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Abstract—Information Extraction (IE) from imaged text is
affected by the output quality of the text-recognition process.
Misspelled or missing text may propagate errors or even preclude
IE. Low confidence in automated methods is the reason why some
IE projects rely exclusively on human work (crowdsourcing). That
is the case of biological collections (biocollections), where the
metadata (Darwin-core Terms) found in digitized labels are
transcribed by citizen scientists. In this paper, we present an
approach to reduce the number of crowdsourcing tasks required
to obtain the transcription of the text found in biocollections’
images. By using an ensemble of Optical Character Recognition
(OCR) engines -- OCRopus, Tesseract, and the Google Cloud
OCR -- our approach identifies the lines and characters that have
a high probability of being correct. This reduces the need for
crowdsourced transcription to be done for only low confidence
fragments of text. The number of lines to transcribe is also reduced
through hybrid human-machine crowdsourcing where the output
of the ensemble of OCRs is used as the first ""human' transcription
of the redundant crowdsourcing process. Our approach was tested
in six biocollections (2,966 images), reducing the number of
crowdsourcing tasks by 76% (58% due to lines accepted by the
ensemble of OCRs and about 18% due to accelerated convergence
when using hybrid crowdsourcing). The automatically extracted
text presented a character error rate of 0.001 (0.1%).

Keywords—OCR, crowdsourcing, biocollections, ensemble,
hybrid, information extraction, text extraction, human-machine

1. INTRODUCTION

Humans have an extraordinary capacity to extract
information from images. For example, from Figure 1, we could
say: "There is a cockroach on a pinned foam. It presumably
belongs to the Australian Museum, which assigned code K
482255 to it. The cockroach was captured at the road to Mt.
Baldy, in a place with latitude 17.16’S and longitude 145.25E.
The location is at 1,097 meters above the sea level. The
cockroach is about 14 mm long and was captured by Rentz and
Richardson." Besides all this semantic information about what
we identified as the main object in the image and the automatic
interpretation learned from the text in the labels, we can add
characteristics about the labels: "There are four small labels.
From top to bottom, the upper two labels were made in 2011,
and they look older than the third one. The second label contains
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handwritten text. The last label provides the scale and colormap
of the photograph." The amount of information we can add will
depend on our previous knowledge. For example, biologists
could probably say more about the cockroach.
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Figure 1. Specimen K 482255 from the Cockroaches Expedition - 2, Australian
Museum Entomology collection.

Humans can identify objects in an image, extract knowledge
from them, describe objects’ characteristics, and even make
inferences about what they see, based on previous knowledge.

Artificial intelligence remains unable to analyze an image
the way humans do, but it has allowed the creation of algorithms
with very specific capabilities that mimic those of humans. With
the advent of machine learning, there has been enormous
progress on object classification (e.g., type of insect in Figure 1)
and optical character recognition (machine-encoding the
printed, handwritten, or typed text).

Text extraction -- the identification of each of the characters
in an image -- is the main topic of the research reported in this
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paper. It is an fundamental problem because understanding the
symbols in the image is a pre-requisite for the extraction of
information. If some characters are omitted or misspelled, we
may be making false interpretations and introducing or
propagating errors about the image and its content.

Standalone optical character recognition (OCR) engines are
based on the segmentation of images at the character level and
the use of per-symbol individual neural network classifiers. In
the last five years, OCR engines have been transformed into text
recognition cloud services based on long short-term memory
(LSTM) models, with higher character recognition rate and a
simplified line-level training [1].

Despite the recent progress in the quality and availability of
the OCR technology, general text extraction is still an open
problem. Diverse studies [2][3] claim character error rates
(CERs) lower than 0.01 (1%) in certain types of documents and
fonts. Nevertheless, this cannot be interpreted as the
convergence to a final general solution for the text extraction
problem.

Two of the most challenging problems for current OCR
engines are the segmentation of the image in lines of text and
handwritten text recognition. OCRopus [4] and Tesseract [5],
arguably the two most popular open source OCR engines, do not
provide models to recognize handwritten text. Even the ABBYY
FineReader [6], a commercial OCR engine, stops working or
generates many misspelling errors when handwritten text is
found. At present, to the best of our knowledge, the only OCR
engine capable of partially recognizing handwritten text is the
Google Cloud OCR (GC-OCR)[7].

TABLE L. OCR ENGINES’ OUTPUT COMPARISON
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Table I shows the output of OCRopus, Tesseract, and the
GC-OCR for the image in Figure 1, using their default English
recognition models. The characters that match the real text are
highlighted in bold. Omitted characters are not represented in
the table. We observe many errors in the OCRopus output and
almost no output from Tesseract. GC-OCR shows a “close to

117

perfect” output, when compared to the other two engines.
OCRopus and Tesseract are highly affected by segmentation
(see Section IV.B) and their models are not trained for
handwritten text recognition. GC-OCR dynamically uses more
than one recognition model.

In the 203 characters of the GC-OCR output, we identify 10
errors, among insertions, omissions, and modifications. This
means a CER close to 0.05, which may seem low, but the real
problem for IE projects that rely on OCR is confidence. There
may be few errors, but what if the errors occur in dates or proper
nouns? How will these errors affect posterior processes? Is there
any missing word in the extracted text?

This lack of confidence in the text extracted by OCR engines
makes IE projects rely on humans to type the information in
images. That is the case of projects like Notes from Nature [§]
and DigiVol [9], which utilize crowdsourcing (volunteers) for
the transcription of Darwin-core (DC) Terms from photographs
of specimens in biocollections.

Despite using humans, confidence is key for data that will be
used in other scientific studies. Biocollection transcription
projects use redundancy to improve the accuracy and increase
the confidence in the data. One of the most common approaches
is to ask several volunteers to transcribe each image and then use
a consensus algorithm to generate the final value (Notes from
Nature’s approach). Another possibility is to first ask a volunteer
to transcribe the DC terms of an image, and then ask a more
experienced volunteer to review the transcription (DigiVol’s
approach).

Progress towards automating IE from biocollections
includes the following:

e Sophisticated interfaces to facilitate the load of the
information: SALIX [10] loads the results of applying
OCR and specific Natural Language Processing (NLP)
algorithms into a web form so that users can correct and
complete the transcription; ScioTR [11] allows users to
select an area of the image and assign the OCR result to
a term, optionally editing the value. In these interfaces,
users end up searching through the image and reviewing
almost every value. Therefore, the IE process is
accelerated only when the OCR’s output and the NLP
algorithms compensate the typing effort of the user.

The Royal Botanic Garden Edinburgh has accelerated the
IE process by using OCR and NLP to automatically
extract two terms: Collector and Country [12]. This
allows a first classification of the specimen and then for
volunteers to complete the transcription of the remaining
terms.

Despite these automation attempts, most or all the metadata
in biocollections are still extracted by humans. It is difficult to
say if a fully automated IE method, with no human review, will
become available but an intermediate human-machine solution
is certainly possible.

In this paper, we propose a method to reduce the amount of
text transcribed by humans, through the automated estimation of
confidence in the text extracted by an ensemble of three OCR
engines: OCRopus, Tesseract, and GC-OCR. This estimated
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confidence allows the acceptance of the OCR’s output of some
segments of text and the decision to request humans to transcribe
the remaining text segments.

Furthermore, the crowdsourcing sessions for the
transcription of the remaining segments are reduced and
accelerated by replacing one of the crowdsourced transcriptions
with the output of the ensemble of OCRs.

This paper is about text extraction, which is an intermediate
step towards the partial or complete automation of the IE from
biocollections. Additional work needs to be done to obtain the
terms. We believe that current NLP methods are able to perform
the DC Terms extraction if the extracted text is complete and
accurate. Moreover, the complexity and training required by the
volunteers to transcribe text is smaller than the required to
identify and extract DC Terms (domain specific information).

Our ensemble-of-OCRs approach is able to identify as
correct 57.55% of the text, with a per-character accuracy of
99.9%. These characters are accepted as the final transcription
and are not required to be typed by humans, considering the
confidence obtained by using three OCR engines.

Two common crowdsourcing approaches, majority voting
and transcriber/reviewer, were modified to use the output of the
ensemble of OCRs as the first “human” transcription, for the
remaining 42.45% of the text. Using this human-machine
approach, the required crowdsourcing tasks were reduced by
37% when using majority voting with three workers and by 50%
in the transcriber/reviewer crowdsourcing approach.

In total, the number of crowdsourcing tasks to transcribe the
text in the biocollections’ images was reduced by 76%.

The code and results of this research are available online at
https://github.com/acislab/HuMaIN_Text Extraction.

II. RELATED WORK

Optical Character Recognition (OCR) technology has
recently improved in several ways:

- The font-based neural networks models have been
replaced by LSTM networks [2][3][13].

- The OCR desktop applications have been converted to
cloud services available everywhere [14][15].

- Handwritten text recognition, previously only available
for small corpora, is now included as a model [7][16].

Despite these improvements, there are still challenges in
page segmentation, handwritten text recognition, binarization,
layout analysis, and post-OCR correction [17]. Most of these
challenges show up on historical documents or scene text, where
background, graphic elements, and the integrity of the characters
(among many other reasons) affect the accuracy of the OCR’s
output. This unpredictability of the OCR accuracy and its impact
on upcoming research are big problems [18].

Several studies have tried to predict the quality or accuracy
of the OCR by using a subset of the images [19], latent Dirichlet
allocation [20], or Spatial Frequency Response [21], among
many other techniques; but these methods provide quality
estimations of the entire extracted text. If the confidence in a
transcribed document is relatively low, should we discard all the
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extracted text? Alternatively, if the confidence is high, should
we have the same high confidence in every extracted word? It is
more useful to predict confidence at a word level.

Some studies improve the character confidence estimation
using n-grams [22][23], assigning the probability of a character
based on the k previous characters. Our method also uses n-
grams, but at a word-level and only to augment the probability,
not to correct words. Relying only on n-grams may be risky due
to rare n-grams, and the big impact a single character can have
on coded or numeric fields such as “year”.

To improve robustness, our approach uses an ensemble of
OCRs, word-level n-grams, and descriptive statistics at
character-level to identify high confidence segments of text.

Previous studies have also used ensembles of OCRs, but they
have not used the ensemble with the objective of increasing
confidence in the extracted text and identifying correct segments
of text. In [24], two OCR engines are used to improve quality,
assuming the existence of dictionaries and choosing to evaluate
only aligned words. Other researchers generate different
versions of the one single image and run the same OCR engine
on them to improve the quality of the output [25][26]. Our
research uses additional statistical tools to dynamically create
the dictionaries. To align the text, we propose a hybrid
crowdsourcing mechanism for those segments with low
confidence.

Our approach goes beyond improving the quality estimation
of the OCR’s output. We accept that some problematic cases are
going to exist, and that human help is going to be required to
extract the final text. Our hybrid human-machine method
reduces the amount of data to be transcribed by the crowd.

We use what is called a SELFIE model [27] which is
basically a cost-incremental model for the extraction of text;
using crowdsourcing as the last self-aware process of the data
extraction workflow.

Our hybrid crowdsourcing method was inspired by [28] to
minimize the number of crowdsourcing tasks. In the referenced
research, human responses and machine classification
algorithms are used to identify birds in images. We extended this
idea of using the machine results as human results to the area of
text extraction.

I1I. QUALITY-AWARE TEXT EXTRACTION

The objective of this research is to reduce the amount of
human work needed to extract text from biocollections’ images.
We designed a quality-aware approach to decide when to trust
and accept automatically extracted characters, words, and lines.

The approach uses the per-character accuracy probability
provided by OCR engines and, more importantly, majority
voting to increase confidence in the extracted values. The per-
character accuracy probabilities of a single OCR engine can be
used for output quality estimation, but the confidence in that
estimation needs to be increased by other mechanisms, such as
redundancy.

In order to trust in the values extracted by OCR engines, we
emulate the consensus mechanism applied in crowdsourcing.
Three different OCR engines, with different recognition models,
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are asked to extract the text of the same segments of image
(lines). For each line:

- Ifthe outputs of the three OCR engines match, we assume
there is a high probability that the value is accurate and
the text is accepted. If only two of the outputs match, but
the average accuracy probability of both OCR engines for
the line is high, we say consensus has been reached and
the value is accepted as the final transcription of the line.
This line-level agreement corresponds to the first quality-
aware process in Figure 2. The intuition behind trusting
majority-voted outputs is supported by the probability
analysis of this approach, see Section III.A for details.

Human-Extraction

Crowdsource
Transcription

Lines?

OCRopus
Tesseract
GC-OCR

" n-grams
zur'll_d :;‘:ntz —» z-score (>
g Q. Eval.

Majority
Voting

Machine-Extraction

Figure 2. Quality-aware Model for Text Extraction.

- Those lines for which consensus is not reached in the first
step are analyzed at a smaller granularity level, trying to
build confidence in the characters and words in them.
Two types of support data structures are derived:

o N-grams: 1-gram (unigram) and 2-gram (bigram)
models are built from the content in matched lines.
N-grams with three or less repetitions are discarded
to reduce false positives. Words with less than two
characters are not considered for the n-grams.

Descriptive statistics: For every possible character,
the mean and standard deviation of the OCR
engine’s accuracy probabilities are computed, using
only the accepted lines. A different set of per-
character descriptive statistics is computed for each
OCR engine.

A new consensual transcription of every line is built using
the outputs of the three OCR engines. The per-character
confidence (accuracy probability) is augmented using the
n-grams and descriptive character statistics. See the
details of this algorithm in Section IIL.F.

The consensual transcription is accepted as the final
transcription for the line if all its augmented per-character
confidence values are equal to 1. This transcription
generation and acceptance procedure corresponds to the
second quality-aware process in Figure 2.

- The lines for which the transcriptions are not accepted are
sent to a crowdsourced processing task (third step in
Figure 3). The output of the ensemble of OCRs (the
consensual transcriptions) are used as a candidate output
in the crowdsourcing tasks to accelerate convergence to a
final transcription for the line. Two commonly used
crowdsourcing approaches were accelerated using this
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human-machine collaboration approach. The methods
are explained in Section I11.B.

The data sets, images and their full text transcription
(ground-truth data) utilized in this paper were provided by
iDigBio and the Australian Museum. See Section III.C for a
detailed description of the six biocollections utilized in the
experiments.

These images do not have any specific layout and can
contain text of different types (printed, typewritten, handwritten,
or stamped), font sizes, colors, backgrounds, and languages
(mainly Latin scripts). The text can also be skewed, overlapped
with other objects, or underlined. Due to the diversity of the text
in these images, the problem of text extraction from
biocollections has some similarity to the “Robust Reading
Challenge on Multi-lingual scene text detection and
recognition” of the ICDAR conference [29]. The text in these
images seldom contains paragraphs or phrases that follow
general grammar rules, but instead, it is typically an unordered
set of proper nouns, dates, alphanumerical codes, coordinates,
and titles. In this scenario, the use of general dictionaries for
error correction may not be an effective alternative.

Three OCR engines are selected for the ensemble. The GC-
OCR engine is selected because, to the best of our knowledge, it
is the only OCR engine that provides support for general
handwritten text recognition. It automatically selects the best
recognition model to use in every line of text [30], which is
convenient in our case considering the characteristics of the
images mentioned before. The GC-OCR is available through the
Google Cloud Vision API. It is not free. OCRopus and Tesseract
are selected because their recognition models can be extended
through training, they are open source, actively improved, and
are two of the most commonly used engines.

The machine-only quality baseline, using the out-of-the-box
recognition models, was collected for the three OCR engines:
OCRopus, Tesseract, and GC-OCR on the images of the data
set. For output’s quality estimation, the Damerau-Levenshtein
similarity is computed (defined in Section II1.D) between the
OCR engines’ result and the ground-truth data. The baseline
shows the independent out-of-the-box accuracy of each of the
three OCR engines on the data set, see Section IV.A.

Our approach compares the outputs of the OCR engines to
generate a new output with augmented confidence. To make this
comparison possible, the three engines must work on the same
image segments. For this purpose, images were segmented into
lines.

Line segmentation is still an open problem [31].
Segmentation errors highly affect the quality of the extraction
process and may compromise ideas like the ensemble of OCRs.
After testing several methods, including the line segmentation
procedures of OCRopus and Tesseract, we decided to adapt the
character-level Google Cloud Vision API’s output to generate
lines’ coordinates. See further line segmentation details in
Section IIL.E.

The importance of the line segmentation process is such that
after “replacing” the OCRopus’ and Tesseract’s segmentation
procedures, both OCR engines generated higher quality results.
See section IV.B.
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The OCRopus, Tesseract, and GC-OCR outputs for each of
the lines are submitted to the ensemble-of-OCRs method,
detailed in Section III.F. The method uses the per-character
confidence of the OCR engines, besides generated n-grams and
per-character statistics for the collection, to augment the
probabilities of the characters and deciding what lines do not
need to be crowdsourced due to a high confidence that all the
characters in them are correct (these lines are called accepted).
The rest of the lines, with uncertainty in one or more of their
characters, are crowdsourced. The results obtained after running
the ensemble-of-OCRs method on the lines of the data set are
shown in Section IV.C.

Algorithm 1 Human-Machine Text Extraction
Input: images_dir
Output: labels_dir
for image in images_dir do
lines « segment(image)
for line in lines do
line_text « ensemble_ocr(line)
if accept(line_text) then
accepted.add(line_text)
else
to_crowd.add(line_text)
end if
end for
: end for
: for line_text in to_crowd do
crowd_out « crowdsource(get_img(line_text))
: end for
: labels_dir « get_labels(accepted, crowd_out)

Algorithm 1 offers a simplified high-level view of the
dynamic of the entire text extraction process. The ensemble_ocr
function represents the first two quality-aware text extraction
processes in Figure 2.

A. Probability of Error in Ensembles of OCRs.

OCR engines provide an estimation of the confidence or
correctness probability for each of the recognized characters.
Because of the use of dictionaries for misspelling corrections
and syntactic rules, the selected character may not be the
character with highest estimated probability. Nevertheless, these
engines do not provide an exact explanation of the meaning of
these numbers.

For practical purposes, we will assume that the confidence
values provided by the OCR engines are the conditional
probability of recognizing the character "x" when the value is

"x": P(x|X = x), for a specific recognition model.

Given this assumption, the probability of error when an OCR

engine has recognized the value as "x" is:
P(error) = P(x|X =x) =1—-P(x|X = x).

For example, if the OCR engine confidence for a recognized
character is P(x|X = x) = 0.75, the probability of error will be
P(error) =1—0.75 = 0.25.

In an ensemble of three OCR engines, with three
independent neural network models, if the three engines agree
on the same value, an error of the ensemble is only possible if
the three engines are wrong:

P, (error) = Py(x|X = X) X P,(x|X = X) X P3(x|X = X)
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If the three OCR engines report a confidence greater than
0.75, the probability of error for the ensemble will be:

P,,(error) < (1 —0.75)3
P,,(error) < 0.015625

Therefore, with a relatively low confidence of 0.75 in the
extracted character, an ensemble of three OCR engines shows a
probability of error smaller than 2%, when the three engines
agree in the extracted character. This result shows the intuition
behind using redundancy to increase confidence.

In the case of using an ensemble of only two OCR engines,
for the same confidence of 0.75, the probability of error of the
ensemble is

P,,(error) = 0.0625

which is higher than the probability of error for an ensemble of
three OCRs, but certainly much lower than 0.25, the initial
probability of error for a single OCR engine.

B. Hybrid Human-Machine Crowdsourcing Approaches

In biocollections, and probably in other areas, two common
crowdsourcing approaches to agree in a result are:

1) Consensus: several crowdsourcers transcribe the same
image and a posterior process, e.g. majority voting, evaluates
the values and decides the final result. An odd number of users
is usually selected to do the transcription.

2) Hybrid Transcriber/Reviewer: one user makes the initial
transcription and an advanced user or expert reviews and
validates the transcription. The final transcription is the output
of the review.

Both methods generate high confidence because they
involve redundancy: several transcriptions of the same image or
several people dedicating time to the same image. This
redundancy also implies waste of time: transcribing several
times the same value or reviewing values that are correct.

Extending the idea applied by Branson et al. [28] for image
classification, we propose to include the machine as a member
of the crowd and using its output in the generation of the final
transcription of the images through crowdsourcing. The two
commonly used human-oriented crowdsourcing approaches
were adapted as follow:

1) Dynamic Human-Machine Consensus: The ensemble-of-
OCRs output is considered as the first transcription. One user
transcribes the line, if the result is equal to the ensemble’s
output, the transcription of the line is accepted and no more
crowdsourcing is performed for that line. If the ensemble’s
output and the user’s transcription are different, a second user is
asked to transcribe the text in the line. The second user’s output
is compared with both the ensemble’s output and the first user’s
output. If a match is found, the transcription is accepted. If no
match is found, we ask a third and final user to transcribe the
text in the line. If, with the output of the third user, there is no
match either, the transcription with the highest average DL
similarity to the other three values is selected. The results of this
process are found in Section IV.D.

Authorized licensed use limited to: University of Florida. Downloaded on June 08,2020 at 19:20:49 UTC from IEEE Xplore. Restrictions apply.



2) Hybrid Transcriber/Reviewer: The output of the ensemble
of OCRs is considered as the transcription of the non-expert
user. A user is asked to review (correct and complete) the
transcription. The result of the review process is accepted as the
final text of the line. See Section IV.E for the results of applying
this crowdsourcing method.

C. Data Set

The images from six biocollections are the data set for the
text extraction experiments mentioned in this paper. Three
biocollections were prepared by the Augmenting-OCR (A-
OCR) Working Group of iDigBio [32], including the entire
transcription of text found in the images, made by experts. The
other three biocollections belong to DigiVol [9] (The Australian
Museum). They include full transcription of the text found in the
images, but they were completed by volunteers, therefore
containing some omissions and errors. Some characteristics of
these biocollections are the following:

A-OCR Insects (Entomology): 100 images, 33 MB on
disk. 1,132 lines of text.

A-OCR Herbs: 100 images, 124 MB on disk. 3,192 lines
of text.

A-OCR Lichens: 200 images, 31.3 MB on disk. 2,618
lines of text.

DigiVol Roaches (Cockroaches Expedition-2): 1,117
images, 656 MB on disk. 10,002 lines of text.

DigiVol Flies (Horse Flies Expedition-3): 1,054 images,
536,6 MB on disk. 7,821 lines of text.

DigiVol Bees (Carpenter Bees expedition): 395 images,
443 MB on disk. 3,053 lines of text.

D. Damerau-Levenshtein Similarity

The Damerau-Levenshtein distance between two strings is
the minimum number of insertions, deletions, substitutions, and
transpositions (of adjacent characters) required to convert one
string into the other [33].

In order to measure syntactic likeness, we define the
Damerau-Levenshtein (DL) similarity between two strings, x
and y, as the complement to the normalized DL distance

DL distance(x,y)

simp (x,y) =1—
pL(x, ) max (|x|, [y])

where |x| and |y| are the number of characters (size) of strings
x and y, respectively.

E. Line Segmentation Approach

The Google Cloud Vision API’s output does not provide
information about lines of text. It generates coordinates,
confidence estimation and values at a page, block, word, and
character level, but not at a line level. Internally it does keep
track of break lines. Using the coordinates of the individual
characters and the registered break lines, we created a program
that reconstructed the coordinates of the lines. This method
proved to be more accurate than the segmentation performed
using the OCRopus script or the Tesseract’s hOCR coordinates.
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F. Ensemble-of-OCRs Algorithm

The ensemble of OCRs is an extensive algorithm. It receives
a set of lines (images) and creates, as output, two directories: a
directory with the transcription of the lines with high confidence
(accepted lines), and another directory with consensual
transcription of the remaining lines (rejected lines).

Algorithm 2 summarizes the steps of this process. The lines
are processed in batch, but to facilitate the understanding of the
algorithm, it is presented as a line-by-line process.

Algorithm 2 Ensemble of OCRs

Input: lines_dir
Output: dir_accepted, dir_to_crowd

1: for line in lines_dir do:

2: ocropus, tesseract, & gc-ocr outputs are collected
3: if (two or three outputs match) then:

4: accept the common output

5: Using the output of the lines that matched:

6: build n-grams

7: build OCRopus’ character statistics

8: build Tesseract’s character statistics

9: build GC-OCR’s character statistics

10: for line in non_accepted_lines:

11: augment to 1.0 the prob. of words found in n-grams
12: for line in non_accepted_lines:

13: align the three OCR outputs for the line

14: for char in line:

15: if (statistical consensus reached for char) then:
16: augment to 1.0 the probability of the char
17: if all the line’s chars have probability 1.0 then:
18: accept the line

OCRopus, Tesseract, and GC-OCR are firstly run on all the
lines to generate the confidence probability by character. The
outputs of the three OCR engines are compared to each other
and the outputs that match are accepted as the final transcription
of the correspondent line.

Using the transcription of the lines that matched, the n-grams
and the per-character statistics of every OCR engine are built.
The remaining lines are scanned, if a word belongs to a n-gram,
the probabilities of its characters are made 1.0.

Then, the outputs of the OCR engines for each line are
aligned and a per-character evaluation is performed to construct
a new line transcription. If for a given position of the alignment
the three engines extracted the same character, then this
character is accepted with a probability of 1.0. If only two OCR
engines agree in the value, their z-score for the character
accuracy probability is computed; if both z-score are greater
than 0.5, the character is accepted and its probability is also
made 1.0.

If consensus is not reached for a certain position of the
alignment, the character extracted by the OCR engine with the
highest general accuracy is selected; in our experiments the GC-
OCR is the highest-accuracy OCR engine, see Section IV.B.
After evaluating all the lines at a character level, the lines with
an average character accuracy of 1.0 are accepted; i.e., lines are
accepted if all their characters belong to words in n-grams or
consensus at character level was reached.

Authorized licensed use limited to: University of Florida. Downloaded on June 08,2020 at 19:20:49 UTC from IEEE Xplore. Restrictions apply.



IV. RESULTS

This section shows the numerical results obtained for the
Quality-aware Text Extraction approach and the steps presented
in Section III.

A. Baseline — Out-of-the-box OCR Engines’ Accuracy

OCRopus, Tesseract, and GC-OCR were independently run
on the images of the data set. OCRopus and Tesseract were run
using their respective out-of-the-box English recognition
models. The extracted text was compared to the human
transcription  (ground-truth data) using the Damerau-
Levenshtein similarity metric. Figure 3 shows the obtained
similarity, per OCR engine and per biocollection.

ao_insects _
zo-fherbs ‘
zo-lichens _
duroaches ‘
dv_flies _
dv_bees _
ORsAve. L
0.0 01 0.2 03 04 05 06 07 03
ao_insects  ac_herbs ao_lichens dv_roaches  dv_flies dv_bees OCR'sAvg.
W OCRopus 0.316 0.307 0.643 0.353 0.362 0.328 0.385
W Tesseract 0.318 0.534 0.728 0523 0.318 0.294 0.452
mGC-OCR 0.787 0.676 0.799 0.760 0.691 0.699 0.735
W OCRopus W Tesseract W GC-OCR

Figure 3. Damerau-Levenshtein similarity of the OCRopus, Tesseract, and GC-
OCR outputs to the ground-truth data, per biocollection. Range: 0.0 to 1.0. A
similarity of 1.0 corresponds to the case of two identical strings.

The quality of the output generated by the GC_OCR engine
is higher than the output quality of OCRopus and Tesseract in
every biocollection. The items in the ao_lichens biocollection
are images of text, i.e. the images do not contain the specimen,
rulers, or other objects; this was the biocollection where the
three OCR engines reached their highest quality.

GC-OCR, which obtained the highest average quality, did
not get an average similarity greater than 0.8 in any
biocollection. Its average global similarity is 0.735, which still
makes it difficult to implement an IE process that depends on
this text.

B. OCR Engines’ Accuracy After Line Segmentation

In the results shown in Figure 3, each OCR engine uses its
own binarization and segmentation algorithm, i.e. each engine
segments each image in a different way. We need a common or
standard segmentation to be able to compare the outputs of the
OCR engines. This common segmentation method was
explained in Section III.LE. OCRopus’ and Tesseract’s
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segmentation functions are not used in the ensemble-of-OCRs
approach.

Figure 4 shows the DL similarity to the ground-truth data of
OCRopus, Tesseract, and GC-OCR using the line segmentation
procedure explained in Section III.E. As expected, the GC-OCR
output quality is basically the same as in Figure 3, with small
differences probably generated by the real line segmentation
internally utilized by the GC-OCR. On the other hand, OCRopus
and Tesseract improved their average output quality in 46% and
37% compared to Figure 3, where they used their own
segmentation algorithm. This result shows the importance of the
segmentation process for the OCR’s output quality.

The per-engine transcription generated for each line are the
input for the ensemble-of-OCRs process described in IV.C.

ao_insects
ao_herbs
ao_lichens

dv_roaches

dv_flies

dv_bees
OCR's Avg.

0.0 01 0.2 0.3 0.4 0.5 0.6 0.7 0.8
ao_insects  ac_herbs ac_lichens dv_roaches dv_flies dv_bees  OCR'sAvg.
W OCRopus  0.582 0.510 0.675 0.542 0.516 0.552 0.563
W Tesseract  0.660 0.582 0727 0.645 0.541 0.549 0.617
m GC-0OCR 0.786 0.676 0.799 0.760 0.689 0.699 0.735
B OCRopus MWTesseract W GC-OCR

Figure 4. Damerau-Levenshtein similarity of the OCRopus, Tesseract, and GC-
OCR outputs to the ground-truth data, per biocollection. Range: 0.0 to 1.0. A
similarity of 1.0 corresponds to the case of two identical strings.

We estimated the character error rate (CER) of the OCR
engines’ recognition models. For this purpose, a subset of 60
images was analyzed with 10 images randomly selected from
each biocollection. Their lines were transcribed to generate their
ground-truth data and making possible a per-character
evaluation. The characteristics of this subset are detailed in
Table II.

TABLE II. COMPOSITION OF THE SUBSET OF 60 IMAGES
Collection # of # of Printed | Handwritten No
Images Lines Text Text (HRT) Text

ao_insects 10 112 104 8 0
ao_herbs 10 320 276 38 6
ao_lichens 10 128 125 3 0
dv_roaches 10 89 83 6 0
dv_flies 10 72 50 19 3
dv_bees 10 80 61 17 2

Total 60 801 699 91 11
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Figure 5 shows the CER of OCRopus, Tesseract, and GC-
OCR when they are run on the lines of the 60 images subset.
OCRopus and Tesseract recognize less than 30% and 40% of the
handwritten text characters, respectively. This result is
understandable because their models were not trained for this
type of text. However, their CER for printed text was also high,
considering the ultimate goal of extracting DC terms and using
them in posterior scientific studies.

The GC-OCR’s CER is less than 0.02, on average, and less
than 0.01 for printed text, which includes typewritten, printed
and stamped text. This is the error rate in the cropped lines. The
last column of Table II shows the number of cropped lines that
do not really contain any text, i.e. ssgmentation errors generated
by the erroneous identification of text. Moreover, part of the text
was not included in the cropped lines. Therefore, we can
conclude that the GC-OCR’s CER is at least 0.02.

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
_ | —
Printed text Handwriten text Averzge
OCRopus 0.1814 0.7077 0.2367
Tesseract 0.1534 0.6076 0.1875
m GC-0CR 0.0096 0.0950 0.0195
COCRopus Tesseract WGC-OCR

Figure 5. Character Error Rate (CER) of the OCRopus, Tesseract, and GC-OCR
engines for the subset of 60 images described in Table II.

The problem of hypothetically using only the GC-OCR to
extract the metadata from the biocollections images is that we
do not know the handwritten composition of the images, we
cannot predict when segmentation is not accurate, and we do not
know where the errors are. Moreover, if we run NLP processes
on the resulting text, we may be propagating errors and
introducing inaccuracy in the extracted information and the
applications that will posteriorly use it. All this generates
uncertainty in the extracted text.

To increase confidence in the extracted data, we use several
OCR engines (an ensemble) to detect those segments of text
where two or more OCR engines agree in their content. This
increases trust in the automatically extracted data and reduces
the amount of work assigned to humans.

C. Ensemble of OCRs

After segmenting the images in lines, the lines are processed
by the ensemble-of-OCRs algorithm explained in Section IILF.
The result of this algorithm is a set of accepted transcriptions
(lines for which we are confident that their automated
transcription is correct) and a set of images and their
transcriptions which will be sent to be crowdsourced because
their confidence is not high enough to be accepted. The
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performance of the ensemble of OCRs for each of the
biocollections of our data set is shown in Table III.

TABLE III. PERCENTAGE OF ACCEPTED LINES PER BIOCOLLECTION
Images Lines Accept | Crowd % Accepted
ao_insects 100 1132 711 421 62.81%
ao_herbs 100 3192 1657 1535 51.91%
ao_lichens 200 2618 1639 979 62.61%
dv_roaches 1117 10002 5831 4171 58.30%
dv_flies 1054 7821 4372 3449 55.90%
dv_bees 395 3053 1800 1253 58.96%

In total, 57.55% (16,010) of the 27,818 lines were accepted
using the ensemble-of-OCRs algorithm. The algorithm uses
majority voting, n-grams, and descriptive statistics to decide
when a transcription must be accepted. From each biocollection,
100 accepted lines were randomly selected, making a total of
600 lines, to be reviewed by crowdsourcing participants.

Of the 10,081 characters in the 600 lines, the users made
changes, insertions, or deletions in only 10 characters. This
means that the accepted lines have a CER of 0.001 and an
accuracy of 99.9%. This CER is better than the average CER of
0.0195 obtained by GC-OCR for a subset of lines, see Figure 5.

D. Crowdsourcing - Dynamic Human-Machine Consensus

For experimental purposes, 100 lines per collection, 600 in
total, were randomly selected from the 11,808 lines that were
not accepted in the ensemble-of-OCRs process. Users were
asked to transcribe the content of the 600 lines. They did not
know the content of the transcription generated using the
ensemble of OCRs. A single user per line completed the
transcription.

These crowdsourced transcriptions were compared to the
ensemble-of-OCRs output. There was a match in 230 (38.3%)
of the 600 lines. Their content was accepted. For the remaining
370 lines, a second crowdsourcing round was requested to the
volunteers of DigiVol.

After processing the transcribed data, there was a match in
34 lines (5.67%) between the ensemble of OCRs and the
transcriptions of the second round. There was a match in 176
lines (29.3%) between the transcriptions of the first and second
crowdsourcing rounds.

In total, after the two crowdsourcing rounds, the
transcriptions of 160 lines (26.67%) did not reach consensus
with the ensemble-of-OCRs output or between them. A last third
round of crowdsourced transcription was done for these
remaining 160 images.

After comparing the result of the third crowdsourcing round
to the outputs of the ensemble of OCRs, the first, and the second
rounds of crowdsourced transcriptions, a match was found in 9,
36, and 38 lines, respectively; totaling 83 lines (13.83%) and
leaving 77 lines (12.83%) where a match was not found. In these
lines, other mechanisms to reach consensus can be applied, but
those methods are not the focus of this paper.

In summary, 38.3% of the 600 lines required a single human
transcription, 35.0% required two human transcriptions, and
13.83% required three human transcriptions. After applying this
dynamic consensus approach, in 12.83% of the lines, neither
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hybrid nor human consensus could be reached using three
human transcriptions.

Assume that nL represents the number of lines to transcribe
through dynamic human-machine consensus. Assuming the
proportion of matches found in the experiments above
generalize, we can state the following:

e The original, human-only approach requires 3 X nL
crowdsourcing tasks (human transcriptions).

e [-transcription matches 0.3833 x nL

crowdsourcing tasks.

require

e 2-transcription matches require 0.7 X nlL tasks.
e 3-transcription matches require 0.8 X nL tasks.

Therefore, using dynamic human-machine consensus, we
3-0.3833-0.7-0.8 .
save about ——————— => 37.22% of the crowdsourcing

tasks, when compared to the human-only version of majority
voting in crowdsourcing.

E. Crowdsourcing — Hybrid Transcriber/Reviewer

The Australian Museum with the DigiVol platform uses
another method to find the final transcriptions. One user
transcribes the text and then an advanced user reviews the
transcription, the result of this review being accepted as the final
transcription.

In our hybrid human-machine approach, the output of the
ensemble of OCRs (which did not get confidence high enough
to be accepted), is sent to the reviewer.

For this crowdsourcing method a different subset of 100
lines per collection, 600 in total, were randomly selected from
lines not accepted by the ensemble of OCRs. Users were asked
to review (correct or complete) the content of the 600 lines. One
single user completed the review of any given line.

In the review process of the 9,025 characters in the 600 lines,
the reviewers detected 356 misspelled characters, 288
omissions, and 89 non-existent characters, for a total CER of
0.081. In terms of human effort, the review process was
completely done, arguably with equivalent effort to what would
require if humans had completed the first transcription, but the
entire initial human transcription was saved. Therefore, this
human-machine crowdsourcing approach saved 50% of the
transcription tasks compared to its human-only version.

F. Total Savings in the Number of Crowdsourcing Tasks

If we assume that the behavior presented in IV.D and IV.E
for hybrid crowdsourcing will be similar for the rest of lines for
which consensus was not reached in the ensemble-of-OCRs
method, the final number of crowdsourcing tasks that were
saved by the quality-aware human machine text extraction
would be as shown in Table IV.

TABLEIV. SAVINGS IN THE NUMBER OF CROWDSOURCING TASKS
Tasks Ensemble | Hybrid crowd. Total
required savings savings savings
Dynamic Human- 1= 5 - 157 550, 15.801% 73.35%
Machine C
Hybrid Transeriber | ) 57.55% 21.225% 78.78%
/Reviewer

In summary, the quality-aware human-machine text
extraction approach, using an ensemble of OCRs, saves about
76% of the crowdsourcing tasks when compared to current
human-only text extraction approaches.

CONCLUSIONS

Despite continuing improvements, OCR engines still make
mistakes when automatically extracting the text from the
challenging images found in biocollections. This drives
information extraction projects to rely exclusively on the
transcriptions of citizen scientists.

Given the difficulty of the text-extraction task in these types
of images, humans (crowdsourcing) are needed for some
especially challenging segments of text. But for the rest of the
text, the transcription automatically generated by the OCR
engines can be accepted as correct.

In this research, we proposed and showed how to identify
segments of automatically extracted text that are correct, by
using an ensemble of three OCR engines: OCRopus, Tesseract,
and the Google Cloud OCR. Using their outputs, the associated
per-character probability and several statistical methods, we
were able to detect when the text is correct with an accuracy of
99.9%.

For the biocollections used in our studies, 58% of the
automatically extracted text could be identified as correct. The
rest was sent to humans for further processing. The consensual
transcription of the ensemble of OCRs was used to reduce the
number of crowdsourcing tasks.

Two common approaches for the generation of the final
transcription in crowdsourcing experiments were tested. On
average, the use of the ensemble-of-OCRs result reduced the
crowdsourcing tasks by 44%.

In total, considering the reduction in crowdsourcing tasks
due to accepting part of the text automatically extracted by the
ensemble of OCRs, and the reduction in crowdsourcing tasks by
using the ensemble of OCRs as a member of the crowd, our text
extraction approach reduced the number of crowdsourcing tasks
by 76%.

This result suggests that our approach can be applied to more
efficiently use the time of the citizen scientists and to accelerate
text and information extraction projects.

Further research is required to further improve the
segmentation of text lines, which proved to be crucial for the
OCR process.
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