case of architectures that can express all linear maps (“filling architectures”) and
it holds for the quadratic loss when the functional space is a determinantal variety (‘“non-filling
architectures”). Without any assumption on the architecture, smooth convex losses may lead to
many local minima. See Table 1.
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Figure 1: Pure and spurious critical points: 65 is a pure critical point, while 65 is a spurious critical
point (the level curves on the manifold Mg describe the landscape in functional space). Note that
03 is mapped to the same function as 5, but it is not a critical point.

e We provide a precise description of the number of topologically connected components of the
set of global minima. This relates to recent work on “mode connectivity” in loss landscapes of
neural networks (Garipov et al., 2018).

e We spell out connections between the loss landscape and classical geometric objects such as
caustics and ED discriminants. We believe that these concepts may be useful in the study of more
general functional spaces.

Differential notation. Our functional spaces will be manifolds with singularities, so we will make
use of elementary notions from differential geometry. If M and A are manifolds and g : M — N
is a smooth map, then we write dg(z) for the differential of g at the point . This means that
dg(x) : TyM — Ty N is the first order linear approximation of g at the point 2 € M. If M and
N have singularities, then the same definitions apply if we restrict g to smooth points in M whose
image is also smooth in A/. For most of our analysis, manifolds will be embedded in Euclidean
spaces, say M C R™ and N’ C R™, so we can view the tangent spaces T, M and T, as also
embedded in R™ and R™. When N' = R, the critical locus of a map g : M — R is defined as
Crit(g) = {z € Smooth(M) | dg(x) = 0}.

2 PRELIMINARIES

2.1 PURE AND SPURIOUS CRITICAL POINTS

A neural network (or any general “parametric learning model”) is defined by a continuous mapping
@ : R% x R% — R that associates an input vector z € R% and a set of parameters § € R% to
an output vector y = ®(#, 2) € R%. In other words, ® determines a family of continuous functions
parameterized by 6 € R%:

Mo ={fo : R¥™ - R | fo=&(0,-)} C C(R% ,RN).

Even though Mg is naturally embedded in an infinite-dimensional functional space, it is itself finite
dimensional. In fact, if the mapping ® is smooth, then Mg is a finite-dimensional manifold with
singularities, and its intrinsic dimension is upper bounded by dy. It is also important to note that
neural networks are often non-identifiable models, which means that different parameters can rep-
resent the same function (i.e., fy = fo does not imply # = #’). The manifold Mg is sometimes
known as a neuromanifold (Amari, 2016). We now consider a general loss function of the form
L = (o p, where ;1 : R% — My is the (over)parameterization of Mg by 6 and / is a functional
defined on a subset of C'(R%, R9) containing Mg:!

4
L:R% 4 My M8 R (1)

Definition 1. A critical point 8* € Crit(L) is a pure critical point if ;1(6*) is a critical point
for the restriction ¢| ¢, (note that this implicitly requires 1(6*) to be a smooth point of Mg). If
0* € Crit(L) but u(0*) & Crit(£|pm, ), we say that 0* is a spurious critical point.

"This setting applies to both the empirical loss and the population loss.
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It is clear from this definition that pure critical points reflect the geometry of the functional space,
while spurious critical points do not have an intrinsic functional interpretation. For example, if
0* € Crit(L) is a spurious critical point, then it may be possible to find another parameter 6’ that
represents the same function fy« = fp- and is not a critical point for L (see Figure 1). In contrast,
if 0* is a pure critical point, then all parameters 6" such that 1(0") = u(6*) are automatically in
Crit(L), simply because dL(6") = dl|apq (11(6”)) o duu(6”). This will motivate us to study the fiber
{60 p(6) = f} of all parameters mapped to the same function f (particularly when the function f is
a critical point of £] vq,,).

We note that a sufficient condition for 6* € Crit(L) to be a pure critical point is that the differential
du(6*) at 0* has maximal rank (namely dim Mg), i.e., that p is locally a submersion at 0*. Indeed,
we have in this case

0 =dL(0%) = dl|mq (1(67)) 0 dp(07) = dl| pq (1(67)) = 0,

so u(0*) is critical for the restriction of ¢ to Mg. We also point out a special situation when Mg is
a convex set (as a subset of C(R% R4 )) and / is a smooth convex functional. In this case, the only
critical points of £| v, are global minima, so we deduce that any critical point of L = £ o y is either
a global minimum or a spurious critical point. The following simple observation gives a sufficient
condition for critical points to be saddles (i.e., they are not local minima or local maxima).

Lemma 2. Let 0* € Crit(L) be a (necessarily spurious) critical point with the following property:
for any open neighborhood U of 0, there exists 0’ in U such that (') = p(0) and 6" ¢ Crit(L).
Then 0* is a saddle for L.

Proof. Assume that 0 is a local minimum (the reasoning is analogous if #* is a local maximum).
This means that there exists a neighborhood U of 6* such that L(#) > L(0*) forall @ € U. In
particular, if 8/ € U is such that u(0’) = w(6), then ¢ must also be a local minimum. This
contradicts 8’ ¢ Crit(L). O

This general discussion on pure and spurious critical points applies to any smooth network map ®
(with possible extensions to the case of piece-wise smooth mappings), and we believe that the dis-
tinction can be a useful tool in the study of the optimization landscape of general networks. In the
remaining part of the paper, we use this perspective for an in-depth study of the critical points of
linear networks. For this type of network, the functional set Mg can be embedded in a finite di-
mensional ambient space, namely the space of all linear maps R% — R . Furthermore, Mg is
an algebraic variety (a manifold that can have singularities and that can be described by algebraic
equations). We will use basic tools from algebraic geometry to provide a complete description of
pure and spurious critical points, and to prove new results on the landscape of linear networks.

2.2 LINEAR NETWORKS AND DETERMINANTAL VARIETIES

A linear network is amap ® : R% x R% — R% of the form
OO, x) =Wy, ... Wz, 0= Wh,...,Wi) R, )

where W; € R%>%:-1 are matrices (so dg = d, dj, = dy, and dg = dody + dida + ... + dp_1dp).
The functional space is in this case a subset of the space of all linear maps R% — R As in (1),
we can decompose a loss function L for a linear network & as

RénXdn-1 x  x Rhixdo Hd, Rdn do 4 R 3)
(Wh,...,Wl) — W:WhWI — E(W)
Here piq is the matrix multiplication map for the sequence of widths d = (dj,,...,dp), and £ is a

functional on the space of (d}, x dp)-matrices. In practice, it is typically a functional that depends on
the training data, e.g. £(W) = ||W X —Y||2 for fixed matrices X, Y".? Note that even if £ is a convex
functional, the set Mg will often not be a convex set. In fact, it is easy to see that the image of pq is
the space M, of (d}, X dp)-matrices of rank at most » = min{dy, ..., dp}. If r < min(dg, dy), this

2Qur setting can also be applied when £ includes a regularizer term defined in function space, e.g., (W) =
WX —Y|? + AR(W).
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set is known as a determinantal variety, a classical object of study in algebraic geometry (Harris,
1995). It is in fact an algebraic variety, i.e., it is described by polynomial equations in the matrix
entries (namely, it is the zero-set of all (r + 1) X (r + 1)-minors), and it is well known that the
dimension of M,. is r(m + n — r). Furthermore, for > 0, the variety M, has many singularities:
its singular locus is exactly M,_; C M,, the set of all matrices with rank strictly smaller than r.
We refer the reader to Appendix A.1 for more details on determinantal varieties.

3 MAIN RESULTS

In this section, we investigate the critical locus Crit(L) of general functions L : R% — R of the
form L = (o jg where ¢ : R%*d0 _ R is a (often convex) smooth map, and ;4 is the matrix
multiplication map introduced in (3). By studying the differential of 14, we will characterize pure
and spurious critical points of L. As previously noted, the image of pq is M, C R% *do where
r = min{d, }. In particular, we distinguish between two cases:

e We say that the map pq is filling if r = min{dy, dj, }, so M, = R *do_In this case, the
functional space is smooth and convex.

o We say that the map 14 is non-filling if r < min{dy, dj, }, so M, C R >0 js a determi-
nantal variety. In this case, the functional space is non-smooth and non-convex.

3.1 PROPERTIES OF THE MATRIX MULTIPLICATION MAP

We present some general results on the matrix multiplication map (4, which we will apply to linear
networks in the next subsection. These facts may also be useful in other settings, for example, to
study the piece-wise linear behavior of ReLU networks.

We begin by noting that the differential map of ;14 can be written explicitly as
dud(ﬁ)(Wh, RN Wl) = WhWh—l LW+ W}LWh—l Wi+ W W2W1. 4)

Given a matrix M € R™*", we denote by Row(M) C R™ and Col(M) C R™ the vector spaces
spanned by the rows and columns of M, respectively. Writing W~,; = W;,W;_; ... W;4; and
We; = W;_1W,;_1 ... Wi, the image of duq(0) in (4) is

R ® Row(Wep) + ...+ Col(Ws;) @ Row(Ws;) + ... 4 Col(Ws1) @ R%. (5)

From this expression, we deduce the following useful fact.

Lemma 3. The dimension of the image of the differential djg at 0 = (W, ..., W1) is given by

h h—1
tk(dpa(6)) = 3 k(W) -tk(Wei) = 3 rk(Wai) - tk(Weiga),

where we use the convention that W1 = 14, W~p, = 1, are the identity matrices of size do, dp.

We can use Lemma 3 to characterize all cases when the differential dug at 0 = (W), ..., W) has
full rank (i.e., when the matrix multiplication map is a local submersion onto M,.).

Theorem 4. Let v = min{d;}, 0 = (W, ..., W1), and W = 1q(0).
e (Filling case) If r = min{dy,dy}, the differential duq(0) has maximal rank equal to

dim M, = dpdy if and only if, for every i € {1,2,...,h — 1}, either tk(Ws;) = dj
or tk(We,11) = do holds.

o (Non-filling case) If r < min{dy,, do}, the differential duq(6) has maximal rank equal to
dim M,. = r(dy, + do — r) if and only if tk(W) = r.

Furthermore, in both situations, if rk(Wl: e < r, then the image of duq(0) always contains the
tangent space Tz M. of Mo C M, at W.
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We note that diq(6) has always maximal rank when tk(W) = r = min{d, }, however in the filling

case it is possible to obtain a local submersion even when rk(W) < r (see Example 19 in appendix).
We next describe the fiber of the matrix multiplication map, that is, the set

py W) ={(Wh,...,W1) | W =W, ... Wy, W; € REixdi-1},

It will be convenient to refer to u;l (W) as the set of d-factorizations of W. We are interested in
understanding the structure of ,u;l (W) since, as argued in Section 2.1, pure critical loci consist of
fibers of “critical functions”. The following result completely describes the connectivity of u;l (W).

Theorem 5. Let r = min{d;}. If tk(W) = r, then the set of d-factorizations ;"' (W) of W has
exactly 2° path-connected components, where b = #{i|d; = r, 0 < i < h}. Iftk(W) < r, then
' (W) is always path-connected.

3.2 APPLICATION TO LINEAR NETWORKS

We now apply the general results from the previous subsection to study the critical locus Crit(L)
with L = £ o j1q, where { is any smooth function. In the following, we always use r = min{r; } and
W = uq(0). The next two facts follow almost immediately from Theorem 4.

Proposition 6. If 6 is such that duq(0) has maximal rank (see Theorem 4), then 0 € Crit(L) if
and only if W € Crit(€|pm,.), and 0 is a minimum (resp., saddle, maximum) for L if and only if W
is a minimum (resp., saddle, maximum) for l|p,. If tk(W) = r (which implies that djq(0) has
maximal rank) and 6 € Crit(L), then all d-factorizations of W also belong to Crit(L).

Proposition 7. If § € Crit(L) with tk(W) = e < r, then W € Crit(f|pm,). In other words,
if tk(W) < r, then @ € Crit(L) implies that W is a critical point for the restriction of { to a
smaller determinantal variety M (which is in the singular locus of the functional space M, in the
non-filling case).

Note Lhat if d;, = 1, then either W = 0 or rk(W) = 1, and in the latter case Proposition 7 implies
that W' € Crit(€|gao\ fo1)- If £ is convex, we immediately obtain that all critical points (not just
local minima, as in Laurent & von Brecht (2017)) below a certain energy level are global minima.

Corollary 8. Assume that  is a smooth convex function and that d, = 1. If € Crit(L), then
either W = pgq(0) = 0 or 6 is global minimum for L.

Proposition 7 shows that critical points for L such that tk(W) < r correspond to critical points for £
restricted to a smaller determinantal variety. Using Lemma 2, it is possible to show that these points
are essentially always saddles for L.

Proposition 9. Let § € Crit(L) be such that tk(W) < r, and assume that d¢(W) # 0. Then,
for any neighborhood U of 0, there exists 0' in U such that ug(0') = W but 0’ ¢ Crit(L). In
particular, 0 is a saddle point.

Proposition 10. Let ¢ be any smooth convex function, and let L = { o pg. If 0 is a non-global local

minimum for L, then necessarily tk(W) = r (so 0 is a pure critical point). In particular, L has
non-global minima if and only if ¢| pm, has non-global minima.

This statement succinctly explains many known facts on the landscape of linear networks. For
example, we recover the main result from (Laurent & von Brecht, 2017), which states that when £ is
a smooth convex function and y4 is filling (r = min{dp,, dy}), then all local minima for L are global
minima: indeed, this is because M, = R% %% ig a linear space, so £| ¢, does not have non-global
minima. On the other hand, when 14 is not filling, the functional space is not convex, and multiple
local minima may exist even when ¢ is a convex function. We will in fact present many examples of
smooth convex functions ¢ such that I = £ o ug has non-global local minima (see Figure 3). In the
special case that £ is a quadratic loss (for any data distribution), then it is a remarkable fact that there
are no non-global local minima even when p4 is not filling (Baldi & Hornik, 1989; Kawaguchi,
2016). In the next section, we will provide an intrinsic geometric justification for this property.

Remark 11. In Laurent & von Brecht (2017), the authors observe that their “structural hypothesis”
(i.e., for us, the fact that the network is filling) is a necessary assumption for their main result,
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as otherwise critical points of ¢ might not lie in the functional space of the network. This last
observation however does not imply the necessity of the filling assumption, and indeed in the case
of the quadratic loss there are no local bad minima despite the fact M, C Ré»*do,

Finally, we conclude this section by pointing out that although the pure critical locus is determined
by the geometry of the functional space, the “lift” from function space to parameter space is not com-
pletely trivial. In particular, there is always a large positive-dimensional set of critical parameters
associated with a critical linear function W (all possible d-factorizations of W). More interestingly,
this set may be topologically disconnected into a large number of components that are all function-
ally equivalent (see Theorem 5). This observation agrees with the folklore knowledge that neural
networks can have many disconnected valleys where the loss function achieves the same value.

3.3 THE QUADRATIC LOSS

We now assume that £ : R%>*9: — R is of the form £(W) = |[WX — Y%, where X € R=xs
and Y € R%>s are fixed data matrices. As mentioned above, it is known that L = ¢ o 1aq has no
non-global local minima, even when 4 is non-filling (Baldi & Hornik, 1989; Kawaguchi, 2016).
In this section, we discuss the intrinsic geometric reasons for this special behavior.

It is easy to relate the landscape of L with the Euclidean distance function from a determinantal
variety (or, equivalently, to the problem low-rank matrix approximation). Indeed, we know from
Proposition 10 that L has non-global local minima if and only if the same is true for £| »,,. Further-
more, assuming that X X7 has full rank, we use its square root P = (X XT)"/? as a positive definite
matrix to derive

WX Y|P = (WX, WX)p = 2(WX,Y)r + (YY)
= (WP,WP)p —2(WP,YXTP N +(Y,Y)p
= |WP — Qol|* + const.,

where Qo = Y XTP~! and “const.” only depends on the data matrices X and Y. Hence, minimiz-
ing ¢(W) is equivalent to minimizing ||[W P — Qo||?. Since the bijection M,. — M,., W — WP
is also a bijective on the tangent spaces, it provides a one-to-one correspondence from the crit-
ical points of miny e, ||[WP — Qof? to the critical points of miny e, |[W — Qol/?. All in
all, studying the critical points of £|r4, is equivalent to studying the critical points of the function
hg,(W) = ||W — Qol|? where W is restricted to the determinantal variety M...

The function hq, (1) is described by following generalization of the classical Eckart-Young The-
orem. The formulation we prove is an extension of Example 2.3 in Draisma & Horobet (2014) and
Theorem 2.9 in Ottaviani et al. (2013). We consider a fixed matrix Qg € R%*% and a singular
value decomposition (SVD) Qo = UXV' T, where we assume ¥ € R%*% has decreasing diagonal
entries o1, . .., 0y, with m = min(d,, d,). Forany Z C {1,2,...,m} we write ¥z € R for
the diagonal matrix with entries 0z 1,...,07,, Where o7 ; = 0; if i € T and o7 ; = 0 otherwise.

Theorem 12. If the singular values of Qo are pairwise distinct and positive, hg,|m, has exactly
(T) critical points, namely the matrices Qz = UXzVT with #(I) = r. Moreover, its unique local
and global minimum is Q1 ... . More precisely, the index of Q7 as a critical point of hq,|m.. (i.e.,
the number of negative eigenvalues of the Hessian matrix for any local parameterization) is

index(Qz) = #{(j,9) € T xZI°| 5 > i}, where ¢ = {1,... ,m} \ T.

In the appendix we present a more general version of this statement without the assumption that
the singular values of ()¢ are pairwise distinct and positive. The surprising aspect of this result
is that the structure of the critical points is the same for almost all choices of (). We want to
emphasize that this is a special behavior of determinantal varieties with respect to the Euclidean
distance, and the situation changes drastically if we apply even infinitesimal changes to the quadratic
loss function. More precisely, any linear perturbation of the Euclidean norm will result in a totally
different landscape, as the following example shows (more details are given in Appendix A.2).

Example 13. Let us consider the variety M; C R3*3 of rank-one (3x 3)-matrices. By Theorem 12,
for almost all Qo, the function hg, | s, has three (real) critical points. Applying a linear change of

coordinates to R%*d= = Rdvds yields a different quadratic loss hg,. Using tools from algebraic
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Figure 2: Left: If V C R? is an ellipse, the distance function h,,(p) = ||p — ul|? restricted to V
generally has 2 or 4 real critical points, depending on whether u lies inside or outside the diamond-
shaped region bounded by the caustic curve. Right: If V C R? is a circle, then the caustic curve
degenerates to a point and the distance function generically has always 2 real critical points.

geometry, it is possible to show that for almost all linear coordinate changes (an open dense set),
the function hg,| a1, has 39 critical points over the complex numbers.® The number of real critical
points however varies, depending on whether () belongs to different open regions separated by a
caustic hypersurface in R3*3, Furthermore, the number of local minima varies as well; in particular,
it is no longer true that all ()¢ admit a unique local minimum. Figure 3 presents some simple
computational experiments illustrating this behavior.

For all determinantal varieties, the situation is similar to the description in Example 13. More
generally, given an algebraic variety VV C R”™ and a point v € R", the number of (real) critical points
of the distance function h,(p) = ||p — ul|? restricted to V is usually not constant as u varies: the
behavior changes when u crosses the caustic hypersurface, or ED (Euclidean distance) discriminant,
of V; see Figure 2. In the case of determinantal varieties with the standard Euclidean distance, this
caustic hypersurface (more precisely its real locus) degenerates to a set of codimension 2, which does
not partition the space into different regions. This is analogous to the case of the circle in Figure 2.

number of critical points
~

0 1 2 3 4 5
number of local minima
Figure 3: Real critical points and local minima for random choices of hg, |, as defined in Exam-
ple 13. The size of each disk is proportional to the number of instances we found with that number
of critical points and local minima. This shows that linear networks with a convex loss may indeed
have multiple non-global local minima. More details in Appendix A.2 (Table 2 and Experiment 1).

3.4 USING DIFFERENT PARAMETERIZATIONS: NORMALIZED NETWORKS

In the simple linear network model (2), the functional space M, C R% %90 is parameterized using
the matrix multiplication map pq. On the other hand, one can envision many variations of this
model that are network architectures with the same functional space but parameterized differently.
Examples include linear networks with skip connections, or convolutional linear networks. In this

3This means that the algebraic equations corresponding to the vanishing of the differential have exactly 39
complex solutions.
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subsection, we take a look at a model for normalized linear networks: these are maps of the form

Wh-1 Wi -
[Wh—all WAl

\IJ(H,LL‘):Wh QZ(Wh,...,Wl), (6)

where W; € R%*di-1 a5 before. This is a simple model for different types of weight normalization
schemes often used in practice. It is easy to see that the difference between (6) and our previous
linear network lies only in the parameterization of linear maps, since for normalized networks the
matrix multiplication map is replaced by

Wh_1 Wi
[Wh—all = WAl

vg: Q= RIWXdo (W W) = W =W,

where Q = {(Wp,...,W1)|W; #0,i =1,...,h — 1} C R%. According to our definitions, if
L = lopgand L' = Lovg are losses respectively for linear networks and normalized linear networks,
then the pure critical loci of L and L’ will correspond to each other (since these only depend on
the functional space), but a priori the spurious critical loci induced by the two parameterizations
may be different. In this particular setting, however, we show that this is not the case: the new
paramerization effectively does not introduce different critical points, and in fact makes the critical
locus slightly smaller.

Proposition 14. If L' = L o vg and L = { o ug, then the critical locus Crit(L") is in “correspon-
dence” with Crit(L) N Q, meaning that

{(va(0) 0" € Crit(L))} = {ua(0) |6 € Crit(L) N Q}.

4 CONCLUSIONS

We have introduced the notions of pure and spurious critical points as general tools for a geomet-
ric investigation of the landscape of neural networks. In particular, they provide a basic language
for describing the interplay between a convex loss function and an overparameterized, non-convex
functional space. In this paper, we have focused on the landscape of linear networks. This simple
model is useful for illustrating our geometric perspective, but also exhibits several interesting (and
surprisingly subtle) features. For example, the absence of non-global minima in the loss landscape
is a rather general property when the architecture is “filling”, while in the “non-filling” setting it is
a special property that holds for the quadratic loss. Furthermore, we have observed that even in this
simple framework global minima can have (possibly exponentially) many disconnected components.

In the future, we hope to extend our analysis to different network models. For example, we can
use our framework to study networks with polynomial activations (Kileel et al., 2019), which are a
direct generalization of the linear model. We expect that an analysis of pure and spurious critical
points in this context can be used to address a conjecture in Venturi et al. (2018) regarding the gap
between “upper” and “lower” dimensions in functional space. A geometric investigation of networks
with smooth non-polynomial activations is also possible; in that setting, the parameter space and
the functional space are usually of the same dimension (i.e., dg = dim(Mg)), however there is
still an interesting stratification of singular loci, as explained for example in (Amari, 2016, Section
12.2.2). General “discriminant hypersurfaces” can also be used to describe qualitative changes in
the landscape as the data distribution varies. Finally, extending our analysis to networks with ReLU
activations will require some care because of the non-differentiable setting. On the other hand, it
is clear that ReLU networks behave as linear networks when restricted to appropriate regions of
input space: this suggests that our study of ranks of differentials may be a useful building block for
pursuing in this important direction.
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A APPENDIX

A.1 DETERMINANTAL VARIETIES

We present some additional properties of determinantal varieties. For proofs and more details, we
refer the reader to Harris (1995). Given r < min(m, n), the r-th determinantal variety M, C R™*"
is defined as the set of matrices with rank at most 7:

M, ={P e R™*" | tk(P) < r} C R™*".

As mentioned in the main part of the paper, M, is an algebraic variety of dimension r(m +mn — ),
that can be described as the zero-set of all (r 4+ 1) X (r + 1) minors. For r > 0, the the singular
locus of M, is exactly M,_; C M,. Some of our proofs will rely on the following explicit
characterization of tangent space of determinantal varieties: given a a matrix P € R™*™ of rank
exactly r (so P is a smooth point on M,.) we have that

TpM, = R™ @ Row(P) + Col(P) @ R" C R™*".

We will also make use of the normal space to the tangent space Tp. M, at P, with respect to the
Frobenius inner product. This is given by

(TpM,)* = Col(P)* @ Row(P)™,
where Col(P)~+ and Row(P)* are the orthogonal spaces to C'ol(P) and Row(P), respectively.

A.2 EUCLIDEAN DISTANCE DEGREES AND DISCRIMINANTS

In this section, we informally discuss some algebraic notions related to ED (Euclidean distance)
degrees and discriminants. A detailed presentation can be found in Draisma et al. (2013). Given
an algebraic variety V C R" and a point © € R", the number of real critical points of the distance
function h,(p) = ||p — ul|? restricted to V is only locally constant as u varies. In general, the
behavior changes when u crosses the caustic hypersurface, or ED (Euclidean distance) discriminant,
of V. The ED discriminant can be defined over the complex numbers, and in this setting it is indeed
always a hypersurface (i.e., it has codimension one), however it can have higher codimension over
the real numbers. For instance, for a circle in the complex plane with the origin as its center, a point
(u1,u2) € C? is on the ED discriminant if and only if u? + u% = 0. This defines a curve in the
complex plane whose real locus is a point (see right side of Figure 2). By the Eckart-Young Theorem
(Theorem 12), the ED discriminant of the determinantal variety M,. is the locus of all matrices (g
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with at least two coinciding singular values, so it is defined by the discriminant of QoQg. As in the
case of the circle, the ED discriminant of M, has codimension two in R% Xz

Over the complex numbers, the number of critical points of the distance function h,, restricted to V is
actually the same for every point w € C" not on the ED discriminant of V. This quantity is known as
the ED degree of the variety V. For instance, a circle has ED degree two whereas an ellipse has ED
degree four (on the left side of Figure 2, points u outside of the caustic curve yield two real critical
points and two imaginary critical points). The Eckart-Young Theorem (Theorem 12) tells us that the
ED degree of the determinantal variety M, C R%*4= is (") where m = min(d,,d,). As argued
in the main part of the paper, this does not hold any longer after perturbing either the determinantal
variety or the Euclidean distance slightly, even using only a linear change of coordinates. For an
algebraic variety YV C C", a linear change of coordinates is given by an automorphism ¢ : C* —
C™. For almost all such automorphisms (i.e., for all ¢ except those lying in some subvariety of
GL(n,C)) the ED degree of ¢()V) is the same; see Theorem 5.4 in Draisma et al. (2013). This
quantity is known as the general ED degree of V. For instance, almost all linear coordinate changes
will deform a circle into an ellipse, such that the general ED degree of the circle is four.

In the above definition of the general ED degree, we fixed the standard Euclidean distance and per-
turbed the variety. Alternatively, we can fix the variety and change the standard Euclidean distance

| - | to dist, = [|¢(-)||. The new distance function hy, ,(p) = dist,(p — u)? from u satisfies
by (2(P)) = hid ) (@(P)) = heu(p). Hence, the ED degree of (1) with respect to the stan-
dard Euclidean distance distiq = || - || equals the ED degree of V with respect to the perturbed

Euclidean distance dist,,. In particular, the general ED degree of V' can be obtained by comput-
ing the ED degree after applying a sufficiently random linear change of coordinates on either the
Euclidean distance or the variety V itself.

As in the case of a circle, the general ED degree of the determinantal variety M,. is not equal to the
ED degree of M,.. Furthermore, there is no known closed formula for the general ED degree of M,
only involving the parameters d,, d,, and r. In the special case of rank-one matrices, one can derive
a closed expression from the Catanese-Trifogli formula (Theorem 7.8 in Draisma et al. (2013)): the
general ED degree of M is

dz+dy A (dzﬂ) (dyﬂ)
—1)5 (2%t t=s 1) (d, +dy, — s)! L
; (=D s+ dy =) ﬂz; (de — )!(dy — )
i<dy, j<d,

This expression yields 39 for d, = d, = 3, as mentioned in Example 13. For general r, formulas
for the general ED degree of M, involving Chern and polar classes can be found in Ottaviani et al.
(2013); Draisma et al. (2013). A short algorithm to compute the general ED degree of M, is given
in Example 7.11 of Draisma et al. (2013); it uses a package for advanced intersection theory in the
algebro-geometric software Macaulay?2 (Grayson & Stillman, 2019).

This discussion shows that the Eckart-Young Theorem is indeed very special. The intrinsic reason
for this is that the determinantal variety M,. intersects the “isotropic quadric” associated with the
standard Euclidean distance (i.e., zero locus of X7 ; + ...+ X7, in C%*%)in a particular way
(i.e., non-transversely). Performing a random linear change of coordinates on either M,. or the
isotropic quadric makes the intersection transverse. So the ED degree after the linear change of
coordinates is the general ED degree of M., and the Eckart-Young Theorem does not apply.

In summary, we have observed that the degeneration from an ellipse to a circle is analogous to the
degeneration from a determinantal variety with a perturbed Euclidean distance to the determinantal
variety with the standard Euclidean distance: in both cases, the ED degree drops because the situa-
tion becomes degenerate. Moreover, the ED discriminant drops dimension, which causes the special
phenomenon that the number of real critical points is almost everywhere the same.

Experiment 1. In general, it is very difficult to describe the open regions in R” that are separated by
the ED discriminant of a variety V C R™. Finding the “typical” number of real critical points for the
distance function h,, restricted to V, requires the computation of the volumes of these open regions.
In the current state of the art in real algebraic geometry, this is only possible for very particular
varieties V. For these reasons, and to get more insights on the typical number of real critical points
of determinantal varieties with a perturbed Euclidean distance, we performed computational exper-
iments with Macaulay?2 (Grayson & Stillman, 2019) in the situation of Example 13. We fixed the
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Table 2: Number of critical points (columns) and number of minima (rows) in our experiments

#(critical points)

1 3 5 7 9 11 13

1 0 476 120 1 0 0 o0

#(local 2 0 O 805 19 10 O0 O
minima) 3 0 O 0 228 116 21 O
4 0 5

0 0 0 16 12

determinantal variety M; C R3*3 of rank-one (3 x 3)-matrices. In each iteration of the experi-
ment, we picked a random automorphism ¢ : R3*3 — R3*3 and a random matrix Qg € R3*3. We
first verified that the number of complex critical points of the perturbed quadratic distance function
he,q, restricted to M, is the expected number 39. After that, we computed the number of real
critical points and the number of local minima among them. Our results for 2000 iterations can
be found in Table 2 and Figure 3. Although this is a very rudimentary experiment in an extremely
simple setting, it provides clear evidence that the number of local minima of the perturbed distance
function is generally not one.

Implementation details: We note that our computations of real critical points and local minima
involved numerical methods and might thus be affected by numerical errors. In our implementation
we used several basic tests to rule out numerically bad iterations, so that we can report our results
with high confidence. The entries of the random matrix () are independently and uniformly chosen
among the integers in Z = {—10,—9,...,9,10}. The random automorphism ¢ is given by a matrix
in Z°%® whose entries are also chosen independently and uniformly at random.

A.3 PURE AND SPURIOUS CRITICAL POINTS IN PREDICTOR SPACE

We illustrate a variation of our functional setting where the notions of pure and spurious can also be
naturally applied. We consider a training sample z,...,zx € R%,y,,...,yn € R (for notational
simplicity we use d,, = 1 but this is not necessary). We then write an empirical risk of the form

L(6) = g(Y(6),Y),
where Y (0) = (9(0,z1),...,8(0,2x)) € RY,Y = (y1,...,yn) € RN and g : RN xRN — Ris
a convex function. As @ varies, Y (6) defines a “predictor manifold” )) ¢ R”, which depends only
on the input data 1, . . ., 5, but not on . The function L(6) can be naturally seen as a composition

R% &y %R,

where 7(f) = Y (0) € V. We may now distinguish again between “pure” and “spurious” critical
points for L. In an underparameterized regime dy < N, or if the input data z;,...,xy is in
some way special, then )V C RY is a submanifold (with singularities), and critical points may
arise because we are restricting g to ) (pure), or because of the parameterization map 7 (spurious).
In a highly overparameterized regime dg > N (which is usually the case in practice), we expect
Y = R¥. This can be viewed as analogous to the “filling” situation described for linear networks in
this paper. In particular, all critical points that are not global minima for L are necessarily spurious,
since g|y = g is convex.

A.4 PROOF OF THEOREM 4

We first show Lemma 3 with help of the following general observation:
Proposition 15. Let Vit CV,t C ... C Vb and Vi” DV, D ... DV, be vector spaces with
dimensions v} == dim(V;") and r; := dim(V,”) fori = 1,..., h. Then we have

h h—1
dim (VP @ Vi) + (B @V )+ + (Vi eV)) =D rin = i
i=1 i=1

13
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Proof. We prove this assertion by induction on h. The base case (b = 1) is clear: dim(V;" ®
Vi) = riry. For the induction step, we set V := (V;* @ V") + ...+ (V;} , ® V,_ ). The key
observation is that the inclusions V;© C V;© C ... C V;F and V;” D V{ D ...D2V, imply that
Vn (V+ RV, )= Vh 1 ® V,". Hence, applylng the induction hypothesis to V we derive

dim (V+ (VifeV,)) = dlm( ) +dim(V;t @ V) —dim(V,;", @ V,))

h h—1
=D i =) i 0
i=1 i=1
Lemma 3. The dimension of the image of the differential djg at 0 = (W, ..., W1) is given by
h h—1

rk(dua(6)) = Y k(W) - tk(Wei) = Y k(W) - tk(Weip),
i=1 i=1
where we use the convention that Wy = 14,, Ws, = 14, are the identity matrices of size do, dp,.

Proof. The image of the differential dyg(6) is given in (5). Due to

Col(W) C Col(W1) C ... C Col(Wsp_1) = Col(Wp),
(N
Row(W) C Row(W.y) C ... C Row(W<2) = Row(Wy),

we can apply Proposition 15, which concludes the proof. [

Now we provide a proof for Theorem 4, starting from a refinement of the last statement.

Proposition 16. Let 7 = min{d;}, 0 = (Wp,, ..., W1), W = uq(0), and e = tkW. The image of
the differential dpq at 0 contains the tangent space TwrM. of M. at W. Furthermore, for every
W € M.\ M._1 there exists 0' such that puq(0') = W and the image of dpa(8') is exactly Ty M.

Proof. Due to (7) the image (5) of dugq(6) always contains R ® Row(W) + Col(W) ® R =
T37M.. Furthermore, there always exists (W, ..., W) € uy L(W) such that each W; has rank
exactly r and the containments in (7) are all equahtles For example, one way to achieve this is
to consider any decomposition W = UVT where U € R**" and V = R%*" and then set

Wy = [V 0|7, W), = [U]0],and W; = IT O] for 2 <4 < h—1, where I, is the (r x 7)-identity

matrix and the zeros fill in the dimensions (di X d;_1) of Wj. O

The next two propositions discuss the first part of Theorem 4, which distinguishes between the filling
and the non-filling case.

Proposition 17. Let r = min{d;} and 0 = (Wy,...,W1). In the non-filling case (ie., if r <
min{dy, do}) we have that rk(duq(0)) < dim M, if and only if rk(pq(6)) < r.

Proof. If rk(uq(0)) = r, then Proposition 16 implies that the image of the differential duq(0) is the
whole tangent space of M,. at 14(6). To prove the other direction of the assertion, we assume that
rk(uq(0)) < r. Since r < min{dy, do}, there is some i« € {1,...,h — 1} such that d; = r. We
view pq as the following concatenation of the matrix multiplication maps:

Rdhxdh,l X ... X Rdlxdo Hi,1 Rdhxd7 X Rd X do Hi,2 Rdhxdg (8)
where 151 = fi(d,,....d) X W(d,,....do) AN 2 = [i(d,.d;.do)- Since rk(uq(0)) < r, we have that

tk(Ws;) <rorrk(Wc;y1) <. Wlthout loss of generality, we may assume the latter. So applying
Lemma 3 to y; 2 and 6’ := p; 1 () yields

k(dpra(8)) < tk(dso(6)) = rk(Weir) (dn — Tk(Wss)) + rk(W )y
< r(dp —rk(Ws;)) + tk(Ws;)do = tk(Ws;) (do — r) + rdp,
<r(dy—r)+rd, =dim(M,). O
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Proposition 18. Let r = min{d;} and 6 = (Wy,...,W1). In the filling case (i.e., if r =
min{dp, do}) we have that tk(duq(0)) < dpdy if and only if there is some i € {1,...,h — 1}
with tk(Ws;) < dp and tk(We;41) < dp.

Proof. Let us first assume that rk(W~;) < dj, and rk(Wc;41) < dg for some i € {1,...,h —1}.
We view (4 as the concatenation of the matrix multiplication maps in (8). Applying Lemma 3 to
Hi2 and 0 := ,ui71(9) yields
rk(dpa(0)) < rk(dpi2(0') = tk(Weia) (dn — tk(Ws;)) + rk(Wsi)do
< dy (dh — I‘k(W>1)) + rk(W>Z-)d0 = dpdp.

Secondly, we assume the contrary, i.e., that every ¢ € {1,...,h — 1} satisfies rk(W~;) = dj, or
rk(W<;+1) = do. We observe the following 2 key properties which hold forall i € {1,...,h — 1}:

rk(W>i) =d, = Vji>i: rk(VV>J’) = dp,

. 9
I‘k(W<i+1) =dp = VJ <i: I‘k(W<j+1) = dp. ©)

We consider the index set Z := {i € {1,...,h — 1} | tk(W<;41) = do}. If Z = 0, our assumption
implies that rk(Ws;) = dp, forevery i € {1,...,h}. So due to Lemma 3 we have

h h—1
rk(d,ud(e)) = dh Z I‘k(W<,‘) - dh Z I‘k(W<i+1) = dhrk(W<1) = dhdo.
i=1 i=1

If Z # 0, we define k := maxZ. So foreveryi € {k +1,...,h — 1} we have tk(W<,;11) < do,
and thus rk(Ws;) = dj, by our assumption. Moreover, due to (9), every j € {0,...,k} satisfies
rk(Wc,;11) = do. Hence, Lemma 3 yields

k h
rk(dpa(0)) =Y tk(Ws;)do + dndo + Y dprk(Wey)
j=1 i=k+2
k h—1
= rk(Wsj)do — Y durk(Weigr) = dudo. O
j=1 i=k+1

Example 19. According to Proposition 18, the differential of the matrix multiplication map is sur-
jective whenever rk(1W) = r, but also for certain § when rk(1W) < r. For example, let us con-
sider the map fi(2,20) : R**? x R?*2 — R?*? and the two factorizations § = ([} 1],[§9])

and ¢ = ([19],[§4]) of the rank-one matrix [} 1]. According to Proposition 18, the differen-
tial dyi(2,2,2)(0) has maximal rank 4. So it is surjective, whereas dyi(2,22)(6") is not. In fact, by
Lemma 3, we have rk(dp 2,2y (6')) = 3.

Theorem 4. Let v = min{d,}, 0 = (W, ..., W1), and W = i4(0).
e (Filling case) If r = min{dy,do}, the differential duq(0) has maximal rank equal to
dim M, = dypdy if and only if, for every i € {1,2,...,h — 1}, either tk(Ws;) = dj
or I'k(W<Z‘+1) = do holds.

o (Non-filling case) If r < min{dy,,dy}, the differential djq4(0) has maximal rank equal to
dim M, = r(dy, + do — r) if and only if tk(W) = r.

Furthermore, in both situations, if rk(Wl: e < r, then the image of duq(0) always contains the
tangent space Ty M of Mo C M at W.

Proof. This is an amalgamation of Propositions 16, 17 and 18. O

A.5 PROOF OF THEOREM 5

In the following we use the notation from Theorem 5:
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Theorem 5. Let r = min{d;}. If k(W) = r, then the set of d-factorizations j;* (W) of W has
exactlLZb path-connected components, where b = #{i|d; =r, 0 <i < h}. If tk(W) < r, then
' (W) is always path-connected.

We also write GL™ (r) for the set of matrices in GL(r) with positive determinant. Analogously, we
set GL™ (r) := {G € GL(r) | det(G) < 0}.

We first prove Theorem 5 in the case that b = 0. To show that ,uc_tl(W) is path-connected in this
case, we show the following stronger assertion: given two matrices W and W' of arbitrary rank and
factorizations 6 € p;' (W) and 0 € p ' (W), each path in the codomain of j4 from W to W’ can
be lifted to a path in the domain of pg from 6 to 6.

Proposition 20 (Path Lifting Property). If b = 0, then for every W, W' € R% % every § €
g (W), every ' € uy'(W') and every continuous function f : [0,1] — R%*% with f(0) = W
and f(1) = W', there is a continuous function F : [—1,2] — Rév>dn—1 x x R *de sych that
F(-1)=0, F(2) =0, pa(F(t)) = W forevery t € [—1,0], ua(F(t)) = W' for every t € [1,2]
and pq(F(t)) = f(t) foreveryt € [0,1].

Proof. Without loss of generality, we may assume that d,, < d. Then the assumption b = 0 means
thatd; > d, foralli =1,...,h — 1.

We prove the assertion by induction on k. For the induction beginning, we consider the cases h = 1
and h = 2. If h = 1, then pq4 is the identity and Proposition 20 is trivial. For 1 = 2, we construct
explicit lifts of the given paths. We first show that there is a path in u; ' (W) from 6 = (W, W1) to
some (Bsg, By) such that Bs has full rank.

Claim 1. Leth = 2, W € R%*d= and (W, Wy) € pg'(W). Then there is (Ba, By) € puy* (W)
with rk(Bs) = d,, and a continuous function g : [0,1] — " (W) such that g(0) = (W, W) and
9(1) = (Bz, By).

Proof. If tk(W>) = d,;, we have nothing to show. So we assume that s := rk(Ws) < d,. Without
loss of generality, we may further assume that the first s rows of W5 have rank s. As s < dy, we find

a matrix G € GL ™ (d;) such that W»G = [JIVS} 8} , where Iy € R**¢ is the identity matrix and M €
R(% =55 Since GL™(d,) is path-connected, there is a continuous function ¢} : [0, 1] — GL"(d;)
with ¢} (0) = I, and g} (1) = G. Concatenation with GL(d;) — ;" (W), H = (WoH, H~'W7)

yields a continuous path gy in p ;' (W) from (W, Wy) to (WoG, G™1W7).

Since (W2G)(G~1W;) = W, we see that G~1W; = [Wﬁ)} where W,y € R**% is the first
s rows of W and N € R(4—9)xd=  Replacing N by an arbitrary matrix N’ still yields that
WaG {MJ/\;?)} = W. Hence, we find a continuous path g in ugl(W) from (WoG,G~1W) to

(W26, By = |70 ).

Finally, we can replace the 0-columns in W5G' by arbitrary matrices M; € R**(41=%) and M, €
R(®y =% (d1=9) quch that [ 47 170 ] By = W still holds. In particular, we can pick M; = 0 and

My = [Ia,-s 0] such that By := Hjl ]32} has full rank d,,, and we find a continuous path g3 in

g (W) from (W2G, By) to (B, By). Putting g1, g» and g3 together yields a path g as desired in
Claim 1. &

As By has full rank, we find a matrix H € GL¥(dy) such that BoH = [Ia, 0]. As in the
proof of Claim 1, we construct a continuous path in p;* (W) from (B, By) to (BoH, H™'By).
Since H™'B; = [¥] for some N € R(41~d)xds we also find a continuous path in p;* (W)
from (BoH, H 'Bj) to (BoH,[%W]). All in all, we have constructed a continuous path F} in
py (W) from (Wa, W1) to ([, 0], [%W]). Analogously, we find a continuous path Fj in z;* (W’)
between (W3, W7) and ([74, 0], [W']). Finally, we define Fp : [0,1] — Révxd x RAxds
t > ([1ay 0], [f g) |) such that putting F}, F and Fj together yields a path F as desired in Propo-
sition 20.
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For the induction step, we view 4 as the concatenation of the following two matrix multiplication
maps:

Riyxdno1 s Rixde P X pa sdypdyxd, Hy et pd, xd,

We consider 0 = (W, ..., Wi)and ¢ = (W;,... , W{),aswellas W1 = Wy, ---Woand W, | =
W} ---Wj. Given apath f : [0,1] — R%>*de from W = W~ W; to W' = W., W/, we apply the
induction beginning (h = 2) t0 f1(4, 4, ,4,) to get a path Fy : [=0.5,1.5] — R > x Rhxd= gych
that Fy(—0.5) = (Way, Wh), Fa(1.5) = (W21, W1), jid, ar.a.) (Fa(t)) = W forall ¢ € [—0.5,0],
H(d, .dy.d) (F2(t)) = W' forall t € [1,1.5] and p(q, a,,4,)(F2(t)) = f(t) forall t € [0, 1]. Now we
apply the induction hypothesis on 14, ... 4,) and the path from W~ to W. , given by the first factor
of Fy. This yields a path Fy : [~1,2] — R%wv>Xdn-1 x  x R¥%Xd with [y (1) = (W, ... Ws),
F1(2) = Wy, - W), fqay,....dn) (F1(t)) = Wiy forall t € [=1, —0.5], puqay,....ay) (F1(t)) = W,

for all ¢ € [1.5,2] and ju(q,,.....q,)(F1(t)) is the first factor of Fy(t) for all t € [~0.5,1.5]. This

.....

allows us to define a continuous path F' : [~1,2] — R%Xdn-1 x  x R4 from 6 to §' by
setting F'(t) = (Fy(¢),Wy) forall t € [—1,—-0.5], F(t) = (F1(t), W7) for all t € [1.5,2] and for
all t € [—1,—0.5] we let F'(t) consist of F; () and the second factor of Fy(t). O

Corollary 21. Ifb = 0, then ;" (W) is path-connected for each W € R%* =,
Proof. Apply Proposition 20 to the constant function f : [0, 1] — R%>d= ¢ s T, O

Now we study the case b > 0. We write 0 < ¢; < ... < 4, < h for those indices i; such that
d;; = r. Then we view 4 as the concatenation of the following two matrix multiplication maps:

’ : . .
RE&Xdnt 5 x R 0 Relyxdsy o Ry X iy o R Xde 22, Ay (1)

where 111 = (o) X F(diy oy ) XXy odo) and p12 = pi(d,.d di, .d,)- Applying the
path lifting property described above to the map f1, we will show in Proposition 26 that 5 W)
and ugl(W) have the same number of (path-)connected components. So it remains to study the

connected components of 15 L(W). We can shortly write the map 5 as

gy

b—1
Lo : Rdyxr X (Rrxr) % R'rxdz Rddez.

In the case that tk(TV) = r, we use the following natural action of GL(r)? on puy  (W):

GL(r)" x py (W) — py ' (W),

_ _ 1D
((Gb, ceey Gl), (Ab+1, A ,Al)) — (Ab+1Gb, Gb 1Abi_1, ey G1 1A1) .

In fact, we show now that p15 L(W) is the orbit of any element under this action if k(W) = r. From
this we will deduce in Corollaries 23 and 24 that y; ' (W) is homeomorphic to GL(r)® and thus has
2" (path-)connected components if the matrix W has maximal rank 7.

Proposition 22. Let b > 0 and 0 = (Apy1,..., A1) € RIWX" x (R™7 x R4 sych that
W = u(0) has maximal rank r. Then py ' (W) is the orbit of 6 under the action defined in (11),
ie,

)bfl

,u;l(W) = {(Ab+1Gb, G;lAbi,h ey G;lAl) ‘ Gl, c. ,Gb c GL(T‘)} .

Proof. One inclusion, namely “2”, is trivial. We prove the other inclusion “C” by induction on b.

For the induction beginning (b = 1), we write W = [%; %;;] where W11 € R™*". Without loss of

generality, we may assume that rk(W7;1) = r. Similarly, we write Ay = [ﬁ;;] and A1 = [A11 Az
where A;; € R™*" fori = 1,2. For (A}, A}) € py (W), we write analogously A} = [3%1}
22
and A} = [A4};, A}, ]. Due to rk(W11) = r, we have that rk(Ag;) = r = rk(A4%;). Hence, there
is a matrix G € GL(r) such that A}, = Ao G. This implies that Ay GA; = Wi = As1Aqa,
SO Alll = G_1A11. Due to Ag1 A1 = Wip = AQlGAllg, we get that A/12 = G_1A12. Finally,
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I"k(Wll) =T 1mphes that rk(Au) =17,8S0 A22A11 = W21 = A/22G_1A11 shows A/22 = AQQG.
Thus we have shown that A, = A>G and A} = G71A;.

For the induction step (b > 1), we consider (4; ,,...,A}) € p;'(W) and As; =
Appr--Ag, AL, = A, -+ Ay € R%*". Now we can apply the induction beginning to
find G; € GL(r) such that AL, = A.;G; and A} = G7{'A;. As A’ has rank r and

pr1 Ay = ALy, = Apyp1---(A2Gy), we can apply the induction hypothesis on the map
which multiplies the left-most b matrices. This yields Gy,...G2 € GL(r) such that A} | =

Ap1Gy, .. Ay = G T A3Gy, Ay = Gy (AGh). O

Corollary 23. Ifb > 0 and W € R%*% has maximal rank r, then s 1(W) is homeomorphic to
GL(r)®.

Proof. We fix 0 = (Apy1,..., A1) € py'(W). The map ¢ : GL(r)® — u;*(W) given by
the action (11) on 6 is continuous. We now construct its inverse. As rk(W) = r, we have
that rk(A;) = r forall ¢ = 1,...,b + 1. Without loss of generality, we may assume that the
first  rows of Ay, have rank r. We write 7 : R%*" — R™" for the projection which for-
gets the last d, — r rows of a given matrix. For 6’ = (A, ,,...,A]) € py L (W), Proposi-
tion 22 shows that 8/ = ¢(Gy,...,G1) for some (Gy,...,G1) € GL(r)’. So we have that
Gy = m(Aps1) " m(A) 1), Goo1 = A} 'GuA;, ... Gy = A7 ' G2 A}, which defines a map

b py (W) — GL(r)",
( ;7+17"'aA/1)'—>(G( 27-&-1)’ Ab_lG( ;7—',-1) ;77 "'7A2_1"'AZ)_1G( ;7+1)A;7A/2)7

where G(A], ) := m(App1) 'm(A) ). By construction, ¢ is the inverse of ¢. Since ¢) is contin-
uous, it is a homeomorphism between y; * (W) and GL(r)°". O

Corollary 24. Ifb > 0 and W € R%*% has maximal rank r, then 1(W) has 2° connected
components. Each of these components is path-connected.

Proof. The group GL(r) has two connected components, namely GL™ () and GL ™ (7). Both com-
ponents are path-connected. Hence, GL(r)® has 2° connected components, each of them path-

connected. By Corollary 23, the same holds for 5 * (). O

To complete our understanding of the connected components of 115 L(W), we consider the case that
the matrix W € R% >4+ does not have maximal rank r. In that case, it turns out that 15 * (W) is path-
connected, which we show by constructing explicit paths between any two elements of 15 ! (W).

Proposition 25. Let W € R%*%_ Ifb > 0 and vk(W) < r, then py ' (W) is path-connected.

Proof. We write W = {%1 } where W; € R"*% _and denote by e the rank of W. If rk(W1) = e,

2
then Wo = MW for some M € R(dv—7)%7,
Claim?2. Ifb =1, (Ay, Ay) € py '(W), 1k(W1) = e and W4 = MW, then there is a continuous
function f : [0,1] — us * (W) with f(0) = (As, A1) and f(1) = ([]IVH W),

Proof. Since tk(W) < r, we have that rk(Az) < 7 orrk(A;) < 7. If rk(A2) < 7, we proceed as
in the proof of Claim 1 to find a path in u5 * (W) from (Ag, A1) to (A%, A}) such that rk(A%) = 7.

Hence, we may assume that tk(As) = 7. This implies that tk(A4;) = e. So K := ker(AT) C R"
has positive dimension r — e. We write Ay = [‘22; | where A1 € R™", and denote by r the rank
of As;. So the rowspace R C R” of As; has dimension 7. We now show that K + R = R". To
see this we set 6 := dim (K N R). Without loss of generality, we may assume that the first e rows of
W are linearly independent. Then the first e rows of Ay, must also be linearly independent, so we
might further assume that the first o rows of Ag; are linearly independent. We denote by A21; and

W11 the matrices formed by the first 7o rows of As; and Wi, respectively. In particular, we have
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that Ao A7 = W1;. Now we choose a basis (b1, .. ., b, ) for R such that (by, . .., bs) is a basis for
K NR. Since R is the rowspace of As11, there is some G € GL(r3) such that the i-th row of GAs11

is b;. So the first § rows of GW1; = G Az A; are zero, which shows that e = tk(GW11) < 79— 6.
Thus, dim(K + R) = (r — e) + ro — § > r, which proves that K + R = R".

If 7, < 7, we now show that there is a path in uy ' (W) from (Ay, A;) to (AY = {ﬁéﬂ , A1)

such that rk(A%,) = r. We may assume again that the first 7o rows aq, . .., a,, of Ag; are linearly
independent, i.e., that they form a basis for R. Since K + R = R", we can extend this basis to a basis
(ai,...,a,) for R" such that a; € K for all i > ro. We define AY; such that its first ro rows are
ai,...,ar, and such that its i-th row, for ro < ¢ < r, is the sum of a; € K and the i-th row of As;.

Then A} = [‘25;] satisfies A A; = W. Moreover, the straight line from (Ag, A;) to (44, Ay) is a
pathin g ! (W) Since the last » — r5 rows of A,y are contained in the linear span R of the first ry
rows of Aaq, the linearity of the determinant implies that det(A%;) = det([a1 - ar]) # 0.

Thus, we may assume that ro = r. If det(A2;) < 0, we now construct a path in y; ' (W) from
(A2, Ap) to (A = [ﬁgﬂ , A1) such that det(A%]) > 0. For this, we pick a vector v € K \ {0}.

Since the rows of Ay; form a basis for R”, there is an index ¢ € {1,...,7} such that the matrix
D € R™ " obtained from As; by replacing its i-th row with v has full rank. We pick x4 € R such
that det(Az21) + pdet(D) > 0 and define A} to be the matrix obtained from Ay; by adding pw to

its i-th row. Then det(A%;) = det(Az;) + pdet(D) > 0 and Ay = {‘2,2'{} satisfies A5’ A; = W.
Moreover, the straight line from (A, A;) to (A4’, A;) is a path in py ' (W

from I, to G yields a path in uy ' (W) from (Ag, A1) to (42G, G~ A;) = ] W1). Since
(ApeG)W, = Wy = MW, the straight line from ([A22G] 1) to [ T} 1) is a path in
py H(W). ¢

)-
Therefore, we may assume that det(A21) > 0,50 G := Ay' € GL*(r). A path in GL™(r)
(

Claim 3. 1If 0 = (Apyi1,..., A1) e py (W), tk(W1) = e and Wy = MW, then there is a
continuous function F' : [0, 1] — py ' (W) with F(0) = 6 and F(1) = ([ 2], I,,...,1,,W1).

Proof. Ase < r, atleast one of the A; has rank smaller than r. We set k& := min{i € {1,...,b+1} |
rk(A;) < r}. If k < b+ 1, we first show that there is a path in z5 ' (W) from 6 to (Ayiy,---5 AY)
such that min{i € {1,...,b+ 1} | rk(A}) < r} = b+ 1. Since rk(Ak) < r, the rank of
W = Apy1 Ay is smaller than r. We write W' = [w; WQ] where W1 has r columns. Without
loss of generality, we may assume that rk(W’l) = rk(W ). Then there is a matrix N such that
W; = W;N . Hence, we can apply the transposed version of Claim 2, which yields a path from
(Ag41, Ag) to (Wlp [1. N])in the set of factorizations of W . Defining Apyr = W'l, Ap, = [1. N|
and A; := A; foralli € {1,...,b+4 1} \ {k,k + 1}, extends this path to a path in ;' (W)
from 6 to (Apy1,..., A;) such that min{i € {1,...,b+ 1} | tk(4;) < r} = k + 1. We note
that this construction increased the number k. So we can repeat the construction until we reach
(Ayi1,- -5 Al) as desired.

Hence, we may assume that & = b + 1. Since rk(Ap+1) < 7, the rank of w'o.= App1Ap is
smaller than 7. We write W = {%},} where W’ll has r rows. Since W; = W;’Ab_l S Ay

and the matrices A,_1, ..., A1 have rank r, we have that tk(W,) = k(W) = e. Analogously,
tk(W") = e. So there is matrix M’ such that W, = M'W,. Applying Claim 2 yields a path
from (Apt1, Ap) to ([M,
path in p5 (W) from 6 to 0" := ([ Ir ] Wll/, Ap—1,...,A1). Applying the same construction on
W" .= W/ Ay_y yields a path in p5 " (W) from 6’ to 6" := ([M,] I, Wi Ay_1,...,A1). We
repeat the contruction until ([M/] I ,Ir,Wl) is reached. Since M'W,; = Wy = MW, the

]{/},] vy L, W) o ([52] Ly .. 1., W) is a path in pg ' (W). &

] W'{) in the set of factorizations of W . This path can be extended to a

straight line from (|
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Now we finally show that 5 L(W) is path-connected. Without loss of generality, we may assume
that tk(W;) = e, and we write Wo = MW ;. For 0,60 € puy ' (W), there are paths in i, * (W)
from 6 resp. 6’ to ([ 1], 1,,...,1,,W1), so there is a path from § to 6" in pu5 ' (W). O

To settle the proof of Theorem 5, it is left to show that u; ' (W) and ;' (W) have indeed the same
number of (path-)connected components, as we promised earlier.

Proposition 26. Let b > 0 and W € R4 Then ;' (W) and py ' (W) have the same number
of connected components. Moreover, each of these components is path-connected.

Proof. Let us denote the connected components of fi5 L(W)be Ci,...,Cy. By Corollary 24 and
Proposition 25, each of these components is path-connected. Using the notation in (10), we have
that ;' (W) = Ule py H(Cy). Since the u*(Ch), ..., uy*(Cy) are pairwise disconnected, we
see that 117" (W) has at least k disconnected components. It is left to show that each pj ' (C;) is
path-connected. For this, let 0,0 € u;*(C;) and o := p1(0),0" = p1(0') € Ci. As Cj is
path-connected, there is a path in C; from o to ¢’. The map i is a direct product of b + 1 matrix
multiplication maps. To each factor we can apply Proposition 20, which yields a path in ul_l(C’,-)
from 6 to ¢’. O

Corollary 27. Letb > 0 and W € Ré%v*de. If yk(W) = r, then pu;' (W) has 2° connected

components, and each of these components is path-connected. If tk(W) < r, then uy' (W) is
path-connnected.

Proof. Combine Corollary 24 and Propositions 25 and 26. O
Proof of Theorem 5. Theorem 5 is an amalgamation of Corollaries 21 and 27. [

A.6 PROOFS OF PROPOSITIONS 6, 7,9, 10 AND 14

Proposition 6. If 0 is such that duq(0) has maximal rank (see Theorem 4), then § € Crit(L) if
and only if W € Crit(f|pm,.), and 0 is a minimum (resp., saddle, maximum) for L if and only if W
is a minimum (resp., saddle, maximum) for l|p,.. If tk(W) = r (which implies that duq(0) has
maximal rank) and 0 € Crit(L), then all d-factorizations of W also belong to Crit(L).

Proof. If jq is a local submersion at 6 onto M., then there exists an open neighborhood U of W
in M, and an open neighborhood V' of 6§ with the property that ;14 acts as a projection from V
onto U (see, e.g., (Lee, 2003, Theorem 7.3)). From this, we easily deduce that § is a minimum (resp.
saddle, maximum) for L if and only if W = 114(6) is a minimum (resp. saddle, maximum) for £| o4, .
Finally, if rk(TW) = r, then dj14(f) has maximal rank for all § € ' (W) by Theorem 4. O

Proposition 7. If 0 € Crit(L) with tk(W) = e < r, then W € Crit({|p1,). In other words,
if tk(W) < r, then 6 € Crit(L) implies that W is a critical point for the restriction of £ to a
smaller determinantal variety M (which is in the singular locus of the functional space M, in the
non-filling case).

Proof. According to Theorem 4, if uq(0) = W with tk(W) = e, then Im(duq(6)) D> TyMe.
This means that § € Crit(L) implies that W is critical for £| o4, . O

Proposition 9. Let 0 € Crit(L) be such that tk(W) < r, and assume that dé(W) # 0. Then,

for any neighborhood U of 0, there exists 0' in U such that ug(0') = W but ' ¢ Crit(L). In
particular, 0 is a saddle point.

Proof. Our proof is a modification of an argument used in Zhang (2019). Let us first consider the
case that ug is filling, so r = min{dp,, dp}. Without loss of generality, we assume r = dy. Recall
that the image of duq(0) is given by

R ® Row(Wep) + ...+ Col(Ws;) @ Row(Ws;) + ... 4+ Col(Ws1) @ R%.
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We first note that Row (W) # R%, for otherwise djuq(f) would be surjective, implying that
dO(W) = 0. We define i = max{j | Row(W<;) = R%},s01 < i < h (writing W1 = I,). We
have that
dU(W)(Col(Ws;) @ Row(W;)) = dé(W)(Col(Ws;) @ R¥) = 0. (12)
Since Row(W.;41) C R%, we may find w; € R% w; # 0 such that w] W;...W; = 0. We now
fix € > 0 and v;; € R%+! arbitrarily, and define V~Vi+1 = Wit1 + €(vit1 ® w;). Clearly, we have
that Wy, Wi ... Wy = Wi Wi ... Wi If (Wh,..., Wiy, Ws,..., W) is also a critical point
of L, then
AW (Col(Wh, ..., Wiy1) @ R%®) = 0. (13)
Combining (12) and (13), we have that

dé(W)(COl(W}L, ceey Wi+2(’UZ‘+1 ® ’U)l)) ® Rdo) =0.
If this were true for all v, 1, then it would imply
dO(W)(Col(Wy, ..., Wiis) @ R%) = 0. (14)

Hence, we have either found an arbitrarily small perturbation 6’ of  as required in Proposition 9,
or (14) must hold. In the latter case, we reapply the same argument for Wi+2 = Wiso + €(vi12®
w;+1) where w; 1 # 0 and wiTJr1Wi+1 ...W1 = 0. Again, we can either construct an arbitrarily
small perturbation 6’ of @ as required in Proposition 9, or we have d¢(W)(Col(Ws12) @ R%) =
0. Proceeding this way we eventually arrive at d¢(W)(R% @ R%) = 0 so d/(W) = 0, which
contradicts the hypothesis. Thus, at some point we must find an arbitrarily small perturbation 6 of ¢
as required in Proposition 9, which concludes the proof in the case that 4 is filling.

We now consider the case that g is not filling. We pick ¢ € {1,...,h — 1} such that d; = r, and
write for simplicity A = W), ... W;41 and B = W; ... W;. The assumption rk(W) < r implies
that rk(A) < r or rk(B) < r, and we assume without loss of generality that rk(A4) < r. We define
the map Lg(Wy,... , W/, ) = (W} ... W/, ,B). We also introduce the map {p(A’) = {(A'B)
and the matrix multiplication map pq, where d4 = (dp,...,d;11), sothat Lg = {g o pg,. If 6
is a critical point for L, then 04 = (W, ..., W,;;1) must be a critical point for Lp. We are thus
in the position to apply the analysis carried out in the filling case. In particular, we have that either
6 4 can be perturbed to 64 such that g, (04) = pa,(04) but 04 ¢ Crit(Lp), or dlg(A) = 0. In
the former case, we have that 8’ = (64, 0p) is not a critical point for L, and we are done. If instead
d¢p(A) = 0, then we have that

d{(W)(R™ @ Row(B)) = 0,

because the image of the differential of the map A’ + A’B is given by R @ Row(B). We
now proceed in a similar manner as before. We have that Col(W-~;) C R% because we assumed
that W~; = A had rank less than 7 < dj. Thus, we may find w;1; € R%, w;; # 0 such that
W ... Wipiw;r1 = 0. We fix e > 0 and v; arbitrarily, and define W; = W,;+¢(w; 11 ®v; ). We have
that Wy, ... Wip 1 W; = Wy, ... Wi, W;. If for all choices of v; we have that (W, ..., W;, ..., W)
is still a critical point for L, then we can deduce that

dO(W) (R @ Row(W;_1 ... W1)) = 0.
Repeating this reasoning, we obtain our result as before.
O

Proposition 10. Let ¢ be any smooth convex function, and let L = £ o pq. If 0 is a non-global local

minimum for L, then necessarily tk(W) = r (so 0 is a pure critical point). In particular, L has
non-global minima if and only if | p, has non-global minima.

Proof. The first statement follows immediately from Proposition 9: if § € C'rit(L) is a non-global
local minimum, then necessarily d¢(W) # 0, and we conclude that k(W) = r. For the second
statement, we observe that if £ is a convex function, then 6 is a local minimum for L if and only if
W = uq(0) is a local minimum for | o, . Indeed, if W = 14(0) is a local minimum for £| o4, then
it is always true that any 6 € ,u;l(W) is a local minimum. Conversely, if 6 is a local minimum,
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then from Proposition 9 we see that either d¢(W) = 0, in which case W is a (global) minimum
because ¢ is convex, or W must have maximal rank. In the latter case, dug(0) would be surjective
(by Theorem 4), so W would also be a local minimum for £| pm,. (see Proposition 6). Finally, it is
clear that 6 is also a global minimum for L if and only if W is a global minimum for £| vy, . O

Proposition 14. If L' = L o vg and L = { o pg, then the critical locus Crit(L') is in “correspon-
dence” with Crit(L) N Q, meaning that

(va(8) |0 € Crit(L')} = {pa(0) |0 € Crit(L) N QY.

Proof. Let us define

Wh_1 Wy
p:Q—)Rdg,(Wh,...,Wl)H(Wh, )
W1l [W|
Wh_1 W
q:Q—=RY (Wy,..., W) — (Wh||Wh_1|| A, s ) .
|Wh—1|| (W1l

The image of both of these maps is N = {(Wp,..., W) [|W;]] = 1,¢ = 1,...,h —1}. In
fact, both maps are submersions onto N. Since vg = g op and g 0 ¢ = pdalo = va o g, itis
enough to show the following two assertions: 1) 8’ € Crit(L’) if and only if p(6') € Crit(L); and
2) 0 € Crit(L) N Q if and only if ¢(0) € Crit(L').

For 1), we deduce from L' = L o p that dL'(0") = dL(p(¢’)) o dp(6') = 0 if dL(p(#')) = 0,
but this also holds conversely: if dL'(6’) = 0, then I'm(dp(0’)) is contained in Ker(dL(p(68"))).
Since ¢ o p = p and both maps p and ¢ are submersions, we have that Im(dp(0')) = T, N =
Im(dq(p(6’))). Now it follows from L o ¢ = L|q that dL(p(6")) = dL(p(0")) o dg(p(8")) = 0. For
2), we can argue analogously, exchanging the roles of L and L’ as well as p and q. O

A.7 PROOF OF THEOREM 12

We consider a fixed matrix Qg € R% *?= and a singular value decomposition (SVD) Qo = ULV T
Here U € R% > and V € R% * %= are orthogonal and > € R% 9 is diagonal with decreasing di-
agonal entries 01, 09, . . ., 0y, Where m = min(d,, d,). We also write shortly [m] = {1,2,...,m}
and denote by [m], the set of all subsets of [m] of cardinality . For Z € [m],, we define X7 €
R9*d= to be the diagonal matrix with entries o7 1,072, ..,07 ., Where o7; = o; if i € T and
oz; = 0 otherwise. These matrices yield the critical points of the function hg, (P) = ||P — Qo|?
restricted to the determinantal variety M.

Theorem 28. If Qo ¢ M., the critical points of ho,|m, are all matrices of the form USzVT

where Qo = USV T is a SVD and T € [m),.. The local minima are the critical points with T = [r].
They are all global minima.

Proof. A matrix P € M, is a critical point if and only if (Qg — P) € TpM;}- = Col(P)* ®
Row(P):. If P =31, of(u; @ vj) and Qo — P = 375, o (uf © v/) are SVD decompositions
with o} # 0 and o # 0, the column spaces of P and Qo — P are spanned by the v} and u7,
respectively. Similarly, the row spaces of P and Qo — P are spanned by the v} and v;-’ , respectively.

So P is a critical point if and only if the vectors u}, u;»’ and v}, vg/ are orthonormal, i.e., if

Qo=P+(Qy—P) = Zo;(u; Q) + Zg;’(u;( ®v;/)

i=1 j=1

is a SVD of Q. This proves that the critical points are of the form UX7V 7T where Qo = UXV T is
aSVDand Z € [m],.

Since hq, (USZVT) = [[USup\zVTI? = [IZpmpz]l® = gz 07, We see that the global minima
are exactly the critical points selecting r of the largest singular values of Qo, i.e., with Z = [r]. It is
left to show that there are no other local minima. For this, we consider a critical point P = Ux,vT
such that at least one selected singular value o; for ¢ € T is strictly smaller than o,. We will show
now that P cannot be a local minimum. Since o; < o, there is some j € [r] such that j ¢ Z. As
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above, we write uy, and vy, for the columns of U and V7 such that Qy = Sy ok (up®@uy) and P =

> kez Ok(ur ® vi). We consider rotations in the planes spanned by u;, u; and v;, v;, respectively:
for a € [0, %], we set u(® = cos(a)u; + sin(a)u; and v(®) = cos(a)v; + sin(a)v;. Note that
u(® = u; and u(3) = u;; analogously for v(®). Next we define o(*) = cos?(a)o; + sin*(a)o; and

P, = Z ok (up ® vg) + ol (u(“) ® v(“)> e M,.
keZ\{i}

We note that Py = P and Pz = UEI\{i}U{j}VT are both critical points of hg, | m,.-
It remains to show that hq, (Py) as a function in « is strictly decreasing on the interval [0, 7]. From

hqo(Pa) = 1D on(ur ® vi) + 0i(u; ® v;) — o () @ v())|2

k¢
and u(®) ® v(®) = cos?(a)(u; @ v;) + cos(a) sin(a@)(u; ®@ v; +uj ® v;) + sin®(a)(u; @ v;), we
deduce that
2
hoo(Pa) = Z 0%+ (oi — @ COSQ(OZ)) +2 (U(O‘) cos(a) sin(a))
KET ket

= Z o + 02 +20;(0; — 0;) cos?(a) — (0 — ;)% cos*(a).
k¢ T k)

2 2

+ (Uj — o sinz(a))

The graph of the function f(x) = 02 +20; (O'g' —0;)x—(0j—0;)%a?, forz € R, is a parabola with a
unique local and global maximum at xy = —<—. Since zy > 1, the function f is strictly increasing

a'jfai'

on the interval [0, 1]. Hence, hq, (Pa) = > jez 1z o+ f(cos®(a)) is strictly decreasing on [0, 5],
which concludes the proof. O

If the singular values of Q¢ are pairwise distinct and positive, the singular vectors of () are unique
up to sign. So for each index set Z € [m], the matrix Q7 = UX7V 7 is the unique critical point of
hqe|m, whose singular values are the o; for ¢ € Z. Hence, Theorem 28 implies immediately the
following:

Corollary 29. If the singular values of Qo are pairwise distinct and positive, hg,|m, has exactly
(") critical points, namely the Q7 = U7V for T € [m],. Moreover, its unique local and global

T
minimum is Q).

We can strengthen this result by explicitly calculating the index of each critical point, i.e., the number
of negative eigenvalues of the Hessian matrix.

Theorem 30. If the singular values of Qo are pairwise distinct and positive, the index of Q1 as a
critical point of hq, | m,. is

index(Qz) = #{(j,1) € T x ([m]\ 1) |j > i}.

To prove this assertion, we may assume without loss of generality that d, < d,, som = d,. We may
further assume that Qo is a diagonal matrix, so Qo = X. Let (4, r,a,) : Ry *7 « R7Xda _y RdyXda
be the matrix multiplication map, and L = hs 0 4, r.4,)- For (A, B) € u(_di’r_’dm) (¥1), Theorem 4

implies that the condition ¥7 € Crit(hx|am, ) is equivalent to dL(A, B) = 0. Moreover, the
number of negative eigenvalues of the Hessian of L at any such factorization (A, B) of X7 is the
same. This number is the index of 7. So we can compute it by fixing one specific factorization
(A, B) of X7.

To compute the Hessian of L at (A, B), we compute the partial derivatives of first and second order
of L:

0L
8@1']‘

oL
8[71‘]‘

=2[(AB-%)B"], .,

]

=2[AT(AB - %)

ij?
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PL (0 Lifi £k s
aaijaakl—{ BB, ,ifi=k (15
PL [0 Jifj #1
Db, ;Obyy { AT Ay, ifj=1" (16)
L 2aybjy Jifj Ak 7
8aij8bk.l_{ 2 (amby + [AB —ly) | ifj =k 1n

To assemble these second order partial derivatives into a matrix, we choose the following order of
the entries of (A, B):

A11yeeeyQlpy A21y- .y A2py ooy adyl,...,adyr, b11a~";b7“1a b12,...,b7«2, ey bldm7~-~7brdm~

We denote by H the Hessian matrix of L with respect to this ordering at the following specifically
chosen matrices (Ag, Bp): denoting by 41,1, ..., %, the entries of Z in decreasing order, we pick
the j-th column of Ay to be the 7;-th standard basis vector in R% and the j-th row of By to be the
oi;-multiple of the i;-th standard basis vector in R4 . Note that AyBy = X7, AOTAO = I, is the
7 X r-identity matrix, and ByB{ is the r x r-diagonal matrix with entries 07,07 , ..., 07 . We write

— D M rdy Xrdy rde XTdy rdy Xrds
H[MT N}’ where D € R ,NeR ,MeR .

Our first observation is that IV, whose entries are described by (16), is twice the identity matrix,
so N = 2[4, . Similarly, we see from (15) that D is a diagonal matrix. According to our fixed
ordering, the entries of D are indexed by pairs (ij, kl) of integers i,k € [d,] and j,I € [r]. With
this, the diagonal entries of D are D;; ;; = 202-2]_ . Analogously, the entries of M are indexed by pairs
(ij, kl) of integers i € [dy], 7,k € [r] and | € [d,].

Lemma 31. Leri € [dy] and j € [r]. The ij-th row of M has exactly one non-zero entry. If i € Z,
there is some k € [r] with i = iy, and the non-zero entry is Mj r;; = 20;,. Otherwise, so if i & T,
the non-zero entry is M;; ;; = —20;.

Proof. The entries of M are given by (17). We first observe that (Ag);x(Bo);; is non-zero if and
only if ¢ = iy and | = 4;. Moreover, we have that (Ag);,x(Bo);i, = 03,. Similarly, [Ag By — X]i
is non-zero if and only i = | ¢ Z. For i ¢ T we have that [A¢By — X];; = —0;.

Now we fix ¢ and j and consider the ij-th row of M. We apply our observations above to the
following three cases.

If i = i, then M;; 1; is non-zero if and only if £ = j and [ = <. In that case, M;; ;; = 20;.

If i € Z, but ¢ # i;, then there is some n # j such that ¢ = 4,,. Now M;; 1, is non-zero if and only
if k =nand ! = i;. In that case, M;; ki, = 20;;.

Finally, if ¢ ¢ Z, then M 11 is non-zero if and only if £ = j and [ = 4. In that case, we have that
Mij,ji = —20'7;. O

Corollary 32. The square matrix A := MM7T € R"%*" s q diagonal matrix. Fori € [d,] and
j € [r], its ij-th diagonal entry is A;j ;; = 401-2], ifi € Tand N;j;; =402 ifi ¢ T.

Proof. The computation of the diagonal entries follows directly from Lemma 31. To see that all
other entries of A are zero, we need to show that no column of M has more than one non-zero entry.
So let us assume for contradiction that the kl-th column of M has non-zero entries in the 7j-th row
and in the z7-th row for (i, 7) # (3,7).

If i,7 € Z, then Lemma 31 implies ¢ = i, = 7 and i; = | = 43, which contradicts (i, j) # (,7).
If 4,7 ¢ Z, we see from Lemma 31 that j = k = jand ¢ = [ = 7, which contradicts (4, j) # (7,7).
Finally, if ¢ € Z and 7 ¢ Z, then Lemma 31 yields that 7 = [ = t; € Z; a contradiction. O

Corollary 33. The characteristic polynomial of H is

(t — 2)7ld==dul 47" . [T E-202+0)" I TI#-2tlo; +1)+4(cF —0D)). (18)

keZ i€m)\Z j€L
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Proof. Using Schur complements, we can compute the characteristic polynomial of H as follows:
xu(t) = det (tl,a, +a,) — H)
= det (tI,q, — 2Iyq,)det ((tI;q, — D) — M(tl,q, — 2L,q,) ' MT)
= (t —2)"% det ((tIra, — D) — (t —2)7'A)
= (t —2)"== %) det ((t — 2)(tlq, — D) — A).
By Corollary 32, the matrix (¢ —2)(t/,q, — D) — A is a diagonal matrix whose ij-th diagonal entry

is (t — 2)<t — Dij,ij) — Aij,ij- We write shortly (51‘j = Aij,ij and use the identity Dij,ij = 20’?7 to
further derive ‘

wt) = (=27 T (0= 200 -202) - 5,

= (t-2 “d-“HH(tQ Ho?, +1) + (407, — )
= (t — 2)"(dah) HH((thJ +1))>
ieT j=1

II H (2 = 2t(02 +1) +4(03, — oB))

i€ld,\Z j=1

The latter equality was derived by substituting specific values into the §;; according to Corollary 32.
Rearranging the terms of this last expression of x g (¢) yields (18). O

Lemma 34. Let x,y > 0. The polynomial f(t) = t* — 2t(x + 1) + 4(z — y) has two real roots and
at least one of them is positive. Moreover, f(t) has a negative root if and only if x < y.

Proof. The roots of f(t)arex + 14 \/(z +1)2 —4(z —y) =z + 1 & /(x — 1)2 + 4y. So the

discriminant is positive and f(t) has two real roots. Clearly, one of these is positive. The other one
is negative if and only if z + 1 < \/(z — 1)2 + 4y, which is equivalent to (z + 1) < (z — 1)? + 4y
and thus to z < y. O

Proof of Theorem 30. 1t is left to count the number of negative roots of the univariate polyno-
mial (18). All the linear factors of (18) have non-negative roots. The ¢7-th quadratic factor of (18),
fori € [dy]\Z and j € Z, has at most one negative root due to Lemma 34. Moreover, it has exactly
one negative root if and only if o'j < 02, which is equivalent to j > i. Hence, the polynomial (18)
has exactly #{(j,i) € Z x [d,] \ Z | j > i} many negative roots. O

Theorem 12. If the singular values of Qo are pairwise distinct and positive, hg,|m, has exactly
(T) critical points, namely the matrices Qz = UXzV T with #(I) = r. Moreover, its unique local
and global minimum is Q{1 ... ,y. More precisely, the index of Q1 as a critical point of hq,|am, (i-e.,
the number of negative eigenvalues of the Hessian matrix for any local parameterization) is

index(Qz) = #{(j,9) €T xZI°| 5 > i}, where T¢ = {1,...,m} \ T

Proof. This is an amalgamation of Corollary 29 and Theorem 30. O
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