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Abstract

Neural networks provide a rich class of high-dimensional, non-convex optimization problems.
Despite their non-convexity, gradient-descent methods often successfully optimize these mod-
els. This has motivated a recent spur in research attempting to characterize properties of
their loss surface that may explain such success.

In this paper, we address this phenomenon by studying a key topological property of the
loss: the presence or absence of spurious valleys, defined as connected components of sub-level
sets that do not include a global minimum. Focusing on a class of one-hidden-layer neural
networks defined by smooth (but generally non-linear) activation functions, we identify a
notion of intrinsic dimension and show that it provides necessary and sufficient conditions
for the absence of spurious valleys. More concretely, finite intrinsic dimension guarantees that
for sufficiently overparametrised models no spurious valleys exist, independently of the data
distribution. Conversely, infinite intrinsic dimension implies that spurious valleys do exist
for certain data distributions, independently of model overparametrisation. Besides these
positive and negative results, we show that, although spurious valleys may exist in general,
they are confined to low risk levels and avoided with high probability on overparametrised
models.

1. Introduction

Modern machine learning applications involve datasets of increasing dimensionality, com-
plexity and size, which in turn motivate the use of high-dimensional, non-linear models, as
illustrated in many deep learning algorithms across computer vision, speech and natural lan-
guage understanding. The prevalent strategy for learning is to rely on Stochastic Gradient
Descent (SGD) methods, that typically operate on non-convex objectives. In this context, an
outstanding goal is to provide a theoretical framework that explains under what conditions
– relating input data distribution, choice of architecture and choice of optimization scheme –
this setup will be successful.

More precisely, let Φθ : Rn → Rm denote a model class parametrized by θ ∈ Θ ⊆ RP ,
which in the case of Neural Networks (NNs) contains the aggregated weights across all layers.
In a supervised learning setting, this model is deployed on some data (X,Y) random variable
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taking values in Rn × Rm, to predict targets Y given input X, and its risk for a given θ is

L(θ) = E(X,Y)∼P [ℓ(Φθ(X),Y)] (1)

where ℓ is a convex loss, such as a square loss or a logistic regression loss. In the following
we refer to (1) as the risk, the energy or the loss interchangeably. The aim is to find θ∗ ∈
argminθ∈Θ L(θ) and this is attempted in practice by running SGD iteration. Under some
technical conditions, the expected gradient is known to converge to zero (Bottou et al., 2016).
Understanding the nature of such stationary points - and therefore the landscape of the loss
function - is a task of fundamental importance to understand performance of SGD.

Whereas there is a growing literature in analyzing the behavior of SGD on non-convex
objectives (Soudry et al., 2017; Ji and Telgarsky, 2018; Gunasekar et al., 2018; Wilson et al.,
2017), we focus here on properties of the optimization problem above that are algorithm
independent. A common factor shared in the above cited works (and in common practice) is
that overparametrisation of the model class (i.e. P ≫ 1) often leads to improved performance,
despite the potential increase in generalization error.

Our analysis focuses mostly on the class of one-hidden-layer neural networks, with a hidden
layer of size p, and covers both empirical and population risk landscapes. More specifically,
we look at presence (or absence) of spurious valleys, defined as connected components of
the sub-level sets that do not contain a global minima. We define two quantities depending
on the functional space spanned by neural networks of different widths: the upper intrinsic
dimension, defined as the dimension of this linear space, and the lower intrinsic dimension,
defined as the minimum number of hidden units to describe any element of the functional
space. Upper and lower intrinsic dimensions define only two scenarios: either (i) they are both
finite, enabling positive results; or (ii) they are both infinite, implying the negative results.

Summary of contributions More specifically, we show that:

• For Empirical Risk Minimization or polynomial activations, spurious valleys do not
occur as long as the network is sufficiently over-parametrised. For the case of linear and
quadratic activations, our results are (up to a constant factor) tight.

• For non-polynomial non-negative activations, for any hidden width, we construct data
distributions which yield spurious valleys with positive measure, whose value is arbi-
trarily far from the one of the global.

• Finally, drawing on connections with random features expansions, we show that, even if
spurious valleys may appear in general, their measure decreases as the width increases.
This holds up to a low energy threshold, which approaches the global minimum at a
rate inversely proportional to the hidden layer size (up to log factors).

Related works A considerable amount of literature has attempted to characterize the
landscape of the loss function (1) by studying its critical points. Global optimality re-
sults have been obtained for NN architectures with linear activations (Hardt and Ma, 2016;
Kawaguchi, 2016; Yun et al., 2018), quadratic activations (Soltanolkotabi et al., 2017; Du
and Lee, 2018) and some more general non-linear activations, under appropriate regularity
assumptions (Soudry and Carmon, 2016; Nguyen and Hein, 2017; Feizi et al., 2017). Some
other insights have been obtained by leveraging tools for complexity analysis of spin glasses
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(Choromanska et al., 2015) and random matrix theory (Pennington and Bahri, 2017). Other
analysis involved studying goodness of the initialization of the parameter values θ0 (Daniely
et al., 2016; Safran and Shamir, 2016; Du et al., 2017) or other topological properties of the
loss (1), such as connectivity of sub-level sets (Draxler et al., 2018; Freeman and Bruna, 2017).

Several other type of analysis of the convergence of NNs gradient-based optimization
algorithms have been considered in the literature. For example, (Ge et al., 2017b) proved
convergence of GD on a modified loss; (Shamir, 2018) compared optimization properties of
residual networks with respect to linear models; in (Dauphin et al., 2014) it is argued that the
issues arising in the optimization of NN architectures are due to the presence of saddle points in
the loss function rather than spurious local minima. Optimization landscapes have also been
studied in other contexts than from NNs training, such as non-convex low rank problems
(Ge et al., 2017a), matrix completion (Ge et al., 2016), problems arising in semidefinite
programming (Boumal et al., 2016; Bandeira et al., 2016) and implicit generative modeling
(Bottou et al., 2017).

Structure of the paper The rest of the paper is structured as follows. Section 2 formally
introduces the notion of spurious valleys and explains why this is a relevant concept from the
optimization point of view. It also defines the intrinsic dimensions of a network (Section 2.2).
In Section 3 we state our main positive results (Theorem 8) and we discuss two settings where
they bear fruit: polynomial activation functions and empirical risk minimization. Section 4 is
dedicated to constructions of worst case scenarios for activation with infinite lower intrinsic
dimension. We then show, in Section 5, that, even if spurious valleys may exist, they tend to
be confined to regimes of low risk. Some conclusive discussion is reported in Section 6.

1.1. Notation

We introduce notation we use throughout the rest of the paper. For any integers n ≤ m
we denote [n,m] = {n, n + 1, . . . ,m} and, if n > 0, [n] = [1, n]. We denote scalar val-
ued variables as lowercase non-bold; vector valued variables as lowercase bold; matrix and
tensor valued variables and multivariate random variables (r.v.’s) as uppercase bold. Given
a vector v ∈ Rn, we denote its components as vi; given a matrix W ∈ Rn×m, we denote
its rows as wi; given a tensor T ∈ Rn1×···×nk , we denote its components as Ti1···ik . Given
some vectors vi ∈ Rni , i ∈ [k], the tensor product v1 ⊗ · · · ⊗ vk denotes the n1 × · · · × nk
dimensional tensor T whose components are given by Ti1···ik = vi1 · · · vik ; given a vector
v, we denote v⊗k = ⊗k

i=1v. We denote by Sk(Rn) the space of order k symmetric ten-
sors on Rn. For any T ∈ Sk(Rn), we define the symmetric rank (Comon et al., 2008)

as rkS(T) = min
{
p ≥ 1 : T =

∑p
i=1 uiw

⊗k
i for some u ∈ Rp,w1, . . . ,wp ∈ Rn

}
. We define

rkS(k, n) = max{rkS(T) : T ∈ Sk(Rn)}. Finally, Sn−1 ⊂ Rn denotes the (n− 1)-dimensional
sphere {x ∈ Rn : ‖x‖ = 1}.
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2. Preliminaries

2.1. Problem setup

Let (X,Y) be two r.v.’s. These r.v.’s take values in Rn and Rm and represent the input and
output data, respectively. We consider oracle square loss functions L : Θ → R of the form

L(θ)
.
= E[ℓ(Φ(X;θ),Y)] (2)

where ℓ : Rm × Rm → [0,∞) is convex in its first argument. For every θ ∈ Θ, the function
Φ(·;θ) : Rn → Rm models the dependence of the output on the input as Y ≃ Φ(X;θ). We
focus on one-hidden-layer NN functions Φ, i.e. Φ of the form

Φ(x;θ) = Uσ(Wx) (3)

where θ = (U,W) ∈ Θ
.
= Rm×p ×Rp×n. Here p represents the width of the hidden layer and

σ : R → R is a continuous element-wise activation function.

The loss function L(θ) is (in general) a non-convex object; it may present spurious (i.e.
non global) local minima. In this work, we characterize L(θ) by determining absence or
presence of spurious valleys, as defined below.

Definition 1 For all c ∈ R we define the sub-level set of L as ΩL(c) = {θ ∈ Θ : L(θ) ≤ c}.
We define a spurious valley as a path-connected component of a sub-level set ΩL(c) which does
not contain a global minimum of the loss L(θ).

Since, in practice, the loss (2) is minimized with a gradient descent based algorithm, then
absence of spurious valleys is a desirable property, if we wish the algorithm to converge to an
optimal parameter. It is easy to see that L(θ) not having spurious valleys is implied by the
following property:

P.1 Given any initial parameter θ̃ ∈ Θ, there exists a continuous path θ : t ∈ [0, 1] 7→ θt ∈ Θ
such that:

(a) θ0 = θ̃

(b) θ1 ∈ argminθ∈Θ L(θ)

(c) The function t ∈ [0, 1] 7→ L(θt) is non-increasing

As pointed out in (Freeman and Bruna, 2017), this implies that L has no strict spurious
(i.e. non global) local minima. The absence of generic (i.e. non-strict) spurious local minima
is guaranteed if the path θt is such that the function L(θt) is strictly decreasing. For sake
of clarity, we review these properties in the following lemma (the proof is reported in the
Appendix E).

Lemma 2 Be θ 7→ L(θ) a continuous function. Then, property P.1 implies absence of spu-
rious valleys. In particular, this implies absence of strict spurious minima, and of (generally
non-strict) spurious minima if property P.1 holds with strictly decreasing paths t 7→ L(θt).
Conversely, presence of spurious valleys implies existence of spurious minima.
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In the following, we prove absence of spurious valleys by proving that property P.1 holds.
Intuitively, we should think about spurious valleys as regions of the parameter space from
which it is impossible to ‘escape’ without ‘up-climbing’ the loss value.

Notice that for many activation functions used in practice (such as the ReLU σ(z) = z+),
the parameter θ determining the function Φ(·;θ) is determined up to the action of a symmetry
group (e.g., in the case of the ReLU, σ is a positive homogeneous function). This already
prevents strict minima: for any value of the parameter θ ∈ Θ there exists a (often large)
manifold Uθ ⊂ Θ intersecting θ along which the loss function is constant.

ERM vs population loss In the following, we consider the loss (2) defined for a generic
distribution (X,Y). In case of a distribution with a finite number of atoms, this corresponds
to empirical risk minimization (ERM), which is (usually) the regime where machine learning
algorithms perform optimization. On the other hand, for a generic data distribution, this loss
is what is called population loss, and corresponds to the actual objective that machine learning
algorithms aim to minimize. In our work we are interested in analyzing not only the ERM
case, but more general population losses. While we in fact focus on highly over-parametrised
neural networks, we aim to provide results which apply to the regime where number of data
points goes to infinity before the number of parameters.

2.2. Intrinsic dimension of a network

The main result of this work is to exploit that the property of absence of spurious valleys
is related to the complexity of the functional space Vσ = {f = Φθ : θ ∈ Θ} defined by the
network architecture. We therefore define two measures of such complexity which we will use
to show, respectively, positive and negative results in this regard.

To simplify the discussion, we introduce some notation which we will use throughout the
rest of the paper. Let σ : R → R be a continuous activation function. For every v ∈ Rn we
denote ψσ,v to be the function ψσ,v : x ∈ Rn 7→ σ(〈v,x〉) ∈ R. We refer to each ψσ,v as a filter
function. If X is a r.v. taking values in Rn, we denote by L2

X the space of square integrable
function on Rn w.r.t. the probability measure induced by the r.v. X. We then define the two
following functional spaces:

Vσ,p =
{
f = Φ(·;θ) : θ = (uT ,W) ∈ Θ = Rp × Rp×n

}

R2(σ, n) =
{
X r.v. taking values in Rn : ψσ,v ∈ L2

X for every v ∈ Rn
}

Vσ,p represents the space of (one-dimensional output) functions modeled by the network ar-
chitecture and R2(σ, n) to be the space of (n-dimensional) input data distributions for which
the filter functions have finite second moment. We finally define

Vσ = span({f : f ∈ Vσ,1}) =

∞⋃

p=1

Vσ,p

as the linear space spanned by the functions ψv,σ for v ∈ Rn.

Definition 3 Let σ be a continuous activation function and X ∈ R2(σ, n) a r.v. We define1

dim∗(σ,X) = dimL2
X

(Vσ)

1. For any linear subspace V ⊆ L2
X, dimL2

X

(V ) denotes the dimension of V as a subspace of L2
X.
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as the upper intrinsic dimension of the pair (σ,X). We define the level n upper intrinsic
dimension of σ as dim∗(σ, n) = dim(Vσ) = sup{dim∗(σ,X) : X ∈ R2(σ, n)}.

The upper intrinsic dimension dim∗(σ,X) defined above is therefore the dimension of the
functional space spanned by the filter functions ψσ,v ∈ L2

X or, equivalently, of the image of
the map Φ : θ ∈ Θ 7→ Φ(·;θ) ∈ L2

X. Notice that dim∗(σ,X) ≤ dim(L2
X). In particular, if the

distribution X is discrete, i.e. it is concentrated on a finite number of points {x1, . . . ,xN} ⊂
Rn, then dim∗(σ,X) ≤ dim(L2

X) ≤ N . Otherwise, if the distribution X is not discrete, then
dim(L2

X) = ∞.

The n level upper intrinsic dimension dim∗(σ, n) is defined as the dimension of the func-
tional linear space Vσ. We note that if X ∈ R2(σ, n) is a r.v. with almost surely (a.s.) positive
density w.r.t. the Lebesgue measure dx, then dim∗(σ, n) = dim∗(σ,X).

The following lemma exhausts all the cases when the upper intrinsic dimension is not
infinite.

Lemma 4 Let σ be a continuous activation function and X ∈ R2(σ, n) such that dim
(
L2
X

)
=

∞. If σ(z) =
∑d

k=0 akz
k is a polynomial, then

dim∗(σ,X) ≤
d∑

i=1

(
n+ i− 1

i

)
1{ai 6=0} = O(nd)

Otherwise (i.e. if σ is not a polynomial) it holds dim∗(σ,X) = ∞.

The proof of the above lemma is based on the universal approximation theorem (Leshno
et al., 1993). We then define the lower intrinsic dimension, which corresponds to the concept
of ‘how many hidden neurons are needed to represent a generic function of Vσ’.

Definition 5 Let σ be a continuous activation function and X ∈ R2(σ, n) a r.v. We define2

dim∗(σ,X) = max
{
p ≥ 1 : Vσ,p−1 (L2

X

Vσ,p

}

as the lower dimension of the pair (σ,X). We define the level n lower dimension of σ as
dim∗(σ, n) = max{p ≥ 1 : Vσ,p−1 ( Vσ,p} = sup{dim∗(σ,X) : X ∈ R2(σ, n)}.

If dim∗(σ,X) is finite, then it corresponds to the minimum number of hidden neurons
which are needed to represent any function of Vσ with the NN architecture (3). Clearly, this
implies that

dim∗(σ,X) ≤ dim∗(σ,X)

for every continuous activation function σ and any X ∈ R2(σ, n). As with the upper instrinsic
dimension, we note that if X ∈ R2(σ, n) is a r.v. with a.s. positive density w.r.t. the Lebesgue
measure dx, then dim∗(σ, n) = dim∗(σ,X).

In the case of homogeneus polynomial activations σ(z) = zk with k ≥ 1 integer, the level
n lower dimension of σ coincides with the notion of (maximal) symmetric tensor rank.

2. For any subsets V,W ⊆ L2
X, we say that V (L2

X

W if V ( W as subsets of L2
X (and similar with other

inclusions or equalities).
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Lemma 6 Let σ(z) = zk, with k positive integer. Then

dim∗(σ, n) = rkS(k, n)

Finally, the next lemma implies that for most non-polynomial activation functions practical
interest, the lower intrinsic dimension dim∗(σ, n) is infinite.

Lemma 7 Let σ be a continuous activation function such that σ ∈ L2(R, e−x2/2 dx) and
n > 1. Then dim∗(σ, n) = ∞ if and only if σ is not a polynomial.

The proof of the above Lemma is based on Hermite decomposition and on the corre-
spondence between one-hidden-layer nets and symmetric tensors (Mondelli and Montanari,
2018).

3. Finite intrinsic dimension and absence of spurious valleys

In this section we provide our positive results. Essentially they state that if the width of the
network matches the dimension of the functional space Vσ spanned by its filter functions, then
no spurious valleys exist. We first provide the main result (Theorem 8) in a general form,
which allows a straight-forward derivation of two cases of interest: empirical risk minimization
(Corollary 9) and polynomial activations (Corollary 10).

Theorem 8 For any continuous activation function σ and r.v. X ∈ R2(σ, n) with finite
upper intrinsic dimension dim∗(σ,X) <∞, the loss function

L(θ) = E[ℓ(Φ(X;θ),Y)]

for one-hidden-layer NNs Φ(x;θ) = Uσ(Wx) admits no spurious valleys in the over-parame-
trised regime p ≥ dim∗(σ,X).

Sketch of the proof The proof consists of showing that we can construct a descent path
verifying property P.1 starting from any parameters θ. The construction can be articulated in
two main parts. First, we show that we can map the starting parameter θ0 = (U0,W0) to an-
other parameter θ1/2 = (U1/2,W1/2) such that the functions

{
x 7→ σ(〈w1/2,i,x〉)

}
i∈[p] form a

basis of Vσ. It follows that there exists a minimal function f ∈ V m
σ

.
= {(f1, . . . , fm) : fi ∈ Vσ},

i.e.
f ∈ argmin

g∈V m
σ

E[ℓ(g(X),Y)]

which can be represented as f = Φ(·;θ1 = (U1,W1/2)) for some U1. The second part of the
path can be thus taken as t 7→ (1− t)U1/2+ tU1: as the loss function is convex, this is descent
path.

The above result can be interpreted as follows: if the network is such that any of its output
units Φi can be chosen from the whole linear space spanned by its filter functions Vσ, then the
associated optimization problem is such that there always exists a descent path to an optimal
solution, for any initialization of the parameters.

Applying the observations in Section 2.2 describing the cases of finite intrinsic dimension,
we immediately get the following corollaries.
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Corollary 9 (ERM) Consider N data points {(xi,yi)}
N
i=1 ⊂ Rn × Rm. For one-hidden-

layer NNs Φ(x;θ) = Uσ(Wx), where σ is any continuous activation function, the empirical
loss function

L(θ) =
1

N

N∑

i=1

ℓ(Φ(xi;θ),yi)

admits no spurious valleys in the over-parametrized regime p ≥ N .

Comparison with existing results This results was already shown in (Livni et al., 2014).
The only difference with our result is that we allow for rank degeneracy in the matrix
σ(W[x1| · · · |xN ]). However, its proof illustrates the danger of studying empirical risk min-
imization landscapes in over-parametrised regimes, since it bypasses all the geometric and
algebraic properties needed in the population risk setting - which may be more relevant to
understand the generalization properties of the model.

Other works considered the landscape of empirical risk minimization for deep networks.
For ReLu-like activations, multi-layer networks and square losses, (Soudry and Carmon, 2016)
showed that (almost surely) there exists no differentiable spurious minima if one of the layer
weights Wi ∈ Rpi×pi−1 satisfy pipi−1 ≥ N . (Nguyen and Hein, 2017) showed that no spurious
minima occur for multi-layer NNs for a class of losses and activations, if one of the layers inner
width exceeds the number of data points and the critical points verify certain non-degeneracy
conditions.

Corollary 10 (Polynomial activations) For one-hidden-layer NNs Φ(x;θ) = Uσ(Wx)
with polynomial activation function σ(z) = a0 + a1z + · · · + adz

d, the loss function L(θ) =
E[ℓ(Φ(X;θ),Y)] admits no spurious valleys in the over-parametrized regime

p ≥
d∑

i=1

(
n+ i− 1

i

)
1{ai 6=0} = O(nd)

Under the hypothesis of Corollary 10 with p = O(nd), a generic function of Vσ, Φ(x;θ) =
uTσ(Wx), can be also represented, for some γ = γ(θ), in the generalized linear form

Φ(x;θ) = 〈γ,ϕ(x)〉

with ϕ(x) = (xk1 · · ·xkj ){1≤k1≤···≤kj≤n,j∈[d]}. The parameters θ and γ differ for their dimen-
sions:

dim(γ) = O(nd) < dim(θ) = (n+ 1) ·O(nd) = O(nd+1)

One would therefore like Corollary 10 to hold also (at least) for p ≥ O(nd−1). In the next
section we address this problem for the linear activation σ(z) = z and the quadratic activation
σ(z) = z2.

3.1. Improved over-parametrization bounds for homogeneous polynomial
activations

The over-parametrization bounds obtained in Corollary 10 are quite non-desiderable in prac-
tical applications. We show that they can indeed be improved, for the case of linear and
quadratic networks.
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3.1.1. Linear networks case

Linear networks have been considered as a first order approximation of feed-forward multi-
layers networks (Kawaguchi, 2016). It was shown, in several works (Kawaguchi, 2016; Freeman
and Bruna, 2017; Yun et al., 2018), that, for linear networks of any depth

Φ(x;θ) = WK+1 · · ·W1x (4)

with θ = (WK+1,WK , . . . ,W2,W1) ∈ Rm×pK × RpK×pK−1 × · · ·Rp2×p1 × Rp1×n, the loss
function (2) has no spurious local minima, if mini∈[K] pi ≥ min{n,m}. This corresponds
exactly with over-parametrization regime in Corollary 10, for the case of one-hidden-layer
networks. The following theorem improves on Corollary 10 for the case of multi-layer linear
networks, showing that no over-parametrisation is required in this case to avoid spurious
valleys, for square loss functions.

Theorem 11 (Linear networks) For linear NNs (4) of any depth K ≥ 1 and of any layer
widths pk ≥ 1, k ∈ [K], and any input-output dimensions n,m ≥ 1, the square loss function
L(θ) = E‖Φ(X;θ)−Y‖2 admits no spurious valleys.

3.1.2. Quadratic networks case

Quadratic activations σ(z) = z2 have been considered in the literature (Livni et al., 2014;
Du and Lee, 2018; Soltanolkotabi et al., 2017) as second order approximation of general non-
linear activations. Corollary 10 says that, if p ≥ n(n + 1)/2, the loss function (2) admits no
spurious valleys. In the following theorem we relax the over-parametrisation requirement and
show that p > 2n is sufficient for the statement to hold, in the case of square loss functions
and one dimensional output (m = 1).

Theorem 12 (Quadratic networks) For one-hidden-layer NNs Φ(x;θ) = uTσ(Wx) with
quadratic activation function σ(z) = z2 and one-dimensional output (m = 1), the square loss
function L(θ) = E|Φ(X;θ)− Y |2 admits no spurious valleys in the over-parametrised regime
p ≥ 2n+ 1 = O(n).

Sketch of the proof The proof (reported in Section A) consists in constructing a path
satisfying property P.1 and improves upon the proof of Theorem 8 by leveraging the spe-
cial linearized structure of the network for quadratic activation. For every parameter θ =
(u,W) ∈ Rp × Rp×n, we can write

Φ(x;θ) =

p∑

i=1

ui(〈wi,x〉)
2 =

〈 p∑

i=1

uiwiw
T
i ,xx

T
〉
F

We notice that Φ(·;θ) can also be represented by a NN Φ(·; θ̂) with n hidden units; indeed,
if
∑n

i=1 σiviv
T
i is the SVD of

∑p
i=1 uiwiw

T
i , then Φ(x;θ) = 〈

∑n
i=1 σiviv

T
i ,xx

T 〉F . Therefore
p ≥ n is sufficient to describe any element in Vσ. A path to the symmetric matrix defining
the optimal network is then constructed by mapping the above decomposition defined by the
standard form of the network.
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The factor 2 in the statement is due to some technicalities in the proof, but a more involved
proof should be able to extend the result to the regime p ≥ n. The extension of such
mechanism for higher order tensors (appearing as a result of multiple layers or high-order
polynomial activations) using tensor decomposition also seems possible and is left for future
work.

Comparison with previous works The same optimization landscape has been considered
in the works (Soltanolkotabi et al., 2017) and (Du and Lee, 2018). In the first work, the authors
show absence of spurious minima for the case of p ≥ 2n and of ERM (loss evaluated on N
data points), but for fixed output layer weights; under some assumption on the output layer
weights, the result is shown to still hold for p ≥ n, if n ≤ N ≤ O(n2). This last condition can
be removed by considering the regularized loss with non-zero weight decay, as shown in (Du
and Lee, 2018); in the same work, the authors also proved absence of spurious minima in the
case p < n and p(p+ 1) ≥ 2N for a randomly regularized loss (with high probability).

By relaxing the statement to absence of spurious valleys, we showed that this holds for the
square loss (both in population and ERM setting) and the optimisation problem over both
layer weights if p > 2n.

3.1.3. Lower to upper intrinsic dimension gap

As observed in Lemma 6 dim∗(σ(z) = z, n) = 1 and dim∗(σ(z) = z2, n) = n for all integer
n ≥ 1. Therefore, Theorem 11 and Theorem 12 say that, for σ(z) = zk, k ∈ [2], and m = 1,
the square loss function L(θ) = E|Φ(X;θ)− Y |2 admits no spurious valleys in the over-
parametrized regime p ≥ O(dim∗(σ, n)). We conjecture that this hold for any (sufficiently
regular) activation function with finite intrinsic lower dimension.

4. Infinite intrinsic dimension and presence of spurious valleys

This section is devoted to the construction of worst-case scenarios for non-over parametrised
networks. The main result (Theorem 13) essentially states that, for networks with width
smaller than the lower intrinsic dimension defined above, spurious valleys can be created
by choosing adversarial data distributions. We then show how this implies negative results
for under-parametrized polynomial architectures and a large variety of architectures used in
practice.

Theorem 13 Consider the square loss function L(θ) = E‖Φ(X;θ) − Y‖2 for one-hidden-
layer NNs Φ(x;θ) = Uσ(Wx) with non-negative activation function σ ≥ 0 such that σ ∈
L2(R, e−x2

dx). If p ≤ 1
2dim∗(σ, n − 1), then there exists a r.v. (X,Y) such that the square

loss function L admits spurious valleys. In particular, for any given M > 0, the r.v. Y can
be chosen in such a way that there exists a (non-empty) open set Ω ⊂ Θ such that

M/2 + min
θ∈Ω

L(θ) ≥ sup
θ∈Ω

L(θ) ≥ min
θ∈Ω

L(θ) ≥M +min
θ∈Θ

L(θ) (5)

and any path θ : [0, 1] → Θ such that θ0 ∈ Ω and θ1 is a global minima verifies

max
t∈[0,1]

L(θt) ≥ min
θ∈Ω

L(θ) +M (6)

10
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Equation (5) in Theorem 13 says that any local descent algorithm, if initialized in θ0 ∈ Ω,
at its best it will only be able to produce a final parameter value which is at least M far
from optimality. Equation (6) implies that any path starting from parameter belonging to Ω
must ‘up-climb’ at least M/2 in the loss value. In the following we refer to such property, as
stated in Theorem 13, by saying that the loss function has arbitrarily bad spurious valleys.
Note that this result ensures that spurious valleys have positive Lebesgue measure, so there
is a positive probability that gradient descent methods initialized with a measure that is
absolutely continuous with respect to Lebesgue will get stuck in a bad local minima.

Applying the observations describing the values of the lower intrinsic dimension for differ-
ent activation functions, we get the following corollaries.

Corollary 14 (Homogeneous even degree polynomial activations) Consider the case
of activation σ(z) = z2k with k ≥ 1 integer. For one-hidden-layer NNs Φ(x;θ) = Uσ(Wx),
if n ≥ 2 and the hidden layer width satisfies

p ≤

{
n− 1 if k = 1
1
2 rkS(2k, n− 1) if k > 1

then there exists a r.v. (X,Y) such that the square loss function L(θ) = E‖Φ(X;θ) − Y‖2

has arbitrarily bad spurious valleys.

This follows by Theorem 13 and Lemma 6, since dim∗(σ(z) = z2k, n) = rkS(2k, n). For the
well known case k = 1 (symmetric matrices) it holds rkS(2, n) = n; therefore Corollary 14
implies that the bound provided in Corollary 10 is almost (up to a factor 2) tight. Notice
that our result is indeed in line with the results discussed in Section 3.1.2.

Corollary 15 (Spurious valleys exist in generic architectures) If n ≥ 2, for one-hidden-
layer NNs Φ(x;θ) = Uσ(Wx) with any hidden layer width p ≥ 1 and continuous non-negative
non-polynomial activation function σ ∈ L2(R, e−x2/2), then there exists a r.v. (X,Y) such
that the square loss function L(θ) = E‖Φ(X;θ) − Y‖2 has arbitrarily bad spurious valleys.
This setting includes the following activation functions:

• The ReLU activation function σ(z) = z+ and some relaxations of it, such as softplus
activation functions σ(z) = β−1 log

(
1 + eβz

)
, with β > 0;

• The sigmoid activation function σ(z) = (1+ e−z)−1 and the approximating erf function
σ(z) = 2/π

∫ z
0 e

−u du, which represents an approximation to the sigmoid function.

This follows by Theorem 13 by observing that dim∗(σ, n) = ∞ if σ is one of the above
activation functions.

Discussion and comparison with previous works Several works showed existence of
spurious minima: (Safran and Shamir, 2017) showed counterexamples under Gaussian input
distributions, for p = n − 1 ∈ {8, . . . , 19}, using a computer-assisted proof; (Swirszcz et al.,
2016) and (Zhou and Liang, 2017) provided a few numerical examples; (Yun et al., 2018)
showed existence of spurious minima for ReLU-like activations under non-realizability, and
provided counterexamples for smooth activations. For any number of hidden neurons p, we

11
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give a (constructive) proof of existence of a data distribution which creates spurious valleys,
under the only assumption of non-negative continuous activation function. We also remark
that while in the above works the authors proved existence of spurious local minima, we
prove that, in fact, arbitrarily bad spurious valleys can exist, which is a stronger negative
characterization.

The results of this section can be interpreted as worst-case scenarios for the problem of
optimizing (2). We showed that, even for simple one-hidden-layer neural network architectures
with non-linear activation functions used in practice (such as ReLU), global optimality results
can not hold, unless we make some assumptions on the data distributions.

5. Typical spurious valleys and low-energy barriers

In the previous section it was shown that whenever the number of hidden units p is below
the lower intrinsic dimension, then one can show worst-case data distributions that yield
a landscape with arbitrarily bad spurious valleys. A natural follow-up question is thus to
consider the complexity of the energy landscape in a typical scenario, defined in terms of both
parameter initialisation (how likely are descent algorithms to fall into a spurious valley?) and
energy value (how deep are typical spurious valleys?).

In this section, we study the energy landscape under generic data distributions in case of
homogeneous activation, and show that, although spurious valleys may appear, they tend do
so below a certain energy level, controlled by the decay of the spectral decomposition of the
kernel defined by the activation function and by the amount of parametrisation p. This offers
a first glimpse at the empirical success of local descent algorithms in conditions where p is
indeed below the intrinsic dimension.

We consider oracle square loss functions of the form

L(θ) = E|Φ(X;θ)− Y |2 (7)

for one-dimensional output one-hidden-layer NNs Φ(x;θ) = uTσ(Wx), with θ = (u,W) ∈
Rp×Rp×n, σ a positively homogeneous function, and X, Y square integrable r.v. Notice that
we can write

L(θ) = E|Φ(X;θ)− f∗(X)|2 + E|Y − f∗(X)|2

for some measurable f∗ : Rn → R such that f∗(X) = E[Y |X]. In particular this implies that

min
θ∈Θ

L(θ) ≥ R(X, Y )
.
= E|Y − f∗(X)|2

If f∗ can be written as a one-hidden-layer neural network with an arbitrary number of hidden
units, that is

f∗(x) =
∫

Rn

σ(〈x,w〉)ρ(w) dµ(w)

for some measure µ and weight function ρ, then a possible approach to find a proper approxi-
mation of f∗ is through random features sampling (Rahimi and Recht, 2008). Applying some
recent results (Bach, 2017b) relating random features expansions with kernel quadrature rules,
we show that this implies the following statement: as the network width increases, spurious
valleys tend to be confined to decreasingly low loss value. In this regime, large loss barriers are
therefore avoided with high probability over initialization of the parameters. The statement
is made more rigorous in the following:

12
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Theorem 16 Let dτ be the uniform distribution over the unit sphere Sn and consider an
initial parameter θ̃ = (ũ,W̃) with w̃i ∼ dτ sampled i.i.d. Then the following hold:

1. There exists a path t ∈ [0, 1] 7→ θt such that θ0 = θ̃, the function t ∈ [0, 1] 7→ L(θt) is
non-increasing, and

L(θ1) ≤ R(X, Y ) + λ if p ≥ O
(
−λ−1 log(λδ)

)

with probability greater or equal then 1− δ, for every λ, δ ∈ (0, 1).

2. If f∗ is sufficiently regular3, there exists a path t ∈ [0, 1] 7→ θt such that θ0 = θ̃, the
function t ∈ [0, 1] 7→ L(θt) is non-increasing, and

L(θ1) ≤ R(X, Y ) +O(p−1+δ)

with probability greater or equal then 1− e−O(pδ) for every δ ∈ (0, 1).

Sketch of the proof Assume that f∗ admits the representation

f∗(x) =
∫

Θ
ρ(w)σ(〈x,w〉) dτ(w)

for some density ρ. If wi ∼ dτ , i ∈ [p], are drawn i.i.d., we have

E

(
1

p

p∑

i=1

ρ(wi)σ(〈wi,x〉)− f∗(x)

)2

= O

(
1

p

)

Notice that by only moving the second layer, we can construct a (linear) descent path from
(ũ,W̃) to (u,W̃), where ui = ρ(wi). The proof is then concluded by applying an Hoeffding’s-
type inequality to get property 2. if it holds ρ ∈ L∞(Sn dτ) or by applying Proposition 1 in
(Bach, 2017b) to obtain property 1.

Related works Many recent works leveraged arguments based on random features to ex-
plain the empirical success of local descent algorithms to train neural networks (see e.g. (Jacot
et al., 2018; Allen-Zhu et al., 2018; Oymak and Soltanolkotabi, 2019; Yehudai and Shamir,
2019; Ma et al., 2019; Du et al., 2018)). In Theorem 16, we used this type of technique to
show properties of the optimization landscape. The main limitation shared by our and the
cited results is the gap between the regimes in which the apply (high over-parametrized NNs)
and the regimes attained in practice. A current important direction is to understand the
dynamics of neural networks training over kernel approximation and to extend such results
to moderatly over-parametrized architectures.

Remark 17 Notice that in the previous description of the problem, we dropped bias terms
from the neural network architectures for sake of simplicity, as we can immediately generalize
to the biases case by stacking the bias in the weights and input random variables. As a bias
term is needed in order to use universal approximation results, with abuse of notation, in
the above theorem we wrote 〈w,x〉

.
= 〈w(n),x〉 + wn+1 for w ∈ Sn,x ∈ Rn, where w(n) =

(w1, . . . , wn) represents a neuron weight and wn+1 a bias term; again, note that this can be
done by simply considering the r.v. X̃

.
= (X, 1) in place of X.

3. More precisely, if the function f∗ can be written as f∗(x) =
∫
W
g∗(w)ψw(x) dτ(w) for some g∗ ∈ L∞

dτ .

13
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6. Future directions

We considered the problem of characterizing the loss surface of neural networks from the
perspective of optimization, with the goal of deriving weak certificates that enable - or prevent
- the existence of descent paths towards global minima.

The topological properties studied in this paper, however, do not yet capture fundamental
aspects that are necessary to explain the empirical success of deep learning methods. We
identify a number of different directions that deserve further attention.

The positive results presented above rely on being able to reduce the network to the
case when (convex) optimization over the output layer is sufficient to reach optimal weight
values. A better understanding of first layer dynamics needs to be carried out. Moreover,
in such positive results we only proved non-existence of (high) energy barriers. While this
is an interesting property from the optimization point of view, it is also not sufficient to
guarantee convergence of local descent algorithms. Another informative property of the loss
function that should be addressed in future works is the existence of local descents in non
optimal points: for every θ0 ∈ Θ non optimal and any neighborhood U ⊆ Θ of θ0, there exists
θ ∈ U such that L(θ) < L(θ0). More generally, our present work is not informative on the
performance of gradient descent in the regimes with no spurious valley.

The other very important point to be addressed in future is how to extend the above
results to architectures of more practical interest. Depth and the specific linear structure of
Convolutional Neural Networks, critical to explain the excellent empirical performance of deep
learning in computer vision, text or speech, need to be exploited, as well as specific design
choices such as Residual connections and several normalization strategies – as done recently
in (Shamir, 2018) and (Santurkar et al., 2018) respectively. This also requires making specific
assumptions on the data distribution, and is left for future work.

Acknowledgements We would like to thank Gérard Ben Arous and Léon Bottou for fruitful
discussions, and Jean Ponce for valuable comments and corrections of the original version of
this manuscript. LV would also like to thank Jumageldi Charyyev for fruitful discussions on
the proofs of several propositions and Andrea Ottolini for valuable comments on a previous
version of this manuscript. LV was partially supported by NSF grant DMS-1719545. ASB was
partially supported by NSF grants DMS-1712730 and DMS-1719545, and by a grant from the
Sloan Foundation. JB acknowledges the partial support by the Alfred P. Sloan Foundation,
NSF RI-1816753, NSF CAREER CIF 1845360, and Samsung Electronics.

References

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via
over-parameterization. arXiv preprint arXiv:1811.03962, 2018.

Francis Bach. Breaking the curse of dimensionality with convex neural networks. Journal of
Machine Learning Research, 18(19):1–53, 2017a.

Francis Bach. On the equivalence between kernel quadrature rules and random feature ex-
pansions. Journal of Machine Learning Research, 18(21):1–38, 2017b.

14



Spurious Valleys in One-hidden-layer Neural Network Optimization Landscapes

Afonso S Bandeira, Nicolas Boumal, and Vladislav Voroninski. On the low-rank approach for
semidefinite programs arising in synchronization and community detection. In Conference
on Learning Theory, pages 361–382, 2016.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale
machine learning. arXiv preprint arXiv:1606.04838, 2016.

Leon Bottou, Martin Arjovsky, David Lopez-Paz, and Maxime Oquab. Geometrical insights
for implicit generative modeling. arXiv preprint arXiv:1712.07822, 2017.

Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities: A
nonasymptotic theory of independence. Oxford university press, 2013.

Nicolas Boumal, Vlad Voroninski, and Afonso Bandeira. The non-convex burer-monteiro
approach works on smooth semidefinite programs. In Advances in Neural Information
Processing Systems, pages 2757–2765, 2016.

Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and Yann LeCun.
The loss surfaces of multilayer networks. In Artificial Intelligence and Statistics, pages
192–204, 2015.

Pierre Comon, Gene Golub, Lek-Heng Lim, and Bernard Mourrain. Symmetric tensors and
symmetric tensor rank. SIAM Journal on Matrix Analysis and Applications, 30(3):1254–
1279, 2008.

Amit Daniely, Roy Frostig, and Yoram Singer. Toward deeper understanding of neural net-
works: The power of initialization and a dual view on expressivity. In Advances In Neural
Information Processing Systems, pages 2253–2261, 2016.

Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and
Yoshua Bengio. Identifying and attacking the saddle point problem in high-dimensional
non-convex optimization. In Advances in neural information processing systems, pages
2933–2941, 2014.

Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and Fred A Hamprecht. Essentially no
barriers in neural network energy landscape. arXiv preprint arXiv:1803.00885, 2018.

Simon S Du and Jason D Lee. On the power of over-parametrization in neural networks with
quadratic activation. arXiv preprint arXiv:1803.01206, 2018.

Simon S Du, Jason D Lee, Yuandong Tian, Barnabas Poczos, and Aarti Singh. Gradient
descent learns one-hidden-layer cnn: Don’t be afraid of spurious local minima. arXiv
preprint arXiv:1712.00779, 2017.

Simon S Du, Jason D Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds
global minima of deep neural networks. arXiv preprint arXiv:1811.03804, 2018.

Soheil Feizi, Hamid Javadi, Jesse Zhang, and David Tse. Porcupine neural networks:(almost)
all local optima are global. arXiv preprint arXiv:1710.02196, 2017.

15



Venturi, Bandeira and Bruna

Daniel Freeman and Joan Bruna. Topology and geometry of half-rectified network optimiza-
tion. ICLR 2017, 2017.

Rong Ge, Jason D Lee, and Tengyu Ma. Matrix completion has no spurious local minimum.
In Advances in Neural Information Processing Systems, pages 2973–2981, 2016.

Rong Ge, Chi Jin, and Yi Zheng. No spurious local minima in nonconvex low rank problems:
A unified geometric analysis. arXiv preprint arXiv:1704.00708, 2017a.

Rong Ge, Jason D Lee, and Tengyu Ma. Learning one-hidden-layer neural networks with
landscape design. arXiv preprint arXiv:1711.00501, 2017b.

Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Characterizing implicit bias
in terms of optimization geometry. arXiv preprint arXiv:1802.08246, 2018.

Moritz Hardt and Tengyu Ma. Identity matters in deep learning. arXiv preprint
arXiv:1611.04231, 2016.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks,
4(2):251–257, 1991.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. In Advances in neural information processing systems,
pages 8571–8580, 2018.

Ziwei Ji and Matus Telgarsky. Risk and parameter convergence of logistic regression. arXiv
preprint arXiv:1803.07300, 2018.

Kenji Kawaguchi. Deep learning without poor local minima. In Advances in Neural Informa-
tion Processing Systems, pages 586–594, 2016.

Moshe Leshno, Vladimir Ya Lin, Allan Pinkus, and Shimon Schocken. Multilayer feedforward
networks with a nonpolynomial activation function can approximate any function. Neural
Networks, 6(6):861–867, 1993.

Roi Livni, Shai Shalev-Shwartz, and Ohad Shamir. On the computational efficiency of training
neural networks. In Advances in Neural Information Processing Systems, pages 855–863,
2014.

Chao Ma, Lei Wu, et al. A comparative analysis of the optimization and generalization
property of two-layer neural network and random feature models under gradient descent
dynamics. arXiv preprint arXiv:1904.04326, 2019.

Marco Mondelli and Andrea Montanari. On the connection between learning two-layers neural
networks and tensor decomposition. arXiv preprint arXiv:1802.07301, 2018.

Quynh Nguyen and Matthias Hein. The loss surface of deep and wide neural networks. arXiv
preprint arXiv:1704.08045, 2017.

Samet Oymak and Mahdi Soltanolkotabi. Towards moderate overparameterization:
global convergence guarantees for training shallow neural networks. arXiv preprint
arXiv:1902.04674, 2019.

16



Spurious Valleys in One-hidden-layer Neural Network Optimization Landscapes

Jeffrey Pennington and Yasaman Bahri. Geometry of neural network loss surfaces via random
matrix theory. In International Conference on Machine Learning, pages 2798–2806, 2017.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Advances
in neural information processing systems, pages 1177–1184, 2008.

Itay Safran and Ohad Shamir. On the quality of the initial basin in overspecified neural
networks. In International Conference on Machine Learning, pages 774–782, 2016.

Itay Safran and Ohad Shamir. Spurious local minima are common in two-layer relu neural
networks. arXiv preprint arXiv:1712.08968, 2017.

Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch
normalization help optimization?(no, it is not about internal covariate shift). arXiv preprint
arXiv:1805.11604, 2018.

Ohad Shamir. Are resnets provably better than linear predictors? arXiv preprint
arXiv:1804.06739, 2018.

Mahdi Soltanolkotabi, Adel Javanmard, and Jason D Lee. Theoretical insights into the
optimization landscape of over-parameterized shallow neural networks. arXiv preprint
arXiv:1707.04926, 2017.

Daniel Soudry and Yair Carmon. No bad local minima: Data independent training error
guarantees for multilayer neural networks. arXiv preprint arXiv:1605.08361, 2016.

Daniel Soudry, Elad Hoffer, and Nathan Srebro. The implicit bias of gradient descent on
separable data. arXiv preprint arXiv:1710.10345, 2017.

Grzegorz Swirszcz, Wojciech Marian Czarnecki, and Razvan Pascanu. Local minima in train-
ing of neural networks. arXiv preprint arXiv:1611.06310, 2016.

Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The
marginal value of adaptive gradient methods in machine learning. In Advances in Neural
Information Processing Systems, pages 4148–4158, 2017.

Gilad Yehudai and Ohad Shamir. On the power and limitations of random features for
understanding neural networks. arXiv preprint arXiv:1904.00687, 2019.

Chulhee Yun, Suvrit Sra, and Ali Jadbabaie. Small nonlinearities in activation functions
create bad local minima in neural networks. arXiv preprint arXiv:1802.03487, 2018.

Yi Zhou and Yingbin Liang. Critical points of neural networks: Analytical forms and land-
scape properties. arXiv preprint arXiv:1710.11205, 2017.

17



Venturi, Bandeira and Bruna

Appendix A. Proofs of Section 3

Notations For any r.v.’s X and Y with values in Rn and Rm respectively, we denote
ΣX = E

[
XXT

]
and ΣXY = E

[
XYT

]
. For every integer n ≥ 1, we denote by GL(n),

O(n) and SO(n), respectively, the general linear group, the orthogonal group and the special
orthogonal group of real n × n matrices. I denotes the identity matrix and e1, . . . , en the
standard basis in Rn.

A.1. Proof of Theorem 8

We note that, under the assumptions of Theorem 8, the same optimal NN functions Φi(·;θ)
could also be obtained using a generalized linear model, where the representation function
has the linear form Φi(x;θ) = 〈θi,ϕ(x)〉, for some parameter independent function ϕ : Rn →
Rdim∗(σ,X). The main difference between the two models is that the former requires the choice
of a non-linear activation function σ, while the latter implies the choice of a kernel functions.
This is the content of the following lemma.

Lemma 18 Let σ : R → R be a continuous function and X ∈ R2(σ, n) a r.v. Assume that
the linear space

Vσ,X
.
= span({f : f ∈ Vσ,1}) ⊆ L2

X

is finite dimensional. Then there exists a scalar product 〈·, ·〉 on Vσ,X and a map x ∈ Rn 7→
ϕ(x) ∈ Vσ,X such that

〈ψσ,w,ϕ(x)〉 = ψσ,w(x) = σ(〈w,x〉) (8)

for all w ∈ Rn. Moreover, the function w ∈ Rn 7→ ψσ,w ∈ Vσ,X is continuous.

Proof For sake of simplicity, in the following we write ψw for ψσ,w and V for Vσ,X. Let
ψw1

, . . . ,ψwq
be a basis of V . If ψw =

∑q
i=1 αiψwi

and ψv =
∑q

j=1 βjψwj
, then we can

define a scalar product on V as

〈ψw,ψv〉
.
=

q∑

i=1

αiβi

If we define the map x ∈ Rn 7→ ϕ(x) ∈ V as

ϕ(x) =

q∑

i=1

ψwi(x)ψwi

then property (8) follows directly by the definition of the function ψw. Moreover, we can
choose x1, . . . ,xq such that ϕ(x1), . . . ,ϕ(xq) is a basis of V . Now we need to show that, for
i ∈ [q], the map w 7→ 〈ψw,ψwi

〉 is continuous. Let M be the matrix M
.
= (ψwj (xi))i,j ∈ Rq×q

and z(w) be the vector z(w)
.
= (ψw(xi))i ∈ Rq. Then 〈ψw,ψwi

〉 = (M−1z(w))i, which is
continuous in w. This shows that the map w ∈ Rn 7→ ψw ∈ V is continuous.

The non-trivial fact captured by Theorem 8 is the following: when the capacity of network
is large enough to match a generalized linear model, but still finite, then the problem of
optimizing the loss function (2), which is in general a highly non-convex object, satisfies an
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interesting optimization property in view of the local descent algorithms which are used in
practice to solve it.

Proof [Proof of Theorem 8] Thanks to Lemma 18, there exist two continuous maps ϕ,ψ :
Rn → Rq ≃ Vσ,X, with q = dim∗(σ,X), such that σ(〈w,x〉) = 〈ψ(w),ϕ(x)〉 for every
w,x ∈ Rn. Therefore, every one-hidden-layer NN Φ(x;θ) = Uσ(Wx) can be written as
Φ(x;θ) = Uψ(W)ϕ(x), where, if W ∈ Rp×n, then ψ(W) ∈ Rp×q (that is ψ is applied
row-wise).

The proof of the Theorem consists in exploiting the above linearized representation of Φ to
show that property P.1 holds (remind that this is equivalent to saying that the loss function
has no spurious valleys). Given an initial parameter θ̃ = (Ũ,W̃), we want to construct a
continuous path t ∈ [0, 1] 7→ θt = (Ut,Wt), such that the function t ∈ [0, 1] 7→ L(θt) is
non-increasing and such that θ0 = θ̃, θ1 ∈ argminθ L(θ), where L(θ) = E[ℓ(Φ(X;θ),Y)].
The construction of such a path can be articulated in two main steps:

Step 1. The first part of the path consist showing that we can assume that rk(ψ(W̃)) = q
w.l.o.g. Let wT

1 , . . . ,w
T
p ∈ Rn be the rows of W̃; suppose that rk(ψ(W̃)) = r < q (otherwise

there is nothing to show) and that ψ(wi1), . . . ,ψ(wir) are linearly independent. Denote
I = {i1, . . . , ir}, J = [1, p] \ I = {j1, . . . , jp−r} and u1, . . . ,up the columns of Ũ. For j ∈ J ,
we can write

ψ(wj) =
r∑

k=1

akj ψ(wik) for some akj ∈ R (9)

If we define U1 such that (denoting u1,i the i-th row of U1)

u1,i = ui +
n−r∑

k=1

aik ujk for i ∈ I, u1,j = 0 for j ∈ J

then U1W̃ = ŨW̃. The path t ∈ [0, 1/2] 7→ θt = (2tU1 + (1 − 2t)Ũ,W̃) leaves the
network unchanged, i.e. Φ(·; θ̃) = Φ(·;θt) for t ∈ [0, 1/2]. At this point, we can select
w1,j1 , . . . ,w1,jp−r ∈ Rn such that the matrix W1 with rows w1,i = wi for i ∈ I and w1,j for
j ∈ J , verifies rk(ψ(W1)) = q. Notice that the existence of such vectors w1,jk , k ∈ [p − r],
is guaranteed by the definition of q = dim∗(σ,X). The path t ∈ [1/2, 1] 7→ θt = (U1, (2t −
1)W1 + (2− 2t)W̃) leaves the network unchanged, i.e. Φ(·;θ0) = Φ(·;θt) for t ∈ [0, 1]. The
new parameter value θ1 = (U1,W1) satisfies rk(ψ(W1)) = q.

Step 2. By step 1, we can assume that rk(W̃) = q. Since the network has the form
Φ(x;θ) = Uψ(W)ϕ(x) and since the function ℓ is convex, there exists U∗ ∈ Rm×p such
that θ = (U∗,W̃) ∈ argminθ L(θ). The proof is therefore concluded by selecting the path
t ∈ [0, 1] 7→ θt = (tU∗ + (1− t)Ũ,W̃).

This shows that property P.1 holds and therefore it proves the theorem.

A.2. Proof of Theorem 11

The first step for proving Theorem 11 consists in extending the result of Theorem 8 to the
case of one-hidden-layer linear NNs Φ(x;θ) = UWx with U ∈ Rm×p, W ∈ Rp×n with p < n

19



Venturi, Bandeira and Bruna

and square loss functions L(θ) = E‖Φ(X;θ)−Y‖2. We start by pointing out a symmetry
property of this type of networks: for every G ∈ GL(p) it holds that

Φ(x; (U,W)) = UWx = (UG−1)(GW)x = Φ(x; (UG−1,GW)) (10)

This means that the map θ 7→ Φ(·;θ) is defined up to an action of the group GL(p) over the
parameter space Θ = Rm×p × Rp×n; the same remark holds for the loss function L(θ). We
can therefore think about the loss function as defined over the topological quotient Θ/GL(p).
We denote the orbit of an element θ = (U,W) ∈ Θ as

[θ] = [U,W] = {G · θ = (UG−1,GW) : G ∈ GL(p)}

If g is a real-valued function defined on Θ such that g(G · θ) = g(θ) for all G ∈ GL(p) and
θ ∈ Θ, then one can equivalently consider g as defined on Θ/GL(p) as g([θ]) = g(θ); for
simplicity we denote g[θ] = g([θ]). This is exactly the case for the loss function L(θ). In
the proof of Theorem 8, we describe how to construct a path from an initial parameter value
θ̃ = (Ũ,W̃) to a parameter value θ1 = (q(W1),W1), with rk(W1) = p and q : Rp×n → Rm×p

the function defined by

q(W) = ΣYXWT (WΣXWT )† ∈ argmin
U

L(θ)|θ=(U,W)

(see Lemma 28). Therefore, let θ̃ = (q(W̃),W̃) with rk(W̃) = p, be an initial parameter.
Since an optimal parameter is given by θ = (q(W),W) for some W, we seek for a path in
the form θt = (q(Wt),Wt) with rk(Wt) = p for all t ∈ [0, 1]. This path must be such that
t 7→ L(θt) is non-increasing. If we assume that ΣX = I, it holds

L(θt) = tr(ΣY)− tr(MPWt)

where M is a PSD matrix and, for every matrix W, PW denotes the orthogonal projection
on the rows of W, that is PW = W†W (see Lemma 28). Therefore it is equivalent for the
path θt = (q(Wt),Wt) to be such that the function

t ∈ [0, 1] 7→ f(Wt)
.
= tr(MPWt)

is non-decreasing. In particular, the function f is defined up to the action of the group
GL(p) on Θ. Since we look for Wt of rank p, we can consider f as defined on G(p, n), the
Grassmanian of p dimensional linear subspaces of Rn. The proof below for the linear one-
hidden-layer case is articulated as follows. We first construct a path [Wt] ∈ G(p, n) such
that [W0] = [W̃], [W1] maximizes f and such that the function t ∈ [0, 1] 7→ f [Wt] is non-
decreasing (Lemma 19). We then show that such a path can be lifted to a corresponding path
Wt ∈ Rp×n (Lemma 20). Finally, we show that we can drop the assumption ΣX = I and the
result still holds (Lemma 21).

Lemma 19 Let [W̃] ∈ G(p, n) and assume ΣX = I. Then there exists a continuous path
t ∈ [0, 1] 7→ [Wt] ∈ G(p, n) such that [W0] = [W̃], [W1] maximizes f and such that the
function t ∈ [0, 1] 7→ f [Wt] is non-decreasing.
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Proof While it is geometrically intuitive that the results should hold, we derive a constructive
proof. We start by noticing that if [W] ∈ G(p, n) and w1, . . . ,wp is an orthonormal basis of
[W], then

f [W] =

p∑

i=1

wT
i Mwi (11)

Moreover, if M =
∑n

j=1 σivjv
T
j is the SVD of M, where σ1 ≥ · · · ≥ σn ≥ 0, then (11) can be

written as

f [W] =
n∑

j=1

σj

p∑

i=1

〈vj ,wi〉
2

In particular the maximum of f is obtained for [W] = [V]
.
= [v1, . . . ,vp] (with some abuse

of notation, we identify a subspace with one of its basis). To prove the result is therefore
sufficient to show a path [Wt] from any [W0] = [W̃] to [W1] = [V], such that the function
t ∈ [0, 1] 7→ f [Wt] is non-decreasing. To do this we construct a finite sequence of paths

[Wi
t] such that [Wi

0] = [Wi−1] and [Wi
1] = [Wi]

for i ∈ [p], with [W0] = [W̃], [Wp] = [V] and

Wi = [v1, . . . ,vi,w
i−1
i+1, . . . ,w

i−1
p ] for i ∈ [p]

where w
j
1 = v1, . . . ,w

j
j = vj ,w

j
j+1, . . . ,w

j
p is an orthonormal basis of [Wj ], for j ∈ [0, p].

Moreover, the paths [Wi
t] are such that the functions t ∈ [0, 1] 7→ f [Wi

t] are non-decreasing.
Such paths are defined as follows. Let i ∈ [0, p− 1] and consider

[Wi] = [wi
1 = v1, . . . ,w

i
i = vi,w

i
i+1, . . . ,w

i
p]

We define

ui
i+1 =

{
P

Wivi+1

‖P
Wivi+1‖ if PWivi+1 6= 0

0 o.w.

Then we complete v1, . . . ,vi,u
i
i+1 to an orthonormal basis of [Wi]:

v1, . . . ,vi,u
i
i+1, . . . ,u

i
p

We call wi+1
j = ui

j for j ∈ [i+ 2, p] and we define

[Wi+1] = [v1, . . . ,vi,w
i+1
i+1 = vi+1,w

i+1
i+2, . . . ,w

i+1
p ]

The path [Wi
t] is then obtained by moving ui

i+1 to vi+1 on a geodesic on the unit sphere
Sn−1 ⊂ Rn, i.e.

[Wi+1
t ] = [v1, . . . ,vi,u

i
i+1(t),u

i
i+2, . . . ,u

i
p]

where we defined

ui
i+1(t) = (1− (1− µi+1)t)u

i
i+1 +

√
1− (1− (1− µi+1)t)2 ·

vi+1 − µi+1u
i
i+1√

1− µ2i+1
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for µi+1 = 〈ui
i+1,vi+1〉. The fact that the function t ∈ [0, 1] 7→ f [Wi+1

t ] is non-decreasing
can be proved by noticing that

f [Wi+1
t ]− f [Wi] =

n∑

j=i+1

σj〈u
i
i+1(t),vj〉

2

and by showing that the derivative of the RHS is greater or equal than 0. This concludes the
proof of the lemma.

Lemma 20 Let W̃ ∈ Rp×n and assume ΣX = I. Then there exists a continuous path
t ∈ [0, 1] 7→ Wt ∈ Rp×n such that W0 = W̃, W1 maximizes f and such that the function
t ∈ [0, 1] 7→ f(Wt) is non-decreasing.

Proof The only thing we need to prove in this case is that we can lift the paths [Wi
t] ∈ G(p, n)

from the proof of Lemma 19 to continuous paths Wi
t ∈ Rn×p. We first notice that if the basis

{wi
1, . . . ,w

i
p} and {wi

1, . . . ,w
i
i,u

i
i+1, . . . ,u

i
p} are defined as above, then we can assume (up to

changing some signs) that they have all the same orientation, for all i ∈ [0, p]. Therefore we
can define the matrices Wi ∈ Rp×n with rows wi

1, . . . ,w
i
p and the matrices U i ∈ Rp×n with

rows wi
1, . . . ,w

i
i,u

i
i+1, . . . ,u

i
p, for i ∈ [0, p]. The paths Wi+1

t are defined in the same way as

in the proof of Lemma 19. Notice that such paths go from Wi+1
0 = Ui to Wi+1

1 = Wi+1. It
remains to construct paths from Wi to Ui. Consider the matrix

Oi = WT
i Ui ∈ SO(n)

Notice that WiOi = Ui. In particular there exist Ai real skew-symmetric such that Oi = eA
i
.

Therefore the paths t ∈ [0, 1] 7→ Ui
t = WietA

i
go from Ui

0 = Wi to Ui
1 = Ui. Moreover

f(Ui
t) is constant in t (since the underlying linear subspace does not change). The only thing

that remains to prove is that, given the matrix W̃ ∈ Rn×p with columns w1, . . . ,wp, there
is a path from W̃ to W0. Now, W0 was chosen as a matrix with orthonormal columns
such that [W̃] = [W0]. Therefore if W̃ = OΛU is the SVD of W̃ with U = W0, Λ =
diag(σ1, . . . , σp) ∈ Rp×p (with σi > 0, i ∈ [p]) and O ∈ SO(p), there exists A real skew-
symmetric such that O = eA. Thus the path t ∈ [0, 1] 7→ Wt = e(1−t)AΛ1−tW0 is a path
between W0 = W̃ and W1 = W0. This concludes the proof of the lemma.

Lemma 21 Lemma 20 holds even if we drop the assumption ΣX = I.

Proof For sake of simplicity we distinguish two cases.
Case 1: rk(ΣX) = n. Let K = (ΣX)1/2. Then X̃ = K−1X is such that Σ

X̃
= I. Therefore,

if t ∈ [0, 1] 7→ θt = (Ut,Wt) is the path given by Lemma 20 for the case X = X̃, the sought
path (for X = X) is given by t ∈ [0, 1] 7→ (Ut,WtK

−1).
Case 2: rk(ΣX) < n. In this case, if r = rk(ΣX), X belongs to a r-dimensional subspace
of Rn (a.s.), call it V . If O ∈ Rn×r is a matrix with an orthonormal basis of V as columns,
then OOTX = X (a.s.), and, if X̃ = OTX then X̃ ∈ Rr and rk(Σ

X̃
) = r. Therefore, if

t ∈ [0, 1] 7→ θt = (Ut,Wt) is the path given by case 1 for X = X̃, the sought path (for
X = X) is given by t ∈ [0, 1] 7→ (Ut,WtO

T ).
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This concludes the proof of non-existence of spurious valleys for the square loss function of
linear one-hidden-layer NNs Φ(x;θ) = UWx. The fact that such proof does not require any
assumptions on the dimensions of the layers n, p,m neither on the rank of the initial layers,
allows us to prove non-existence of spurious valleys for the square loss function of linear NNs
of any depth K ≥ 1:

Φ(x;θ) = WK+1 · · ·W1x (12)

We start by proving a simple lemma.

Lemma 22 Let Ũ = M̃1 · · · M̃n, where Ũ ∈ Rr0×rn and M̃i ∈ Rri−1×ri . Suppose that
t ∈ [0, 1] 7→ Ut is a given continuous path between U0 = Ũ and another matrix U1 ∈ Rr0×rn .
If ri ≥ min{r0, rn} for all i, then there exist continuous paths Mi

t such that Mi
0 = M̃i and

such that Ut = M1
t . . .M

n
t .

Proof The statement can be proved by induction. If n = 1 there is nothing to prove.
Assume now (by induction) that it holds for all decompositions of U0 with size less than n.
Let r = rh = mini∈[n−1] ri and assume (w.l.o.g.) that rn = min{r0, rn}. We want to describe
two paths t ∈ [0, 1] 7→ Vt ∈ Rr0×r, t ∈ [0, 1] 7→ Wt ∈ Rr×rn such that Ut = VtWt and
V0 = M̃1 · · · M̃h, W0 = M̃h+1 · · · M̃n. By operating as in step 1 in the proof of Theorem 8,
we can assume rk(W0) = rn. Moreover (up to adding a linear path in Vt) we can assume

that V0 = U0W
†
0. We can then define Vt = UtW

†
0 and Wt = W0 for t ∈ (0, 1]. We

thus factorized Ut as Ut = VtWt. By induction, we can assume that we can factorize
Vt = M1

t · · ·M
h
t and Wt = Mh+1

t · · ·Mn
t . This concludes the proof.

We can now conclude the proof of Theorem 11.

Proof [Proof of Theorem 11] Consider a linear network Φ(x;θ) as in (12), where

Wk ∈ Rpk×pk−1 for k ∈ [K + 1]

We select ps = mini∈[K] pk. Then the network can be written as

Φ(x;θ) = Ŵ2Ŵ1 x where Ŵ2 = WK+1 · · ·Ws+1, Ŵ1 = Ws · · ·W1 (13)

Now we want to prove property that given an initial parameter θ̃ = (W̃K+1, . . . ,W̃1), there
exists a continuous path θt = (WK+1

t , . . . ,W1
t ) such that L(θt) is non-increasing and such

that θ0 = θ̃ and L(θ1) = minθ L(θ). If we call ˆ̃
Wi, i = 1, 2, the matrices defined in (13)

for θ = θ̃, then by Lemma 21 there exists a path (Ŵ2
t ,Ŵ

1
t ) satisfying the above. Thanks to

Lemma 22, we can decompose

Ŵ2
t = WK+1

t · · ·Ws+1
t , Ŵ1

t = Ws
t · · ·W

1
t (14)

in a continuous way. Since ps was to chosen as the minimum, it also holds that

min
θ=(Ŵ2,Ŵ1)

L(θ) = min
θ=(WK+1,...,W1)

L(θ)

Therefore this is a suitable path and this concludes the proof of the theorem.
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A.3. Proof of Theorem 12

Proof [Proof of Theorem 12] Let θ̃ = (ũ,W̃) be a starting parameter value. We aim to
construct a continuous path t ∈ [0, 1] 7→ θt ∈ Θ starting in θ0 = θ̃ and such that L(θ1) =
minθ L(θ) and such that the function t ∈ [0, 1] 7→ L(θt) is non-increasing. Such a path can
be constructed in two steps.

Step 1. Let A =
∑p

k=1 ũkw̃kw̃
T
k and

∑n
k=1 u

∗
kw

∗
k(w

∗
k)

T be the SVD of A. We define the
parameters value θ∗ = (u∗,W∗) where u∗ = (u∗1, . . . , u

∗
n, 0, . . . , 0) and W∗ is the p×n matrix

with rows w∗
i for i ∈ [n] and 0 for i ∈ [n+1, p]. The first step consists in continuously mapping

θ̃ = (ũ,W̃) to θ∗ = (u∗,W∗) with a path θt such that L(θt) is constant; the construction of
such a path is detailed in Lemma 23.

Step 2. As noticed above, the network can be written as Φ(x;θ) = uTσ(Wx) = 〈A,M〉F ,
where A =

∑p
k=1 ukwkw

T
k and M = xxT . The square loss L(θ) is convex in the parameter

A. Be Ā a minima of L as function of A and
∑n

i=1 ūkw̄kw̄
T
k be the SVD of Ā; also let

ū = (0, . . . , 0, ū1, . . . , ūn) and W̄ be the p×n matrix with rows 0 for i ∈ [p−n] and w̄i for i ∈
[p−n+1, p]. By the previous step we can assume that the initial parameter θ̃ = (ũ,W̃) is such
that ũi = 0 and w̃i = 0 for i ∈ [n+1, p]. Then the path θt = (1− t)(u,W)+ t(ū,W̄) verifies
property P.1. This indeed follows from the fact that Φ(x;θt) = (1− t)〈A,M〉F + t〈Ā,M〉F
and from the convexity of the loss L as function of A.

This shows that property P.1 holds and so it concludes the proof of Theorem 12.

To conclude the proof we just need to prove the following lemmas.

Lemma 23 Let θ = (u,W) be an initial parameter and θ∗ = (u∗,W∗) be as in step 1 of the
proof of Theorem 12. Then there exists a continuous path θt from θ to θ∗ such that the loss
L(θt) is constant (as a function of t).

Proof Notice that we can assume u ∈ {−1, 0, 1}p. This can be done simply scaling (contin-
uously) each row wk of W by

√
|uk|. Assume first that u ∈ {±1}p. The general case (uk = 0

for some k) is addressed in Remark 26. The sought path θt can be constructed by iterating
two steps (a finite amount of times). First we select a row wk and construct a continuous path
that maps this row to one of the w∗

i ; then we orthogonalize (w.r.t. such w∗
i ) the rest of rows

wj , j 6= k. These two steps are constructed so that A never changes and therefore the loss
is constant. The first step is described in Lemma 24, while the second is detailed in Lemma
25. At this point the parameter θ = (u,W) verifies ui = u∗i , wi = w∗

i and wj ∈ 〈{w∗
i }〉

⊥ for
j 6= k. In particular it holds

n∑

j=1
j 6=i

u∗jw
∗
j (w

∗
j )

T =

p∑

j=1
j 6=k

ukwkw
T
k

Therefore, an induction step applied on the reduced parameter values

u−k = (u1, . . . , ûk, . . . , up)

and W−k = [w1, . . . , ŵk, . . . ,wp]
TP , where P =

∑n
j=1,j 6=iw

∗
je

T
j ∈ Rn×(n−1), concludes the

proof. The fact that the non-zero components of u and W coincide with the first n is not

24



Spurious Valleys in One-hidden-layer Neural Network Optimization Landscapes

necessary, but we can clearly assume it to hold w.l.o.g.

Lemma 24 The first step described in the Proof of Lemma 23 can be performed when p > 2n.

Proof Let E+ = {k ∈ [p] : uk = 1}, E− = {k ∈ [p] : uk = −1} and p+ = |E+|, p− = |E−|.
Accordingly we define

W+ = ([wk]k∈E+)
T ∈ Rp+×n and W− = ([wk]k∈E−

)T ∈ Rp−×n

Notice that then we can write

A = WT
+W+ −WT

−W−

The main step of the proof is to observe that A (and therefore the loss) is invariant to the
action of orthogonal matrices Q+ ∈ SO(p+) and Q− ∈ SO(p−). So, if Q+(t) (resp. Q−(t))
is a continuous paths in SO(p+) (resp. in SO(p−)) starting at the identity, acting on W as

W+(t)
.
= Q+(t)W+, W−(t)

.
= Q−(t)W−

we have that

A = W+(t)
TW+(t)−W−(t)

TW−(t)

is constant for all t. Now, since p = p+ + p− > 2n, it follows that either p+ > n or p− > n.
Assume w.l.o.g. that p+ > n. Since p+ > n, we can rotate the subspace generated by the
columns of W+ so that its first row is 0. That is, there exist h ∈ Rp+ non-zero such that
hTW+ = 0 and ‖h‖ = 1. It suffices to choose a path Q(t) in SO(p+) whose first row equals
h at t = 1. It follows that Q(1)W+ has a first row equal to 0. We then set the corresponding
u1 = 0, which does not change the loss, and finally set w1 to the desired eigenvector w∗

1.

Lemma 25 Assume that after the step in Lemma 24, the first row of W+ (resp. W−) is
given by w∗

i . Then we can map all the other rows of W to be orthogonal to w∗
i , while keeping

A constant.

Proof To simplify the notation we assume (w.l.o.g.) that w∗
i = w∗

1 and that

W = [w∗
1,w2, · · · ,wp]

T

Now we want to construct a path

ut = (u1,t, u2, . . . , up)

Wt = [w∗
1,w2,t, · · · ,wp,t]

T

such that w2,1, . . . ,wp,1 ∈ 〈{w∗
1}〉

⊥. To do this we simply take

wk,t
.
= wk − t〈w∗

1,wk〉w
∗
1

25



Venturi, Bandeira and Bruna

If At =
∑p

k=1 uk,twk,tw
T
k,t, we can show that there exists a choice of u1,t such that At = A

for all t ∈ [0, 1]. It holds that

At = u1,tw
∗
1(w

∗
1)

T

+

p∑

k=2

uk
[
(1− t)2(w1

k)
2w∗

1(w
∗
1)

T + (1− t)w1
k

(
w̃k(w

∗
1)

T +w∗
1w̃

T
k

)
+ w̃kw̃

T
k

]

where w1
k
.
= 〈wk,w

∗
1〉 and w̃k = wk − w1

kw
∗
1. In particular

At = V∗
[
at bT

t

bt A2:n,2:n

]
(V∗)T

where V∗ = [w∗
1, · · · ,w

∗
n] ∈ O(n). Since

∑p
k=2 ukw

1
k w̃k = 0, it follows

bt = (1− t)

p∑

k=2

ukw
1
k w̃k = 0 for all t ∈ [0, 1]

If we take

u1,t = λ1 − (1− t)2
p∑

k=2

uk(w
1
k)

2

it holds that

at = u1,t + (1− t)2
p∑

k=2

uk(w
1
k)

2 = λ1 for all t ∈ [0, 1]

Therefore, At = A constant. This concludes the proof of the lemma.

Remark 26 In the proof of Lemma 23, we assumed that (after rescaling) u ∈ {±1}p. In
general, it could be that uk = 0 for some k. In this case we can first map the corresponding
vectors wk to 0 and the map such uk to 1, without affecting the loss.

Appendix B. Proofs of Section 4

Proof [Proof of Theorem 13] We consider here the case m = 1, but the same proof can be
extended to the case m > 1. We start by properly choosing a r.v. (X,Y). Be X̄ ∈ R2(σ, n−1)
a (n − 1) dimensional r.v. and X̄n ∈ R2(σ, 1) a one dimensional r.v. We consider X̃ = ZX̄,
Xn = (1− Z)X̄n and X = (X̃, Xn), where Z ∼ Ber(1/2) and X̄, X̄n, Z are independent. By
hypothesis, p ≤ 2−1dim∗(σ, X̃). The proof is based on the fact that (for a proper choice of

X̃) this implies that V +
σ,p−1 6= V +

σ,p, where we defined

V +
σ,p = {Φ(·;θ) : θ ∈ [0,∞)p × Rp×n} ⊆ L2

X

(see the remark at the end of the proof). The r.v. Y is taken to be Y = g1(X)−g2(X), where
g2 = βψσ,v ∈ V +

σ,1, β > 0, v = en, and g1 =
∑p

i=1 αiψσ,vi ∈ V +
σ,p, α ∈ (0,∞)p, vi ∈ 〈{en}〉

⊥,
i ∈ [p], is such that

inf
f∈V +

σ,p−1

E|f(X)− g1(X)|2 = ǫ > 0
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We define

Vσ,(p−1,1) =
{
f = f1 − f2 : f1 ∈ V +

σ,p−1, f2 ∈ V +
σ,1

}

Notice that, for every path θ : t ∈ [0, 1] 7→ θt ∈ Θ such that Φ(·;θ0) ∈ V +
σ,p and Φ(·;θ1) ∈

Vσ,(p−1,1), there exists t0 ∈ (0, 1) such that Φ(·;θt0) ∈ V +
σ,p−1. Consider the lifted square loss

function L : Vσ,p → [0,∞) defined as

L(f) = E|f(X)− g(X)|2 for f ∈ Vσ,p

We want to show that

L(p−1,0)
.
= min

f∈V +
σ,p−1

L(f) > L(p,0)
.
= min

f∈V +
σ,p

L(f) > L(p−1,1)
.
= min

f∈Vσ,(p−1,1)

L(f)

It holds that

L(p−1,0) = min
f∈V +

σ,p−1

{
E|f(X)− g1(X)|2

}
+ 2 min

f∈V +
σ,p−1

{E[f(X)g2(X)]}

+ E|g2(X)|2 − Cσ(0)

≥ ǫ+ L(p,0) − Cσ(0)

where C = E[g1(X̃)] + E[g2(Xn)] ,and that

L(p,0) = min
f∈V +

σ,p

{
E|f(X)− g1(X)|2

}
+ 2 min

f∈V +
σ,p

{E[f(X)g2(X)]}

+ E|g2(X)|2 − Cσ(0)

≥ β2 E|ψσ,v(Xn)|
2 − Cσ(0)

Finally, it holds that

L(p−1,1) ≤ min
i∈[1,p]

α2
i E|ψσ,vi(X)|2

Given M > 0, up to multiply g1 by a positive constant, it holds that

ǫ ≥M + Cσ(0)

β2 ≥
M + Cσ(0) + mini∈[1,p] α

2
i E|ψσ,vi(X)|2

E|ψσ,v(Xn)|
2

To finish the proof, consider U = {θ = (u,W) ∈ Θ : u ∈ (0,∞)p} and θ∗ ∈ U such that

L(θ∗) = min
θ∈U

L(θ)

Then, (by continuity of L) there exists a neighborhood θ∗ ∈ Ω ⊂ U such that supθ∈Ω L(θ) ≤
L(θ∗) +M/2. The set Ω then verifies the statement of the theorem.
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Remark 27 In the proof of Theorem 13 we used the fact that, if p ≥ 1 verifies p ≤ 1
2 dim∗(σ, n),

then there exist X ∈ R2(σ, n) such that V +
σ,p−1 6= V +

σ,p (in the L2
X metric). Assume X is a

n-dimensional standard Gaussian variable. Consider first the case σ(z) = zk. If k = 2, then

V +
σ,p ≃ {M ∈ S2(Rn) : M is PSD}

In particular, this implies that V +
σ,p−1 is not dense in V +

σ,p if p ≤ n = dim∗(σ, n) (which

justifies the statement of Corollary 14). If k > 2, let p ≤ 1
2 dim∗(σ, n) and assume that

V +
σ,p−1 = V +

σ,p. This implies that every tensor T =
∑p

i=1 v
⊗k
i can be approximated up to any

accuracy by T =
∑p−1

i=1 ṽ⊗k
i for some ṽ1, . . . , ṽp−1 ∈ Rn. But this also implies that every

tensor T ∈ Sk(Rn) has border rank less or equal than 2
(
1
2 dim∗(σ, n)− 1

)
= rkS(k, n) − 2,

which contradicts the definition of rkS(k, n). For non-polynomial σ, we can get the same
result, by using the decomposition (18) and proceeding as above.

Appendix C. Proof of Theorem 16

Proof If we denote by dµ the probability distribution of X, the continuous function

ψ : (w,x) ∈ Sn × Rn 7→ ψw(x) = σ(〈w,x〉)

belongs to L2(Sn × Rn, dτ ⊗ dµ). We consider the kernel associated with the neural network
architecture

k(x,y) =

∫

W
ψw(x)ψw(y) dτ(w) (15)

The above defines a continuous symmetric, positive semi-definite kernel k, along with H, the
RKHS associated, and the integral operator Σ : L2(Rn, dµ) → H ⊆ L2(Rn, dµ) defined as

f 7→

(
Σf : x 7→

∫

Rn

f(y)k(x,y) dµ(y)

)

The operator Σ admits a spectral decomposition in L2(Rn, dµ): Σek = λkek for an orthonor-
mal basis {ek}k≥1 of L2(Rn, dµ) and non-increasing sequence of non-negative eigenvalues

{λk}k≥1. Moreover the RKHS H is dense in L2(Rn, dµ) (see Lemma 30), which is equivalent
to have λk > 0 for all k ≥ 1. The expectation in (15) provides a singular value decomposition
for Σ in terms of functions in L2(Sn, dτ). Indeed, given g ∈ L2(Sn, dτ), the linear operator
T : L2(Sn, dτ) → L2(Rn, dµ) defined as

g 7→

(
Tg : x 7→

∫

Sn
g(w)ψw(x) dτ(w)

)

satisfies Σ = TT ∗. It follows that there exists an orthonormal basis of L2(Sn, dτ), {fk}k≥1

such that Tfk = λ
1/2
k ek and therefore ψw =

∑∞
k=1 λ

1/2
k fk(w)ek. Finally, it can be shown

(Bach, 2017a) that in fact H = Im(T ), and thus H consists of functions f that can be written,
for some g ∈ L2(Sn, dτ) as

f(x) =

∫

Sn
g(w)ψw(x)dτ(w) = 〈g, ψ(·,x)〉L2(Sn,dτ) for x ∈ Rn
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For an account of these properties, we refer to Bach (Bach, 2017b). Thanks to the density of
H in L2(Rn, dµ), we can assume, without loss of generality, that

f∗(x) =
∫

Sn
g∗(w)ψw(x)dτ(w)

for some g∗ ∈ L2(Sn, dτ). Now, given an initial set of first layer weights w1, . . . ,wp ∈ Sn

sampled i.i.d. from dτ , and W = [w1, . . . ,wp]
T , we define the empirical kernel

kW(x,y) =
1

p

p∑

i=1

σ(〈x,wi〉)σ(〈y,wi〉)

which in turn defines an empirical RKHS HW. Keeping the first layer weights fixed and
optimizing the output layer weights thus gives us the ability to find a function f∗W ∈ HW

that best approximates f∗:

‖f∗W − f∗‖L2(Rn,dµ) = min
f∈HW

‖f − f∗‖L2(Rn,dµ)
.
= R(W)

Given an initial parameter parameter value θ̃ = (ũ,W̃) (here we incorporated b̃ in W̃) as in
the statement, consider the path

θt = (tq(W̃) + (1− t)ũ,W̃) where q(W̃) = argmin
u∈Rp

L(θ)|
θ=(u,W̃)

By convexity of L, the function t ∈ [0, 1] 7→ L(θt) is non-increasing and it holds that

L(θ1) ≤ R(X, Y ) +R(W̃)

Applying Proposition 1 from Bach (Bach, 2017b), it holds that

R(W) ≤ 4λ if p ≥ 5d(λ) log(16d(λ)/δ)

with probability greater or equal than 1− δ, where

d(λ) = max
w∈Sn

E
[
ϕw(X)((Σ + λI)−1ψw)(X)

]

= max
w∈Sn

∞∑

k=1

λk
λk + λ

fk(w)2 ≤ λ−1 max
w∈Sn

∞∑

k=1

λkfk(w)2 = λ−1 max
w∈Sn

‖ψw‖
2
L2(Rn,dµ)

This shows part 1 of the statement. To prove part 2, notice that f∗W = Φ(·;θ) with θ =
(u∗

W,W) for some u∗
W ∈ Rp. By taking uk = 1

pg
∗(wk) for k ∈ [p] and denoting Z(w) :=

g∗(w)ψw and by Z the r.v. Z = Z(v), for v ∼ dτ , with values in L2(Rn, dµ), it holds

R(W) ≤
∥∥∥1
p

p∑

k=1

Z(wk)− Eτ [Z]
∥∥∥
L2(Rn,dµ)

(16)

Note that C
.
= supw∈Sn‖Z(w)‖L2(Rn,dµ) ≤ ‖g∗‖L∞(Sn,dτ)maxw∈Sn‖ψw‖L2(Rn,dµ) < ∞ if

‖g∗‖L∞(Sn,dτ) <∞. Then, applying Lemma 29 to the bound (16), we get that

Pτ{R(W) ≤ ε} ≥ 1− exp

{
−
(
ε−

√
v(p)

)2
/(2v(p))

}

for every ε ≥
√
v(p), with v(p) = C2/p. The result follows by taking ε = v(p)1/2+pδ/2−1/2.
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Appendix D. Proofs of Section 2.2

Proof [Proof of Lemma 4] If σ is a polynomial of any degree d, then it holds that dim∗(σ, n) <
∞. Indeed, let σ(z) = a0 + a1z + · · · + adz

d, for some ak ∈ R. If I = {k ∈ [0, d] : ak 6= 0},
then

Vσ ⊆ RI [x]
.
= {x 7→

∑

k∈I

∑

|β|=k

αβx
β : αβ ∈ R}

It follows that

dim∗(σ, n) = dim(Vσ) ≤ dim(RI [x]) =
d∑

k=0

(
n+ k − 1

k

)
1{ak 6=0} = O(nd)

This proves one implication. We prove the other one by contradiction. Assume now that σ is
not a polynomial and that dim(Vσ) = q <∞. Thanks to Theorem 1 in Leshno et al. (Leshno
et al., 1993), for every continuous function g : Rn → R, any compact set K ⊂ Rn, and any
ε > 0 there exist h ∈ Vσ such that

sup
x∈K

|h(x)− g(x)| < ε (17)

Now, let g : Rn → R be a continuous function supported on a compact set C ⊂ Rn. We
call Cc(R

n) the set of the real-valued continuous functions from Rn with compact support.
Thanks to (17), we can find a sequence of compact sets {Km}m≥1 of Rn such that

C ⊆ K1 ⊆ K2 ⊆ · · · ⊆ Km ⊆ · · · ⊆ ∪∞
m=1Km = Rn

and a sequence of functions {hm}m≥1 ⊂ Vσ such that

‖g − hm✶Km‖L2
X

= ‖(g − hm)✶Km‖L2
X

< 2−m

In particular this implies that

‖hn✶Kn − hm✶Km‖L2
X

< 21−min{n,m} → 0

as n,m → ∞, i.e. {hm✶Km}m≥1 is a Cauchy sequence in L2
X and therefore it admits a limit

limn→∞ hm✶Km = g ∈ L2
X. Since dim(Vσ) = q < ∞, there exists w1, . . . ,wq ∈ Rn such that

every h ∈ Vσ can be written as
h(x) = 〈u,γ(x)〉

for some u ∈ Rq, where γ(x) = (σ(〈w1,x〉), . . . , σ(〈wq,x〉)). Let {um}m≥1 ⊂ Rq such
that hm(x) = 〈um,γ(x)〉. Thanks to the above calculations, we know that the sequence
{‖hm✶K‖L2

X

}m≥1 is bounded for any arbitrary compact set K ⊆ Rn. Since

‖hm✶K‖2L2
X

= uT
mMum

where M = E
[
γ(X)γ(X)T✶{X∈K}

]
∈ Rq×q, this implies that the sequence {um}m≥1 is

bounded (unless g = 0). Therefore (up to extracting a sub-sequence) we can assume that
it has a limit u ∈ Rq. If we call h ∈ Vσ the function defined as h(x) = 〈u,γ(x)〉, it is easy to
check (from the above calculations) that h = g in L2

X. This shows that Cc(R
n) ⊆ Vσ, which
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in turn implies that Vσ is dense in L2
X (since Cc(R

n) is dense in L2
X). But this is impossible,

since dim(Vσ) = q <∞ = dim(L2
X). Therefore, it must hold dim(Vσ) = ∞.

Proof [Proof of Lemma 6] Let θ = (u,W) ∈ [0,∞)p × Rp×n. For every x ∈ Rn it holds

Φ(x;θ) =

p∑

i=1

ui(〈wi,x〉)
k =

p∑

i=1

ui〈w
⊗k
i ,x⊗k〉F =

〈 p∑

i=1

uiw
⊗k
i ,x⊗k

〉
F

For any p ≥ 1 and (u,W) ∈ [0,∞)p×Rp×n,
∑p

i=1 uiw
⊗k
i ∈ Sk(Rn). By definition of rkS(k, n),

it follows that there exists q ≤ rkS(k, n) and θ̃ = (ũ,W̃) ∈ [0,∞)q × Rq×n such that

p∑

i=1

uiw
⊗k
i =

q∑

i=1

ũiw̃
⊗k
i ⇒ Φ(·;θ) = Φ(·; θ̃)

By definition of dim∗(σ, n), this implies that dim∗(σ, n) ≤ rkS(k, n). The equality follows by
choosing (u,W) ∈ [0,∞)p × Rp×p such that rkS(

∑p
i=1 uiw

⊗k
i ) = rkS(k, n).

Proof [Proof of Lemma 7] If σ is polynomial, then one implication follows by Lemma 4.
Now, assume that σ ∈ L2(R, e−x2/2 dx) is a continuous non-polynomial activation and let
X ∼ N(0, I) be a r.v. in R2(σ, n). Then, we can write σ(z) =

∑∞
k=0 σ̂khk(z), where hk is the

k-th Hermite polynomial. It follows that, for θ = (u,W),

E|Φ(X;θ)|2 =

∞∑

k=1

σ̂2k

∥∥∥∥∥

p∑

i=1

uiw
⊗k
i

∥∥∥∥∥

2

F

(18)

(see Lemma 1 from (Mondelli and Montanari, 2018)). Since σ is not polynomial and n > 1,
Vσ,p 6= Vσ,p+1, where

Vσ,p
.
=

{
x 7→

p∑

k=1

ukσ(〈wk,x〉) : (u,W) ∈ Rp × Rp×n

}

Indeed, if Vσ,p = Vσ,p+1, then Vσ,p = Vσ,q for every q > p. Let k be a positive integer such
that σ̂k 6= 0 and such that rkS(k, n) > p. Let G =

∑q
i=1 αiv

⊗k
i a symmetric tensor with

rkS(G) = q = rkS(k, n) and g =
∑q

i=1 αiψσ,vi . If g ∈ Vσ,p, then there exists θ = (u,W) ∈
Θ = Rp × Rp×n such that

0 = E|Φ(X;θ)− g(X)|2 =

∞∑

k=1

σ̂2k

∥∥∥∥
p∑

i=1

uiw
⊗k
i −

q∑

i=1

αiv
⊗k
i

∥∥∥∥
2

F

But this would imply that rkS(G) ≤ p, which is a contradiction. This concludes the proof.
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Appendix E. Proofs of Additional Lemmas

Lemma 2 Be θ 7→ L(θ) a continuous function. Then, property P.1 implies absence of spu-
rious valleys. In particular, this implies absence of strict spurious minima, and of (generally
non-strict) spurious minima if property P.1 holds with strictly decreasing paths t 7→ L(θt).
Conversely, presence of spurious valleys implies existence of spurious minima.

Proof Assume that property P.1 holds. Consider any value c > 0 such that ΩL(c) is non-
empty and let U be a connected component of ΩL(c). Given a point θ ∈ U there exists a path
from θ satisfying property P.1. This means that U contains a global minima, and therefore
it can not be a spurious valley. Similarly, assume that property P.1 holds with strictly de-
creasing paths and that the function L admits a strict local minima. This means that there
exists a point θ0 such that minθ L(θ) < L(θ0) < L(θ) for all θ in Bǫ(θ), for some ǫ > 0. But
this implies that for any path t ∈ [0, 1] 7→ θt if holds L(θt) > L(θ0) for some t > 0 sufficiently
small, a contradiction. To see the last point, assume that there exist spurious valleys and
consider U a connected component of ΩL(c) for some c > 0. Then θ∗ ∈ argminθ L(θ) is a
spurious minima.

Lemma 28 Consider the optimization problem

argmin
W∈Rm×n

ℓ(W) where ℓ(W) = E‖WX−Y‖2 (19)

for two square integrable r.v.’s X and Y with values in Rn and Rm respectively. Then one
solution to (19) is given by

W = ΣYXΣ
†
X (20)

Similarly, one solution to the optimization problem

argmin
U∈Rm×p

ℓ(U;W) where ℓ(U;W) = E‖UWX−Y‖2

for any W ∈ Rp×n is given by

U = q(W)
.
= ΣYXWT (WΣXWT )† (21)

Assuming ΣX invertible, the minimal value obtained by ℓ(U;W) is given by

ℓ(q(W);W) = tr(ΣY)− tr((WK)†(WK)M) (22)

where K = (ΣX)1/2 and M = K−1ΣXYΣYXK−1. If M =
∑n

i=1 λiviv
T
i is the SVD of M,

the quantity (22) is minimized over W for (WK)†(WK) =
∑p∧n

i=1 viv
T
i .

Proof The first part of the lemma can be shown by writing problem (19) as

argmin
W∈Rm×n

ℓ(W) where ℓ(W) = tr(WΣXWT )− 2 tr(ΣYXWT ) (23)

and by taking W as a stationary point of the above ℓ(W). Using this fact, one minima of
the function ℓ(U;W) is given by

U = ΣYXW(ΣWX)† = ΣYXWT (WΣXWT )†
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Now assume that ΣX is invertible; let K = (ΣX)1/2 and M = K−1ΣXYΣYXK−1. Then it
holds

ℓ(q(W);W) = tr(q(W)WΣXWTq(W)T )− 2 tr(ΣYXWTq(W)T ) + tr(ΣY)

= tr(ΣYXWT (WΣXWT )†WΣXWT (WΣXWT )†WΣXY)

− 2 tr(ΣYXWT (WΣXWT )†WΣXY) + tr(ΣY)

= − tr(ΣYXWT (WΣXWT )†WΣXY) + tr(ΣY)

= − tr(M(WK)T ((WK)(WK)T )†(WK)) + tr(ΣY)

= tr(ΣY)− tr((WK)†(WK)M)

Finally, we notice that the matrix (WK)†(WK) is the orthogonal projection on the space
spanned by the rows of WK, which we denote by PWK. In particular PWK has the form
PWK =

∑r
i=1wiw

T
i for some {w1, . . . ,wr} ⊂ Rn orthonormal vectors and r ≤ p∧ n. There-

fore, minimize ℓ(q(W);W) over W it is equivalent to maximize the quantity

r∑

i=1

wT
i Mwi

over the sets of w1, . . . ,wr orthonormal vectors of Rn, r ≤ p ∧ n. Clearly, this is for
w1 = v1, . . . ,wp∧n = vp∧n. This concludes the proof of the lemma.

Lemma 29 Let X1, . . . , Xn be independent zero-mean r.v.’s taking values in a separable
Hilbert space such that ‖Xi‖ ≤ ci with probability one and denote v =

∑n
i=1 c

2
i . Then, for all

t ≥ v, it holds

P

{∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥ > t

}
≤ e−(t−√

v)2/(2v)

Proof The proof can be found in (Boucheron et al., 2013), Example 6.3.

Lemma 30 Be H ⊂ L2
X the RKHS defined in the proof of Theorem 16. Then H is dense in

L2
X.

Proof First, note that the function x ∈ Rn 7→ k(x,x) is in L1(Rn, dµ). Indeed

∫

Rn

∫

Sn
ψw(x)

2 dτ(w) dµ(x) =

∫

Rn

(1 + ‖x‖2)

∫

Sn
ψw(x/‖(x, 1)‖)

2 dτ(w) dµ(x)

≤ (1 + E‖X‖2) max
w,y∈Sn

ψw(y)
2

This implies that H ⊆ L2(Rn, dµ). Now, we would like to show that Vσ is dense in H, where

Vσ =

{
k∑

i=1

uiψwi : u ∈ Rk,w1, . . . ,wk ∈ Sn, k ≥ 1

}
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It suffices to show that, for every w ∈ Sn−1, there exists a sequence {fn}n≥1 ⊂ H such that

fn → ψw in L2
X. Choose gk ∈ L2(Sn, dτ) such that supp(gk) ⊆ B1/k(w)

.
= {v ∈ Sn : ‖v−w‖ ≤

1/k},
∫
Sn
g(v) dτ(v) = 1 and gk ≥ 0, and define fk ∈ H as fk(x) =

∫
Sn
gk(v)ψv(x) dτ(x).

Then

‖fk − ψw‖
2
L2(Rn,dµ) =

∫

Rn

(∫

Sn
gk(v)(ψv(x)− ψw(x)) dτ(v)

)2

dµ(x)

≤ (1 + E‖X‖2) max
v∈B1/k(w)

y∈Sn
(ψv(y)− ψw(y))

2 → 0

as k → ∞. This shows that Vσ is dense in H. Thanks to Theorem 1 in (Hornik, 1991), it
holds that Vσ is dense in L2(Rn, dµ). This implies the statement of the lemma.
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