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Abstract

Data-driven modeling increasingly requires to find a Nash equilibrium in multi-player games, e.g.
when training GANs. In this paper, we analyse a new extra-gradient method for Nash equilibrium finding,
that performs gradient extrapolations and updates on a random subset of players at each iteration. This
approach provably exhibits a better rate of convergence than full extra-gradient for non-smooth convex
games with noisy gradient oracle. We propose an additional variance reduction mechanism to obtain
speed-ups in smooth convex games. Our approach makes extrapolation amenable to massive multiplayer
settings, and brings empirical speed-ups, in particular when using a heuristic cyclic sampling scheme. Most
importantly, it allows to train faster and better GANs and mixtures of GANs.

A growing number of models in machine learning require to optimize over multiple interacting objectives.
This is the case of generative adversarial networks (Goodfellow et al., 2014), imaginative agents (Racanière
et al., 2017), hierarchical reinforcement learning (Wayne and Abbott, 2014) and multi-agent reinforcement
learning (Bu et al., 2008). Solving saddle-point problems (see e.g., Rockafellar, 1970), that is key in robust
learning (Kim et al., 2006) and image reconstruction (Chambolle and Pock, 2011), also falls in this category.
These examples can be cast as games where players are parametrized modules that compete or cooperate to
minimize their own objective functions.

To define a principled solution to a multi-objective optimization problem, we may rely on the notion of
Nash equilibrium (Nash, 1951). At a Nash equilibrium, no player can improve its objective by unilaterally
changing its strategy. The theoretical section of this paper considers the class of convex n-player games, for
which Nash equilibria exist (Rosen, 1965). Finding a Nash equilibrium in this setting is equivalent to solving
a variational inequality problem (VI) with a monotone operator (Harker and Pang, 1990; Rosen, 1965). This
VI can be solved using first-order methods, that are prevalent in single-objective optimization for machine
learning. Stochastic gradient descent (the simplest first-order method) is indeed known to converge to local
minima under mild conditions met by ML problems (Bottou and Bousquet, 2008). Yet, while gradient descent
can be applied simultaneously to different objectives, it may fail in finding a Nash equilibrium in very simple
settings (see e.g., Gidel et al., 2019; Letcher et al., 2019). Two alternative modifications of gradient descent
are necessary to solve the VI (hence Nash) problem: averaging (Magnanti and Perakis, 1997; Nedić and
Ozdaglar, 2009) or extrapolation with averaging. The later was introduced as the extra-gradient (EG) method
by Korpelevich (1976)); it is faster (Nemirovski, 2004) and can handle noisy gradients (Juditsky et al., 2011).
Extrapolation corresponds to an opponent shaping step: each player anticipates its opponents’ next moves to
update its strategy.
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Figure 1: Left: We compute masked gradient during the extrapolation and update steps of the extra-gradient
algorithm, to perform faster updates. Right: Optimization trajectories for doubly stochastic extra-gradient
and full-update extra-gradient, on a convex single-parameter two-player convex game. Player sampling
improves the expected rate of convergence toward the Nash equilibrium (0, 0).

Table 1: New and existing (Juditsky et al., 2011) convergence rates for convex games, w.r.t. the number of
gradient computations k. Doubly-stochastic extra-gradient (DSEG) multiplies the noise contribution by a
factor α ,

√

b/n, where b is the number of sampled players among n. G bounds the gradient norm. L: Lip.
constant of losses’ gradient. σ2 bounds the gradient estimation noise. Ω: diameter of the param. space.
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√
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(
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√
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√
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√
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In n-player games, extra-gradient computes 2n single player gradients before performing a parameter
update. Whether in massive or simple two-players games, this may be an inefficient update strategy: early
gradient information, computed at the beginning of each iteration, could be used to perform eager updates or
extrapolations, similar to how alternated update of each player would behave. Therefore, we introduce and
analyse new extra-gradient algorithms that extrapolate and update random or carefully selected subsets of
players at each iteration (Figure 1).

– We review the extra-gradient algorithm for differentiable games and outline its shortcomings (§3.1). We
propose a doubly-stochastic extra-gradient (DSEG) algorithm (§3.2) that updates the strategies of a
subset of players, thus performing player sampling. DSEG performs faster but noisier updates than the
original full extra-gradient method (full EG, Juditsky et al., 2011), that uses a (once) stochastic gradient
oracle. We introduce a variance reduction method to attenuate the noise added by player sampling in
smooth games.

– We derive convergence rates for DSEG in the convex setting (§4), as summarized in Table 1. Proofs
strongly relies on the specific structure of the noise introduced by player sampling. Our rates exhibit a
better dependency on gradient noise compared to stochastic extra-gradient, and are thus interesting in
the high-noise regime common in machine learning.

– Empirically, we first validate that DSEG is faster in massive differentiable convex games with noisy
gradient oracles. We further show that non-random player selection improves convergence speed, and
provide explanations for this phenomenon. In practical non-convex settings, we find that cyclic player
sampling improves the speed and performance of GAN training (CIFAR10, ResNet architecture). The
positive effects of extrapolation and alternation combine: DSEG should be used to train GANs, and even
more to train mixtures of GANs.
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2 Related work

Extra-gradient method. In this paper, we focus on finding the Nash equilibrium in convex n-player
games, or equivalently the Variational Inequality problem (Harker and Pang, 1990; Nemirovski et al., 2010).
This can be done using extrapolated gradient (Korpelevich, 1976), a “cautious” gradient descent approach
that was promoted by Nemirovski (2004) and Nesterov (2007), under the name mirror-prox—we review this
work in §3.1. Juditsky et al. (2011) propose a stochastic variant of mirror-prox, that assumes access to a
noisy gradient oracle. In the convex setting, their results guarantees the convergence of the algorithm we
propose, albeit with very slack rates. Our theoretical analysis refines these rates to show the usefulness of
player sampling. Recently, Bach and Levy (2019) described a smoothness-adaptive variant of this algorithm
similar to AdaGrad (Duchi et al., 2011), an approach that can be combined with ours. Yousefian et al. (2018)
consider multi-agent games on networks and analyze a stochastic variant of extra-gradient that consists in
randomly extrapolating and updating a single player. Compared to them, we analyse more general player
sampling strategies. Moreover, our analysis holds for non-smooth losses, and provides better rates for smooth
losses, through variance reduction. We also analyse precisely the reasons why player sampling is useful (see
discussion in §4), an original endeavor.

Extra-gradient in non-convex settings. Extra-gradient has been applied in non-convex settings. Mer-
tikopoulos et al. (2019) proves asymptotic convergence results for extra-gradient without averaging in a
slightly non-convex case. Gidel et al. (2019) demonstrate the effectiveness of extra-gradient for GANs. They
argue that it allows to escape the potentially chaotic behavior of simultaneous gradient updates (examplified
by e.g. Cheung and Piliouras (2019)). Earlier work on GANs propose to replace simultaneous updates with
alternated updates, with a comparable improvement (Gulrajani et al., 2017). In §5, we show that alternating
player updates while performing opponent extrapolation improves the training speed and quality of GANs.

Opponent shaping and gradient adjustment. Extra-gradient can also be understood as an opponent
shaping method: in the extrapolation step, the player looks one step in the future and anticipates the
next moves of his opponents. Several recent works proposed algorithms that make use of the opponents’
information to converge to an equilibrium (Foerster et al., 2018; Letcher et al., 2019; Zhang and Lesser, 2010).
In particular, the “Learning with opponent-learning awareness” (LOLA) algorithm is known for encouraging
cooperation in cooperative games (Foerster et al., 2018). Lastly, some recent works proposed algorithms to
modify the dynamics of simultaneous gradient descent by adding an adjustment term in order to converge
to the Nash equilibrium (Mazumdar et al., 2019) and avoid oscillations (Balduzzi et al., 2018; Mescheder
et al., 2017). One caveat of these works is that they need to estimate the Jacobian of the simultaneous
gradient, which may be expensive in large-scale systems or even impossible when dealing with non-smooth
losses as we consider in our setting. This is orthogonal to our approach that finds solutions of the original VI
problem (4).

3 Solving convex games with partial first-order information

We review the framework of Cartesian convex games and the extra-gradient method in §3.1. Building on
these, we propose to augment extra-gradient with player sampling and variance reduction in §3.2.

3.1 Solving convex games with gradients

In a game, each player observes a loss that depends on the independent parameters of all other players.

Definition 1. A standard n-player game is given by a set of n players with parameters θ = (θ1, . . . , θn) ∈
Θ ⊂ R

d where Θ decomposes into a Cartesian product
∏n

i=1 Θ
i. Each player’s parameter θi lives in Θi ⊂ R

di .
Each player is given a loss function ℓi : Θ→ R.

3



For example, generative adversarial network (GAN) training is a standard game between a generator and
discriminator that do not share parameters. We make the following assumption over the geometry of losses
and constraints, that is the counterpart of the convexity assumption in single-objective optimization.

Assumption 1. The parameter spaces Θ1, . . . ,Θn are compact, convex and non-empty. Each player’s loss
ℓi(θ

i, θ−i) is convex in its parameter θi and concave in θ−i, where θ−i contains all other players’ parameters.
Moreover,

∑n
i=1 ℓi(θ) is convex in θ.

Assumption 1 implies that Θ has a diameter Ω , maxu,z∈Θ ‖u− z‖2. Note that the losses may be non-
differentiable. A simple example of Cartesian convex games satisfying Assumption 1, that we will empirically
study in §5, are matrix games (e.g., rock-paper-scissors) defined by a positive payoff matrix A ∈ R

d×d, with
parameters θ corresponding to n mixed strategies θi lying in the probability simplex △di .

Nash equilibria. Joint solutions to minimizing losses (ℓi)i are naturally defined as the set of Nash
equilibria (Nash, 1951) of the game. In this setting, we look for equilibria θ⋆ ∈ Θ such that

∀ i ∈ [n], ℓi(θ
i
⋆, θ

−i
⋆ ) = min

θi∈Θi
ℓi(θ

i, θ−i
⋆ ). (1)

A Nash equilibrium is a point where no player can benefit by changing his strategy while the other players
keep theirs unchanged. Assumption 1 implies the existence of a Nash equilibrium (Rosen, 1965). We quantify
the inaccuracy of a solution θ by the functional Nash error, also known as the Nikaidô and Isoda (1955)
function:

ErrN (θ) ,

n
∑

i=1

[

ℓi(θ)− min
z∈Θi

ℓi(z, θ
−i)

]

. (2)

This error, computable through convex optimization, quantifies the gain that each player can obtain when
deviating alone from the current strategy. In particular, ErrN (θ) = 0 if and only if θ is a Nash equilibrium; thus
ErrN (θ) constitutes a propose indication of convergence for sequence of iterates seeking a Nash equilibrium.
We bound this value in our convergence analysis (see §4).

First-order methods and extrapolation. In convex games, as the losses ℓi are (sub)differentiable, we
may solve (1) using first-order methods. We assume access to the simultaneous gradient of the game

F , (∇1ℓ1, . . . ,∇nℓn)
⊤ ∈ R

d,

where we write ∇iℓi , ∇θiℓi. It corresponds to the concatenation of the gradients of each player’s loss
with respect to its own parameters, and may be noisy. The losses ℓi may be non-smooth, in which case the
gradients ∇iℓi can be replaced by any subgradients. Simultaneous gradient descent, that explicitly discretizes
the flow of the simultaneous gradient may converge slowly—e.g., in matrix games with skew-symmetric
payoff and noiseless gradient oracle, convergence of the average iterate demands decreasing step-sizes. The
extra-gradient method (Korpelevich, 1976) provides better guarantees (Juditsky et al., 2011; Nemirovski,
2004)—e.g., in the previous example, the step-size can remain constant. We build upon this method.

Extra-gradient consists in two steps: first, take a gradient step to go to an extrapolated point. Then use
the gradient at the extrapolated point to perform a gradient step from the original point: at iteration τ ,

(extrapolation) θτ+1/2 = pΘ[θτ − γτF (θτ )],

(update) θτ+1 = pΘ[θτ − γτF (θτ+1/2)],
(3)

where pΘ[·] is the Euclidean projection onto the constraint set Θ, i.e. pΘ[z] = argminθ∈Θ ‖θ − z‖22. This
"cautious" approach allows to escape cycling orbits of the simultaneous gradient flow, that may arise around
equilibrium points with skew-symmetric Hessians (see Figure 1). The generalization of extra-gradient to general
Banach spaces equipped by a Bregman divergence was introduced as the mirror-prox algorithm (Nemirovski,
2004). The new convergence results of §4 extend to the mirror setting (see §A.1). As recalled in Table 1,
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Algorithm 1 Doubly-stochastic extra-gradient.

1: Input: initial point θ0 ∈ R
d, stepsizes (γτ )τ∈[t], mini-batch size over the players b ∈ [n].

2: With variance reduction (VR), R← F̃ (θ0, [1, n]) as in (5), i.e. the full simultaneous gradient.
3: for τ = 0, . . . , t do
4: Sample mini-batches of players P, P ′.
5: Compute F̃τ+ 1

2
= F̃ (θτ ,P) using (5) or VR (Algorithm 2).

6: Extrapolation step: θτ+ 1
2
← pΘ[θτ − γτ F̃τ+ 1

2
].

7: Compute F̃τ+1 = F̃ (θτ+ 1
2
,P ′) using (5) or VR

8: Gradient step: θτ+1 ← pΘ[θτ − γτ F̃τ+1].

9: Return θ̂t = [
∑t

τ=0 γτ ]
−1
∑t

τ=0 γτθτ .

Juditsky et al. (2011) provide rates of convergence for the average iterate θ̂t =
1
t

∑t
τ=1 θτ . Those rates are

introduced for the equivalent variational inequality (VI) problem, finding

θ⋆ ∈ Θ such that F (θ⋆)
⊤(θ − θ⋆) > 0 ∀ θ ∈ Θ, (4)

where Assumption 1 ensures that the simultaneous gradient F is a monotone operator (see §A.2 for a review).

3.2 DSEG: Partial extrapolation and update for extra-gradient

The proposed algorithms are theoretically analyzed in the convex setting §4, and empirically validated in
convex and non-convex setting in §5.

Caveats of extra-gradient. In systems with large number of players, an extra-gradient step may be
computationally expensive due to the high number of backward passes necessary for gradient computations.
Namely, at each iteration, we are required to compute 2n gradients before performing a first update. This
is likely to be inefficient, as we could use the first computed gradients to perform a first extrapolation
or update. This remains true for games down to two players. In a different setting, stochastic gradient
descent (Robbins and Monro, 1951) updates model parameters before observing the whole data, assuming
that partial observation is sufficient for progress in the optimization loop. Similarly, in our setting, partial
gradient observation should be sufficient to perform extrapolation and updates toward the Nash equilibrium

Player sampling. While standard extra-gradient performs at each iteration two passes of player’s gradient
computation, we therefore compute doubly-stochastic simultaneous gradient estimates, where only the gradients
of a random subset of players are evaluated. This corresponds to evaluating a simultaneous gradient that
is affected by two sources of noise. We sample a mini-batch P of players of size b 6 n, and compute the
gradients for this mini-batch only. Furthermore, we assume that the gradients are noisy estimates, e.g., with
noise coming from data sampling. We then compute a doubly-stochastic simultaneous gradient estimate F̃ as
F̃ , (F̃ (1), . . . , F̃ (n))⊤ ∈ R

d where

F̃ (i)(θ,P) ,
{

n
b · gi(θ) if i ∈ P
0di

otherwise
, (5)

and gi(θ) is a noisy unbiased estimate of ∇iℓi(θ). The factor n/b in (5) ensures that the doubly-stochastic
simultaneous gradient estimate is an unbiased estimator of the simultaneous gradient. Doubly-stochastic
extra-gradient (DSEG) replaces the full gradients in the update (3) by the oracle (5), as detailed in Algorithm 1.

Variance reduction for player noise. To obtain faster rates in convex games with smooth losses, we
propose to compute a variance-reduced estimate of the gradient oracle (5). This mitigates the noise due
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Algorithm 2 Variance reduced estimate of the simultaneous gradient with doubly-stochastic sampling

1: Input: point θ ∈ R
d, mini-batch P, table of previous gradient estimates R ∈ R

d.
2: Compute F̃ (θ,P) as specified in equation (5).
3: for i ∈ P do
4: Compute F̄ (i) ← F̃ (i)(θ)− (1− b

n )R
(i)

5: Update R(i) ← F̃ (i)(θ)

6: For i /∈ P, set F̄ (i) ← R(i).
7: Return estimate F̄ = (F̄ (1), ..., F̄ (n)), table R.

to player sampling. Variance reduction is a technique known to accelerate convergence under smoothness
assumptions in similar settings. While Chavdarova et al. (2019), Iusem et al. (2017), and Palaniappan and
Bach (2016) apply variance reduction on the noise coming from the gradient estimates, we apply it to the
noise coming from the sampling over the players. We implement this idea in Algorithm 2. We keep an
estimate of ∇iℓi for each player in a table R, which we use to compute unbiased gradient estimates with
lower variance, akin to the approach of SAGA (Defazio et al., 2014) to reduce the variance of data noise.

Player sampling strategies. For convergence guarantees to hold, each player must have an equal proba-
bility of being sampled (equiprobable player sampling condition). Sampling uniformly over b-subsets of [n] is
a reasonable way to fulfill this condition as all players have probability p = b/n of being chosen.

As a strategy to accelerate convergence, we propose to cycle over the n(n− 1) pairs of different players
(with b = 1). At each iteration, we extrapolate the first player of the pair and update the second one. We
shuffle the order of pairs once the block has been entirely seen. This scheme bridges extrapolation and
alternated gradient descent: for GANs, it corresponds to extrapolate the generator before updating the
discriminator, and vice-versa, cyclically. Although its convergence is not guaranteed, cyclic sampling over
players is powerful for convex quadratic games (§5.1) and GANs (§5.2).

4 Convergence for convex games

We derive new rates for DSEG with random player sampling, improving the analysis of Juditsky et al.
(2011). Player sampling can be seen as an extra source of noise in the gradient oracle. Hence the results of
Juditsky et al. on stochastic extra-gradient guarantees the convergence of DSEG, as we detail in Corollary 1.
Unfortunately, the convergence rates in this corollary do not predict any improvement of DSEG over full
extra-gradient. Our main theoretical contribution is therefore a refinement of these rates for player-sampling
noise. Improvements are obtained both for non-smooth and smooth losses, the latter using the proposed
variance reduction approach. Our results predict better performance for DSEG in the high-noise regime.
Results are stated here in Euclidean spaces for simplicity; they are proven in the more general mirror setting
in Appendix B. In the analysis, we separately consider the two following assumptions on the losses.

Assumption 2a (Non-smoothness). For each i ∈ [n], the loss ℓi has a bounded subgradient, namely
maxh∈∂iℓi(θ) ‖h‖2 6 Gi for all θ ∈ Θ. In this case, we also define the quantity G =

√
∑n

i=1 G
2
i /n.

Assumption 2b (Smoothness). For each i ∈ [n], the loss ℓi is once-differentiable and L-smooth, i.e.
‖∇iℓi(θ)−∇iℓi(θ

′)‖2 6 L‖θ − θ′‖2, for θ, θ′ ∈ Θ.

Similar to Juditsky et al. (2011) and Robbins and Monro (1951), we assume unbiasedness of the gradient
estimate and boundedness of the variance.

Assumption 3. For each player i, the noisy gradient gi is unbiased and has bounded variance:

∀ θ ∈ Θ, E[gi(θ)] = ∇iℓi(θ),

E[‖gi(θ)−∇iℓi(θ)‖22] 6 σ2.
(6)
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To compare DSEG to simple stochastic EG, we must take into account the cost of a single iteration, that
we assume proportional to the number b of gradients to estimate at each step. We therefore set k , 2 b t to
be the number of gradients estimates computed up to iteration t, and re-index the sequence of iterate (θ̂t)t∈N

as (θ̂k))k∈2bN. We give rates with respect to k in the following propositions.

4.1 Slack rates derived from Juditsky et al.

Let us first recall the rates obtained by Juditsky et al. (2011) with noisy gradients but no player sampling.

Theorem 1 (Adapted from Juditsky et al. (2011)). We consider a convex n-player game where 2a and
Assumption 3 hold. We run Algorithm 1 for t iterations without player sampling, thus performing k = 2n t
gradient evaluations. With optimal constant stepsize, the expected Nash error verifies

E

[

ErrN (θ̂k)
]

6 14n

√

Ω

3k
(G2 + 2σ2). (7)

Assuming smoothness (2b) and optimal stepsize,

E

[

ErrN (θ̂k)
]

6 max

{

7ΩLn3/2

k
, 14n

√

2Ωσ2

3k

}

. (8)

Player sampling fits within the framework of noisy gradient oracle (6), replacing the gradient estimates
(gi)i∈[n] with the estimates (F̃ (i))i∈[n] from (5), and updating the variance σ2 accordingly. We thus derive
the following corollary.

Corollary 1. We consider a convex n-player game where 2a and Assumption 3 hold. We run Algorithm 1 for
t iterations with equiprobable player sampling, thus performing k = 2 b t gradient evaluations. With optimal
constant stepsize, the expected Nash error verifies

E

[

ErrN (θ̂k)
]

6 O
(

n

√

Ω

k

(n

b
G2 + σ2

)

)

.

Assuming smoothness (2b) and optimal stepsize,

E

[

ErrN (θ̂k)
]

6 O
(

ΩLn3/2

k
+ n

√

Ω

k
(
n

b
L2Ω2 + σ2)

)

.

The proof is in §B.1. The notation O(·) hides numerical constants. Whether in the smooth or non-smooth
case, the upper-bounds from Corollary 1 does not predict any improvement due to player sampling, as the
factor before the gradient size G or LΩ is increased, and the factor before the noise variance σ remains
constant.

4.2 Tighter rates using noise structure

Fortunately, a more cautious analysis allows to improve these bounds, by taking into account the noise
structure induced by sampling in (5). We provide a new result in the non-smooth case, proven in §B.3.

Theorem 2. We consider a convex n-player game where 2a and Assumption 3 hold. We run Algorithm 1 for
t iterations with equiprobable player sampling, thus performing k = 2 b t gradient evaluations. With optimal
constant stepsize, the expected Nash error verifies

E

[

ErrN (θ̂k)
]

6 O
(

n

√

Ω

k

(

G2 +
b

n
σ2

)

)

. (9)
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Compared to Corollary 1, we obtain a factor
√

b
n in front of the noise term σ√

k
, without changing the

constant before the gradient size G. We can thus expect faster convergence with noisy gradients. (9) is
tightest when sampling a single player, i.e. when b = 1.

A similar improvement can be obtained with smooth losses thanks to the variance reduction technique
proposed in Algorithm 2. This is made clear in the following result, proven in §B.4.

Theorem 3. We consider a convex n-player game where 2a and Assumption 3 hold. We run Algorithm 1
for t iterations with equiprobable player sampling, thus performing k = 2 b t gradient evaluations. Algorithm 2
yields gradient estimates. With optimal constant stepsize, the expected Nash error verifies

E

[

ErrN (θ̂k)
]

6O
(

√

n

b

ΩLn3/2

k
+

√

b

n
n

√

Ωσ2

k

)

. (10)

The upper-bound (10) should be compared with the bound of full extra-gradient (8)—that it recovers
for b = n. With player sampling, the constant before the gradient size LΩ is bigger of a factor

√

n
b . On the

other hand, the constant before the noise term σ is smaller of a factor
√

n
b . Player sampling is therefore

beneficial when the noise term dominates, which is the case whenever the number of iterations is such that
k > ΩL2n

σ2

(

n
b

)2
. For k →∞, the bound (10) is once again tightest by sampling a random single player.

To sum up, doubly-stochastic extra-gradient convergence is controlled with a better rate than stochastic
extra-gradient (EG) with non-smooth losses; with smooth losses, DSEG exhibits the same rate structure
in 1

k + 1√
k

as stochastic EG, with a better dependency on the noise but worse dependency on the gradient
smoothness. In the high noise regime, or equivalently when demanding high precision results, DSEG brings

the same improvement of a factor
√

b
n before the constant σ√

k
, for both smooth and non-smooth problems.

Step-sizes. The stepsizes of the previous propositions are assumed to be constant and are optimized knowing
the geometry of the problem. They are explicit in Appendix B. As in full extra-gradient, convergence can be
guaranteed without such knowledge using decreasing step-sizes. In experiments, we perform a grid-search
over stepsizes to obtain the best results given a computational budget k.

5 Convex and non-convex applications

We show the performance of doubly-stochastic extra-gradient in the setting of quadratic games, comparing
different sampling schemes. We assess the speed and final performance of DSEG in the practical context of
GAN training. A PyTorch/Numpy package is attached.

5.1 Random convex quadratic games

We consider a game where n players can play d actions, with payoffs provided by a matrix A ∈ R
nd×nd, an

horizontal stack of matrices Ai ∈ R
(d×nd) (one for each player). The loss function ℓi of each player is defined

as its expected payoff given the n mixed strategies (θ1, . . . , θn), i.e. ∀ i ∈ [n], ∀ θ ∈ Θ = △d1 × · · · × △dn ,

ℓi(θ
i, θ−i) = θi

⊤
Aiθ + λ‖θi − 1

d
‖1,

where λ is a regularization parameter that introduces non-smoothness and pushes strategies to snap to the
simplex center. The positivity of A, i.e. θ⊤Aθ > 0 for all θ ∈ Θ, is equivalent to the convexity of the game.

Experiments. We sample A as the weighted sum of a random symmetric positive definite matrix and a skew
matrix. We compare the convergence speeds of extra-gradient algorithms, with or without player sampling.
We vary three parameters: the variance σ of the noise in the gradient oracle (we add a Gaussian noise on
each gradient coordinate), the non-smoothness λ of the loss, and the skewness of the matrix. We consider

8
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Figure 2: Player sampled extra-gradient outperform vanilla extra-gradient for small noisy/non-noisy
smooth/non-smooth games. Cyclic sampling performs better than random sampling, especially for 5 players
(a). Higher sampling ratio is beneficial in high noise regime (c), Curves averaged over 5 games and 5 runs.

0.5 1.0

Spectral radius of
algorithm operator A

Cyclic
DSEG

Random
DSEG

Full EG

−0.6 −0.4 −0.2 0.0 0.2

Difference with
median radius ĀFull EG

Figure 3: Left: Spectral radii of operators for random 2-player matrix games. Right: each radius is compared
to the median radius obtained for full extra-gradient, within each category of skewness and conditioning of
random payoff matrices. Cyclic sampling lowers spectral radii and improve convergence rates.

small games and large games (n ∈ {5, 50}). We use the (simplex-adapted) mirror variant of doubly-stochastic
extra-gradient, and a constant stepsize, selected among a grid (see Appendix D). We use variance reduction
when λ = 0 (smooth case). We also consider cyclic sampling in our benchmarks, as described in §3.2.

Results. Figure 2 compares the convergence speed of player-sampled extra-gradient for the various settings
and sampling schemes. As predicted by Theorem 2 and 3, the regime of convergence in 1/

√
k in the presence

of noise is unchanged with player sampling. DSEG always brings a benefit in the convergence constants
(Figure 2a-b), in particular for smooth noisy problems (Figure 2a center, Figure 2b left). Most interestingly,
cyclic player selection improves upon random sampling for small number of players (Figure 2a).

Figure 2c highlights the trade-offs in Theorem 3: as the noise increase, the size of player batches should
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Figure 4: Training curves and samples using doubly-stochastic extragradient on CIFAR10 with WGAN-GP
losses, for the best learning rates. Doubly-stochastic extrapolation allows faster and better training, most
notably in term of Fréchet Inception Distance (10k). Curves averaged over 5 runs.

be reduced. Not that for skew-games with many players (Figure 2b col. 3), our approach only becomes
beneficial in the high-noise regime. As predicted in §4, full EG should be favored with noiseless oracles (see
Appendix D).

Spectral study of sampling schemes. The benefit of cyclic sampling can be explained for simple
quadratic games. We consider a two-player quadratic game where ℓi(θ) = θi

⊤
Aθ for i = 1, 2, θ = (θ1, θ2) is

an unconstrained vector of R2×d, and gradients are noiseless. In this setting, full EG and DSEG expected
iterates follows a linear recursion E[θk+4] = A(E[θk]), where k is the number of gradient evaluation and A
is a linear “algorithm operator”, computable in closed form. A lower spectral radius for A yields a better
convergence rate for (E[θk])k, in light of Gelfand (1941) formula—we compare spectral radii across methods.

We sample random payoff matrices A of varying skewness and condition number, and compare the spectral
radius A associated to full EG, and DSEG with cyclic and random player selection. As summarized in
Figure 3, player sampling reduces the spectral radius of A on average; most interestingly, the reduction
is more important using cyclic sampling. Spectral radii are not always in the same order across methods,
hinting that sampling can be harmful in the worst cases. Yet cyclic sampling will perform best on average in
this (simple) setting. We report details and further figures in Appendix C.

5.2 Generative adversarial networks (GANs)

We evaluate the performance of the player sampling approach to train a generative model on CIFAR10
(Krizhevsky and Hinton, 2009). We use the WGAN-GP loss (Gulrajani et al., 2017), that defines a non-convex
two-player game. Our theoretical analysis indeed shows a 1/

√
2 speed-up for noisy monotonous 2-player

games—the following suggests that speed-up also arises in a non-convex setting. We compare the full
stochastic extra-gradient (SEG) approach advocated by Gidel et al. (2019) to the cyclic sampling scheme
proposed in §3.2 (i.e. extra. D, upd. G, extra. G, upd. D). We use the ResNet (He et al., 2016) architecture
from Gidel et al. (2019), and select the best performing stepsizes among a grid (see Appendix D). We use the
Adam (Kingma and Ba, 2015) refinement of extra-gradient (Gidel et al., 2019) for both the baseline and
proposed methods. The notion of functional Nash error does not exist in the non-convex setting. We estimate
the convergence speed toward an equilibrium by measuring a quality criterion for the generator. We therefore
evaluate the Inception Score (Salimans et al., 2016) and Fréchet Inception Distance (FID, Heusel et al. (2017)
along training, and report their final values.

Results. We report training curves versus wall-clock time in Figure 4. Cyclic sampling allows faster and
better training, especially with respect to FID, which is more correlated to human appreciation (Heusel et al.,
2017). Figure 5 (right) compares our result to full extra-gradient with uniform averaging. It shows substantial
improvements in FID, with results less sensitive to randomness. SEG itself slightly outperforms optimistic
mirror descent (Gidel et al., 2019; Mertikopoulos et al., 2019).
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Interpretation. Without extrapolation, alternated training is known to perform better than simultaneous
updates in WGAN-GP (Gulrajani et al., 2017). Full extrapolation has been shown to perform similarly to
alternated updates (Gidel et al., 2019). Our approach combine extrapolation with an alternated schedule. It
thus performs better than extrapolating with simultaneous updates. It remains true across every learning
rate we tested. Echoing our findings of §5.1, deterministic sampling is crucial for performance, as random
player selection performs poorly (score 6.2 IS).

5.3 Mixtures of GANs

Finally, we consider a simple multi-player GAN setting, akin to Ghosh et al. (2018), where n different
generators (gθi)i seeks to fool m different discriminators (fϕj

)
j
. We minimize

∑

j ℓ(gθi , fϕj
) for all i, and

maximize
∑

i ℓ(gθi , fϕj ) for all j. Fake data is then sampled from mixture
∑n

i=1 δi=Jgθi(ε), where J is
sampled uniformly in [n] and ε ∼ N (0, I). We compare two methods: (i) SEG extrapolates and updates all
(gθi)i, (fϕj )j at the same time; (ii) DSEG extrapolates and updates successive pairs (gθj , fϕj ) alternating the
4-step updates from §5.2.

Results. We compare the training curves of both SEG and DSEG in Figure 5, for a range of learning rates.
DSEG outperform SEG for all learning rates; more importantly, higher learning rates can be used for DSEG,
allowing for faster training. DSEG is thus appealing for mixtures of GANs, that are useful to mitigate mode
collapse in generative modeling. We report generated images in Appendix D.

6 Conclusion

We propose and analyse a doubly-stochastic extra-gradient approach for finding Nash equilibria. According to
our convergence results, updating and extrapolating random sets of players in extra-gradient brings speed-up
in noisy and non-smooth convex problems. Numerically, doubly-stochastic extra-gradient indeed brings
speed-ups in convex settings, especially with noisy gradients. It brings speed-ups and improve solutions
when training non-convex GANs and mixtures of GANs, thus combining the benefits of alternation and
extrapolation in adversarial training. Numerical experiments show the importance of sampling schemes. We
take a first step towards understanding the good behavior of cyclic player sampling through spectral analysis.
We foresee interesting developments using player sampling in reinforcement learning: the policy gradients
obtained using multi-agent actor critic methods (Lowe et al., 2017) are noisy estimates, a setting in which it
is beneficial.
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The appendices are structured as follows: Appendix A presents the setting and the existing results. In
particular, we start by introducing the setting of the mirror-prox algorithm in §A.1 and detail the relation
between solving this problem and finding Nash equilibria in convex n-player games §A.2. We then present
the proofs of our theorems in Appendix B. We analyze the DSEG algorithm (Algorithm 1) and study its
variance-reduction version. Appendix D presents further experimental results and details.
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A Existing results

A.1 Mirror-prox

Mirror-prox and mirror descent are the formulation of the extra-gradient method and gradient descent for
non-Euclidean (Banach) spaces. Bubeck (2015) (which is a good reference for this subsection) and Juditsky
et al. (2011) study extra-gradient/mirror-prox in this setting. We provide an introduction to the topic for
completeness.

Setting and notations. We consider a Banach space E and a compact set Θ ⊂ E. We define an open
convex set D such that Θ is included in its closure, that is Θ ⊆ D̄ and D ∩Θ 6= ∅. The Banach space E is
characterized by a norm ‖ · ‖. Its conjugate norm ‖ · ‖∗ is defined as ‖ξ‖∗ = maxz:‖z‖61〈ξ, z〉. For simplicity,
we assume E = R

n.
We assume the existence of a mirror map for Θ, which is defined as a function Φ: D → R that is

differentiable and µ-strongly convex i.e.

∀x, y ∈ D, 〈∇Φ(x)−∇Φ(y), x− y〉 > µ‖x− y‖2.

We can define the Bregman divergence in terms of the mirror map.

Definition 2. Given a mirror map Φ: D → R, the Bregman divergence D : D ×D → R is defined as

D(x, y) , Φ(x)− Φ(y)− 〈∇Φ(y), x− y〉.

Note that D(·, ·) is always non-negative. For more properties, see e.g. Nemirovsky and Yudin (1983) and
references therein. Given that Θ is compact convex space, we define Ω = maxx∈D∩Θ Φ(x)−Φ(x1). Lastly, for
z ∈ D and ξ ∈ E∗, we define the prox-mapping as

Pz(ξ) , argmin
u∈D∩Θ

{Φ(u) + 〈ξ −∇Φ(z), u〉} = argmin
u∈D∩Θ

{D(z, u) + 〈ξ, u〉}. (11)
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The mirror-prox algorithm is the most well-known algorithm to solve convex n-player games in the mirror
setting (and variational inequalities, see §A.2). An iteration of mirror-prox consists of:

Compute the extrapolated point:

{

∇Φ(yτ+1/2) = ∇Φ(θτ )− γF (θτ ),

θτ+1/2 = argminx∈D∩Θ D(x, yτ+1/2),

Compute a gradient step:

{

∇Φ(yτ+1) = ∇Φ(θτ )− γF (θτ+1/2),

θτ+1 = argminx∈D∩Θ D(x, yτ+1).
.

(12)

Remark that the extra-gradient algorithm defined in equation (3) corresponds to the mirror-prox (12) when
choosing Φ(x) = 1

2‖x‖22.

Lemma 1. By using the proximal mapping notation (11), the mirror-prox updates are equivalent to:

Compute the extrapolated point: θτ+1/2 = Pθτ (γF (θτ )),

Compute a gradient step: θτ+1 = Pθτ (γF (θτ+1/2)).

Proof. We just show that θτ+1/2 = Pθτ (γF (θτ )), as the second part is analogous.

θτ+1/2 = argmin
x∈D∩Θ

D(x, yτ+1/2)

= argmin
x∈D∩Θ

Φ(x)− 〈∇Φ(yτ+1/2), x〉

= argmin
x∈D∩Θ

Φ(x)− 〈∇Φ(θτ )− αF (θτ ), x〉

= argmin
x∈D∩Θ

〈αF (θτ ), x〉+D(x, θτ ).

The mirror framework is particularly well-suited for simplex constraints i.e. when the parameter of each
player is a probability vector. Such constraints usually arise in matrix games. If Θi is the di-simplex, we
express the negative entropy for player i as

Φi(θ
i) =

di
∑

j=1

θi(j) log θi(j).

We can then define D , intΘ = intΘ1 × · · · × intΘn and the mirror map as

Φ(θ) =

n
∑

i=1

Φi(θ
i).

We use this mirror map in the experiments for random monotone quadratic games (§5.1).

A.2 Link between convex games and variational inequalities

As first noted by Rosen (1965), finding a Nash equilibrium in a convex n-player game is related to solving a
variational inequality (VI) problem. We consider a space of parameters Θ ⊆ R

d that is compact and convex,
equipped with the standard scalar product 〈·, ·〉 in R

d.
For convex n-player games (Assumption 1), the simultaneous (sub)gradient F (Eq. 3.1) is a monotone

operator.

Definition 3. An operator F : Θ→ R
d is monotone if ∀θ, θ′ ∈ Θ, 〈F (θ)− F (θ′), θ − θ′〉 > 0.
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Assuming continuity of the losses ℓi, we then consider the set of solutions to the following vairational
inequality problem:

Find θ∗ ∈ Θ such that 〈F (θ), θ − θ∗〉 > 0 ∀θ ∈ Θ. (13)

Under Assumption 1, this set coincides with the set of Nash equilibria, and we may solve (13) instead of
(1) (Harker and Pang, 1990; Nemirovski et al., 2010; Rosen, 1965). (13) indeed corresponds to the first-order
necessary optimality condition applied to the loss of each player.

The quantity used to quantify the inaccuracy of a solution θ to (13) is the dual VI gap defined as
ErrVI(θ) = maxu∈Θ〈F (u), θ − u〉. However, the functional Nash error (2), also known as the (Nikaidô and
Isoda, 1955) function, is the usual performance measure for convex games. We provide the convergence rates
in term of functional Nash error but they also apply to the dual VI gap.
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B Proofs and mirror-setting algorithms

We start by proving Corollary 1, that derives from Juditsky et al. (2011) (§B.1). As this result is not
instructive, we use the structure of the player sampling noise in (5) to obtain a stronger result in the
non-smooth case (§B.3). For this, we directly modify the proof of Theorem 1 from Juditsky et al. (2011),
using a few useful lemmas (§B.2). We then turn to the smooth case, for which a variance reduction mechanism
proves necessary (§B.4). The proof is original, and builds upon techniques from the variance reduction
literature (Defazio et al., 2014).

B.1 Proof of Corollary 1

Player sampling noise modifies the variance of the unbiased gradient estimate. Indeed, in equation (5) F̃i(θ,P)
is an unbiased estimate of ∇iℓi(θ), and for all i ∈ [n]

E

[

F̃i(θ,P)
]

= Prob(i ∈ P)n
b
E [gi(θ)] = E [gi(θ)] = ∇iℓi(θ).

If gi has variance bounded by σ2, we can bound the variance of F̃i(θ,P):

E

[

‖F̃i(θ,P)−∇iℓi(θ)‖2
]

= E

[

‖F̃i(θ,P)− gi(θ) + gi(θ)−∇iℓi(θ)‖2
]

6 2E
[

‖F̃i(θ,P)− gi(θ)‖2
]

+ 2E
[

‖gi(θ)−∇iℓi(θ)‖2
]

6 2E
[

‖F̃i(θ,P)− gi(θ)‖2
]

+ 2σ2

= 2E

[

b

n

∥

∥

∥

(n

b
− 1
)

gi(θ)
∥

∥

∥

2

+

(

1− b

n

)

‖gi(θ)‖2
]

+ 2σ2

6 2
n− b

b
E
[

‖gi(θ)‖2
]

+ 2σ2

6 2
n− b

b
G2 + 2σ2.

Substituting σ2 by 2n−b
b G2 + 2σ2 in equations (7) and (8) yields:

E

[

ErrN (θ̂t(k))
]

6 14n

√

Ω

3k

(

4n− 3b

b
G2 + 2σ2

)

= O
(

n

√

Ω

k

(n

b
G2 + σ2

)

)

.

E

[

ErrN (θ̂t(k))
]

6 max

{

7ΩLn3/2

k
, 28n

√

Ω((nb − 1)G2 + σ2)

3k

}

These bounds are worse than the ones in Theorem 1 when b≪ n. This motivates the following derivations,
that yields Theorem 2 and 3.

B.2 Useful lemmas

The following two technical lemmas are proven and used in the proof of Theorem 2 of Juditsky et al. (2011).

Lemma 2. Let z be a point in X , let χ, η be two points in the dual E∗, let w = Pz(χ) and r+ = Pz(η). Then,

‖w − r+‖ 6 ‖χ− η‖∗ .

Moreover, for all u ∈ E, one has

D(u, r+)−D(u, z) 6 〈η, u− w〉+ 1

2
‖χ− η‖2∗ −

1

2
‖w − z‖2 .
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Lemma 3. Let ξ1, ξ2, . . . be a sequence of elements of E∗. Define the sequence {yτ}∞τ=0 in X as follows:

yτ = Pyτ−1
(ξτ ).

Then yτ is a measurable function of y0 and ξ1, . . . , ξτ such that:

∀u ∈ Z,

〈 t
∑

τ=1

ξt, yτ−1 − u

〉

6 D(u, y0) +
1

2

t
∑

τ=1

‖ξτ‖2∗.

The following lemma stems from convexity assumptions on the losses (Assumption 1) and is proven as an
intermediate development of the proof of Theorem 2 of Juditsky et al. (2011).

Lemma 4. We consider a convex n-player game with players losses ℓi where i ∈ [n]. Let a sequence of points

(zτ )τ∈[t] ∈ Θ, the stepsizes (γτ )τ∈[t] ∈ (0,∞). We define the average iterate ẑτ =
[

∑t
τ=0 γτ

]−1
∑t

τ=0 γτzτ .

The functional Nash error evaluated in ẑt is upper bounded by

ErrN (ẑt) , sup
u∈Z

n
∑

i=1

ℓi(ẑt)− ℓi(u
i, ẑ−i

t ) 6 sup
u∈Z

(

t
∑

τ=0

γτ

)−1 t
∑

τ=0

〈γτF (zτ ), zτ − u〉.

The following lemma is a consequence of first-order optimality conditions.

Lemma 5. Let (γt)t∈N be a sequence in (0,∞) and A,B > 0. For any t ∈ N, we define the function ft to be

ft(α) ,
A

∑t
τ=0 αγτ

+
B
∑t

τ=0(αγτ )
2

∑t
τ=0 αγτ

.

Then, it attains its minimum for α > 0 when both terms are equal. Let us call α∗ the point at which the
minimum is reached. The value of ft evaluated at α∗ is

ft(α∗) = f

(√

A

B
∑t

τ=0 γ
2
τ

)

=
2
√

AB
∑t

τ=0 γ
2
τ

∑t
τ=0 γτ

.

The next lemma describes the dual norm of the natural Pythagorean norm on a Cartesian product of
Banach spaces.

Lemma 6. Let (X1, ‖·‖X1
), . . . , (Xn, ‖·‖Xn) be Banach spaces where for each i, ‖·‖Xi is the norm associated

to Xi. The Cartesian product is X = X1×X2×· · ·×Xn and has a norm ‖·‖X defined for y = (y1, . . . , yn) ∈ X
as

‖y‖X ,

√

√

√

√

n
∑

i=1

‖yi‖2Xi
.

It is known that (X, ‖·‖X) is a Banach space. Moreover, we define the dual spaces (X∗
1 , ‖·‖X∗

1
, . . . , (X∗

n, ‖·‖X∗

n
).

The dual space of X is X∗ = X∗
1 ×X∗

2 × ...×X∗
n and has a norm ‖ · ‖X∗ . Then, for any a = (a1, ..., an) ∈ X∗,

the following inequality holds

‖a‖2X∗ =

n
∑

i=1

‖ai‖2X∗

i
.

Proof. On the one hand,

‖a‖2X∗ = sup
y∈X

|ay|2
‖y‖2X

= sup
y∈X

(
∑n

i=1 aiyi)
2

‖y‖2X
6 sup

y∈X

(

∑n
i=1 ‖ai‖X∗

i
‖yi‖Xi

)2

‖y‖2X
,
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and by Cauchy-Schwarz inequality

‖a‖2X∗ 6 sup
y∈X

(

∑n
i=1 ‖ai‖2X∗

i

)

(
∑n

i=1 ‖yi‖2Xi

)

‖y‖2X
=

n
∑

i=1

‖ai‖2X∗

i
.

To prove the other inequality we define Zi =
{

yi ∈ Xi|‖yi‖X = ‖ai‖X∗

i

}

.

‖a‖2X∗ > sup
y∈Z1×···×Zn

|ay|2
‖y‖2X

=

(
∑n

i=1 supyi∈Zi
aiyi

)2

∑n
i=1 ‖ai‖2X∗

i

=

(

∑n
i=1 ‖ai‖2X∗

i

)2

∑n
i=1 ‖ai‖2X∗

i

=

n
∑

i=1

‖ai‖2X∗

i
.

The following two numerical lemmas will be used in Lemma 11.

Lemma 7. The following inequality holds for any j ∈ N, p ∈ R such that p > 0:

(2⌈(j + 1)/2⌉ − j)(1− p)2⌈(j+1)/2⌉−j−1p+ 2(1− p)2⌈(j+1)/2⌉−j

p2
6

2− p

p2
.

Proof. For j even, we can write

(2⌈(j + 1)/2⌉ − j)(1− p)2⌈(j+1)/2⌉−j−1p+ 2(1− p)2⌈(j+1)/2⌉−j = 2(1− p)p+ 2(1− p)2 = 2(1− p).

For j odd,

(2⌈(j + 1)/2⌉ − j)(1− p)2⌈(j+1)/2⌉−j−1p+ 2(1− p)2⌈(j+1)/2⌉−j = p+ 1− p+ 1− p = 2− p.

Since p > 0, 2− p > 2(1− p).

Lemma 8. For all |α| < 1,
∞
∑

s=q

αs−1s =
qαq−1(1− α) + αq

(1− α)2
.

Proof.
∞
∑

s=q

αs−1s =

( ∞
∑

s=q

αs

)′

=

(

αq

1− α

)′
=

qαq−1(1− α) + αq

(1− α)2
.

B.3 Doubly-stochastic mirror-prox—Proof of Theorem 2

B.3.1 Algorithm

While Algorithm 1 presents the doubly-stochastic algorithm in the Euclidean setting, we consider here its
mirror version.

Notation. We introduce the noisy simultaneous gradient F̂ (θ) defined as

F̂ (θ) = (F̂ (1)(θ), . . . , F̂ (n)(θ))⊤ , (g1, . . . , gn)
⊤ ∈ R

d,

where gi is a noisy unbiased estimate of ∇ili(θ) with variance bounded by σ2. We are abusing the notation
because F̂ (θ) is a random variable indexed by Θ and not a function, but we do so for the sake of clarity.

For our convenience, we also define the ratio p = b/n.
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Algorithm 3 Doubly-stochastic mirror-prox

1: Input: initial point θ0 ∈ R
d, stepsizes (γτ )τ∈[t], mini-batch size over the players b ∈ [n].

2: for τ = 0, . . . , t do
3: Sample the random matrices Mτ ,Mτ+1/2 ∈ R

d×d.

4: Compute F̃τ+1/2 = n
b ·Mτ F̂ (θτ ).

5: Extrapolation step: θτ+1/2 = Pθτ (γτ F̃τ+1/2).

6: Compute F̃τ+1 = n
b ·Mτ+1/2F̂ (θτ+1/2).

7: Gradient step: θτ+1 = Pθτ (γτ F̃τ+1).

8: Return θ̂t =
[

∑t
τ=0 γτ

]−1
∑t

τ=0 γτθτ .

Differences with Algorithm 1 The notation in Algorithm 3 differs in a few aspects. First, we model
the sampling over the players by using the random block-diagonal matrices Mτ and Mτ+1/2 in R

d×d. More
precisely, at each iteration, we select according to a uniform distribution b diagonal blocks and assign them
to the identity matrix. Remark that we add a factor n/b in front of the random matrices to ensure the
unbiasedness of the gradient estimates F̃τ and F̃τ+1/2. Note that the matrices Mτ and Mτ+1/2 are just used
for the convenience of the analysis. In practice, sampling over players is not performed in this way.

Moreover, while the update in Algorithm 1 involve Euclidean projections, we use the proximal mapping (11)
in Algorithm 3. The new notation will be used throughout the appendix.

We first proceed to the analysis of Algorithm 3 in the case of non-smooth losses.

B.3.2 Convergence rate under Assumption 2a (non-smoothness)—proof of Theorem 2

The following Theorem 4 generalizes Theorem 2 to the mirror setting.

Theorem 4. We consider a convex n-player game where 2a holds. Assume that Algorithm 3 is run with
constant stepsizes γτ = γ. Let t(k) = k/(2b) be the number of iterations corresponding to k gradient
computations. Setting

γ =

√

√

√

√

2Ω

n
(

(3n−b)G2

b + σ2
)

t(k)
,

the rate of convergence in expectation at iteration t(k) is

E

[

ErrN (θ̂t(k))
]

= 4

√

Ωn (3G2n+ b(σ2 −G2))

k
. (14)

Proof. The strategy of the proof is similar to the proof of Theorem 2 and part of Theorem 1 from Juditsky
et al. (2011). It consists in bounding

∑t
τ=0〈γτF (θτ+1/2), θτ+1/2 − u〉, which by Lemma 4 is itself a bound of

the functional Nash error.
By using Lemma 2 with z = θτ , χ = γτ F̃τ+1/2, η = γτ F̃τ+1 (so that w = θτ+1/2 and r+ = θτ+1), we have

for any u ∈ Θ

〈γτ F̃τ+1, θτ+1/2 − u〉+D(u, θτ+1)−D(u, θτ ) 6
γ2
τ

2
‖F̃τ+1 − F̃τ+1/2‖2∗ −

1

2
‖θτ+1/2 − θτ‖2∗

6
γ2
τ

2
‖F̃τ+1 − F̃τ+1/2‖2∗. (15)

When summing up from τ = 0 to τ = t in equation (15), we get

t
∑

τ=0

〈γτ F̃τ+1, θτ+1/2 − u〉 6 D(u, θ0)−D(u, θt+1) +
t
∑

τ=0

γ2
τ

2
‖F̃τ+1 − F̃τ+1/2‖2∗. (16)
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By decomposing the right-hand side (16), we obtain

t
∑

τ=0

〈γτF (θτ+1/2), θτ+1/2 − u〉 6 D(u, θ0)−D(u, θt+1) +

t
∑

τ=0

γ2
τ

2
‖F̃τ+1 − F̃τ+1/2‖2∗

+

t
∑

τ=0

〈

γτ (F (θτ+1/2)− F̃τ+1), θτ+1/2 − u

〉

6 Ω+

t
∑

τ=0

γ2
τ

2
‖F̃τ+1 − F̃τ+1/2‖2∗

+

t
∑

τ=0

γτ

〈

F (θτ+1/2)− F̃τ+1, θτ+1/2 − yτ

〉

+
t
∑

τ=0

γτ

〈

F (θτ+1/2)− F̃τ+1, yτ − u

〉

,

(17)

where we used D(u, θ0) 6 Ω and defined yτ+1 = Pyτ (γτ∆τ ) with y0 = θ0 and ∆τ = F (θτ+1/2)− F̃τ+1. So far,
we followed the same steps as Juditsky et al. (2011). We aim at bounding the left-hand side of equation (17)
in expectation. To this end, we will now bound the expectation of each of the right-hand side terms. These
steps represent the main difference with the analysis by Juditsky et al. (2011).

We first define the filtrations Fτ = σ(θτ ′ : τ ′ 6 τ + 1/2) and Fτ = σ(θτ ′ : τ ′ 6 τ). We now bound the
third term on the right-hand side of (17) in expectation.

E

[

‖F̃τ+1 − F̃τ+1/2‖2∗
]

6 2
(

E

[

‖F̃τ+1‖2∗
]

+ E

[

‖F̃τ+1/2‖2∗
])

=
2

p2

(

E

[

E

[

‖Mτ+1/2F̂ (θτ+1/2)‖2∗|Fτ

]]

+ E

[

E

[

‖Mτ F̂ (θτ )‖2∗|F ′
τ

]])

=
2

p2

n
∑

i=1

(

E

[

E

[

‖M (i)
τ+1/2F̂

(i)(θτ+1/2)‖2∗|Fτ

]]

(18)

+E

[

E

[

‖M (i)
τ F̂ (i)(θτ )‖2∗|F ′

τ

]])

6
2

p

n
∑

i=1

E

[

‖F̂ (i)(θτ+1/2)‖2∗
]

+ E

[

‖F̂ (i)(θτ )‖2∗
]

6
4nG2

p
,

where we used ‖a+ b‖2∗ 6 2‖a‖2∗+2‖b‖2∗ in the first inequality and applied Lemma 6 in the second equality.
Now, we compute the expectation of the fourth term of equation (17).

E

[

γτ

t
∑

τ=0

〈

F (θτ+1/2)− F̃τ+1, yτ − u

〉

]

(19)

= E

[

t
∑

τ=0

E

[〈

γτ

(

I − Mτ+1/2

p

)

F̂ (θτ+1/2), θτ+1/2 − yτ

〉∣

∣

∣

∣

Fτ

]

]

= E

[

t
∑

τ=0

〈

γτE

[(

I − Mτ+1/2

p

) ∣

∣

∣

∣

Fτ

]

E

[

F̂ (θτ+1/2)

∣

∣

∣

∣

Fτ

]

, θτ+1/2 − yτ

〉

]

= 0,

where we used the independence property of the random variables in the second equality and E[ kn ·Mτ+1/2] = Id
in the third equality. Regarding the fifth term of (17), by using the sequences {yτ} and {ξτ = γτ∆τ} in
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Lemma 3 (as done in Juditsky et al. (2011)), we obtain:

t
∑

τ=0

〈γτ∆τ , yτ − u〉 6 D(u, θ0) +

t
∑

τ=0

γ2
τ

2
‖∆τ‖2∗ 6 Ω+

t
∑

τ=0

γ2
τ

2
‖F (θτ+1/2)− F̃τ+1‖2∗. (20)

We now bound the expectation of ‖F (θτ+1/2)− F̃τ+1‖2∗ using the filtration Fτ . By using Lemma 6 in the first
equality, ‖a+ b‖2∗ 6 2‖a‖2∗ + 2‖b‖2∗ in the second inequality and the bound on the variance (Assumption 3) in
the third inequality, we obtain

E

[

‖F (θτ+1/2)− F̃τ+1‖2∗
]

=

n
∑

i=1

E

[

‖F (i)(θτ+1/2)− F̃
(i)
τ+1‖2∗

]

=
n
∑

i=1

E

[

∥

∥

∥

∥

F (i)(θτ+1/2)−
M

(i)
τ+1

p
F̂ (i)(θτ+1/2)

∥

∥

∥

∥

2

∗

]

6

n
∑

i=1

2E

[

∥

∥

∥

∥

(

I − M
(i)
τ+1

p

)

F̂ (i)(θτ+1/2)

∥

∥

∥

∥

2

∗

]

+

n
∑

i=1

2E

[

∥

∥

∥

∥

F (i)(θτ+1/2)− F̂ (i)(θτ+1/2)

∥

∥

∥

∥

2

∗

]

6

n
∑

i=1

2E

[

p

∥

∥

∥

∥

p− 1

p
F̂ (i)(θτ+1/2)

∥

∥

∥

∥

2

∗
+ (1− p)‖F̂ (i)(θτ+1/2)‖2∗

]

+ 2nσ2

=
n
∑

i=1

2

(

1− p+
(1− p)2

p

)

E

[

‖F̂ (i)(θτ+1/2)‖2∗
]

+ 2nσ2

=

n
∑

i=1

2

(

1

p
− 1

)

E

[

‖F̂ (i)(θτ+1/2)‖2∗
]

+ 2nσ2

6
2nG2(1− p)

p
+ 2nσ2. (21)

Therefore, by taking the expectation in equation (17) and plugging (18), (19), (20) and (21), we finally get:

E

[

sup
u∈Z

t
∑

τ=0

〈γτF (θτ+1/2), θτ+1/2 − u〉
]

6 2Ω +

t
∑

τ=0

γ2
τn

(

(3− p)G2

p
+ σ2

)

(22)

Applying Lemma 4 to equation (22) yields an upper bound on the functional Nash error shown in equation (23).

E

[

ErrN (θ̂t)
]

6

(

t
∑

τ=0

γτ

)−1(

2Ω +
t
∑

τ=0

γ2
τn

(

(3n− b)G2

b
+ σ2

)

)

. (23)

Now, let us set γt constant and optimize the bound (23). Namely, we apply Lemma 5 setting γτ = 1 for
all τ ∈ [t], A = 2Ω and

B = n

(

(3n− b)G2

b
+ σ2

)

.

The optimal value for γτ is

γτ = γ =

√

√

√

√

2Ω

n
(

(3n−b)G2

b + σ2
)

t
.

and the optimal value of the bound is

E

[

ErrN (θ̂t)
]

6

√

√

√

√

8Ωn
(

(3n−b)G2

b + σ2
)

t
. (24)
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The number of iterations t can be expressed in terms of the number of gradient computations k as
t(k) = k/(2b). Plugging this expression into (24), we get

E

[

ErrN (θ̂t(k))
]

=

√

8Ωn
(

3G2n
b + σ2 −G2

)

k
2b

,

which yields equation (14) after simplification.

Remark 1. For constant stepsizes, equation (24) implies that with an appropriate choice of t and γ we can
achieve a value of the Nash error arbitrarily close to zero at time t. However, from Equation 23 we see that
constant stepsizes do not ensure convergence; the bound has a strictly positive limit. Stepsizes decreasing as
1/
√
τ do ensure convergence, although we do not make a detailed analysis of this case.

Remark 2. Without using any variance reduction technique, the smooth losses assumption 2b does not yield
a significant improvement over the bound from Theorem 4. We do not include the analysis of this case.

B.4 Doubly-stochastic mirror-prox with variance reduction—Proof of Theo-
rem 3

B.4.1 Algorithm

With the same notations as above, we present a version of Algorithm 1 with variance reduction in the mirror
framework.

Algorithm 4 Mirror prox with variance reduced player randomness

1: Input: initial point θ0 ∈ R
d, stepsizes (γτ )τ∈[t], mini-batch size over the players b ∈ [n].

2: Set R0 = F̂ (θ0) ∈ R
d

3: for τ = 0, . . . , t do
4: Sample the random matrices Mτ ,Mτ+1/2 ∈ R

d×d.

5: Compute F̃τ+1/2 = Rτ + n
bMτ (F̂ (θτ )−Rτ )

6: Set Rτ+1/2 = Rτ +Mτ (F̂ (θτ )−Rτ )

7: Extrapolation step: θτ+1/2 = Pθτ (γτ F̃τ+1/2).

8: Compute F̃τ+1 = Rτ+1/2 +
n
bMτ+1/2(F̂ (θτ+1/2)−Rτ+1/2)

9: Set Rτ+1 = Rτ+1/2 +Mτ+1/2(F̂ (θτ+1/2)−Rτ+1/2)

10: Extra-gradient step: θτ+1 = Pθτ (γτ F̃τ+1).

11: Return θ̂t =
[

∑t
τ=0 γτ

]−1
∑t

τ=0 γτθτ .

F̃ (θ) is defined as in Algorithm 3. The random matrices Mτ ,Mτ+1/2 are also sampled the same way.
In Algorithm 4, we leverage information from a table (Rτ )τ∈[t] to produce doubly-stochastic simultaneous

gradient estimates with lower variance than in Algorithm 3. The table Rτ is updated when possible.
The following Theorem 5 generalizes Theorem 3 in the mirror setting.

Theorem 5. Assume that for all i between 1 and n, the gradients ∇iℓi are L-Lipschitz (2b). Assume
Algorithm 4 is run with constant stepsizes γτ = γ, with γ defined as

γ , min

{

p3/2
√

(1− p)(2− p)

1

12L
√
n
,
1

L

√

5

27n+ 12
,
1

2

√

Ω

13nσ2t(k)

}

,
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where p , b/n, k is the number of gradient computations and t(k) = k/(2b) is the corresponding number of
iterations. Then, the convergence rate in expectation at iteration t(k) is

E

[

ErrN (θ̂t(k))
]

6 max

{

96
√
2ΩLn2

√
bk

, 8ΩbL

√

27n+ 12

5

1

k
, 8

√

26Ωnbσ2

k

}

.

Outline of the proof of Theorem 5.

• Lemma 12 provides a bound for E
[

∑t
τ=0 γ

2
τ‖F̃τ+1 − F (θτ+1/2)‖2⋆ + γ2

τ‖F (θτ )− F̃τ+1/2‖2⋆
]

and it is the

keystone of the proof. It specifically uses the structure of player sampling and the introduced variance
reduction mechanism.

• Lemma 10 and 11 are intermediate steps in the proof of Lemma 12. Lemma 9 and Lemma 8 are used
in the proof of Lemma 11.

• We prove Theorem 5 by refining base inequalities established by Juditsky et al. (2011), using the results
from Lemma 12.

Definition 4. For a given j and i (which we omit), let us define Kj as the random variable indicating the

highest q ∈ N strictly lower than j such that M
(i)
q/2 is the identity (and Kj = 0 if there exists no such q).

In other words, Kj is the last step q before j at which the sequence (R
(i)
q/2)q∈N was updated with a new

value F̂ (i)(θq/2). That is, Rj/2,i = F̂ (i)(θKj/2).

Lemma 9. For a given j, j −Kj is a random variable that has a geometric distribution with parameter p
and support between 1 and j, i.e., for all q such that j − 1 > q > 1,

P (Kj = q) = p(1− p)j−1−q,

and P (Kj = 0) = 1−∑j−1
q=1 P (Kj = q) = (1− p)j−1.

Proof. M
(i)
q/2 is Bernoulli distributed with parameter p among zero and the identity, for all q.

Lemma 10. The following equalities hold:

E

[

‖F (i)(θτ )− F̃
(i)
τ+1/2‖2⋆

]

=
2(1− p)

p
E

[

‖R(i)
τ − F̂ (i)(θτ )‖2⋆

]

+ 2σ2,

E

[

‖F̃ (i)
τ+1 − F (i)(θτ+1/2)‖2⋆

]

=
2(1− p)

p
E

[

‖R(i)
τ+1/2 − F̂ (i)(θτ+1/2)‖2⋆

]

+ 2σ2.
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Proof. Using the conditional expectation with respect to the filtration up to wτ ,

E

[

‖F̃ (i)
τ+1 − F (i)(θτ+1/2)‖2⋆

]

= 2E





∥

∥

∥

∥

R
(i)
τ+1/2 +

M
(i)
τ+1/2

p
(F̂ (i)(θτ+1/2)−R

(i)
τ+1/2)− F̂ (i)(θτ+1/2)

∥

∥

∥

∥

2

⋆





+ 2E
[

‖F̂ (i)(θτ+1/2)− F (i)(θτ+1/2)‖2⋆
]

= 2E





∥

∥

∥

∥



I −
M

(i)
τ+1/2

p



 (R
(i)
τ+1/2 − F̂ (i)(θτ+1/2))

∥

∥

∥

∥

2

⋆



+ 2σ2

= 2E

[

p

∥

∥

∥

∥

p− 1

p
(R

(i)
τ+1/2 − F̂ (i)(θτ+1/2))

∥

∥

∥

∥

2

⋆

+ (1− p)‖R(i)
τ+1/2 − F̂ (i)(θτ+1/2)‖2⋆

]

+ 2σ2

= 2

(

1− p+
(1− p)2

p

)

E

[

‖R(i)
τ+1/2 − F̂ (i)(θτ+1/2)‖2⋆

]

+ 2σ2

=
2(1− p)

p
E

[

‖R(i)
τ+1/2 − F̂ (i)(θτ+1/2)‖2⋆

]

+ 2σ2.

The second equality is derived analogously.

Let us define the change of variables j = 2τ . Parametrized by j, the sequences that we are dealing with
are (M

(i)
j/2)j∈N, (R(i)

j/2)j∈N and (θj/2)j∈N. In this scope i is a fixed integer between 1 and n.

Lemma 11. Let us define h : R→ R as

h(p) ,
2− p

p2
. (25)

Assume that (γτ )τ∈N is non-increasing. Then, the following holds:

t
∑

τ=0

γ2
τE

[

‖R(i)
τ − F̂ (i)(θτ )‖2⋆

]

6

2t−1
∑

j=0

h(p)γ2
⌊j/2⌋E

[

‖F̂ (i)(θj/2)− F̂ (i)(θ(j+1)/2)‖2⋆
]

, (26)

t
∑

τ=0

γ2
τE

[

‖R(i)
τ+1/2 − F̂ (i)(θτ+1/2)‖2⋆

]

6

2t−1
∑

j=0

h(p)γ2
⌊j/2⌋E

[

‖F̂ (i)(θj/2)− F̂ (i)(θ(j+1)/2)‖2⋆
]

.

Proof. We can write

E

[

‖R(i)
τ − F̂ (i)(θτ )‖2⋆

]

= E

[

‖R(i)
2τ/2 − F̂ (i)(θ2τ/2)‖2⋆

]

(27)

= E

[

E

[

‖R(i)
2τ/2 − F̂ (i)(θ2τ/2)‖2⋆

∣

∣

∣

∣

K2τ

]]

=

2τ−1
∑

q=0

P (K2τ = q)E

[

‖R(i)
2τ/2 − F̂ (i)(θ2τ/2)‖2⋆

∣

∣

∣

∣

K2τ = q

]

=

2τ−1
∑

q=1

p(1− p)2τ−1−q
E

[

‖F̂ (i)(θq/2)− F̂ (i)(θ2τ/2)‖2⋆
]

+ (1− p)2τ−1
E

[

‖F̂ (i)(θ0)− F̂ (i)(θ2τ/2)‖2⋆
]

.

As seen in equation (27), the point of conditioning with respect to the sigma-field generated by K2τ (see
Definition 4) is that we can write the expression for R2τ/2,i. We have used Lemma 9.
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Now, using the rearrangement inequality,

E

[

‖F̂ (i)(θq/2)− F̂ (i)(θ2τ/2)‖2⋆
]

= E





∥

∥

∥

∥

2τ−1
∑

j=q

F̂ (i)(θj/2)− F̂ (i)(θ(j+1)/2)

∥

∥

∥

∥

2

⋆



 (28)

6

2τ−1
∑

j=q

(2τ − q)E
[

‖F̂ (i)(θj/2)− F̂ (i)(θ(j+1)/2)‖2⋆
]

.

Using equations (27) and (28) we can now write

t
∑

τ=0

γ2
τE

[

‖R(i)
τ − F̂ (i)(θτ )‖2⋆

]

(29)

=

t
∑

τ=0

γ2
τ

2τ−1
∑

q=1

p(1− p)2τ−1−q
E

[

‖F̂ (i)(θq/2)− F̂ (i)(θ2τ/2)‖2⋆
]

+ γ2
τ (1− p)2τ−1

E

[

‖F̂ (i)(θ0)− F̂ (i)(θ2τ/2)‖2⋆
]

6

t
∑

τ=0

γ2
τ

2τ−1
∑

q=1

p(1− p)2τ−1−q
2τ−1
∑

j=q

(2τ − q)E
[

‖F̂ (i)(θj/2)− F̂ (i)(θ(j+1)/2)‖2⋆
]

+ γ2
τ (1− p)2τ−1

2τ−1
∑

j=0

2τE
[

‖F̂ (i)(θj/2)− F̂ (i)(θ(j+1)/2)‖2⋆
]

.

Given j between 0 and 2t − 1 the right hand side of equation (29) contains the term

E

[

‖F̂ (i)(θj/2)− F̂ (i)(θ(j+1)/2)‖22
]

multiplied by

t
∑

τ=⌈(j+1)/2⌉
γ2
τ

(

j
∑

r=1

(2τ − r)p(1− p)2τ−1−r + 2τ(1− p)2τ−1

)

6 γ2
⌊j/2⌋

t
∑

τ=⌈(j+1)/2⌉

j
∑

r=1

(2τ − r)p(1− p)2τ−1−r + 2τ(1− p)2τ−1

= γ2
⌊j/2⌋

t
∑

τ=⌈(j+1)/2⌉
p

j−1
∑

r′=0

(1− p)2τ−1−j+r′(2τ − j + r′) + 2τ(1− p)2τ−1

6 γ2
⌊j/2⌋

t
∑

τ=⌈(j+1)/2⌉
p

∞
∑

r′=2τ−j

(1− p)r
′−1r′ = (∗).

26



Using Lemma 8 twice:

(∗) = γ2
⌊j/2⌋

t
∑

τ=⌈(j+1)/2⌉
p
(2τ − j)(1− p)2τ−1−jp+ (1− p)2τ−j

p2

= γ2
⌊j/2⌋

t
∑

τ=⌈(j+1)/2⌉

(2τ − j)(1− p)2τ−1−jp+ (1− p)2τ−j

p

6 γ2
⌊j/2⌋

∞
∑

τ=2⌈(j+1)/2⌉
(τ − j)(1− p)τ−1−j +

γ2
⌊j/2⌋
p

∞
∑

τ=2⌈(j+1)/2⌉
(1− p)τ−j

= γ2
⌊j/2⌋

∞
∑

τ=2⌈(j+1)/2⌉−j

τ(1− p)τ−1 +
γ2
⌊j/2⌋
p

∞
∑

τ=2⌈(j+1)/2⌉−j

(1− p)τ

= γ2
⌊j/2⌋

(2⌈(j + 1)/2⌉ − j)(1− p)2⌈(j+1)/2⌉−j−1p+ 2(1− p)2⌈(j+1)/2⌉−j

p2
.

By Lemma 7 we have

(2⌈(j + 1)/2⌉ − j)(1− p)2⌈(j+1)/2⌉−j−1p+ 2(1− p)2⌈(j+1)/2⌉−j

p2
. 6 h(p)

Hence, from equation (29) we get

t
∑

τ=0

γ2
τE

[

‖R(i)
τ − F̂ (i)(θτ )‖2⋆

]

6

2t−1
∑

j=0

γ2
⌊j/2⌋h(p)E

[

‖F̂ (i)(θj/2)− F̂ (i)(θ(j+1)/2)‖2⋆
]

.

Analogously to equation (27):

E

[

‖R(i)
τ+1/2 − F̂ (i)(θτ+1/2)‖2⋆

]

= E

[

‖R(i)
(2τ+1)/2 − F̂ (i)(θ(2τ+1)/2)‖2⋆

]

= E

[

E

[

‖R(i)
(2τ+1)/2 − F̂ (i)(θ(2τ+1)/2)‖2⋆

∣

∣

∣

∣

K2τ+1

]]

=

2τ
∑

k=0

P (K2τ+1 = k)E

[

‖R(i)
(2τ+1)/2 − F̂ (i)(θ(2τ+1)/2)‖2⋆

∣

∣

∣

∣

K2τ+1 = k

]

=
2τ
∑

k=1

p(1− p)2τ−k
E

[

‖F̂ (i)(θk/2)− F̂ (i)(θ(2τ+1)/2)‖2⋆
]

+ (1− p)2τE
[

‖F̂ (i)(θ0)− F̂ (i)(θ(2τ+1)/2)‖2⋆
]

.

Using the same reasoning we get an inequality that is analogous to (26):

t
∑

τ=0

γ2
τE

[

‖R(i)
τ+1/2 − F̂ (i)(θτ+1/2)‖2⋆

]

6

2t
∑

j=0

γ2
⌊j/2⌋h(p)E

[

‖F̂ (i)(θj/2)− F̂ (i)(θ(j+1)/2)‖2⋆
]

.

Lemma 12. Assume that for all i between 1 and n, the gradients ∇iℓi are L-Lipschitz. Assume that for all
τ between 0 and t, γτ 6 γ. Let

χ(p, γ) = 1− 36
1− p

p
nh(p)L2γ2. (30)
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If γ is small enough that χ(p, γ) is positive, then

E

[

t
∑

τ=0

γ2
τ‖F̃τ+1 − F (θτ+1/2)‖2⋆ + γ2

τ‖F (θτ )− F̃τ+1/2‖2⋆

]

(31)

6 104nσ2
t
∑

τ=0

γ2
τ +

1− p

pχ(p, γ)
(12L2 + 36L4γ2)nh(p)

t
∑

τ=0

γ2
τE
[

‖θτ − θτ+1/2‖2⋆
]

.

Proof. We first want to bound the terms E
[

‖F (i)(θj/2)− F (i)(θ(j+1)/2)‖22
]

. When j is even we can make the
change of variables j/2 = τ (just for simplicity in the notation) and use smoothness. We get

E

[

‖F̂ (i)(θj/2)− F̂ (i)(θ(j+1)/2)‖2⋆
]

= E

[

‖F̂ (i)(θτ )− F̂ (i)(θτ+1/2)‖2⋆
]

(32)

6 3E
[

‖F (i)(θτ )− F (i)(θτ+1/2)‖2⋆
]

+ 3E
[

‖F̂ (i)(θτ )− F (i)(θτ+1/2)‖2⋆
]

+ 3E
[

‖F̂ (i)(θτ+1/2)− F (i)(θτ+1/2)‖2⋆
]

6 3L2
E
[

‖θτ − θτ+1/2‖2⋆
]

+ 6σ2.

When j is odd, we can write j/2 = τ + 1/2. We use smoothness and the fact that the prox-mapping is
1-Lipschitz (Lemma 2):

E

[

‖F̂ (i)(θj/2)− F̂ (i)(θ(j+1)/2)‖2⋆
]

= E

[

‖F̂ (i)(θτ+1/2)− F̂ (i)(θτ+1)‖2⋆
]

(33)

6 3E
[

‖F (i)(θτ+1/2)− F (i)(θτ+1)‖2⋆
]

+ 3E
[

‖F̂ (i)(θτ+1/2)− F (i)(θτ+1/2)‖2⋆
]

+ 3E
[

‖F̂ (i)(θτ+1)− F (i)(θτ+1)‖2⋆
]

6 3L2
E
[

‖θτ+1/2 − θτ+1‖2⋆
]

+ 6σ2

= 3L2
E

[

‖Pθτ (γτ F̃τ+1/2)− Pθτ (γτ F̃τ+1)‖2⋆
]

+ 6σ2

6 3L2γ2
τE

[

‖F̃τ+1/2 − F̃τ+1‖2⋆
]

+ 6σ2

6 9L2γ2
τ

(

E

[

‖F̃τ+1/2 − F (θτ )‖2⋆
]

+E

[

‖F (θτ+1/2)− F̃τ+1‖2⋆
]

+E
[

‖F (θτ )− F (θτ+1/2)‖2⋆
])

+ 6σ2.

Now, we use Lemma 6 to break up the dual norms in the right-hand side of (31).

E

[

t
∑

τ=0

γ2
τ‖F̃τ+1 − F (θτ+1/2)‖2⋆ + γ2

τ‖F (θτ )− F̃τ+1/2‖2⋆

]

= E

[

t
∑

τ=0

n
∑

i=1

γ2
τ‖F̃ (i)

τ+1 − F (i)(θτ+1/2)‖2⋆ + γ2
τ‖F (i)(θτ )− F̃

(i)
τ+1/2‖2⋆

]

, (34)
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Hence, from equation (34) and Lemma 10 and 11:

E

[

t
∑

τ=0

γ2
τ‖F̃τ+1 − F (θτ+1/2)‖2⋆ + γ2

τ‖F (θτ )− F̃τ+1/2‖2⋆

]

6 4nσ2
t
∑

τ=0

γ2
τ +

2(1− p)

p
E

[

t
∑

τ=0

n
∑

i=1

γ2
t ‖R(i)

τ − F̂ (i)(θτ )‖2 + ‖R(i)
τ+1/2 − F̂ (i)(θτ )‖2

]

6 4nσ2
t
∑

τ=0

γ2
τ +

2(1− p)

p

n
∑

i=1

2t
∑

j=0

2γ2
⌊j/2⌋h(p)E

[

‖Fi(θj/2)− Fi(θ(j+1)/2)‖2⋆
]

= (∗∗).

We split the last term in summands corresponding to even and odd j, we change variables from j to τ and
we apply equations (32) and (33):

(∗∗) = 4nσ2
t
∑

τ=0

γ2
τ +

2(1− p)

p

n
∑

i=1

2t
∑

j=0, j even

2γ2
⌊j/2⌋h(p)E

[

‖Fi(θj/2)− Fi(θ(j+1)/2)‖2⋆
]

+
2(1− p)

p

n
∑

i=1

2t
∑

j=0, j odd

2γ2
⌊j/2⌋h(p)E

[

‖Fi(θj/2)− Fi(θ(j+1)/2)‖2⋆
]

= 4nσ2
t
∑

τ=0

γ2
τ +

2(1− p)

p

n
∑

i=1

t
∑

τ=0

2γ2
τh(p)E

[

‖Fi(θτ )− Fi(θτ+1/2)‖2⋆
]

+
2(1− p)

p

n
∑

i=1

t
∑

τ=0

2γ2
τh(p)E

[

‖Fi(θτ+1/2)− Fi(θτ+1)‖2⋆
]

6 52nσ2
t
∑

τ=0

γ2
τ +

1− p

p

t
∑

τ=0

12nγ2
τh(p)L

2
E
[

‖θτ − θτ+1/2‖2⋆
]

+
1− p

p

t
∑

τ=0

36nh(p)L2γ4
τ

(

E

[

‖F̃τ+1/2 − F (θτ )‖2⋆
]

+ E

[

‖F (θτ+1/2)− F̃τ+1‖2⋆
])

+
1− p

p

t
∑

τ=0

36nh(p)L4γ4
τE
[

‖θτ − θτ+1/2‖2⋆
]

= (∗ ∗ ∗).

We use that γτ 6 γ:

(∗ ∗ ∗) 6 52nσ2
t
∑

τ=0

γ2
τ +

1− p

p
(12L2 + 36L4γ2)nh(p)

t
∑

τ=0

γ2
τE
[

‖θτ − θτ+1/2‖2⋆
]

+ 36
1− p

p
nh(p)L2γ2

t
∑

τ=0

γ2
τ

(

E

[

‖F̃τ+1/2 − F (θτ )‖2⋆
]

+ E

[

‖F (θτ+1/2)− F̃τ+1‖2⋆
])

.

Rearranging and using χ(p, γ) > 0 yields the desired result.

Proof of Theorem 5. We rewrite equation (17):

〈γτ F̃τ+1, θτ+1/2 − u〉+D(u, θτ+1)−D(u, θτ )

6
γ2
τ

2
‖F̃τ+1 − F̃τ+1/2‖2⋆ −

1

2
‖θτ+1/2 − θτ‖2

6
3γ2

τ

2
‖F̃τ+1 − F (θτ+1/2)‖2⋆ +

3γ2
τ

2
‖F (θτ )− F̃τ+1/2‖2⋆ +

3γ2
τ

2
‖F (θτ+1/2)− F (θτ )‖2⋆

− 1

2
‖θτ+1/2 − θτ‖2.
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We rewrite equation (20). We have ∆τ = F (θτ+1/2)− F̃τ+1 and yτ+1 = Pyτ (γτ∆τ ) with y0 = θ0.

t
∑

τ=0

〈γτ∆τ , yτ − u〉 6 D(u, θ0) +

t
∑

τ=0

γ2
τ

2
‖∆τ‖2⋆

= D(u, θ0) +

t
∑

τ=0

γ2
τ

2
‖F (θτ+1/2)− F̃τ+1‖2⋆. (35)

Using equation (35) and the analogous equation to (19), we reach the following inequality:

E

[

sup
u∈Z

t
∑

τ=0

〈γτF (θτ+1/2), θτ+1/2 − u〉
]

6 E

[

sup
u∈Z

2D(u, θ0)−D(u, θt+1)−
t
∑

τ=0

1

2
‖θτ+1/2 − θτ‖22

]

(36)

+ E

[

t
∑

τ=0

2γ2
τ‖F̃τ+1 − F (θτ+1/2)‖2⋆ +

3γ2
τ

2
‖F (θτ )− F̃τ+1/2‖2⋆ +

3γ2
τ

2
‖F (θτ+1/2)− F (θτ )‖2⋆

]

Taking the definition of χ(p, γ) in (30), using the definition of h(p) in (25) and rearranging, we obtain

γ 6
p3/2

√

(1− p)(2− p)

1

12L
√
n
⇐⇒ χ(p, γ) > 3/4 > 0. (37)

Hence, the assumptions of Lemma 12 are fulfilled. Starting from the result in (36) and using Lemma 12,

E

[

sup
u∈Z

t
∑

τ=0

〈γτF (θτ+1/2), θτ+1/2 − u〉
]

(38)

6 E

[

sup
u∈Z

2D(u, θ0)−D(u, θt)

]

+ 32nσ2
t
∑

τ=0

γ2
τ

+ 2
1− p

pχ(p, γ)
(12L2 + 36L4γ2)nh(p)

t
∑

τ=0

γ2
τE
[

‖θτ − θτ+1/2‖2⋆
]

+
3nL2

2

t
∑

τ=0

γ2
τE
[

‖θτ − θτ+1/2‖2⋆
]

− 1

2

t
∑

τ=0

E
[

‖θτ − θτ+1/2‖2⋆
]

6 2Ω + 104nσ2
t
∑

τ=0

γ2
τ

+

(

(24L2 + 72L4γ2)nh(p)γ2 1− p

pχ(p, γ)
+

3nγ2L2

2
− 1

2

) t
∑

τ=0

E
[

‖θτ − θτ+1/2‖2⋆
]

.

Recalling the definition of h(p) in Equation (25), the conditions χ(p, γ) > 3/4 and

γ 6
1

L

√

5

27n+ 12
, (39)

imply

(24L2 + 72L4γ2)nh(p)γ2 1− p

pχ(p, γ)
+

3nγ2L2

2
− 1

2
6 0. (40)
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We show this development:

(24L2 + 72L4γ2)n
2− p

p2
γ2 1− p

pχ(p, γ)
+

3nγ2L2

2
− 1

2

χ>3/4

6 (24L2 + 72L4γ2)n
2− p

p2
γ2 4(1− p)

3p
+

3nγ2L2

2
− 1

2

=
24 + 72L2γ2

27
(1− χ(p, γ)) +

3nγ2L2

2
− 1

2

6
2 + 6L2γ2

9
+

3nγ2L2

2
− 1

2

= γ2 (9n+ 4)L2

6
− 5

18
.

Using Equation (40) on (38) yields

E

[

sup
u∈Z

t
∑

τ=1

〈γτF (θτ+1/2), θτ+1/2 − u〉
]

6 2Ω + 104nσ2
t
∑

τ=0

γ2
τ .

By Lemma 4, we conclude

ErrN (θ̂t) 6

(

t
∑

τ=0

γτ

)−1(

2Ω + 104nσ2
t
∑

τ=0

γ2
τ

)

(41)

Now we apply Lemma 5 to equation (41) assuming constant stepsizes. That is, we set γτ = 1, A = 2Ω
and B = 104nσ2. Using the notation from Lemma 5, we get that

α∗ =
1

2

√

Ω

13nσ2t

and the value of the bound at α∗ is

8

√

13Ωnσ2

t
.

However, γ is also subject to the constraints in equations (37) and (39). Namely,

γ , min

{

p3/2
√

(1− p)(2− p)

1

12L
√
n
,
1

L

√

5

27n+ 12
,
1

2

√

Ω

13nσ2t

}

, (42)

If the minimum in equation (42) is not achieved at α∗ (the third term), it is easy to see that the first term of
the bound in equation (41) is larger than the second one, which means that 4Ω/(γt) is a looser bound. We
conclude

E

[

ErrN (θ̂t)
]

6 max

{

4Ω

γt
, 8

√

13Ωnσ2

t

}

.

Substituting γ for its expression and plugging t(k) = k/2b on equation B.4.1 we get

E

[

ErrN (θ̂t(k))
]

6 max















4Ω

( b
n )

3/2

√
(1− b

n )(2− b
n )

1
12L

√
n

k
2b

,
4Ω

1
L

√

5
27n+12

k
2b

, 8

√

26Ωnbσ2

k















.

The result follows using 1− b/n < 1 and 2− b/n < 2.
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C Spectral convergence analysis for non-constrained 2-player games

We observed in the experimental section that player sampling tended to be empirically faster than full
extra-gradient, and that cyclic sampling had a tendency to be better than random sampling.

To have more insight on this finding, let us study a simplified version of the random two-player quadratic
games. Let A ∈ R

2d×2d be formed by stacking the matrices Ai ∈ R
d×2d for each i ∈ [d]. We assume that A is

invertible and has a positive semidefinite symmetric part. For i ∈ {1, 2}, we define the loss of the i-th player
ℓi as

ℓi(θ
i, θ−i) = θi

⊤
Aiθ −

1

2
θi

⊤
Aiiθ

i,

where Aii ∈ R
d and θi ∈ R

di . Contrary to the random quadratic games setting in §5.1, we do not enforce
here any parameter constraints nor regularization. Therefore, this places us in the extra-gradient (Euclidean)
setting. We restrict our attention to the non-noisy regime.

C.1 Recursion operator for the different sampling schemes

We study the “algorithm operator” A that appears in the recursion θk+4 = A(θk) for the different sampling
schemes. k is the number of gradient computations. We consider steps of 4 evaluation as this corresponds to
a single iteration of full extra-gradient.

Full extrapolation and update. We have ∇iℓi(θ) = Aiθ. Since A is invertible, θ = 0 is the only Nash
equilibrium. The full extra-gradient updates with constant stepsize are

{

θfull
k+2 = θfull

k − γAθfull
k ,

θfull
k+4 = θfull

k − γAθfull
k+2.

(43)

By introducing A(γ)
full := I − γA+ γ2A2, (43) is simply θfull

k+4 = A(γ)
fullθ

full
k .

Cyclic sampling. Defining the matrices M1,M2 ∈ R
2d×2d

M1 =

[

Id 0d×d

0d×d 0d×d

]

, M2 =

[

0d×d 0d×d

0d×d Id

]

,

the updates becomes



















θcyc
k+1 = θcyc

k − γM1Aθcyc
k ,

θcyc
k+2 = θcyc

k − γM2Aθcyc
k+1,

θcyc
k+3 = θcyc

k+2 − γM2Aθcyc
k+2,

θcyc
k+4 = θcyc

k+2 − γM1Aθcyc
k+3.

. (44)

Remark that (44) contains two iterations of Algorithm 1; θk+1 and θk+3 are extrapolations and θk+2 and

θk+4 are updates. Defining A(γ)
ij := I − γMiA+ γ2MiAMjA and A(γ)

cyc := Aγ
12A

(γ)
21 , we have θcyc

k+4 = A(γ)
cycθ

cyc
k .

Random sampling. Extra-gradient with random subsampling (b = 1) rewrites as



















θrand
k+1 = θrand

k − γMSk+1
Aθrand

k ,

θrand
k+2 = θrand

k − γMSk+2
Aθrand

k+1 ,

θrand
k+3 = θrand

k+2 − γMSk+3
Aθrand

k+2 ,

θrand
k+4 = θrand

k+2 − γMSk+3
Aθrand

k+3 .

.
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where Sk+1, Sk+2, Sk+3, Sk+4 take values 1 and 2 with equal probability and pairwise are independent. Note
that we also enroll two iterations of sampled extra-gradient, as we consider a budget of 4 gradient evaluations.
Let Fk = σ(Sk′ : k′ 6 k). For extra-gradient with random player sampling, we can write

E
[

θrand
k+4

]

= E

[

A(γ)
Sk+1Sk+3

A(γ)
Sk+2Sk+1

θrand
k

]

= E

[

E

[

A(γ)
Sk+1Sk+3

A(γ)
Sk+2Sk+1

θrand
k

∣

∣

∣

∣

Fk

]]

= E

[

E

[

A(γ)
Sk+1Sk+3

A(γ)
Sk+2Sk+1

∣

∣

∣

∣

Fk

]

θrand
k

]

= E

[

A(γ)
Sk+4Sk+3

A(γ)
Sk+2Sk+1

]

E
[

θrand
k

]

=
1

16

∑

j1,j2,j3,j4∈{1,2}
A(γ)

j1j2
A(γ)

j3j4
E
[

θrand
k

]

=
1

16

(

4I − 2γA+ γ2A2
)2

E
[

θrand
k

]

, A(γ)
randE

[

θrand
k

]

C.2 Convergence behavior through spectral analysis

The following well-known result proved by Gelfand (1941) relates matrix norms with spectral radii.

Theorem 6 (Gelfand’s formula). Let ‖ · ‖ be a matrix norm on R
n and let ρ(A) be the spectral radius of

A ∈ R
n (the maximum absolute value of the eigenvalues of A). Then,

lim
t→∞

‖At‖1/t = ρ(A).

In our case, we thus have the following results, that describes the expected rate of convergence of the last
iterate sequence (θt)t towards 0. It is governed by the spectral radii ρ(A(η)) whenever the later is strictly
lower than 1.

Corollary 2. The behavior of θfull
t , θcyc

t and θrand
t is related to the corresponding operators by the following

expressions:

lim
t→∞

(

sup
θfull
0

∈R2d

‖θfull
t ‖2
‖θfull

0 ‖2

)1/t

= ρ
(

A(γ)
full

)

,

lim
t→∞

(

sup
θcyc
0

∈R2d

‖θcyc
t ‖2
‖θcyc

0 ‖2

)1/t

= ρ
(

A(γ)
cyc

)

,

lim
t→∞

(

sup
θrand
0

∈R2d

‖E
[

θrand
t

]

‖
2

‖θrand
0 ‖2

)1/t

= ρ
(

A(γ)
rand

)

.

Proof. The proof is analogous for the three cases. Using the definition of operator norm,

lim
t→∞

(

sup
θfull
0

∈R2d

‖θfull
t ‖
‖θfull

0 ‖

)1/t

= lim
t→∞









sup
θfull
0

∈R2d

∥

∥

∥

∥

(

A(γ)
full

)t

θfull
0

∥

∥

∥

∥

‖θfull
0 ‖









1/t

= lim
t→∞

∥

∥

∥

∥

(

A(γ)
full

)t
∥

∥

∥

∥

1/t

,

which is equal to ρ
(

A(γ)
full

)

by Gelfand’s formula.
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C.3 Empirical distributions of the spectral radii

Comparing the cyclic, random and full sampling schemes thus requires to compare the values

A⋆
full , min

γ∈R+
ρ(A(γ)

full), A⋆
cyc , min

γ∈R+
ρ(A(γ)

cyc), A⋆
rand , min

γ∈R+
ρ(A(γ)

rand), (45)

for all matrix games with positive payoff matrix A ∈ R
2d×2d. This is not tractable in closed form. However,

we may study the distribution of these values for random games.

Experiment. We sample matrices A in R
2d×2d (with d = 3) as the weighted sum of a random positive

definite matrix Asym and of a random skew matrix Askew. We refer to Appendix D for a detailed description
of the matrix sampling method. We vary the weight α ∈ [0, 1] of the skew matrix and the lowest eigenvalue µ
of the matrix Asym. We sample 300 different games and compute A(η) on a grid of step sizes η, for the three
different methods. We thus estimate the best algorithmic spectral radii defined in (45).

Results and interpretation. The distributions of algorithm spectral radii are presented in Figure 6. We
observe that the algorithm operator associated with sampling one among two players at each update is
systematically more contracting than the standard extra-gradient algorithm operator, providing a further
insight for the faster rates observed in §5.1, Figure 2. Radius tend to be smaller for cyclic sampling than
random sampling, in most problem geometry. This is especially true in well conditioned problem (high µ),
little-skew problems (skewness α < .5) and completely skew problems α = 1. The later gives insights to
explain the good performance of cyclic player sampling for GANs (§5.2), as those are described by skew
games (zero-sum notwithstanding the discriminator penalty in WP-GAN).

On the other hand, we observe that radii are more spread using cyclic sampling for intermediary skew
problerm (α = .75), hinting that worst-case rates may be better for random sampling.
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Figure 6: Spectral radii distribution of the algorithmic operator associated to doubly-stochastic and full
extra-gradient, in the non-constrained bi-linear two-player game setting, for various conditioning and skewness.
Random and cyclic sampling yields lower radius (hence faster rates) for most problem geometry. Cyclic
sampling outperforms random sampling in most settings, especially for better conditioned problems.
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Figure 7: 50-player completely skew smooth game with increasing noise (sampling with variance reduction).
In the non-noisy setting, player sampling reduces convergence speed. On the other hand, it provides a
speed-up in the high noise regime.

D Experimental results and details

We provide the necessary details for reproducing the experiments of §5.

D.1 Quadratic games

Generation of random matrices. We sample two random Gaussian matrix G and F in R
nd×nd, where

each coefficient gij , fij ∼ N (0, 1) is sampled independently. We form a symmetric matrix Asym = 1
2 (G+GT ),

and a skew matrix Askew = 1
2 (F − FT ). To make Asym positive definite, we compute its lowest eigenvalue µ0,

and update Asym ← Asym + (µ− µ0)Ind×nd, where µ regulates the conditioning of the problem and is set to
0.01. We then form the final matrix A = (1− α)Asym + αAskew, where α is a parameter between 0 and 1,
that regulates the skewness of the game.

Parameters for quadratic games. Figure 2 compare rates of convergence for doubly-stochastic extra-
gradient and extra-gradient, for increasing problem complexity. Used parameters are reported in Table 2.
Note that the conclusion reported in §5.1 regarding the impact of noise and the impact of cyclic sampling holds
for all configurations we have tested; we designed increasingly complex experiments for concisely showing the
efficiency and limitations of doubly-stochastic extra-gradient.

Grids. For each experiment, we sampled 5 matrices (Ai)i with skewness parameter α. We performed a
grid-search on learning rates, setting η ∈ {10−5, · · · , 1}, with 32 logarithmically-spaced values, making sure

Table 2: Parameters used in Figure 2 for increasing problem complexity.

Figure Players # Exp. Skewness α Noise σ Reg. λ

Figure 2a 5 Smooth, no-noise 0.9 0 0
Smooth, noisy 0.9 1 0.
Skew, non-smooth, noisy 1. 1 2 · 102

Figure 2b 50 Smooth, no-noise 0.9 0 0
Non-smooth, noisy 0.9 1 2 · 10−2

Skew, non-smooth, noisy 1. 1 2 · 10−2

Figure 2c 50 Smooth, skew, lowest-noise 0.95 1 0.
0.95 10 0.

Smooth, skew, highest-noise 0.95 100 0.

Figure 7 50 Smooth, skew, no-noise 1 0 0.
1 10 0.

Smooth, skew, highest-noise 1 50 0
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that the best performing learning rate is always strictly in the tested range.

Limitations in skew non-noisy games. As mentioned in the main section, player sampling can hinder
performance in completely skew games (α = 1) with non-noisy losses. Those problems are the hardest
and slower to solve. They corresponds to fully adversarial settings, where sub-game between each pair is
zero-sum. We illustrate this finding in Figure 7, showing how the performance of player sampling improves
with noise. We emphasize that the non-noisy setting is not relevant to machine learning or reinforcement
learning problems.

D.2 Generative adversarial networks

Models and loss. We use the Residual network architecture for generator and discriminator proposed
by Gidel et al. (2019). We use a WGAN-GP loss, with gradient penalty λ = 10. As advocated by Gidel et al.,
2019, we use a 10 times lower stepsize for the generator. We train the generator and discriminator using the
Adam algorithm (Kingma and Ba, 2015), and its straight-forward extension proposed by Gidel et al., 2019.

Grids. We perform 5 · 105 generator updates. We average each experiments with 5 random seeds, and
select the best performing generator learning rate η ∈ {2 · 10−5, 5 · 10−5, 8 · 10−5, 1 · 10−4, 2 · 10−4}, which
turned out to be 5 · 10−5 for both subsampled and non-subsampled extra-gradient.
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