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We present new results on the analytic eccentricity dependence of several sequences of gravitational
wave flux terms at high post-Newtonian (PN) order for extreme-mass-ratio inspirals. These sequences are
the leading logarithms, which appear at PN orders x*log*(x) and x3**3/2logk(x) for integers k > 0 (x is a
PN compactness parameter), and the subleading logarithms, which appear at orders x*log"!(x) and
x33/210g%=1 (x) (k > 1), in both the energy and angular momentum radiated to infinity. For the energy flux
leading logarithms, we show that to arbitrarily high PN order, their eccentricity dependence is determined
by particular sums over the function g(n, e,), derived from the Newtonian mass quadrupole moment, that
normally gives the spectral content of the Peters-Mathews flux as a function of radial harmonic n. An
analogous power spectrum §(n, ¢;) determines the leading logarithms of the angular momentum flux.
For subleading logs, the quadrupole power spectra are again shown to play a role, providing a
distinguishable part of the eccentricity dependence of these flux terms to high PN order. With the
quadrupole contribution understood, the remaining analytic eccentricity dependence of the subleading logs
can, in principle, be determined more easily using black hole perturbation theory. We show this procedure
in action, deriving the complete analytic structure of the x°log(x) subleading-log term and an analytic
expansion of the x/? subleading log to high order in a power series in eccentricity. We discuss how these
methods might be extended to other sequences of terms in the PN expansion involving logarithms.
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I. INTRODUCTION

With gravitational wave observations of merging com-
pact binaries by LIGO and Virgo [1,2] now routine,
researchers look forward to the LISA mission [3,4] and
eventual detection of new classes of events, such as
extreme-mass-ratio inspirals (EMRIs) that involve a stellar
mass black hole (u ~10 M) spiraling toward a super-
massive black hole (M ~ 10% M). For EMRIs the small
mass ratio € := u/M < 1 serves as a perturbation param-
eter, allowing the Einstein equations to be solved in an
expansion in powers of . In this black hole perturbation
theory (BHPT) approach, the backreaction on the small
body’s motion requires calculation of the regularized
gravitational self-force (GSF) [5]. Recent progress in this
area has included first-order long-term inspiral calculations
[6,7] of EMRIs with a nonspinning primary and calculation
of the first-order GSF for generic orbits about a spinning
(Kerr) primary [8].

Post-Newtonian (PN) theory, alternatively, is best
suited for wide orbits and slow orbital motions v/c < 1,
or equivalently for small (dimensionless) orbital frequen-
cies, where x == ((m; + m,)Q,,)** < 1) is a compactness
parameter [9]. Peters and Mathews [10,11] were the first to
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calculate eccentric binary evolution subject to gravitational
radiation at lowest PN order (i.e., quadrupole radiation).
Modeling general orbits is important, as EMRIs are expected
to have moderate to high eccentricities [12—14]. For non-
spinning compact binaries, the gravitational wave phase has
now been calculated to 3PN order [15-17] for eccentric
orbits and 3.5PN order [18] for quasicircular orbits. The
equations of motion have been extended to 4PN order
(see [2] for a review).

These two approaches to the two-body problem overlap
for EMRIs that are early in an inspiral, and considerable
research has proceeded in recent years cross-checking
results from the two techniques (thus far almost exclusively
at first order in the mass ratio) and uncovering the PN
expansion of BHPT/GSF quantities. Initially, analytic
terms in the PN expansions were determined through
inspection of accurate BHPT/GSF numerical results. The
earliest example of this procedure was the recognition that
47 matched the numerical coefficient seen in BHPT
calculations [19] of the 1.5PN tail in the energy flux for
circular orbits, with the result being separately confirmed
theoretically [20,21]. Later, starting with Detweiler [22],
efforts were made [23-34] to identify analytic terms in
the PN expansion for gauge-invariant quantities in the
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conservative GSF sector, such as the redshift invariant u’.
Similar progress has been made in finding analytic coef-
ficients at high PN order for the fluxes from circular orbits
[35-37] and eccentric orbits [38,39].

Part of these efforts involved development of extreme
high-accuracy (e.g., hundreds of decimals of accuracy)
BHPT and GSF MATHEMATICA calculations [27,29,37,39]
centered around use of the MST (Mano-Suzuki-Tagasuki)
analytic function expansion formalism [40—42]. Numerical
results from different orbital radii (as well as eccentricity
[39]) are fitted to the form of an expected PN expansion to
determine coefficients numerically. Then, the high accuracy
of the floating point numbers allows an integer relation
algorithm (PSLQ) [43] to ferret out the underlying rational
and transcendental numbers that make up these coefficients.
It was subsequently realized that MATHEMATICA codes
might directly calculate [31,44-48] the PN expansion of
the MST solutions and store and output massively long
expressions for BHPT/GSF quantities for arbitrary orbital
parameters, rather than evaluate numerical values for
specific orbits. The results in this paper were in some cases
checked and in other cases derived by using both a high-
precision numerical MST code and a new all-analytic code.

The present paper and one being written contempora-
neously [49] concern the analytic form of the PN expansion
for gravitational wave fluxes to infinity from eccentric
nonspinning EMRIs. Drawing upon an earlier effort [39],
the companion paper [49] significantly extends the analytic
understanding of energy flux between 3.5PN and 9PN
order, as a simultaneous expansion in PN order and powers
of the eccentricity e, and presents the equivalent explication
of angular momentum flux. This paper focuses on two
subsets of PN terms called leading logarithms [50] and
subleading logarithms and uses a mix of PN analysis and
examination of BHPT results to provide a theoretical
understanding of the eccentricity functional dependence
of these logarithmic terms.

Leading logarithms are a sequence that appear at PN
orders x*logk(x) and x¥*+3/2logk(x) for integers k > 0.
(Here and henceforth in this paper PN order in the fluxes
refers to order relative to lowest order quadrupole radiation.)
Leading logs are defined as those terms in which a new
power of log(x) first appears at either an integer or half-
integer PN order. (Note that this expands on the usage
in [50], which referred only to the integral sequence in their
renormalization group construction since those terms cap-
ture a set of UV divergences.) To be specific, new powers of
log(x) appear at integer PN orders {0, 3, 6,9, ...}, with the
Peters-Mathews flux formally leading off this sequence.
At half-integer PN orders, leading logarithms occur at
orders {3/2,9/2,15/2, ...}, which begins formally with
the 1.5PN tail.

As we show in this paper, the theoretical understanding
of the whole sequence of these terms is entirely bound
up in the Fourier spectrum of the trace-free (Newtonian)

mass quadrupole moment tensor, /;;(¢). Let the Fourier
0,
ics of the Newtonian orbital frequency. The leading (Peters-
Mathews) quadrupole flux is proportional to the sum over n

amplitudes of this tensor be /;;’, where n denotes harmon-

of n®|I l(j) |?. From these terms we can remove factors of the
reduced mass and semimajor axis to form a dimensionless
function g¢(n,e,) = n6\lg;7)|2/(16/42a4) that serves as a
power spectrum for the quadrupole radiation. [The function
g(n, e,) is defined more completely in Sec. II, along with
differences in definitions of eccentricities like ¢,.] The sum
over n of the spectrum g(n,e,) yields the well-known
Peters-Mathews enhancement function, originally called
f(e;) but here called Ry(e,),
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It turns out that a different sum over the power spectrum
g(n, e,) gives rise to the eccentricity enhancement function
¢(e,;) for the 1.5PN tail [51] and its relative energy flux

R3/2(€t)’

[oe]

Rspa(e;) = dngp(e;) = 4”ZE

1.2
27 (1.2)

g(n.e,).

The next sum of this type, over (n/2)%g(n,e,), produces
another well-known eccentricity enhancement function,
F(e,), that is proportional to the 3PN log energy flux term
Rs; (e;) [15]. Note that these three terms are the first three
elements in the leading-logarithm sequence. Furthermore,
in the full PN analysis [9], each of these fluxes only occurs
at lowest order in the mass ratio.

A new result in this paper is to show that the eccentricity
dependence of the entire leading-logarithm sequence,
which is lowest order in the mass ratio, can be understood
in terms of the following sums over powers of n/2 that
weight the Newtonian mass quadrupole power spectrum

g(n.e,):

rie)=3(5) atn.eo (13)

n=1

(1.4)

oute) = (5) " otoneo

These sums give the eccentricity enhancement functions for
integer and half-integer leading-log terms, respectively. We
have then used BHPT calculations to verify all or part of the
eccentricity dependence of the first 15 elements in the
leading-logarithm sequence.
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However, the role of the power spectrum g(n,e,) is
not confined to merely the leading-logarithm sequence.
We show further that the spectrum contributes two
essential parts of the eccentricity dependence of each
subleading logarithm, which are the fluxes that appear at
integer PN orders x* logc~!(x) and half-integer PN orders
x3+3/210gk=1(x) for k> 1. For a given k, part of the
integer-order subleading logarithm can be demonstrated
to depend upon the associated leading-log enhancement
function T (e;) and the corresponding (k) sum from the
added sequence

Ae(er) = i(g) “ log (g) gn.e,).

n=1

(1.5)

Similarly, for a given k, part of the half-integer-order
subleading log is proportional to the leading-log enhance-
ment function ©,(e,) and part is proportional to the
corresponding sum in the sequence

E(e,) = f:(g) " oe (g) g(n.e)).  (1.6)

The remaining behavior of the subleading-logarithm terms
can (in principle) be determined by BHPT calculations. As
far as we can determine, the coefficients on T(e,) and
Ay (e;) [or ©;(e,) and E;(e,)] within the subleading logs
soak up the appearance of transcendental numbers. The
remaining eccentricity dependence in the subleading logs
appears to only involve rational number coefficients.
Finally, we note that everything said here about energy
fluxes has a mirror behavior in angular momentum fluxes.
The layout of this paper is as follows. We first discuss in
Sec. II the general form of the PN expansion for the energy
and angular momentum fluxes radiated to infinity. We then
go on in that section to review how the Newtonian mass
quadrupole moment [;; gives rise to the quadrupole
radiation power spectrum g(n, e,) and how it determines
not only the leading Peters-Mathews flux but also the
1.5PN tail contribution and the 3PN log term (the first
appearance of a logarithm in the PN expansion of the flux).
In Sec. III we use g(n, e;) to derive the sums that express
the eccentricity dependence of the entire class of leading
logarithms, giving specific examples for (9/2)L, 6L.2, 9L3,
and 12L*PN orders. Section IV discusses the subleading
logarithms, presenting the conjectured appearance of the
Newtonian quadrupole spectrum in these fluxes. We then
|

dr 5

o0

show specific subleading-log examples at 9/2 and 6L. PN
orders, where BHPT results [49] can be combined with the
PN analysis to determine the eccentricity dependence of the
entire 6L PN term and of a lengthy power series expansion
for the 9/2 PN term.

Throughout this paper we use units in which c = G = 1.
In discussing energy and angular momentum fluxes, there
arise various pairs of directly comparable functions. To
distinguish a function in the angular momentum sector, we
use a tilde, e.g., g(n, ¢,), while leaving the base symbol
bare, e.g., g(n, e,), for the energy counterpart. This notation
is in keeping with that of [15-17].

II. RECURRING APPEARANCE OF THE MASS
QUADRUPOLE IN MULTIPLE PN
CONTRIBUTIONS TO GRAVITATIONAL
RADIATION AT INFINITY

A. Post-Newtonian expansion of fluxes:
General form for eccentric orbits

We consider the post-Newtonian series for gravitational
radiation at infinity. Take two nonspinning bodies, a pri-
mary of mass m; and a secondary of mass mi,, in a bound
eccentric orbit. In the extreme-mass-ratio limit we have
m, < my. We utilize a PN representation with three
(dimensionless) parameters: the previously mentioned
compactness parameter x := ((m; + m,)Q,)*3, the sym-
metric mass ratio v = mm,/(m; + m,)?, and (in modified
harmonic gauge) the quasi-Keplerian time eccentricity
e, [9]. Here, Q, is the mean azimuthal orbital frequency.

In general, the parameters x and e, can only be known in
terms of other quantities, such as the energy E and angular
momentum J of the orbit (or vice versa), as precisely as the
(current) PN expansion of the equations of motion. In 2004
[52], the quasi-Keplerian representation for the orbit was
extended to 3PN order. More recently, progress on the self-
consistent center-of-mass equations has allowed explicit
calculation of the conservative motion, and given definition
to x, for example, to 4PN for circular orbits [53]. For
eccentric orbits the fluxes in the dissipative sector are
known as expansions in x to 3PN relative order, with half-
integer terms appearing in the series starting at x>/2 [51].

1. Energy flux

In terms of these parameters, the (orbit-averaged) energy
flux is expected to have a PN expansion of the following
form [9,35,36,50]:

dE 32
< > =V [Ro + xRy + PRy p 4+ X2Ry + X2 Rs s + x3(Rs + Ry log(x)) + xRy

+ x*(Ry 4+ Ry log(x)) + x9/2(R9/2 +log(x)Roor.) + x*(Rs + log(x)Rsy) + x“/z(Ru/z +log(x)Ry1/21)

+ x%(Re + log(x)Rey, + log?(x)Rer2) + x13/2(R13/2 +log(x)Riz) + -+,

(2.1)
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where each R; is (in general) a function of e, and v. Since
we are principally interested in the overlap between PN
theory and BHPT, at first order in the mass ratio each R;
can be evaluated at v = 0. In this paper, these functions
will thus simply be taken as depending on e, alone:
R; = R;(e,). Each such function is known to diverge as
e; — 1. Because the Peters-Mathews function [10] R(e;)
has the limit Ry = 1 as e, — 0, the prefactor in the above
expansion is simply the Newtonian (quadrupole) circular-
orbit energy flux, which can be further reduced to
(32/5)1*(m; +m,)°/a’ in terms of the semimajor axis
a in the Newtonian limit.

In PN derivations, a distinction is often made between
instantaneous and hereditary contributions to the flux that
alternately or simultaneously appears at different PN
orders. The hereditary terms depend on the entire history
of the system (see, for instance, [9]). However, when BHPT
is applied to wide orbits, the flux terms (at lowest order in
the mass ratio) that emerge in a subsequent PN expansion
are a sum of instantaneous and hereditary parts, as the
method does not generally distinguish between the two
(though see Sec. IV E for more discussion and for cases
where some distinction is possible). With this in mind, in
this paper we simply use R;(e,) at each order in x to
represent the sum of both instantaneous and hereditary
contributions.

One route often taken in BHPT calculations is to work in
the frequency domain and evaluate the self-force, at lowest
order in the mass ratio, using a geodesic in the background
spacetime. For a nonspinning primary, geodesics are

|

computed in Schwarzschild spacetime using (typically)
Schwarzschild coordinates. Bound eccentric orbits are
frequently described by the relativistic Darwin [54,55]
eccentricity e and (dimensionless) semilatus rectum p.
When this approach is applied to wide orbits, a PN
expansion can be derived, typically using the alternate
compactness parameter y := (m;Q,)?/3. Expansions in this
form were made in an earlier paper [39] in this series (and
used [49] in a companion paper). When y and e are used,
the PN expansion of the energy flux is similar in form to
(2.1) except now the flux functions L£;(e) depend on
Darwin e. While the parameters (y, e) can be expressed
in terms of (x, e,) through expansions that begin with y =
x(1=2v/3+O@1?)) and e = ¢,(1 + 3x + O(v, e,, x%)), it
is clear that, in general, £;(e) # R;(e;). Exceptions are
when order i terms emerge purely from Newtonian quan-
tities. For most of the present paper, we opt to use (x, ¢;)
and the standard PN expansion in the form (2.1). However,
the £;(e) notation will reappear in Sec. IV, when our PN
derivations are combined with BHPT numerical results to
extract the full L¢; term.

As mentioned in the Introduction, a leading-logarithm
term is defined as one in which a new higher power of
log(x) first appears, at both integer and half-integer
PN orders. New powers of log(x) appear at integer PN
orders {0,3,6,9, ...}, which includes the Peters-Mathews
term that has log’(x). New powers of log appear at half-
integer PN orders {3/2,9/2,15/2, ...}. Thus, the leading-
logarithm portion of the series (2.1) has the form

dE\ 32
<E> =V’ X°[Ry + X3/2R3/2 + xlog(x) Ry, + x°/2 log(x)Rg o1 + x°log?(x) Rz

5

[Se]

+ xls/zlogz(x)Rls/sz + x"log’ (x)Ror3 + - - |-

One of the principal results of this paper, as we will show in
Sec. I1I, is that the analytic eccentricity dependence of this
entire infinite sequence can be determined in a straightfor-
ward fashion using the Newtonian mass quadrupole.
Integer-order terms will in fact yield closed-form expres-
sions, while half-integer-order terms will yield infinite
convergent expansions in e, that can be rapidly generated

|

(2.2)

[
to arbitrary order. Because of the origin of these terms, a
side effect is that we have R}-(e,) = LI (e) for every term

in (2.2).
2. Angular momentum flux

The angular momentum flux has a similar expected PN
expansion

dL 32
<E> = gl/z(m] + m2)x7/2[20 + XZ] + X3/ZZ3/2 + XZZQ + .X'S/QZ5/2 + x3(Z3 + Z3L IOg(.X)) + X7/227/2

+x* (24 + Z4 log(x)) + x9/2(29/2 +log(x) Zy)ar) + x°(Z5 + log(x) Zs.) + xll/z(zu/z +1og(x)Z41)21)

+ x8(Z6 + log(x) Z¢1 + l0g*(x) Ze12) + x'32 (2150 +10g(x) Z13/01) + -,

(2.3)
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where again each Z; is generally a function of both ¢, and
v. At first order in the mass ratio we will simply take
Z; = Z(e,), and these terms are meant to combine both
instantaneous and hereditary contributions. The leading-
logarithm series in this case has the same form as (2.2) but
with the substitutions (32/5)1%x> = (32/5)v* (m, +my)x"/?
and R — Z.

In both fluxes, the eccentricity functions at any given PN
order can be derived from time derivatives (and potentially
integrals) of mass and current multipole moments of the
system. In general, higher PN order requires higher multi-
pole moments, and their derivatives and PN corrections.
The lowest-order multipole moment that appears in these
fluxes is the trace-free part of the Newtonian (OPN) mass
quadrupole moment, /;;, found through calculation on a
Newtonian orbit. It is from this tensor that R, [10] and
Z, [11] were first derived. At 1PN in the fluxes, the OPN
mass octupole and current quadrupole moments appear, as
well as the 1PN correction to the mass quadrupole (which
entails quadrupole moment calculation on a precessing
1PN orbit) [9]. In turn, at 2PN in the fluxes, the OPN mass
hexadecapole and current octupole appear, as well as 1PN
corrections to the mass octupole and current quadrupole
and the 2PN correction to the mass quadrupole.

In this paper, we determine PN flux content that is
generated exclusively by the OPN mass quadrupole.
However, it is not difficult to see that extending the
procedures outlined here to higher multipole moments
and their PN corrections will yield additional analytic
pieces of comparable depth in other terms in the PN
expansion. Such an exploration at the 1PN correction level
has in fact been successful, and results will be reported in a
subsequent paper.

B. Quadrupole moment and the Kepler problem

We briefly review the calculation of the Newtonian
quadrupole to derive functions that are essential for the
rest of the paper. The analysis starts with the Kepler motion
problem for bound, elliptical orbits and uses the Fourier
series expansion for its time dependence. The masses are
constrained to the x—y plane, and the relative motion is
described in terms of polar coordinates r = r(f) and
¢ = @(t) for the separation and azimuthal angles, respec-
tively. Because our preferred time eccentricity e, reduces to
the usual Keplerian eccentricity at OPN order, r and ¢ can
simply be given by

~a(l-e})

" 1+e,cosp’ r

where M = m| + m,.

Summing over the two bodies, the gravitational wave
fluxes will be obtained from the components of the trace-
free mass quadrupole tensor,

I, = pr’cos’qp — ur*/3,
Iy =1, = pr*singcos g,
I, = pr’sin’p — ur?/3,

I..=—ur’/3. (2.5)
Here p = m;my/M 1is the reduced mass of the system,
and r and ¢ are evaluated as functions of some curve
parameter. A convenient choice is the eccentric anomaly
u = arccos((a — r)/ae,), which yields

1
I, = g,uaz(l + 5e? — 8e,cosu — (e? — 3) cos2u),

I, =1, =pa*\/1—ef(cosu—e,)sinu,

1
I, = gmﬂ(l —4e? + 4e,cosu + (27 — 3) cos 2u),

1
I, = —gluaz(e, cosu —1)2.

(2.6)

Since the tensor components (2.6) are all periodic
functions of u (or f), each can be written as a Fourier
series. Following the discussion of Arun [15], we write

I” = Z Il(»;l)einl, (27)
n=-—oo
where / ,(j") is the nth Fourier component of /;;, and [ is the
mean anomaly of the motion
) 2n
l:u—e,SIHLt:T—(t—tp):Qr(t—tp). (2.8)

r

Here T, is the radial libration period, Q, the radial angular
frequency (equal to €, in the Newtonian limit), and 7 the
time of periastron crossing. The Fourier components are
derived from

"= i/2”1"(“(1))6‘"”611- (2.9)
L 27 Jo o

The Fourier series coefficient integrals are taken over
mean anomaly (or time), while the quadrupole moment
components are sinusoidal functions of u. We can evaluate
these integrals in several ways, but the easiest is to write
them in terms of u,

" 1 2r
/)

lj e Z A Iije_in(u_e’ Sinu)(l bl et COS u)du.

(2.10)

Once the various circular functions have been recast as
complex exponentials, Eq. (2.10) will reduce to a sum of
Bessel integrals [56] of the form
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1

2
e—tpu+tx51nudu =J (x).
2z 0 17( )

(2.11)

Then these are simplified using Bessel function identities
(see [10,51] for a similar derivation) to obtain

" 2 _ 3 1— 2
1~ 2 [ =3 (e + 1= J@(ne»}
3n“e

t ne;

1=

2iv/T—\[ 1-¢? 1

e (P ) [ g )+ e
ne, e, n

(n) 3 —2¢? l1—e7 }
1 :2/4a{ J,(ne,) — Ju(ne;)|,
W e (ne,) , (ne,)
n 2Jn
1 = ya® 322) (2.12)

C. Power spectra g(n.e,) and g(n.e,) and the
Peters-Mathews enhancement functions

With these expressions in hand, the Newtonian-order
energy and angular momentum fluxes can be found using
the classic formulas

dE 1, -
— ) ==(I;;i1
<dt >N 5< l] l]>

dL 2 PO
I NzgeijkLinblkb),

where angled brackets denote the time average over
an orbital period and L; is the unit vector in the angular

momentum direction, which here is L; = (0,0, 1).

(2.13)

(2.14)

1. The function g(n.e;) and the spectral content
of the Newtonian quadrupole energy flux

For the energy flux, a Fourier decomposition of (2.13)
can be found from a double application of the sum (2.7),
giving

dE
< > 3(in,Q,)3

JPPICES

=—00 Ny

ij
E 6
n Il] i'

The final equality follows from the time average giving
8,,—n, and, because I;;(7) is real, from the crossing

relations / §;”>

X I(”I)I( z)ei(nl+n2)l>

(2.15)

UIII\J

=1 fj")* on the Fourier coefficients.

A dimensionless portion of the energy flux can be
isolated and normalized by removing a factor of 16u>a*
(which generalizes to 16u>’M*/x* beyond Newtonian
order), leading to

dE 32 >
<E> =5 (Q,)%u?a* Z g(n,e;), (2.16)
N n=1
L s
g(n, e, ‘=m” ;| (2.17)

As is obvious from the expression above, the dimensionless
function g(n, e,) (first derived in [10] and then corrected in
[51]) represents the (relative) power radiated in the nth
harmonic of the orbital frequency (i.e., the power spec-
trum). Combining (2.12) and (2.17), this function is found
to be

n? 4 7
otme) =5 { |- 5=3e+ 7 |da(ne s (nes)
t 13

1 1 1 3 1
et (gt

1 1
+ [(6%+—2—2)n2+—2— 1]Jg(net)2}.
€; €;

(2.18)

The total power is the sum of g(n, e,) over all harmonics,
which once computed yields the first example of an
eccentricity enhancement function (so named because
eccentric orbits have enhanced flux relative to a
circular orbit of the same a or orbital frequency Q).
Straightforwardly summing this function yields an infinite
series in e,

Ro=Y g(ne)
n=1

_1+£e2+@e4+3815 6+
N 24" 327" 96

(2.19)
A cleaner result is found by introducing the known
eccentricity singular factor (1 —e?)~7/> and resumming
the series to find a closed-form expression

1 73, 37
<1+ 2+—e,> (2.20)

Roled =z ' 1229 T g

which is the classic result from Peters and Mathews [10].
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2. The function g(n.e;) and the spectral content of the
Newtonian quadrupole angular momentum flux

Similarly, we plug (2.7) into (2.14) and find

dL 2 3 . .
<E>N _geijkLi< Z Z (in1Q,)*(iny Q)

nj=—00 Np=—00

x 15'21)11((’;2>€i(n1+n2)l>

4 R \
=~z (Q)ieyl Sy
n=1

32 =N
=< (@) wa' Y Gn.e). (2.21)
n=1
where §(n, e,) is given by
P —_ ! 75 p(n) ()
g(n,e,) = W%kb" Ly Ty (2.22)

The dimensionless function §(n, e,) mirrors its energy flux
counterpart and is found to be

g(n.e) = V1- ez{ {—% + 2} n2J! (ne)?

e;

+ 52— e + 202 (1 = P (ne) ) (ne,)
t

+ {—%—l—%— 1} nzl,,(ne,)z}, (2.23)
€ €

which represents the (relative) power spectrum for angular
momentum radiated per harmonic of the orbital frequency.

The sum of §(n, e,) over all n can be used to obtain the
Newtonian quadrupole angular momentum enhancement
function, which was originally derived by Peters [11].
Pulling out the eccentricity singular factor (1 — e?)~2 (in

this case) leads to
(s8] _ l 7 )
Zo(e) =Y Gn.e) = e 5) (2.24)
n=1 t

3. Discussion

The Newtonian quadrupole power spectra, g(n, e,) and
g(n, e;), will be shown in this paper to be the exclusive
factors that determine the eccentricity dependence of all the
higher-PN leading-log terms. In summing these functions
directly, particular eccentricity singular factors appeared in
R, and Z,, revealing the remaining part of these enhance-
ment functions to be polynomials (which are of course
finite as e, — 1), giving the expressions closed forms.
These two eccentricity singular factors were identified in
the original derivations [10,11]. As shown by more recent
asymptotic analysis in [39,49,57], enhancement functions
at other PN orders have predictable singular factors.
Specifically, we can see in those results that sums of the

form > nfg(n,e,) will have the singular dependence
1/(1 — e2)7/243k/2) " wwhile those of the type > n*j(n, e,)
will carry a factor of 1/(1 — €?)(>*3%/2)_ These factors will
be essential for extracting from ¢ and § new closed-form
expressions for the higher-PN order leading-log enhance-
ment functions.

D. Other enhancement functions already known
to depend only upon g(n.e;) and g(n.e;)

Although the original application of g(n, ¢,) and g(n, e,)
(summing them directly) was to derive the Newtonian
(OPN) order fluxes, these functions were each later found to
determine three additional enhancement functions.

1. The 1.5PN tail functions @(e;) and @ (e;)

The first of these is the 1.5PN energy enhancement
function ¢(e,) (proportional to R3,), which was found in
[51] to be the lowest-order tail correction to the Newtonian-
order flux. Blanchet and Schafer evaluated the relevant sum
numerically and plotted the enhancement function. Later,
Arun et al. [15,17] provided the first two (nontrivial)
coefficients of a power series for ¢(e,) and then [39] used
the Bessel representation (2.18) to compute analytic coef-
ficients to arbitrary powers of e?. By combining that
expansion with the expected eccentricity singular function,
the resummed power series expansion was shown [39] to be
convergent for all ¢,. The required sum over g(n, ¢,) and the
leading part of the expansion are

1 le1375 5
p— e
(1—e?) 192 '
2321 237857 o,
e f— e PEEErY
884736 ' 353894400 '

3935 . 10007 56
768 ' 36864 '

(2.25)

(which corrects a sign error in [39] on the e)? term). Like
most enhancement functions, ¢(e,) is defined such that its
circular orbit limit is unity. The full (relative) energy flux
term at 1.5PN order is

R3/2(et) = 47T(P(et)-

Thus, a series proportional to the 1.5PN tail term
emerges directly from a sum over n of the g(n,e;)
amplitudes multiplied by the factor n/2. Unfortunately,
(2.25) is an infinite series, with ¢ not expected [51] to have
a closed-form representation. However, by multiplying the
sum in (2.25) by (1 — e?)° and expanding in a MacLaurin
series in ¢,, the coefficients each involve a finite sum in n
and are easily found to hundreds of orders in e, in a matter
of seconds using MATHEMATICA. The eccentricity singular
factor exponent was chosen to be —5 (k = 1) in accordance
with the earlier discussion.

(2.26)
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The 1.5PN angular momentum enhancement function
follows similarly and can be found in [17] [though without
explicit mention of g(n, e,)],

- (1+2a+ B P
C(1=ed)? 3270 128" 18432
109 2567

- - 10 4 ...
147456 T 58982400 )’

(2.27)

with its own eccentricity singular factor, which leaves an
infinite series that is convergent for all e,. In fact, all the
summations over g(n, ;) considered in this paper can be
translated from giving energy flux terms to giving angular
momentum flux terms by making the simple substitution
g — §. Hence, for the rest of the paper, we focus almost
exclusively on the energy flux contributions, with it being
obvious how the corresponding angular momentum flux
terms are determined. Our full compilation of all of these
enhancement functions can be found at [58].

2. The 3PN functions F(e;) and x(e,)

As Arun et al. [15,17] showed, the Newtonian mass
quadrupole makes an appearance again at 3PN relative
order in the flux in two additional enhancement functions:

Fed = 352 )amen
1le) = i (”;) log (g) g(n.e,).  (2.29)

n=1

(2.28)

Because of the even power of n in its summation, F(e,)
turns out to have its own closed-form expression

1 85 5171
F<€t> :W (1 +Z€%+ﬁ€;‘

n 1751 ¢ i 297
—e+——¢} .
192 711024
This result follows from being able to convert the sum over
Fourier amplitudes to an integral over time (time average) in
the time domain (i.e., application of Parseval’s theorem). The

result is proportional to the integral of the square of the fourth
|

(2.30)

time derivative, (Y7;;¥1;;) [15], which once integrated
becomes (2.30). Here prescripts indicate time derivatives
of moments, e.g., ®)I;;(t) = d?1;;(t)/d*, which should not
be confused with Fourier coefficients, such as f}l)

The log(n/2) factor in the sum for the enhancement
function y(e,) all but ensures that it will not have a closed
form. [While y(e;) is referred to as an enhancement
function, it is a rare case of one that vanishes as ¢, — 0
[15].] As with ¢(e,), the best option is to isolate a
convergent series in e, that can be calculated to arbitrary
order as needed. As shown in [39], that process involves
identifying and pulling out a particular term that is both
logarithmically and power-law divergent and then deter-
mining the remaining expansion

rle)) = =3 Fle,)log(1 - )

1 3 77
+W |:<—§—?10g 10g(3)) €t2
295245

4
1024 log(3)>‘”

24247269
16384

6561
256

)+

34855
6595 1167467
S22 20 0g(2
< 8 o2 08

244140625
— s ) (5)>

log(3)

147456 (231)

eS+ - :| .
The infinite series in square braces then turns out to be
convergent for all e,. Interestingly, the function F(e,) itself
appears in a term with logarithmic divergence as e, — 1, and
thus plays an essential role in the expansion of y(e,). This
makes y(e,) possess not only the expected eccentricity sin-
gular factor for a 3PN enhancement function, (1 — e?)13/2,
but also a separate logarithmic/power-law divergence. This
fact will be important in Sec. IV where we study the structure
of the subleading logarithms (defined in the Introduction).
What we show is that each subleading logarithm is intimately
connected to its associated leading logarithms (e.g., at 6PN
the subleading term R¢; bears some functional connection to
the R¢;, leading log).

The first such connection between the two sequences
occurs at 3PN order. The following sum, of 3PN log (a
leading log) and 3PN (a subleading log), is equal to the full
3PN (relative) flux [16] at lowest order in the mass ratio

3611354071 4786812253 . 21505140101

4

Rs + Ry logx =

(1—¢2)132 | 9979200

8977637

‘T T 13305600 ¢

1 2193295679 20506331429 ,
19958400

141926400 *
1399661203 185

26611200 '
759524951

T 11354112

(16,0 1712
37 T 05 1B

3675

[ (14047483 | 36863231
“r\ 7151200

116761 856
(er)

5 {%} ) Fe) -T2 xe.

+—e[

2419200 ' 48 )]
1712

100800 < 403200 ¢

(2.32)
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This expression shows a distinctive manner in which the
functions y(e,) and F(e;) combine in the net 3PN flux.
Both functions are known to contribute [15] to the tail-of-
tail and tail” hereditary pieces. These two functions are also
associated with all of the transcendental numbers in the
flux. Clearly, one appearance of the function F(e,) above
can be seen to gather all of the obvious transcendental
numbers, like 72 and the Euler-Mascheroni constant YE-
However, the expansion of y(e,) (2.31) reveals added
transcendentals. The gathering of all the transcendentals
on F(e,) and y(e,) at 3PN has an analogue at higher PN
orders that will be exploited in Sec. IV.

Though it is not apparent in (2.32), F' also appears in the
instantaneous part [15]. Upon examining (2.32) more
closely, we see that every part of the total 3PN flux has
a closed-form representation except the y(e,) term, which is
an infinite series. In addition, F(e,) multiplies an obvious
divergent logarithm of 1 — e?, but the same term with a
different coefficient appears in the expansion of y(e,).
Finally, what is most significant for the discussion in this
section is that F(e,) is proportional to the log x term, which
means that

856
105

So, except for a rational numerical factor that gives the
circular orbit limit, a sum over the Newtonian mass
quadrupole Fourier spectrum g(n,e,) gives the entire
R, flux function, which is a closed-form expression.
All of the discussion here pertains equally well to the full
3PN angular momentum flux and analogous enhancement
functions F(e,) and 7(e,) obtained from §(n, e,) [17].

Rsp(e;) = F(e,). (2.33)

III. OBTAINING THE ENTIRE LEADING-
LOGARITHM SEQUENCE FROM THE
MASS QUADRUPOLE POWER SPECTRA
g(n.e;) AND g(n.e,)

As the review in the last section has shown, the eccentric-
orbit Newtonian mass quadrupole spectrum g(n,e,) is
solely responsible for determining the first three leading-
log eccentricity functions, Ry, R3/,, and Rs3;. These flux
terms emerged from sums over g(n, ¢,) times factors of /2
to the first three integer powers. In this paper, we show that
this progression continues to higher PN order, with addi-
tional leading-log terms being determined exclusively by
sums over g(n,e,) times increasing powers of n/2. The
progression splits into two infinite sequences for even and
odd powers of n/2, which correspond to fluxes at integer
and half-integer powers of x, respectively.

A. All leading-log enhancement functions at integer
powers of x have closed-form expressions

As we briefly touched on in the Introduction, we
first consider all sums over the product of the Newtonian

mass quadrupole spectrum g¢(n,e,) and even powers
of n/2,

Ti(e,) = i (g) Y ane,), (3.1)

where k > 0 is an integer. Under this definition, Ty(e,) =
Ro(e;) and T (e;) = F(e,). With even powers of n, every
one of these sums can be converted to the time domain and
shown to be proportional to an integral (time average) of
products of time derivatives of 1;;(1),

() *H315(1)). (3.2)
If instead we view this in reverse, and convert (3.2) to the
frequency domain, then each time derivative carries with it a
factor of Q, = x3/2/M + O(x*/?). Since the Newtonian
relative order flux (2.13) itself carries a factor of Q0 [i.e.,
(2.17)], each T, will be a (3k)PN order quantity.
Furthermore, it can be shown that the resulting expression
will be singular as ¢, — 1 and that the singular dependence is
captured for each k by an eccentricity singular factor,
1/(1 — e?)3*+7/2, Once this term is factored out of the
Ti(e,), the remaining dependence is a polynomial in even
powers of e, of order 4(k + 1), giving each T, a closed-form
expression.

In what follows, we show that each T(e,) is indeed an
energy flux enhancement function that is proportional to
the (leading-log) energy flux at PN order (3k)L(k); i.e.,
Rowi(er) < Ti(e,) (further discussion is found in
Sec. IV E). Therefore, for example, the next two functions
in this sequence should give (k =2) Rga(e;) « Th(e,)
(i.e., the 6PN log? term) and (k = 3) Ro;3(e;)  T5(e,)
(i.e., the 9PN log® term). If T (e,) represent enhancement
functions, it should be the case that they all reduce to unity
in the circular-orbit limit. Then the constant of proportion-
ality between Rz (e;) and Ty(e,) will simply be the
circular orbit flux for the k (integer) order leading-log term.

We can easily prove that the T (e,) reduce to unity for
e, = 0 by considering the expansion of g(n, ¢,) in e, [39],

_(n\ 1 (n=1)(n*>+4n-2)
g<”’e’)_<§> ei 4(F(n—1)2_ 20 (n)? e

6n* +45n° +18n> —48n +8
481°(n)?

e;‘+-~). (3.3)

Inspection shows that for n = 1 the e;2 and ¢! coefficients
vanish [since I'(0)~! — 0]. The n = 2 harmonic is the only
one that contributes at €?, and its coefficient is clearly unity.
For higher harmonics (n > 3), the expansion begins at e? or
higher. Thus, in any sum over harmonics of g(n, e,) times a
power of n/2 (i.e., some T}), the result is a function that
equals unity when e, = 0.
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As an example of using this process to determine higher-order PN terms, consider the next leading-log term at
6PN, R, (e,). If we introduce the known circular-orbit factor Rg7S = 366368/11025 [35], the procedure above suggests
that the eccentricity-dependent 6PN leading-log flux will be

366368 366368 j?é n*

= _— T = _—
366368 16579 , 459595 ,
11025(1 — €2)19/2 384 ' 1536 '

847853

3672745
1536

1997845 |,
12288 ¢

49152 ¢

41325
65536 )

(3.4)

This closed-form expression was, in fact, found in our previous work by fitting extremely high precision BHPT
numerical flux data from a two-dimensional array of orbits to the PN model (2.1) for the energy flux (see [49] and
MATHEMATICA notebook at [58]). [The BHPT data are fit to a model with the parameters y and (Darwin) e, but as
mentioned in Sec. II for leading-log terms, there is no difference between those parameters and x and e, at lowest
order in the mass ratio.] Interestingly, Forseth et al. [39] actually found the entire R4;,(e,) term [in their Eq. (6.13)]
but did not realize that the series terminated at e!2.

In a similar fashion we can consider the next leading log at integer powers of x, 9PN log>. The circular-orbit flux is
Rl = —(313611008/3472875) [35], suggesting that the full eccentricity-dependent term is

313611008 313611008 & (/6
:—4T == -— RE—
Rous(er) ( 3472875 ) s(e) ( 3472875 > EE:<64)g("’e’)

n=1

313611008 86207 , 192133 , 21418885 . 5050405 |
= - e €; €; €
3472875(1 — €2)%/? 768 96 2048 256
465472553e10 60415733612 71973111614 1341375616 . (3.5)
32768 ! 16384 ' 262144 ! 524288 '

This expression also matches perfectly our more recent BHPT numerical fitting results [49,58]. The analogues
in the angular momentum flux, Z¢;,(e,) and Zg;5(e,), found analytically from the functions T,(e,) (4.14) and T5(e,)
upon swapping g(n, e,) for g(n,e,), are easily calculated and have also been shown to match our BHPT numerical
results.

With Rq(e,), Rar(e;), Rera(e;), and Ro;3(e,) all determined analytically by this procedure, there is no reason to
believe it does not continue ad infinitum. Given the circular-orbit flux found by [35], our procedure indicates that the
Rirr4(e;) leading-log term will be

67112755712 67112755712\ [ 1}
R = (PSRN () = (s N g(n,
ora(er) ( 364651875 > a(er) < 364651875 > Z<256>g(” )

n=1

67112755712 1667665 , 262261909 , 381097931 . 4556442679 |
= e e e e
364651875(1 — e?)31/2 6144 ' 24576 ' 3072 8192 '
141652841401 |, 495810570055 ,, 95441646013 |, 233938838161
s a— s a— e e
131072 ! 524288 ! 262144 ! 4194304 '
176821654149 . 4419580725 ., (3:6)
—————¢ —————§¢€ . .
67108864 ' 268435456 '

[

What about still higher-order leading-log terms? With an
understanding of the role of the T;(e,), the key remaining
issue is to determine the general form for the circular-orbit
limit of these fluxes. As it turns out, first-order BHPT has
the ability to provide the circular-orbit limit of the entire

leading-log series. For Schwarzschild EMRIs, BHPT uses
spherical harmonics to decompose field and source terms,
with mode numbers [, m being related to symmetric trace-
free mass and current multipole moments like /;;. For
eccentric orbits in the frequency domain, perturbation
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quantities become functions of the triple set of mode
numbers [, m,n’, where n’ is the Fourier series index in
BHPT that gives harmonics of the radial libration fre-
quency. The index n’ contrasts with n, the power spectrum
index in g(n,e,) and g(n,e,). In BHPT, circular orbits
correspond to n’ = 0, while for the quadrupole moment the
circular orbit flux is determined by n = 2. Using Johnson-
McDaniel’s S, tail factorization [59], it is possible to use
BHPT to extract the circular-orbit limit of the entire
leading-logarithm series. Indeed, we can infer from the
discussion in Sec. IV of [29] that this limit is generated
entirely by the quadrupole factor |S,,|?>, which can be
written as

1Sl = exp [zvm— T 210g(2) + log(y)/2) + dmy”?

+ Z& 4y3/2i _ I?)k

0
k=2 k

+ (=4y32i — D)k = 2(=20)K) |. (3.7)

Here, v =v —1[, where v is the renormalized angular
momentum, an (in general) [mn’-dependent quantity
from the MST analytic function expansion formalism
[40,41] of BHPT (note the notational conflict with the
symmetric mass ratio). The parameter v has a PN
expansion in powers of y* (= x? for our purposes here).
From (3.7), the piece that generates the (circular)
leading logarithms is

856
———31 4ry3/? )
exp( 105" og(y) + 4xy > (3.8)
where —856/105 is the coefficient of y? in the PN

expansion for o. Note that this leading-logarithm factor
is different from the one introduced by Damour and
Nagar in [60,61], as theirs related to a waveform phase
term that cancels in the fluxes. Equation (3.8) immedi-
ately yields the circular-orbit portion of R 3;).) as [62]

circ 856 k 1
Rt = (1) ()

Note that this result exactly matches an earlier estimate
given in [36] and is consistent with that derived through
effective field theory arguments in [50] (see also the
discussion in [63]).

The entire infinite sequence of integer-order leading
logarithms can be found by taking the factors (3.9) and
combining them with the T (e,) summations to yield

(3.9)

R (er) = < ?i) (k‘> Z< )

for all k> 0. These terms are then transformed into
closed-form expressions by factoring out the known
eccentricity singular dependence 1/(1 —¢?)%**7/2 and
resumming.

All of these results carry over to analogously give

Z L) (e;) since the circular orbit limits are the same,
Z%r,f) L = R%r,g) L(y» and only the substitution g(n,e;) —
9(n, e,;) is required. Closed-form expressions emerge once

the singular factors 1/(1 — e?)>*3k are pulled out.

(3.10)

B. All leading-log enhancement functions
at half-integer powers of x are infinite
series with known coefficients

To find the leading-log enhancement functions at half-
integer powers of x, we turn our attention to sums over
g(n,e;) with odd powers of n/2, as mentioned in the
Introduction:

(3.11)

oule) =Y (5) almen

where k > 0 are integers. Each O (e, = 0) = 1, just as with
the T (e,). We see immediately that one known enhance-
ment function, the 1.5PN tail ¢(e,) = ©y(e,), is the first
element in this sequence.

Unlike the previous T(e,), the ®;(e,) functions have
a complicated form when translated back to the time
domain [see, e.g., Eq. (4.5) of [15]], and it is strongly
suspected [51] that none will have a closed-form
expression in e,. Nevertheless, each sum provides an
infinite series in e? with rational coefficients that can be
determined rapidly to any order. Moreover, we can again
remove an eccentricity singular factor, 1/(1 — e7)%**3,
from each sum that then makes each resummed series
converge for all ¢, < 1.

The prediction is that the sums (3.11) represent the
enhancement functions for all leading-log terms at half-
integer PN orders, not just at 1.5PN. Each ©,(e,) is related
to the leading-log flux that is 1.5PN orders higher in the
relative flux than the T (e,) with corresponding k. Thus,
this class of functions will produce the PN terms Rj),,
Rojors Rispras ete., with each constituting the first
appearance of a new power of log(x) at half- integer powers
of x. For each k we will have R(3t13/2)1) & O, with
the constant of proportionality again bemg the circular-
orbit flux.

We consider the specific example of k = 1 that purports
to give Rog/;. In this case the circular-orbit limit is

R, = —34247/105, which yields
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34247 &N (03
Rosfe) = =1 > (g Jalone)
105 £\ 8
34247% 19555 , 303647 ,
= TI08(1 — 28 e e
105(1 — ¢?) 768 3072
13263935 64393025 ,
e e
147456 ' 3538944 '
557011627 ,
- ). 3.12
1415577600 > (3.12)

The expansion for Rq,;, perfectly matches the results from
fitting, to e/® as found in [39] and to ;" as obtained in our
more recent work [49,58]. The nonsingular infinite series
converges to approximately 233.8451300137 as ¢, — 1.
In the same way, ©,(e,) can be evaluated to reproduce
Ris/or2(e,), which we found matches our BHPT fitting
results to e;° [49,58].

Rather than enumerate explicitly added individual lead-
ing-log functions, we jump straight to the form of the
general solution. Once again, (3.8) provides the circular-
orbit limit to the leading-log energy fluxes, which for the
half-integer power in the x sequence is

4 856\ /1
L =\ 7105) \kt)
The only difference from the previous sequence is the
added factor of 4z. The circular-orbit limits can be

combined with (3.11) to yield the full set (k >0) of
half-integer in x leading-log energy fluxes

4z 856\ kF < [n) 2kl
Res3/2Lw(e) = (F) (— ITS> Z ( ) 9(n, e,).

7 (3.14)

RCII‘C

(3k+3/2) (3.13)

Each term will have a singular behavior like 1/(1 — e?)%*+3

as e, » 1. Once these factors are pulled out, each
resummed series will converge as e, — 1, though none
of them is expected to truncate and leave a polynomial. The
series coefficients are known in the sense that they can
easily be calculated analytically from (3.11) and (2.18) with
minimal symbolic computational expense.

The results carry over from (3.14) to give the
corresponding leading-log angular momentum fluxes
Z(3k43/2)L(k) (€;) by doing nothing more than substituting
g(n,e;) in place of g(n,e,). The eccentricity singular
factors in this case will be 1/(1 — €7)3+7/2,

C. Summary

We have shown that the eccentricity dependence of the
entire infinite sequence of leading-logarithm energy and
angular momentum PN flux terms is analytically deter-
mined by the Newtonian quadrupole moment spectra

g(n,e;) and g(n,e,). This implies further that all of the
leading-log terms appear only at lowest order in the mass
ratio v. In the next section we show that additional analytic
knowledge of terms at high PN order, this time of the
eccentricity dependence of the subleading logarithms, can
be coaxed out of a combination of information in the
Newtonian quadrupole moment power spectra and BHPT
flux results.

IV. ADDITIONAL PN STRUCTURE
FROM g(n.e;) AND PERTURBATION
THEORY

A. Generalizations of y(e;)

As the previous section argued, the succession of
Newtonian mass quadrupole sums (3.1) and (3.11)
provides the eccentricity dependence of the entire
leading-log PN sequence. The first three elements in
this sequence were equal to, or proportional to, the
previously known flux functions Ry (e,), R3/2(e,), and
Rs.(e;). There was, however, one other previously
known enhancement function, y(e,), that did not make
an appearance within the leading-log sequence. Instead,
as inspection of (2.32) indicates, y(e,) showed up as
part of R3(e,), the nonlog part at 3PN order, which we
classify as a subleading log. As the Introduction out-
lined, this hints at the possible use of two more classes
of sums, namely

i

S0

for integers k > 1. It is clear that A(e,) reproduces the
3PN enhancement function y(e,).

A first question to ask is, if more of these functions were
to appear in the PN expansion, at what PN order would
they show up? We can answer that question by considering
their divergence properties as ¢, — 1. As stated in Sec. II,
x(e,) contains the logarithmic divergence found in
—(3/2)F(e,)log(1 — €?) in addition to the algebraic sin-
gularity of F(e,). A similar behavior appears in each Ay (e;)
and E(e;). To see this, we apply the same asymptotic
analysis found in Sec. IV of [39], using the transition zone
asymptotic expansions of J,(ne,) (i.e., large n with e, ~ 1
[56]) to expand g(n, ¢,) and replacing the sum over n with
an integral over a continuous variable & = p(z)n. Here,

p(z) = log(BRE ‘[) vz and z = 1 — 2. Then the log terms
in (4.1) are replaced by

NORES I

[I]
| |

(4.1)
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followed by splitting off the —log(p) portion, expanding in
z, and integrating over & The result is that we find the
asymptotic singular dependence of A;(e,) and E(e,) to be

3
Ak(et) ~ _ETk(et) log(l - etz)

~ A log(1 = e?)(1 = ¢}) ™72 (4.3)
—_ 3 2
Ei(er) ~ _EGk(ez) log(1 - e7)

~EV log(1—e)(1— )35, (4.4)

respectively, where A,EO) and E,(CO) are constants. The

algebraic part of the eccentricity singular dependence
indicates that, if these terms show up in the PN fluxes at
all, they will appear at relative PN orders 3k and
3k 4 3/2, respectively.! Given that these functions do
not show up in the leading-log sequence, but based on
the way y(e,) appears in Rj, a conjecture would be
that they contribute to the subleading-log sequence
(previously defined). Thus, with the reemergence of
Ty (e,) in (4.3), we might expect Ai(e,) to contribute to
the subleading-log sequence R;, Rgr, Rorz, etc.
Likewise, since O (e,) reappears in (4.4), we conjecture
that the E;(e,) contribute to the half-integer subleading-
log sequence Rg)y, Risjors Raijara, ete. Furthermore,
the asymptotic connection between A(e,) and Ty (e,) in
(4.3) leads us to conjecture that the higher-order sub-
leading-log terms Rz k-1)(e;) all have structures
nearly identical to that of Rs(e,) in (2.32), with
closed-form expressions supplementing the appearance
of Ak(e,).

We note in passing that there is another way of regarding
subleading-log terms. These terms, which appear at PN
order 3k or 3k + 3/2 but involve one power of log(x) less

|

than the leading-log term, can also be thought of as 3PN
corrections to the previous leading log in the series. Thus,
Rs(e,), Ropler), Rerle;), and Ryspa(e;) are 3PN cor-
rections to Ry(e,), Rspnle,). Raple,), and Rgp(e;),
respectively. This alternative designation scheme will
become especially useful in future work, as we compute
additional sequences of logarithms in the two flux
expansions.

B. The 6PN subleading-log example

The conjectures made in the previous subsection appear
to be correct, as far as we have been able to verify with
BHPT calculations. To give an example and demonstrate
the structure of a subleading-log term beyond R;(e,), we
consider Rg; (e,). In the end, we obtain the entire 6L term
(i.e., its entire ¢, dependence) at lowest order in v. Because
our analysis makes heavy use of BHPT results, we work
initially in terms of Darwin eccentricity e and compactness
y. We first express A,(e,) and T5(e,) in terms of e, as
these functions are needed in the analysis. However, since
they only depend upon the Newtonian mass quadrupole
spectrum, they can be converted by simply swapping
e, for e.

The process then involves (i) making an ansatz on the
analytic form of L¢; (e) that includes an assumed depend-
ence on A,(e) and T,(e), (ii) using BHPT to compute
analytic coefficients in the expansion of L¢; (e) to a high
finite order in e* (in our case, this was done using high-
precision numerical data and “experimental mathematics”;
see [29,39,49] for details), (iii) subtracting the parts
involving A,(e) and T,(e) to determine the (closed-form
algebraic) rest of the analytic model, and (iv) converting
back to e, to obtain Rg; (e,).

The guess for the general form of Lg; (¢), based on
resemblance to (2.32), is

1
£r6nL0del = W [a() + 6126‘2 + 6146‘4 + (1666 + (1868 + 010610 + (112612 + 6114614 + 1 - 62(190 + b2€2 + b4€4
1 —¢?
6 8 10 12 2
+ bee® + bge® + byge'” + bpye'?)| + |e1n” + care + c3log(2) + ¢y log<1 N m)] Ty(e) + diAy(e),

(4.5)

for some rational coefficient set {a;, b;, ¢;,d;}. In the model, T, reappears but is written as a function of e,

16579 , 459595

Ty(e) =

847853

¢ 3672745 . 1997845 41325

10

1
1
(1—e2)19/2< T 38 ¢ T s ¢

1536 ¢

12
12288 ¢ T 40152 ¢ T 65536° > (4.6)

'The same conclusion can easily be reached by power counting, since each power of r in (4.1) corresponds to a factor of ©, from time

derivatives of /;;.

Thus each power of n brings with it a factor proportional to x

3/2_ at lowest order in v, making the relative PN orders 3k

and 3k 4+ 3/2 as mentioned. The asymptotic analysis, however, has the advantage of also revealing the logarithmic singularity and
(importantly) the connections to the previously defined functions 7 (e,) and O,(e,).
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and so does A,, also written in terms of e,

Ay(e) = ] [ <_ 221471og(2) = 59049 log(3)) . (945063 log(2) 3365793 log(3)> y
(1= ¢l 384 1024 512 4096
(_ 47071565 log(2) | 357108669 log(3) | 6103515625 10g(5)> e
1536 65536 589824
10209340261 log(2) 27480125205 log(3) 726318359375 10g(5)\
( 36864 - 524288 - 4718592 > et } (47)

For brevity only the first part of A,(e) is presented, despite having been (necessarily) determined to €. Also, it is not
necessary to isolate the logarithmic divergence in A, (e). Despite the generality of (4.5), we anticipate some coefficients
being linked. Based on the form of R5 and the structure found within the I = 2, m = 2, n’ = 0 mode flux (see [49] and
Sec. IV E), we expected (and ultimately confirmed) the following connections: ¢, = ¢3/3 = ¢4 = d,.

The next step is the computation of the analytic expansion of Lg; (e) through ¢°, which was done using high-precision
BHPT numerical data, fitting [49] to the PN model, and using the PSLQ integer relation algorithm [43]. That process
yielded

G0 _ 1 {_246137536815857 1465472y, 136967 2930944 log(2)
oL T (1=¢)1 314659144800 11025 315 11025
<_25915820507512391 189812971y,  1773953z* 18009277 log(2) 7511688910g(3))62
629318289600 33075 945 4725 9800
56861331626354501 1052380631y, 983533372  42983885171log(2) 4281662673 log(3)\ ,
<_ 167818210560 | 26460 756 132300 B 39200 >
710806279550045831 9707068997y 9072027122 519508209691 log(2) 454281905709 log(3)
<_ 1006009263360 132300 3780 132300 + 627200
2795166015625 10g(5)> o (_ 10213351238593603069 8409851501y, _ 7859674372
2032128 40276370534400 211680 6048
11713903219321910g(2) 6991554521601 log(3) 47517822265625l0g(5)\ 4
3175200 1003520 - 2322432 )
<3985515397336843519 | 4574665481y, _ 427538837%  252510878807655859 log(2)
26850913689600 846720 24192 952560000
_ 576360297584196039 log(3) , 223101765869140625 log(5) , 380483822001361849 10g(7)) 10
4014080000 1560674304 6635520000
50719954422267749 6308399y, 2947857  2887481794238961637 log(2)
( 3254656204800 75264 10752 1270080000
17322463230547056201 log(3)  1297619485595703125 log(5) _ 2663386754639532943 10g(7)> 12
16056320000 2080899072 2949120000
477961162088755717  339392544622900323521log(2)  15568492847979888930357 log(3)
<_ 14320487301120 17503290000 B 6294077440000
20971917520162841796875 log(5) ~ 77148041218710802588787 log(7)) U 30]
e+ 4 Kk3pe . (4.8)
11012117889024 11466178560000

The truncated expansion is distinguished by the superscript (30). Once again, an abbreviation of the full series is presented;
the placeholder coefficient x5, denotes the true length of the analytic expansion. The full series to ¢** would require multiple
pages to print out.

We continue the procedure by subtracting off the piece in the ansatz with no closed-form expression, namely A, (e). The

proportionality constant is d; = 1465472/11025, easily found through inspection of the £(63LO) series. Once A,(e) is
removed, a significant reduction in complexity is observed, which allows the entire remaining series to be written down
through €3,
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£(30)_1465472 1 246137536815857 14654727/E_13696n2 2930944 1o0g(2)

As(e) = -
o~ Tioas 2@ (1—62)19/2[ 314650144800 11025 315 11025

25915820507512391  189812971yy 177395372 n 37962594210g(2)\ ,
629318289600 33075 945 33075

+

_|_

56861331626354501 L 1052380631y 983533372 4 105238063110g(2)\ ,
167818210560 26460 756 13230

_|_

710806279550045831 n 9707068997y, 90720271 n? n 970706899710g(2)\
1006909263360 132300 3780 66150

_|_

10213351238593603069 n 8409851501yx 785967437 L 840985150110g(2)\
40276370534400 211680 6048 105840

_l_

3985515397336843519 n 4574665481y 427538837 n 457466548110g(2)\ |,
26850913689600 846720 24192 423360 ¢

50719954422267749 | 6308399y 2947857 630839910g(2)\ ,,
3254656204800 75264 10752 37632
477961162088755717 |, 5413490909883323 | 5584575351395413

1432048730120 ¢ 182078668800 218494402560
81136058237959211 ,, 1578479509403151527 ,, 2261257978156608611 ,,
T 3641573376000 80114614272000 ¢ 128183382835200
531918812054997639011 ,. 388387963969333233793 . 892815371640935597927
TT33327679537152000 ¢ 26662143629721600 ¢ 66655359074304000

(4.9)

+

18

We note also that each coefficient after ¢!? is purely rational. The undeniable conclusion is that A, (e) does indeed provide a
desired contribution to Lg; (e).

In the next step, we confirm another tenet of the analytic model—that all of the transcendental numbers, yg, 7°, and
log(2), in the first terms up to e'? in (4.9) simply appear as a specific combination that multiplies 7»(e) (a function which
contains a 12th order polynomial). The revised model then becomes

1
Lmodel — W [ag + are* + aze* + age® + age® + ajpe'® + ajpe'? + aje'

+ l - 62(b0 + b2€2 + b4€4 + b6€6 + b8€8 + bloelo + blzelz)}
1465472 136967> 4396416 1465472 1-¢? 1465472
Ts(e) +

e
_ 1 —A ., (4.10
11025 £ 315 1 11005 082+ iops o8 +Vl- T1005 "2le) (410)

once the ¢; coefficients are determined and inserted. If we now subtract the 7', (e) part of the model as well from ESLO) [i.e.,
from (4.9)], we are left with

6

1 ( 246137536815857 5170616505141979 , 280649774449416601 , 3391928161684113811

(1—¢%)19/2 314659144800 125863657920 839091052800  © 5034546316800
1456012194152323001 , 29600878702417369091 ,, 1074387193648790113 |, n 17814341408826553 |,
8055274106880 134254568448000 ¢ 16273281024000 © 4773495767040

_ 31846235946197 o16 _ 219944663655131 oI5 _ 113553895395893 20 _ 172257218309077 ,,
303464448000 273118003200 115605504000 173408256000
394386143943349 ,, 700775531336071 ,, 25403642219761117 19524067936619881 30)

28 _
416179814400 ¢ 792723456000 ¢ 31074759475200 ¢ 25895632896000

(4.11)

a purely rational series in e?.
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At this point the 16 rational coefficients in (4.11) must be determined, if possible, by the remaining 15 unknown constants
a; and b; in the model. This was the reason for carrying out our numerical fitting and analytic expansions to 3, to provide
an overdetermined system of equations. We find that indeed a solution for the @; and b; can be obtained, verifying the ansatz
and giving the entire analytic structure of Lg; (e) as

oo ! _2634350510203129 239953038071655043 , 411009526770805477 ,
(1—=¢2)1972 | 1573295724000 3146591448000 839091052800
17212115479135988207 , 81213393300931861 , 6299935941231102319 | 30953812320468361 |,
T 25172731584000 | 40276370534400 ¢ 26850913689600 < 650931240960 <
205680487293493 ,, | \/1_—2<74362302719 5938206687287 , 1203568974373 ,

227309322240 83349000 | 166698000 © 6945750

67465356696233  1111945369132247 , 32687662125259 116022069 ,
666792000 10668672000 790272000 100352 )}
1465472 136967> 4396416 1465472 1—¢? 1465472
025 7* " a5 ri02s 2 oo Og(1 1_ez>] 2(¢)+ o5

As(e). (4.12)

Everything in this expression for Lg; (e) is in closed form except for the infinite series A, (e), which nevertheless itself has
coefficients that can be easily determined analytically to arbitrary order in €.
Having achieved this end in the energy flux, we can perform precisely the same procedure on the 6L. angular momentum

flux term to find

Fole)—! 2460815702382469 60681012190195757 , 613664666042477719
e)— — — e —
L) T 1= )| 1573295724000 1573295724000 4195455264000
142507823837043079 ;  220635683492763683 | 1157237897488423 ,, 3915865356031 ,,
— e e e e
1258636579200 40276370534400 114747494400 113654661120
86202230 2193242627 , 31184553527 , 20643131927 . 190378390633 , 8199949

V-2 2 4 6_ 8 _ 10
* <110250 7000 ¢t 882000 ¢ T 3528000 C 14112000 ¢ 12544 )}

65472 13696 4396416 65472, (1= g MeSaT2L w13)
- e .
11025 "7 315 11025 ‘¢ 11025 B\ Vizer /]2 ’

¢) 1025 ™

where the (closed-form) enhancement function

) 1 3259 . 1581 , 46015 . 18595 . 6345
7o () = 1 2 4 6 8 10 4.14
(e) = 7=y < 8¢ "6 ¢ "5 ¢ T 024 ¢ T 163’ > (4.14)
is used and where the leading part of the infinite series for A,(e) is
] | 49231log(2) 19683 log(3) 16037log(2) 1003833 log(3)
A = — 2 _ 4
(e) ==y [( 8 sz )¢ 16 048 )¢
63030583 log(2) | 94458717log(3) , 1220703125 log(5)\
4608 32768 204912
976014461 log(2) | 3811868829log(3) _ 130615234375 log(5) 5 @15)
9216 262144 2359296 ’ '

though for our purposes (again) it had to be expanded to ¢*°. Note that the ¢; and d, coefficients are exactly the same as
those in the 6L energy flux.
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With complete understanding of L¢; (e) and Jg; (e) (in terms of PN parameters e and y), we can obtain R¢; (e,) and
Ze1(e;) (at lowest order in v) by using y = x + O(v) and converting e to e, using [39]

2 17-2162 +15y/1—¢2 , 26— 107¢? + 54¢* + (150 — 90¢2) /1 — &7

L
[

v+ OOY.  (4.16)

The effect of this PN expansion between e and e, is that, in order to convert to R, (e,) from Lg; (e), we have to
account for terms that ripple through also from transforming Ls; (e), £4; (e), and Ls; (e). To accomplish this, each of

these flux terms must be known to ¢ (see [49,58]). The same procedure is followed to convert to Z¢; (e,) from J4; (e).
We find

1 2634350510203120  76144416345305443

(1= ¢2)°2 |7 1573295724000 3146501448000 ' 839091052800 '
399990451980530207 , 2328285213193351381 ,  821024946321249521

T 25172731584000 T 4027637053400 ' 26850913689600
113510030676997 ,, 732785694853 |, S (74362302719 1295489312713

T 59175567360 ' ' 227309322240 1"e’< 83349000 166698000 '

9312957259141 ,  220905190597267 . 1481390282809247 . 8130086922259 ,, 10593 12)}
- - - - e’ — e;

31937513191666597
RGL(et) = :

55566000 666792000 10668672000 '~ 790272000 ' 448

M4 136962 4306416, o 16T (1= N]oo
11025 315 11025 ¢ 12 S\11 /-2

1465472
11025

Ay(e),

(4.17)

YE —

38156471442639881
1573295724000 ' " 4195455264000 '
530424582265919197 ,  153117422046377 121354621781
T 40276370534400 T 114747494400 ' 37884887040
1047437123 , 54935631223
147000 '~
__9380191738368__2461610>]
14112000 * 112 '
1369672 4396416 1465472
315 11025 11025

2

1 2460815702382469  14809210436217557
Z6L(€t): )8 - -

(1—e 1573295724000
489605424663941
1258636579200
+_V/Itj;§<86202239__
110250

189779591177
T 3528000
[1465472

10

ef
882000

1 —e?

SR )

1465472 -
11025 "alen):

(4.18)

11025 "B~ log(2) +

In principle, this procedure might be followed to simplify
and make analytically known the next subleading-log terms
(at an integer power of x), i.e., Lo;5, and Jop».

C. The 9/2PN subleading-log example

The procedure laid out above for using the Newtonian
quadrupole to determine the subleading-log term Lg; (e), at
an integer power of y, also works at half-integer powers of
y. The first such term would be the subleading-log Ly,
(associated with leading log Lg5; ). Recall that we can also

consider this term to be a 3PN correction to the previous
leading log, £5/,(e). Since the 1.5PN tail L5/,(e) is an
infinite series, we must expect Lo/, to be one as well. We
show here, however, that if we follow the same procedure
and isolate the transcendental portion (except for an overall
multiplicative factor of x) using the Newtonian mass
quadrupole sums ©;(e) and E;(e), then the remaining
infinite series involves only rational coefficients. We thus
transform the complicated fitting result in [49,58] into a
much more manageable form,
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/2 265978667519 5009791040801 ,

4046503446057439 , 551321612915453 ¢

L —
9/2(6) (1- 32)8 745113600 447068160 71530905600 8047226880
422210831769796213 3 18560339255510812003 10 146292481172437451857 ,
65922882600960 2746786775040000 339031967662080000

392821388634552281893 |,

2162084778435646377506023

140095355726033870461460573

16 18

5285816586731520000
943121499884145402173125024543

17011268009412526080000
741566762964436290955111519639 ,,

1071709884592989143040000

7716311169069521829888000000 ¢
863925808693107071875922125163041313

24

6669097510410086724403200000 ¢

26361076468942343108164030017209652079

8604736371831510295293984768000000
1—

68487 205447

200840089367905047980936685158400000

[1]

4
log(2) + o8 8ﬂ'log<

“ 17105 ”E T 105 105

While (4.19) is still an infinite series, we have identified
some of the tail dependence by isolating the entire
transcendental portion of Ly/, using only the Newtonian
mass quadrupole. The process translates trivially from
energy to angular momentum fluxes. Furthermore, the
route followed in the previous subsection could be used
again to translate Ly, (e) to Ro>(e,). Finally, with enough
BHPT fitting data, similar simplifications could be per-
formed at higher PN orders, for Lis5/51, J15/205 £21/2125

T 212125 €tC.

D. Discussion

Separating off the transcendentals, as done in (4.19),
required relatively few exact coefficients from perturbation
theory once the presence of ©®;(e) and E,(e) was under-
stood and the first part of their Taylor expansions was used.
Once the transcendental terms are split off, the fitting
methods of [39,49] could be used to determine the
remaining rational series to fairly high order in e*. For
the rest of the subleading-log sequence, the same technique
might be pushed as high as, say, 15PN, for both integer and
half-integer in y terms.

However, the integer-order subleading logs consist of a
closed-form part, which appears once the 7, and A, parts
are isolated, as seen with Lg; in (4.12). Determining this
entire closed-form part becomes difficult around the 9PN
log? level, as higher orders in y in BHPT calculations
require many more decimals of numerical accuracy for a
successful PSLQ fit. Additionally, each ‘“jump” by
y? log(y) seems to increase the total number of unknowns,
a; and b;, by 4. Thus, Lo, , would necessitate a fit out to ¢3®
to yield an overdetermined system of equations for the
coefficients in the remaining closed-form terms. This is no
small feat, even using the technique described in [49]
(modified eulerlog procedure) of extracting a purely
rational series from each individual flux component
L' Hence, even if determining the entire analytic
dependence of Lg;,(e) through this method is possible,

i)

68487
1(e).

1(e) o5 (4.19)

|

obtaining the entire eccentricity dependence of any further
integer-order subleading logs in the sequence would be
prohibitively expensive through fitting alone.

However, there exists an alternate way forward, which
allows for an easier calculation of complicated high-PN
logarithms like Lg;,(e) to high (finite) order in .
In a private communication, Nathan Johnson-McDaniel
revealed a means by which his circular-orbit §;,, tail
factorization [59] (based on earlier work in [60,64]) can
be extended to an S, tail factorization for eccentric orbits.
This Imn' factorization can be combined with fitting
methods to greatly simplify (relative to fitting alone) the
process of computing certain logarithmic PN terms to
arbitrary order in e”. Interestingly, the log terms which
can be obtained in this manner include the first five PN
corrections to any integer-order leading logarithm and the
first four PN corrections to any half-integer-order leading
logarithm. As a result, subleading logarithms can be
determined using this approach.

This procedure begins by picking a desired order p for
corrections to the leading logarithms. For example, since
the subleading-log terms addressed in this section are 3PN
corrections to the prior leading-log term, to consider
subleading logs we need to take p = 3. Then, second,
we pick a desired order « in the eccentricity expansion (i.e.,
having the expansion stop at e>*). Next, the exact analytic
form must be found of all the Imn’ modes needed to reach
yP (relative order) in the full flux with an eccentricity
expansion to e2*. This can be done by either fitting high-
precision numerical data or by direct analytic expansion of
the equations of BHPT [31,48]. (Indeed, we have begun to
supplement numerical results with output from a newly
written MATHEMATICA code that does the PN expansions
symbolically and outputs analytic PN expressions.) Either
way this will produce expressions for a total of approx-
imately 2a[(p?> +6p +3)/2] modes. Each individual
Imn' mode is then subjected to tail factorization using
S and reexpanded, which removes the transcendentals
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and leaves a rational double expansion through y” and e*?.
Note in the example of p = 3, this leaves an expansion in
rationals only through 3PN (). In the next step, we
expand each S, tail factor to an arbitrary order in y and
e?. Then the expanded Imn’ tail factors are multiplied by
the rational series expansions for I/mn’, reexpanded, and
summed over all modes. The result, remarkably, generates
all members of the (p)PN correction to the leading-
logarithm series to e, Again, in the p = 3 example, once
we have all modes necessary to reach 3PN in the (relative)
flux in fully analytic form, expansion of the S, to high
PN order provides everything we need to find all the
subleading logs, e.g., 6L, 9L.2, 1213, etc., to high PN order.

In the particular example of subleading log Lg;,(e),
factored Imn’ modes have to be analytically calculated up to
[ =5,m =5 (excluding/ = 5,m = 0,2,4)in order to reach
3PN order, and 38 n’ modes are needed to reach e3® for each
[m. Multiplying each such mode by the analytic expansion
of its respective S, With the analytic expansion carried to
9PN order, and then summing all modes together will yield
(among other things) Lo;,(e) to e Those results can then
be combined with the Newtonian mass quadrupole sums
Ti(e) and Ajz(e) to produce a compact, Lg; (e)-type
[Eq. (4.12)] solution for Lg;,(e). Finally, Lo;,(e) can be
coupled with Lg;,(e), L715(e), and Lg;,(e) (listed in [49]),
along with (4.16), to obtain Ro;,(e,).

Despite the added cost of symbolic calculation, Johnson-
McDaniel’s Imn’ factorization provides a significant com-
putational speedup over fitting alone, particularly when
attempting to reach high orders in y. Additionally, setting
p = 0 in the above procedure reveals an alternative means
of calculating the leading logarithms themselves to arbi-
trary order in e”. By setting p = 0, we only require an
analytic expansion of the /m modes needed to give the
Peters-Mathews flux (i.e., [ =2,m = -2, 0, 2) with the
range in n’ determined by the desired expansion in e?.
The S,,,,» factors are then expanded for this more restricted
number of modes and used in the procedure above. We
have used it to verify the results of Sec. III and the given
general PN form for leading logs out to 21PN (£,;7) in
expansions to e®. Since these terms depend only on
the Newtonian quadrupole, they convert directly from
expansions in y and e to expansions in x and e, via
e — e,. Unfortunately, compared to the multipole moment
approach, this process becomes increasingly expensive at
higher powers of %, where the number of necessary BHPT
Imn' modes grows large. However, for the more compli-
cated subleading-log terms like Lg;, Lo;,, etc., this fac-
torization technique offers an efficient means to generate
expansions at high PN order to comparable finite orders in
2. Costs will likely be reduced further upon full imple-
mentation of direct analytic PN expansion of the BHPT
equations. Combining that analytic approach with §,,,,,
factorizations would be additionally fruitful.

E. More general relations among coefficients
in subleading-logarithmic terms

The preceding subsections described how explicit cal-
culations from perturbation theory can be coupled with
Newtonian mass quadrupole summations to extract sub-
leading logarithms, like R4;. Now, we seek to identify
some of the broader structure within this sequence of flux
terms. This task will again involve complementary discov-
eries from both perturbation theory and PN theory, meaning
most deductions will necessarily remain relevant only to
lowest order in the mass ratio. Remarkably, the results will,
though, allow for the partial delineation of instantaneous
and hereditary terms in the flux.

The process requires analysis of four separate sources of
transcendental structure within the flux:

(1) Fourier tail integrals of the form [15]

/oo et Jog? <i> dr,
0 2ry

where ¢ > 0 is an integer which generally increases
with PN order [see, for instance, Eq. (4.8) of [65]], n
is the same Fourier harmonic number appearing in
g(n,e,), and ry is an arbitrary scale parameter that
cancels in the full flux.

(2) The perturbation theory eulerlog function for Imn’
modes (see [49,59,64]):

(4.20)

1
eulerlog,, »(v) = yg +log [2m + 2n'| + Elog(y).

(4.21)
(3) Instantaneous integrals of the form
/ZH logk[(1 — e, cos u)/x] Qe (422)
0 (1 —e,cosu) '

for integers (k, j), which emerge with various values
of j during the orbital average of log*(r) terms in the
flux. We reuse the integer k here to match the index
on T, as we expect the relevant integrals (for integer
leading/subleading logs) to appear at (3k)PN order.
See [16] for a description and evaluation of these
integrals.

(4) The elimination of all divergences as ¢, — 1 (in par-
ticular, logarithmic divergences) by using an ex-
pansion in the compactness parameter 1/p (p the
semilatus rectum) instead of in x or y.

1. Comparison of eulerlog functions

Starting with the first item in the list, we consider
the given class of hereditary integrals. A common regu-
larization procedure entails computation of the following
integrals:
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(4.23)

/00 e“”‘af logq <L) dT,
0 2rg

for constant @, which is treated as real and positive, but is
ultimately replaced by (sign(—n)iQ,) [15,57]. One key
facet of these integrals is that their evaluation yields the
transcendentals y; and log(2|n|ary) only in the combina-
tion (yg + log(2|n|ary))" for one or more 7 € {1,2, ..., q}.
In fact, we show in the Appendix that (4.23) can be
calculated by taking the simpler integral

1

A (4.24)

o

/ e "log!(r)dr,
0
and transforming the result by yz — v + log(2|n|ar).

Once the substitution for a is made and the imaginary
portion separated, the transformation becomes yp —
ve + mi/2sign(—n) + log(2|n|Q,ry). When products are
taken and a sum is made over positive and negative n,
the relationship between 7z and the rest of the expression is
slightly obscured by the sign(—n) function; however,
the particular linkage among the transcendental factors
(e + log(2|n|Q,ry)) must hold everywhere.

This simple connection constitutes a purely hereditary
type of eulerlog function. Taking the Newtonian limit,
assuming some necessary cancellations (see a related
discussion in [45]), and omitting the unphysical regulari-
zation constant, we obtain a contribution of the form

2\ k-1
B, (—) <}/E + 21log(2) + log

n

—‘ + §1og<x)>k, (4.25)

3 2| 2

at (3k)PN order for some constant B;. When k > 1, this can
be expanded to isolate the two highest powers of log(x) as

g’) + %log(x)} ,
(4.26)

By log(x)*! [k (yE +2log(2) + log

thus providing the expected ratio between the highest
power of log(x) and the combination of transcendentals
that serves as the coefficient for the next highest power
of log(x).

An eccentricity dependence is attached to these tail
integrals in the form of time derivatives of the mass
quadrupole (see, for instance, [61,65]). One can use a
dimensional argument to show that this yields a factor of
(n/2)*g(n, e,) for integral orders [70]. After adjusting the
initial constant to absorb any additional rationals, we can
sum over n to find that log(x)*~! must be attached to

Cy [(kyE + 2klog(2) + %10g(x)> T+ kAk] . (4.27)

However, one must again take care to note that (4.26)
and (4.27) only refer to pieces specifically in the hereditary

flux. On the other hand, the eulerlog,, ,» function in (4.21),
which is derived through BHPT, characterizes the Imn’
modes of the entire flux. It is a direct eccentric-orbit
extension of the circular-orbit function eulerlog,,(x) pre-
sented in [64]. Then, using a similar argument, we can
obtain the following ratio of coefficients for /mn’ modes in
the total flux:

k(yg +1log(2) +log|m + n'|) + %log(x). (4.28)

The log |m + n'| term will partially contribute to both
(log(2)T,) and A, upon summation over /mn’, obscuring
their final coefficients in the flux. However, y; and log(x)
must remain fixed in the ratio k to 1/2. With the leading-
logarithm series already calculated, the full contribution to
the leading-log plus subleading-log terms is then found
to be

~105) 7 (4.29)

k
(58" 4y 2t + Tog ).
Note that if kK = 1, this provides exactly the y5 and log(x)
contributions to the net 3PN flux in (2.32). Additionally, it
is well known that y and A, are only present in the tail
neither makes an appearance in the instantaneous flux.
Therefore, A; can be included to get the full coefficient

< 856>kl [(2kyg + log(x))Ti(e,) + 2kAi(e,)]. (4.30)

T 105) k!

Interestingly, coupling this (full-flux) expression with
the tail result (4.27) leads to another conclusion: The
instantaneous portion of the leading logarithm must equal
—(2/3) its hereditary counterpart, or

Ri(gskt)L(k) =—(2/ 3)Rt(%illc)L(k) = “2R@w)Lk)- (4.31)

2. Instantaneous connection and
logarithmic divergence

We can move a step further via the last two items on the
list. Expanding out (4.22) to retain the highest two powers
of log(x) leaves

2rlog(x) —klog(1—e,cosu)

(=1)*log(x)*-! / de. (432)

0 (1—e,cosu)’

Multiple integrals like this appear at any particular PN
order, differing in values of j. Evaluation and summation of
all relevant integrals yields (among other terms) a loga-
rithmic portion of the form

Fule)) [Iog(x) —klog (11(14_1613)] L 433)
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for some eccentricity function fj(e;). However, (4.31)
indicates that this instantaneous log(x) must be attached
to 2Rk (e,). Therefore, we must have f;(e,) =
_2R(3k)L(k)(et)'

Finally, we can compile all this information together to
determine the following significant portion of the sublead-
ing-log (3PN log) series:

arti 856\ 1

partial _ (99 1
RiGoLu-1) = ( 105) a KZkyE + 6klog(2)
_ 2

+ 2klog< )+ 1og(x)>Tk(e,)

t
1++/1-¢?

+ 2kAk(e,)] : (4.34)

for all £ > 1. A similar expression (with 4z out front and
T, — O, A, — &) follows for half-integer terms. As we
can see, the case k =2 matches the last line of R¢; in
(4.17), and we have verified the corresponding portion of
Ror» as well. Moreover, setting ¢, =0 for arbitrary k
reproduces the known circular-orbit eulerlog ratio, found
using the BHPT 220 mode.

There is another means by which to confirm the specific
relationship among the coefficients of log(x), log(1 — e?),
and A;(e,) in the above. As mentioned in the last item on
the list, all divergences in eccentricity should vanish in a
PN expansion that is made over 1/ p instead of x or y. This
includes logarithmic divergences like log(1 — e?), which
appear in the three listed terms. Indeed, because x can be
expanded in 1/p as

1—¢?

+0(1/p?).

(4.35)

X =

each power of log(x) will necessarily contribute a loga-
rithmic divergence as e, — 1. When this fact is applied with
the divergence of Ay(e;) (see Sec. IVA), we see that the
exact ratio of coefficients in (4.34) will eliminate all the
logarithmic divergences at log(p)*~!/p>* order. Thus, this
alternative fit provides an additional check on our results.

V. CONCLUSIONS AND OUTLOOK

This paper has illustrated a relatively novel way to use
known BHPT and PN techniques to make progress in
understanding the PN expansions of the energy and angular
momentum gravitational wave fluxes for eccentric-orbit
EMRIs. By pairing finite-order eccentricity expansions
from BHPT (found either by combining numerical fitting
with PSLQ or by analytically PN expanding the equations
of BHPT directly) with astute predictions for the multipole
content of select flux terms, we can ascertain exact or
greatly simplified forms for the eccentricity dependence of
those terms to high PN orders at lowest order in the mass

ratio—results which would otherwise have required years
of progress in the full PN theory. In this paper we have
shown that several sequences of PN fluxes (leading
logarithms and subleading logarithms) can be understood
in this way merely by seeing the role of the Newtonian
mass quadrupole moment power spectra, g(n,e,) and
g(n, e,).

More specifically, we showed in Sec. III that the entire
sequence of integer in x PN-order leading-log terms are
closed-form expressions in ¢, and the entire sequence of
half-integer in x leading-log terms are infinite series in e?
with easily determined rational coefficients. For the energy
flux, the Newtonian mass quadrupole moment enters into
these sequences of terms through the Fourier sums T/ (e;)
and O (e,), which are sums over filtered weightings of the
quadrupole spectrum g(n, e,). Equivalent sums exist for
leading-log angular momentum fluxes.

Yet the Newtonian mass quadrupole moment plays an
even wider role than just explaining the leading-log
sequences. As Sec. IV showed, adequate BHPT results
can, in principle, be combined with an ansatz for how the
Newtonian quadrupole moment enters the subleading-log
flux sequences to completely determine their eccentricity
dependence also. With the subleading-log sequences, two
new sets of Fourier sums, Ay(e,) and E;(e,), are defined
from the quadrupole spectrum g(n, e,) (with mirror images
for angular momentum). We then demonstrated the process
explicitly with the (integer-order) Ry (e,) flux term. At
half-integer in x, adequate BHPT data and essentially the
same procedure also allowed a key decomposition of the
subleading-log term Lyg/,(e), revealing in that case an
infinite series in e with rational coefficients that can be
determined to high order in e?. We suspect that this
procedure can be applied successfully to higher PN order
subleading-log terms, giving complete Rs-type analytic
representations for Lo ,(e), Lio3(e), etc., and their
Ri(e,), TJi(e), Zi(e,) counterparts. We also suspect that
Ly)»-type segregations of transcendental terms and
rational-coefficient infinite series will occur at higher PN
orders for all half-integer in x subleading logs, like
Lis/p(e), Ly12(e), etc., and that these might be found
given enough BHPT data.

The methods and results developed here are another
example in a body of literature using BHPT to inform PN
theory and vice versa. Our focus on leading and subleading
logarithms, though differing in scope, is strongly reminis-
cent of [29] and [49], who used the appearance of the
eulerlog function to develop an understanding of lower
powers of logarithms from higher ones. It is also not unlike
the calculation of the redshift invariant achieved by [26],
who combined logarithmic derivations with self-force data
to extract nonlogarithmic terms numerically.

With leading-log and subleading-log fluxes (at lowest
order in the mass ratio) so well understood analytically, by
exploiting the role of the Newtonian mass quadrupole
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moment spectra and making judicious use of BHPT results,
what more might be done to find flux terms at high PN
order without the full PN formalism? It turns out that
similar headway can be made for terms that are a 1PN
correction to elements of the leading-log and subleading-
log sequences (to be reported elsewhere [66]). That analysis
requires the Fourier amplitudes of the next Newtonian
multipole moments (current quadrupole and mass octupole)
and the 1PN correction to the mass quadrupole moment.
Together with the approach of this paper, a pattern emerges
for chipping away at an analytic understanding of the PN
expansion in the fluxes. Rather than proceed one power in x
(or y) at a time, as would be typical in advances in the full
PN formalism, we take each order in multipole moments as
a group, using them to calculate all the most significant PN
contributions from that group. This leads to making
progress through the PN expansion in a “diagonal” sense.
We first come to understand the eccentricity dependence of
the entire leading-log (diagonal) sequences, x** log*(x)
and x3*+3/21ogk(x). Next, we gain an understanding of
the subleading-log diagonals, with PN dependence
x**logh-1(x) and x**t3/2logt-!(x). Then, as we will
show elsewhere [66], we can tackle the 1PN corrections
to the leading logs, which are the diagonals in the PN
expansion with x***! logk(x) and x***3/21og*(x), and 1PN
corrections to the subleading logs, with x**!logt=!(x)
and x3*+3/210gk"1 (x).

Stated in different notation, in the subsequent paper on
IPN corrections to leading and subleading logarithms,
we will show additional closed-form expressions for the
integer-PN-order 1PN logarithms R (3;41).x)(e;) and
ZarsnLu(e) (for k> 0) (e.g., Rars Rz Riors, etc.)
and find infinite power series for half-integer-PN-order
1PN logarithms R(3k+5/2)L(k) and Z(3k+5/2)L(k) (e.g.,
Riij20> Rizjor2, €tc.), at lowest order in the mass ratio.
Interestingly, there is some prospect that we might ascertain
the corresponding contributions at next order in v as well,
though without (at present) second-order BHPT results to
help in confirmation. Some of these results have already
been obtained simply by PSLQ analysis of high-precision
BHPT numerical results. For example, a closed-form
expression for £,; is found in [39], and other closed-form
expressions for J4;, L£71,, and J7;, are found in [49].
Completely new results have been found in making 1PN
corrections to the subleading logs, with (analytically
understood) infinite series obtained for £, and 7, [66].
The remaining integer-order 1PN corrections to the sub-
leading logarithms (e.g., £77, L1012, €tc.) can be similarly
obtained by combining the other 1PN logarithms with the
S;me factorization. The irrational portions of half-integer-
order terms like El]/Z’ £l7/2L’ EZ3/2L2’ etc., will llkely
follow as well.

To provide a more concrete view of how all these pieces
tie together, Table I shows the present state of knowledge of

TABLE L. State of knowledge of eccentricity dependence of PN
flux terms. The second column is the power series expansion
order in e to which the respective flux term is known at present.
The terms L3 and L£3; were previously known [15]. The closed-
form result for £,; was also previously known [39]. All other
results come from this paper and its companion [49]. Flux terms
labeled as “all orders™ are infinite series in e> with analytically
calculable coefficients. Other terms are “only” known in analytic
form up to order ¢*° (or, in a few cases, less). The third column
gives the number of PN corrections to the leading logs which
must be calculated to derive the term fully. The fourth column
indicates the number of leading-log [and A(e,)/E(e,)] correc-
tions which must be calculated to extract the term to all orders in e
in the manner of Sec. I'V. A superset of these terms allows for the
separation of transcendental contributions in the same way, as
shown in column five. Above 5PN it is more difficult to apply
these methods (labeled by asterisk). The last two rows represent
all further leading logarithms.

Known PN order Order for Order to find

order beyond  fitting  transcendental
Term ine LL extraction part
L5 All orders 3PN OPN OPN
L3 Closed form e e e
L3/ Fitted to ¢ 2PN o
Ly Fitted to ¢ 4PN IPN IPN
Lar Closed form 1PN e e
Ly Fitted to ¢*® 3PN e OPN
Lo All orders e e e
Ls Fitted to ¢*° 5PN 2PN 2PN
Lsy. Closed form 2PN e e
Ly Fitted to ¢*° 4PN e 1PN
Lyt Fitted to ¢° 1PN e
Lg Fitted to ¢ 6PN 3PN* 3PN*
Ler, All orders 3PN OPN OPN
Lo Closed form e e e
[,13/2 Fitted to 630 5PN s 2PN
L"l3/2L Fitted to 630 2PN R e
L, Fitted to !> 7PN 4PN* 4PN*
Lqr Fitted to ¢2® 4PN 1PN 1PN
Laro Closed form 1PN e e
Lis) Fitted to !> 6PN - 3PN*
’CIS/ZL Fitted to 626 3PN s OPN
Lispro All orders
L3010 Closed form
Lk+32)r) Al orders

the eccentricity dependence of energy flux terms £;(e) for
PN orders through 7.5PN order and (somewhat) beyond, at
lowest order in the mass ratio. Analogous depth of under-
standing exists for the angular momentum fluxes, J;(e).
Going beyond these orders, converting to R;(e;) and
Z.(e,), and moving to higher orders in v are all subjects
for potential future work.

Finally, with the success of these methods in the fluxes at
infinity for a spinless system, it is natural to ask whether we
might see similar progress in finding underlying analytic
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explanations for the radiation to the horizon of the primary
black hole or for general radiation when the primary black
hole has spin. Unfortunately, it is presently unclear if the
techniques of this paper can be generalized to leading and
subleading-logarithmic contributions in either of those cases.

In the case of radiation to the horizon (with no black hole
spin), preliminary results for eccentric fluxes [67] reveal
structure similar to that at infinity, but with several key
differences in the corresponding eulerlog functions and
correlations among transcendentals. Several of the lowest
PN-order fluxes at the horizon have closed-form expressions,
and it is possible that a Bessel function expansion of the
quadrupole moment, in some altered form, might determine
the analytic form in eccentricity of the leading horizon flux.
We might then be able to generate added corresponding
horizon leading logs from that formula, but this is speculative
at this point. The eccentricity dependence of the horizon
fluxes will be given in more detail in a later paper.
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APPENDIX: TAIL EULERLOG FUNCTION

We prove that the integral (4.23) can be found using
the simpler integral (4.24) under the transformation
Ye = vEe + log(2|n|ary). To proceed, we first write general
forms for the two integrals. Recall that the Gamma function
I'(x) is given by

I(x) = / ¥ pletdr, (A1)
0
Then, the two tail integrals can be written as [68]
o diT(x+1)
“log?(7)dt = ———|
/) e "log?(7)dr o |,
) q
/ e—\n\arlogq (T> dr = Ldi <F<x+l)> ,
0 2rg In|ladx? \ (2|n|ary)* ) |,—o
(A2)

where the second relation is obtained using the variable
substitution u = |n|az.

Both I'(x + 1) and I'(x + 1)/(2|n|ary)* permit conver-
gent Taylor series about x = 0 for |x| < 1. These are most
easily computed using the following representations, valid
for |x| < 1 [69]:

Then, either integral containing log? can be calculated by
expanding the necessary term about x = 0 and picking out
the coefficient of x7/q!, possibly with a factor of 1/|n|a.
But the second expression can be rewritten as

[(x+1)
(2[n]arg)*

0 C k .
=exp (—(yE+10g(2|n|ar0))x+k22%(—x) ) (A4)

Thus, this latter series can be evaluated by making the
substitution yp — yg + log(2|n|ary) in the first. This
completes the proof.

The above results imply a way in which g(n, e,) appears
in Rg. Given the form of the exponentials in (A3), it seems
likely that the hereditary flux will source the appearance of
certain transcendentals like {(3) at higher orders in the PN
expansion. Indeed, we can see in the BHPT fitting results
from [49,58] that the 6PN term L4 contains three such
pieces:

NEIEC TS P
315 YET 20€).

(AS)

partial
L 6

27392 256 ,
_< 05 ‘Bt

Of course, because the eccentricity dependence is solely
determined by the Newtonian sum 75, R¢(e,) will have the
same three contributions with T, (e) — T5(e,).
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