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Abstract—Information Extraction (IE) from imaged text is 

affected by the output quality of the text-recognition process. 
Misspelled or missing text may propagate errors or even preclude 
IE. Low confidence in automated methods is the reason why some 
IE projects rely exclusively on human work (crowdsourcing). That 
is the case of biological collections (biocollections), where the 
metadata (Darwin-core Terms) found in digitized labels are 
transcribed by citizen scientists. In this paper, we present an 
approach to reduce the number of crowdsourcing tasks required 
to obtain the transcription of the text found in biocollections’ 
images. By using an ensemble of Optical Character Recognition 
(OCR) engines -- OCRopus, Tesseract, and the Google Cloud 
OCR -- our approach identifies the lines and characters that have 
a high probability of being correct. This reduces the need for 
crowdsourced transcription to be done for only low confidence 
fragments of text. The number of lines to transcribe is also reduced 
through hybrid human-machine crowdsourcing where the output 
of the ensemble of OCRs is used as the first "human" transcription 
of the redundant crowdsourcing process. Our approach was tested 
in six biocollections (2,966 images), reducing the number of 
crowdsourcing tasks by 76% (58% due to lines accepted by the 
ensemble of OCRs and about 18% due to accelerated convergence 
when using hybrid crowdsourcing). The automatically extracted 
text presented a character error rate of 0.001 (0.1%).  

Keywords—OCR, crowdsourcing, biocollections, ensemble, 
hybrid, information extraction, text extraction, human-machine 

I. INTRODUCTION 
Humans have an extraordinary capacity to extract 

information from images. For example, from Figure 1, we could 
say: "There is a cockroach on a pinned foam. It presumably 
belongs to the Australian Museum, which assigned code K 
482255 to it. The cockroach was captured at the road to Mt. 
Baldy, in a place with latitude 17.16’S and longitude 145.25’E. 
The location is at 1,097 meters above the sea level. The 
cockroach is about 14 mm long and was captured by Rentz and 
Richardson." Besides all this semantic information about what 
we identified as the main object in the image and the automatic 
interpretation learned from the text in the labels, we can add 
characteristics about the labels: "There are four small labels. 
From top to bottom, the upper two labels were made in 2011, 
and they look older than the third one. The second label contains 

handwritten text. The last label provides the scale and colormap 
of the photograph." The amount of information we can add will 
depend on our previous knowledge. For example, biologists 
could probably say more about the cockroach. 

 
Figure 1. Specimen K 482255 from the Cockroaches Expedition - 2, Australian 
Museum Entomology collection.  

Humans can identify objects in an image, extract knowledge 
from them, describe objects’ characteristics, and even make 
inferences about what they see, based on previous knowledge. 

Artificial intelligence remains unable to analyze an image 
the way humans do, but it has allowed the creation of algorithms 
with very specific capabilities that mimic those of humans. With 
the advent of machine learning, there has been enormous 
progress on object classification (e.g., type of insect in Figure 1) 
and optical character recognition (machine-encoding the 
printed, handwritten, or typed text). 

Text extraction -- the identification of each of the characters 
in an image -- is the main topic of the research reported in this 
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paper. It is an fundamental problem because understanding the 
symbols in the image is a pre-requisite for the extraction of 
information. If some characters are omitted or misspelled, we 
may be making false interpretations and introducing or 
propagating errors about the image and its content. 

Standalone optical character recognition (OCR) engines are 
based on the segmentation of images at the character level and 
the use of per-symbol individual neural network classifiers. In 
the last five years, OCR engines have been transformed into text 
recognition cloud services based on long short-term memory 
(LSTM) models, with higher character recognition rate and a 
simplified line-level training [1]. 

Despite the recent progress in the quality and availability of 
the OCR technology, general text extraction is still an open 
problem. Diverse studies [2][3] claim character error rates 
(CERs) lower than 0.01 (1%) in certain types of documents and 
fonts. Nevertheless, this cannot be interpreted as the 
convergence to a final general solution for the text extraction 
problem. 

Two of the most challenging problems for current OCR 
engines are the segmentation of the image in lines of text and 
handwritten text recognition. OCRopus [4] and Tesseract [5], 
arguably the two most popular open source OCR engines, do not 
provide models to recognize handwritten text. Even the ABBYY 
FineReader [6], a commercial OCR engine, stops working or 
generates many misspelling errors when handwritten text is 
found. At present, to the best of our knowledge, the only OCR 
engine capable of partially recognizing handwritten text is the 
Google Cloud OCR (GC-OCR)[7].  

TABLE I.  OCR ENGINES’ OUTPUT COMPARISON 
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Table I shows the output of OCRopus, Tesseract, and the 
GC-OCR for the image in Figure 1, using their default English 
recognition models. The characters that match the real text are 
highlighted in bold. Omitted characters are not represented in 
the table. We observe many errors in the OCRopus output and 
almost no output from Tesseract. GC-OCR shows a “close to 

perfect” output, when compared to the other two engines. 
OCRopus and Tesseract are highly affected by segmentation 
(see Section IV.B) and their models are not trained for 
handwritten text recognition. GC-OCR dynamically uses more 
than one recognition model.  

In the 203 characters of the GC-OCR output, we identify 10 
errors, among insertions, omissions, and modifications. This 
means a CER close to 0.05, which may seem low, but the real 
problem for IE projects that rely on OCR is confidence. There 
may be few errors, but what if the errors occur in dates or proper 
nouns? How will these errors affect posterior processes? Is there 
any missing word in the extracted text? 

This lack of confidence in the text extracted by OCR engines 
makes IE projects rely on humans to type the information in 
images. That is the case of projects like Notes from Nature [8] 
and DigiVol [9], which utilize crowdsourcing (volunteers) for 
the transcription of Darwin-core (DC) Terms from photographs 
of specimens in biocollections. 

Despite using humans, confidence is key for data that will be 
used in other scientific studies. Biocollection transcription 
projects use redundancy to improve the accuracy and increase 
the confidence in the data. One of the most common approaches 
is to ask several volunteers to transcribe each image and then use 
a consensus algorithm to generate the final value (Notes from 
Nature’s approach). Another possibility is to first ask a volunteer 
to transcribe the DC terms of an image, and then ask a more 
experienced volunteer to review the transcription (DigiVol’s 
approach). 

Progress towards automating IE from biocollections 
includes the following: 

 Sophisticated interfaces to facilitate the load of the 
information: SALIX [10] loads the results of applying 
OCR and specific Natural Language Processing (NLP) 
algorithms into a web form so that users can correct and 
complete the transcription; ScioTR [11] allows users to 
select an area of the image and assign the OCR result to 
a term, optionally editing the value. In these interfaces, 
users end up searching through the image and reviewing 
almost every value. Therefore, the IE process is 
accelerated only when the OCR’s output and the NLP 
algorithms compensate the typing effort of the user. 

 The Royal Botanic Garden Edinburgh has accelerated the 
IE process by using OCR and NLP to automatically 
extract two terms: Collector and Country [12]. This 
allows a first classification of the specimen and then for 
volunteers to complete the transcription of the remaining 
terms. 

Despite these automation attempts, most or all the metadata 
in biocollections are still extracted by humans. It is difficult to 
say if a fully automated IE method, with no human review, will 
become available but an intermediate human-machine solution 
is certainly possible.  

In this paper, we propose a method to reduce the amount of 
text transcribed by humans, through the automated estimation of 
confidence in the text extracted by an ensemble of three OCR 
engines: OCRopus, Tesseract, and GC-OCR. This estimated 
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confidence allows the acceptance of the OCR’s output of some 
segments of text and the decision to request humans to transcribe 
the remaining text segments. 

Furthermore, the crowdsourcing sessions for the 
transcription of the remaining segments are reduced and 
accelerated by replacing one of the crowdsourced transcriptions 
with the output of the ensemble of OCRs. 

This paper is about text extraction, which is an intermediate 
step towards the partial or complete automation of the IE from 
biocollections. Additional work needs to be done to obtain the 
terms. We believe that current NLP methods are able to perform 
the DC Terms extraction if the extracted text is complete and 
accurate. Moreover, the complexity and training required by the 
volunteers to transcribe text is smaller than the required to 
identify and extract DC Terms (domain specific information). 

Our ensemble-of-OCRs approach is able to identify as 
correct 57.55% of the text, with a per-character accuracy of 
99.9%. These characters are  accepted as the final transcription 
and are not required to be typed by humans, considering the 
confidence obtained by using three OCR engines. 

Two common crowdsourcing approaches, majority voting 
and transcriber/reviewer, were modified to use the output of the 
ensemble of OCRs as the first “human” transcription, for the 
remaining 42.45% of the text. Using this human-machine 
approach, the required crowdsourcing tasks were reduced by 
37% when using majority voting with three workers and by 50% 
in the transcriber/reviewer crowdsourcing approach.  

In total, the number of crowdsourcing tasks to transcribe the 
text in the biocollections’ images was reduced by 76%. 

The code and results of this research are available online at 
https://github.com/acislab/HuMaIN_Text_Extraction. 

II. RELATED WORK 
Optical Character Recognition (OCR) technology has 

recently improved in several ways: 
- The font-based neural networks models have been 

replaced by LSTM networks [2][3][13]. 
- The OCR desktop applications have been converted to 

cloud services available everywhere [14][15].  
- Handwritten text recognition, previously only available 

for small corpora, is now included as a model [7][16]. 

Despite these improvements, there are still challenges in 
page segmentation, handwritten text recognition, binarization, 
layout analysis, and post-OCR correction [17]. Most of these 
challenges show up on historical documents or scene text, where 
background, graphic elements, and the integrity of the characters 
(among many other reasons) affect the accuracy of the OCR’s 
output. This unpredictability of the OCR accuracy and its impact 
on upcoming research are big problems [18].   

Several studies have tried to predict the quality or accuracy 
of the OCR by using a subset of the images [19], latent Dirichlet 
allocation [20], or Spatial Frequency Response [21], among 
many other techniques; but these methods provide quality 
estimations of the entire extracted text. If the confidence in a 
transcribed document is relatively low, should we discard all the 

extracted text? Alternatively, if the confidence is high, should 
we have the same high confidence in every extracted word? It is 
more useful to predict confidence at a word level.  

Some studies improve the character confidence estimation 
using n-grams [22][23], assigning the probability of a character 
based on the k previous characters. Our method also uses n-
grams, but at a word-level and only to augment the probability, 
not to correct words. Relying only on n-grams may be risky due 
to rare n-grams, and the big impact a single character can have 
on coded or numeric fields such as “year”.  

To improve robustness, our approach uses an ensemble of 
OCRs, word-level n-grams, and descriptive statistics at 
character-level to identify high confidence segments of text. 

Previous studies have also used ensembles of OCRs, but they 
have not used the ensemble with the objective of increasing 
confidence in the extracted text and identifying correct segments 
of text. In [24], two OCR engines are used to improve quality, 
assuming the existence of dictionaries and choosing to evaluate 
only aligned words. Other researchers generate different 
versions of the one single image and run the same OCR engine 
on them to improve the quality of the output [25][26]. Our 
research uses additional statistical tools to dynamically create 
the dictionaries. To align the text, we propose a hybrid 
crowdsourcing mechanism for those segments with low 
confidence. 

Our approach goes beyond improving the quality estimation 
of the OCR’s output. We accept that some problematic cases are 
going to exist, and that human help is going to be required to 
extract the final text. Our hybrid human-machine method 
reduces the amount of data to be transcribed by the crowd.  

We use what is called a SELFIE model [27] which is 
basically a cost-incremental model for the extraction of text; 
using crowdsourcing as the last self-aware process of the data 
extraction workflow. 

Our hybrid crowdsourcing method was inspired by [28] to 
minimize the number of crowdsourcing tasks. In the referenced 
research, human responses and machine classification 
algorithms are used to identify birds in images. We extended this 
idea of using the machine results as human results to the area of 
text extraction. 

III. QUALITY-AWARE TEXT EXTRACTION 
The objective of this research is to reduce the amount of 

human work needed to extract text from biocollections’ images. 
We designed a quality-aware approach to decide when to trust 
and accept automatically extracted characters, words, and lines. 

The approach uses the per-character accuracy probability 
provided by OCR engines and, more importantly, majority 
voting to increase confidence in the extracted values. The per-
character accuracy probabilities of a single OCR engine can be 
used for output quality estimation, but the confidence in that 
estimation needs to be increased by other mechanisms, such as 
redundancy.  

In order to trust in the values extracted by OCR engines, we 
emulate the consensus mechanism applied in crowdsourcing. 
Three different OCR engines, with different recognition models, 

118

Authorized licensed use limited to: University of Florida. Downloaded on June 08,2020 at 19:20:49 UTC from IEEE Xplore.  Restrictions apply. 



are asked to extract the text of the same segments of image 
(lines). For each line: 

- If the outputs of the three OCR engines match, we assume 
there is a high probability that the value is accurate and 
the text is accepted. If only two of the outputs match, but 
the average accuracy probability of both OCR engines for 
the line is high, we say consensus has been reached and 
the value is accepted as the final transcription of the line. 
This line-level agreement corresponds to the first quality-
aware process in Figure 2. The intuition behind trusting 
majority-voted outputs is supported by the probability 
analysis of this approach, see Section III.A for details. 

 
Figure 2. Quality-aware Model for Text Extraction. 

- Those lines for which consensus is not reached in the first 
step are analyzed at a smaller granularity level, trying to 
build confidence in the characters and words in them. 
Two types of support data structures are derived: 
o N-grams: 1-gram (unigram) and 2-gram (bigram) 

models are built from the content in matched lines. 
N-grams with three or less repetitions are discarded 
to reduce false positives. Words with less than two 
characters are not considered for the n-grams. 

o Descriptive statistics: For every possible character, 
the mean and standard deviation of the OCR 
engine’s accuracy probabilities are computed, using 
only the accepted lines. A different set of per-
character descriptive statistics is computed for each 
OCR engine. 

A new consensual transcription of every line is built using 
the outputs of the three OCR engines. The per-character 
confidence (accuracy probability) is augmented using the 
n-grams and descriptive character statistics. See the 
details of this algorithm in Section III.F.  

The consensual transcription is accepted as the final 
transcription for the line if all its augmented per-character 
confidence values are equal to 1. This transcription 
generation and acceptance procedure corresponds to the 
second quality-aware process in Figure 2.  

- The lines for which the transcriptions are not accepted are 
sent to a crowdsourced processing task (third step in 
Figure 3). The output of the ensemble of OCRs (the 
consensual transcriptions) are used as a candidate output 
in the crowdsourcing tasks to accelerate convergence to a 
final transcription for the line. Two commonly used 
crowdsourcing approaches were accelerated using this 

human-machine collaboration approach. The methods 
are explained in Section III.B. 

The data sets, images and their full text transcription 
(ground-truth data) utilized in this paper were provided by 
iDigBio and the Australian Museum. See Section III.C for a 
detailed description of the six biocollections utilized in the 
experiments. 

These images do not have any specific layout and can 
contain text of different types (printed, typewritten, handwritten, 
or stamped), font sizes, colors, backgrounds, and languages 
(mainly Latin scripts). The text can also be skewed, overlapped 
with other objects, or underlined. Due to the diversity of the text 
in these images, the problem of text extraction from 
biocollections has some similarity to the “Robust Reading 
Challenge on Multi-lingual scene text detection and 
recognition” of the ICDAR conference [29]. The text in these 
images seldom contains paragraphs or phrases that follow 
general grammar rules, but instead, it is typically an unordered 
set of proper nouns, dates, alphanumerical codes, coordinates, 
and titles. In this scenario, the use of general dictionaries for 
error correction may not be an effective alternative. 

Three OCR engines are selected for the ensemble. The GC-
OCR engine is selected because, to the best of our knowledge, it 
is the only OCR engine that provides support for general 
handwritten text recognition. It automatically selects the best 
recognition model to use in every line of text [30], which is 
convenient in our case considering the characteristics of the 
images mentioned before. The GC-OCR is available through the 
Google Cloud Vision API. It is not free. OCRopus and Tesseract 
are selected because their recognition models can be extended 
through training, they are open source, actively improved, and 
are two of the most commonly used engines. 

The machine-only quality baseline, using the out-of-the-box 
recognition models, was collected for the three OCR engines: 
OCRopus, Tesseract, and GC-OCR on the images of the data 
set. For output’s quality estimation, the Damerau-Levenshtein 
similarity is computed (defined in Section III.D) between the 
OCR engines’ result and the ground-truth data. The baseline 
shows the independent out-of-the-box accuracy of each of the 
three OCR engines on the data set, see Section IV.A. 

Our approach compares the outputs of the OCR engines to 
generate a new output with augmented confidence. To make this 
comparison possible, the three engines must work on the same 
image segments. For this purpose, images were segmented into 
lines. 

Line segmentation is still an open problem [31]. 
Segmentation errors highly affect the quality of the extraction 
process and may compromise ideas like the ensemble of OCRs. 
After testing several methods, including the line segmentation 
procedures of OCRopus and Tesseract, we decided to adapt the 
character-level Google Cloud Vision API’s output to generate 
lines’ coordinates. See further line segmentation details in 
Section III.E. 

The importance of the line segmentation process is such that 
after “replacing” the OCRopus’ and Tesseract’s segmentation 
procedures, both OCR engines generated higher quality results. 
See section IV.B.  
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 The OCRopus, Tesseract, and GC-OCR outputs for each of 
the lines are submitted to the ensemble-of-OCRs method, 
detailed in Section III.F. The method uses the per-character 
confidence of the OCR engines, besides generated n-grams and 
per-character statistics for the collection, to augment the 
probabilities of the characters and deciding what lines do not 
need to be crowdsourced due to a high confidence that all the 
characters in them are correct (these lines are called accepted). 
The rest of the lines, with uncertainty in one or more of their 
characters, are crowdsourced. The results obtained after running 
the ensemble-of-OCRs method on the lines of the data set are 
shown in Section IV.C. 

Algorithm 1  Human-Machine Text Extraction 
Input: images_dir 
Output: labels_dir 
1:  for image in images_dir do 
2:     lines ← segment(image) 
3:     for line in lines do 
4:        line_text ← ensemble_ocr(line) 
5:        if accept(line_text) then 
6:           accepted.add(line_text) 
7:        else 
8:           to_crowd.add(line_text) 
9:        end if 
10:    end for 
11: end for 
12: for line_text in to_crowd do 
13:    crowd_out ← crowdsource(get_img(line_text)) 
14: end for 
15: labels_dir ← get_labels(accepted, crowd_out) 

 Algorithm 1 offers a simplified high-level view of the 
dynamic of the entire text extraction process. The ensemble_ocr 
function represents the first two quality-aware text extraction 
processes in Figure 2. 

A. Probability of Error in Ensembles of OCRs. 
OCR engines provide an estimation of the confidence or 

correctness probability for each of the recognized characters. 
Because of the use of dictionaries for misspelling corrections 
and syntactic rules, the selected character may not be the 
character with highest estimated probability. Nevertheless, these 
engines do not provide an exact explanation of the meaning of 
these numbers. 

For practical purposes, we will assume that the confidence 
values provided by the OCR engines are the conditional 
probability of recognizing the character "ݔ" when the value is "ݔ)ܲ :"ݔ|ܺ =  .for a specific recognition model ,(ݔ

Given this assumption, the probability of error when an OCR 
engine has recognized the value as "ݔ" is: ܲ(݁ݎ݋ݎݎ) = ܺ|ݔ)ܲ = (ݔ̅ = 1 − ܺ|ݔ)ܲ =   .(ݔ

For example, if the OCR engine confidence for a recognized 
character is ܲ(ݔ|ܺ = (ݔ = 0.75, the probability of error will be ܲ(݁ݎ݋ݎݎ) = 1 − 0.75 = 0.25. 

In an ensemble of three OCR engines, with three 
independent neural network models, if the three engines agree 
on the same value, an error of the ensemble is only possible if 
the three engines are wrong:  ௘ܲ௡(݁ݎ݋ݎݎ) = ଵܲ(ݔ|ܺ = (ݔ̅ × ଶܲ(ݔ|ܺ = (ݔ̅ × ଷܲ(ݔ|ܺ =  (ݔ̅

If the three OCR engines report a confidence greater than 
0.75, the probability of error for the ensemble will be: ௘ܲ௡(݁ݎ݋ݎݎ) ≤ (1 − 0.75)ଷ ௘ܲ௡(݁ݎ݋ݎݎ) ≤ 0.015625 

Therefore, with a relatively low confidence of 0.75 in the 
extracted character, an ensemble of three OCR engines shows a 
probability of error smaller than 2%, when the three engines 
agree in the extracted character. This result shows the intuition 
behind using redundancy to increase confidence. 

In the case of using an ensemble of only two OCR engines, 
for the same confidence of 0.75, the probability of error of the 
ensemble is ௘ܲ௡(݁ݎ݋ݎݎ) = 0.0625 

which is higher than the probability of error for an ensemble of 
three OCRs, but certainly much lower than 0.25, the initial 
probability of error for a single OCR engine.  

B. Hybrid Human-Machine Crowdsourcing Approaches 
In biocollections, and probably in other areas, two common 

crowdsourcing approaches to agree in a result are: 

1) Consensus: several  crowdsourcers transcribe the same 
image and a posterior process, e.g. majority voting, evaluates 
the values and decides the final result. An odd number of users 
is usually selected to do the transcription. 

2) Hybrid Transcriber/Reviewer: one user makes the initial 
transcription and an advanced user or expert reviews and 
validates the transcription. The final transcription is the output 
of the review. 

Both methods generate high confidence because they 
involve redundancy: several transcriptions of the same image or 
several people dedicating time to the same image. This 
redundancy also implies waste of time: transcribing several 
times the same value or reviewing values that are correct. 

Extending the idea applied by Branson et al. [28] for image 
classification, we propose to include the machine as a member 
of the crowd and using its output in the generation of the final 
transcription of the images through crowdsourcing. The two 
commonly used human-oriented crowdsourcing approaches 
were adapted as follow: 

1) Dynamic Human-Machine Consensus: The ensemble-of-
OCRs output is considered as the first transcription. One user 
transcribes the line, if the result is equal to the ensemble’s 
output, the transcription of the line is accepted and no more 
crowdsourcing is performed for that line. If the ensemble’s 
output and the user’s transcription are different, a second user is 
asked to transcribe the text in the line. The second user’s output 
is compared with both the ensemble’s output and the first user’s 
output. If a match is found, the transcription is accepted. If no 
match is found, we ask a third and final user to transcribe the 
text in the line. If, with the output of the third user, there is no 
match either, the transcription with the highest average DL 
similarity to the other three values is selected. The results of this 
process are found in Section IV.D. 
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2) Hybrid Transcriber/Reviewer: The output of the ensemble 
of OCRs is considered as the transcription of the non-expert 
user. A user is asked to review (correct and complete) the 
transcription. The result of the review process is accepted as the 
final text of the line. See Section IV.E for the results of applying 
this crowdsourcing method. 

C. Data Set 
The images from six biocollections are the data set for the 

text extraction experiments mentioned in this paper. Three 
biocollections were prepared by the Augmenting-OCR (A-
OCR) Working Group of iDigBio [32], including the entire 
transcription of text found in the images, made by experts. The 
other three biocollections belong to DigiVol [9] (The Australian 
Museum). They include full transcription of the text found in the 
images, but they were completed by volunteers, therefore 
containing some omissions and errors. Some characteristics of 
these biocollections are the following: 

 A-OCR Insects (Entomology): 100 images, 33 MB on 
disk. 1,132 lines of text. 

 A-OCR Herbs: 100 images, 124 MB on disk. 3,192 lines 
of text. 

 A-OCR Lichens: 200 images, 31.3 MB on disk. 2,618 
lines of text. 

 DigiVol Roaches (Cockroaches Expedition-2): 1,117 
images, 656 MB on disk. 10,002 lines of text. 

 DigiVol Flies (Horse Flies Expedition-3): 1,054 images, 
536,6 MB on disk. 7,821 lines of text. 

 DigiVol Bees (Carpenter Bees expedition): 395 images, 
443 MB on disk. 3,053 lines of text. 

D. Damerau-Levenshtein Similarity 
The Damerau-Levenshtein distance between two strings is 

the minimum number of insertions, deletions, substitutions, and 
transpositions (of adjacent characters) required to convert one 
string into the other [33]. 

In order to measure syntactic likeness, we define the 
Damerau-Levenshtein (DL) similarity between two strings, ݔ 
and ݕ, as the complement to the normalized DL distance ݉݅ݏ஽௅(ݔ, (ݕ = 1 − ,ݔ)݁ܿ݊ܽݐݏ݅݀ ܮܦ ,|ݔ|) max(ݕ (|ݕ|  

where |ݔ| and |ݕ| are the number of characters (size) of strings ݔ and ݕ, respectively. 

E. Line Segmentation Approach 
The Google Cloud Vision API’s output does not provide 

information about lines of text. It generates coordinates, 
confidence estimation and values at a page, block, word, and 
character level, but not at a line level. Internally it does keep 
track of break lines. Using the coordinates of the individual 
characters and the registered break lines, we created a program 
that reconstructed the coordinates of the lines. This method 
proved to be more accurate than the segmentation performed 
using the OCRopus script or the Tesseract’s hOCR coordinates. 

F. Ensemble-of-OCRs Algorithm 
The ensemble of OCRs is an extensive algorithm. It receives 

a set of lines (images) and creates, as output, two directories: a 
directory with the transcription of the lines with high confidence 
(accepted lines), and another directory with consensual 
transcription of the remaining lines (rejected lines).  

Algorithm 2 summarizes the steps of this process. The lines 
are processed in batch, but to facilitate the understanding of the 
algorithm, it is presented as a line-by-line process. 

Algorithm 2   Ensemble of OCRs 
Input: lines_dir 
Output: dir_accepted, dir_to_crowd 
1:  for line in lines_dir do: 
2:     ocropus, tesseract, & gc-ocr outputs are collected 
3:     if (two or three outputs match) then: 
4:        accept the common output 
5:  Using the output of the lines that matched: 
6:     build n-grams 
7:     build OCRopus’ character statistics 
8:     build Tesseract’s character statistics 
9:     build GC-OCR’s character statistics 
10: for line in non_accepted_lines: 
11:    augment to 1.0 the prob. of words found in n-grams 
12: for line in non_accepted_lines:  
13:    align the three OCR outputs for the line 
14:    for char in line: 
15:       if (statistical consensus reached for char) then: 
16:          augment to 1.0 the probability of the char 
17:    if all the line’s chars have probability 1.0 then: 
18:       accept the line 

OCRopus, Tesseract, and GC-OCR are firstly run on all the 
lines to generate the confidence probability by character. The 
outputs of the three OCR engines are compared to each other 
and the outputs that match are accepted as the final transcription 
of the correspondent line. 

Using the transcription of the lines that matched, the n-grams 
and the per-character statistics of every OCR engine are built. 
The remaining lines are scanned, if a word belongs to a n-gram, 
the probabilities of its characters are made 1.0. 

Then, the outputs of the OCR engines for each line are 
aligned and a per-character evaluation is performed to construct 
a new line transcription. If for a given position of the alignment 
the three engines extracted the same character, then this 
character is accepted with a probability of 1.0. If only two OCR 
engines agree in the value, their z-score for the character 
accuracy probability is computed; if both z-score are greater 
than 0.5, the character is accepted and its probability is also 
made 1.0.  

If consensus is not reached for a certain position of the 
alignment, the character extracted by the OCR engine with the 
highest general accuracy is selected; in our experiments the GC-
OCR is the highest-accuracy OCR engine, see Section IV.B. 
After evaluating all the lines at a character level, the lines with 
an average character accuracy of 1.0 are accepted; i.e., lines are 
accepted if all their characters belong to words in n-grams or 
consensus at character level was reached. 
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IV. RESULTS 
This section shows the numerical results obtained for the 

Quality-aware Text Extraction approach and the steps presented 
in Section III.  

A. Baseline – Out-of-the-box OCR Engines’ Accuracy 
OCRopus, Tesseract, and GC-OCR were independently run 

on the images of the data set. OCRopus and Tesseract were run 
using their respective out-of-the-box English recognition 
models. The extracted text was compared to the human 
transcription (ground-truth data) using the Damerau-
Levenshtein similarity metric. Figure 3 shows the obtained 
similarity, per OCR engine and per biocollection. 

Figure 3. Damerau-Levenshtein similarity of the OCRopus, Tesseract, and GC-
OCR outputs to the ground-truth data, per biocollection. Range: 0.0 to 1.0. A 
similarity of 1.0 corresponds to the case of two identical strings. 

 The quality of the output generated by the GC_OCR engine 
is higher than the output quality of OCRopus and Tesseract in 
every biocollection. The items in the ao_lichens biocollection 
are images of text, i.e. the images do not contain the specimen, 
rulers, or other objects; this was the biocollection where the 
three OCR engines reached their highest quality. 

 GC-OCR, which obtained the highest average quality, did 
not get an average similarity greater than 0.8 in any 
biocollection. Its average global similarity is 0.735, which still 
makes it difficult to implement an IE process that depends on 
this text. 

B. OCR Engines’ Accuracy After Line Segmentation 
In the results shown in Figure 3, each OCR engine uses its 

own binarization and segmentation algorithm, i.e. each engine 
segments each image in a different way. We need a common or 
standard segmentation to be able to compare the outputs of the 
OCR engines. This common segmentation method was 
explained in Section III.E. OCRopus’ and Tesseract’s 

segmentation functions are not used in the ensemble-of-OCRs 
approach.  

Figure 4 shows the DL similarity to the ground-truth data of 
OCRopus, Tesseract, and GC-OCR using the line segmentation 
procedure explained in Section III.E. As expected, the GC-OCR 
output quality is basically the same as in Figure 3, with small 
differences probably generated by the real line segmentation 
internally utilized by the GC-OCR. On the other hand, OCRopus 
and Tesseract improved their average output quality in 46% and 
37% compared to Figure 3, where they used their own 
segmentation algorithm. This result shows the importance of the 
segmentation process for the OCR’s output quality. 

The per-engine transcription generated for each line are the 
input for the ensemble-of-OCRs process described in IV.C. 

 
Figure 4. Damerau-Levenshtein similarity of the OCRopus, Tesseract, and GC-
OCR outputs to the ground-truth data, per biocollection. Range: 0.0 to 1.0. A 
similarity of 1.0 corresponds to the case of two identical strings. 

We estimated the character error rate (CER) of the OCR 
engines’ recognition models. For this purpose, a subset of 60 
images was analyzed with 10 images randomly selected from 
each biocollection. Their lines were transcribed to generate their 
ground-truth data and making possible a per-character 
evaluation. The characteristics of this subset are detailed in 
Table II. 

TABLE II.  COMPOSITION OF THE SUBSET OF 60 IMAGES 

Collection # of 
Images 

# of 
Lines 

Printed 
Text 

Handwritten 
Text (HRT) 

No 
Text 

ao_insects 10 112 104 8 0 
ao_herbs 10 320 276 38 6 
ao_lichens 10 128 125 3 0 
dv_roaches 10 89 83 6 0 
dv_flies 10 72 50 19 3 
dv_bees 10 80 61 17 2 

Total 60 801 699 91 11 
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Figure 5 shows the CER of OCRopus, Tesseract, and GC-
OCR when they are run on the lines of the 60 images subset. 
OCRopus and Tesseract recognize less than 30% and 40% of the 
handwritten text characters, respectively. This result is 
understandable because their models were not trained for this 
type of text. However, their CER for printed text was also high, 
considering the ultimate goal of extracting DC terms and using 
them in posterior scientific studies.  

The GC-OCR’s CER is less than 0.02, on average, and less 
than 0.01 for printed text, which includes typewritten, printed 
and stamped text. This is the error rate in the cropped lines. The 
last column of Table II shows the number of cropped lines that 
do not really contain any text, i.e. segmentation errors generated 
by the erroneous identification of text. Moreover, part of the text 
was not included in the cropped lines. Therefore, we can 
conclude that the GC-OCR’s CER is at least 0.02. 

  
Figure 5. Character Error Rate (CER) of the OCRopus, Tesseract, and GC-OCR 
engines for the subset of 60 images described in Table II. 

The problem of hypothetically using only the GC-OCR to 
extract the metadata from the biocollections images is that we 
do not know the handwritten composition of the images, we 
cannot predict when segmentation is not accurate, and we do not 
know where the errors are. Moreover, if we run NLP processes 
on the resulting text, we may be propagating errors and 
introducing inaccuracy in the extracted information and the 
applications that will posteriorly use it. All this generates 
uncertainty in the extracted text. 

To increase confidence in the extracted data, we use several 
OCR engines (an ensemble) to detect those segments of text 
where two or more OCR engines agree in their content. This 
increases trust in the automatically extracted data and reduces 
the amount of work assigned to humans.  

C. Ensemble of OCRs 
After segmenting the images in lines, the lines are processed 

by the ensemble-of-OCRs algorithm explained in Section III.F. 
The result of this algorithm is a set of accepted transcriptions 
(lines for which we are confident that their automated 
transcription is correct) and a set of images and their 
transcriptions which will be sent to be crowdsourced because 
their confidence is not high enough to be accepted. The 

performance of the ensemble of OCRs for each of the 
biocollections of our data set is shown in Table III.  

TABLE III.  PERCENTAGE OF ACCEPTED LINES PER BIOCOLLECTION 
 Images Lines Accept Crowd % Accepted 

ao_insects 100 1132 711 421 62.81% 
ao_herbs 100 3192 1657 1535 51.91% 

ao_lichens 200 2618 1639 979 62.61% 
dv_roaches 1117 10002 5831 4171 58.30% 

dv_flies 1054 7821 4372 3449 55.90% 
dv_bees 395 3053 1800 1253 58.96% 

In total, 57.55% (16,010) of the 27,818 lines were accepted 
using the ensemble-of-OCRs algorithm. The algorithm uses 
majority voting, n-grams, and descriptive statistics to decide 
when a transcription must be accepted. From each biocollection, 
100 accepted lines were randomly selected, making a total of 
600 lines, to be reviewed by crowdsourcing participants.  

Of the 10,081 characters in the 600 lines, the users made 
changes, insertions, or deletions in only 10 characters. This 
means that the accepted lines have a CER of 0.001 and an 
accuracy of 99.9%. This CER is better than the average CER of 
0.0195 obtained by GC-OCR for a subset of lines, see Figure 5.  

D. Crowdsourcing - Dynamic Human-Machine Consensus 
For experimental purposes, 100 lines per collection, 600 in 

total, were randomly selected from the 11,808 lines that were 
not accepted in the ensemble-of-OCRs process. Users were 
asked to transcribe the content of the 600 lines. They did not 
know the content of the transcription generated using the 
ensemble of OCRs. A single user per line completed the 
transcription. 

These crowdsourced transcriptions were compared to the 
ensemble-of-OCRs output. There was a match in 230 (38.3%) 
of the 600 lines. Their content was accepted. For the remaining 
370 lines, a second crowdsourcing round was requested to the 
volunteers of DigiVol. 

After processing the transcribed data, there was a match in 
34 lines (5.67%) between the ensemble of OCRs and the 
transcriptions of the second round. There was a match in 176 
lines (29.3%) between the transcriptions of the first and second 
crowdsourcing rounds. 

In total, after the two crowdsourcing rounds, the 
transcriptions of 160 lines (26.67%) did not reach consensus 
with the ensemble-of-OCRs output or between them. A last third 
round of crowdsourced transcription was done for these 
remaining 160 images. 

After comparing the result of the third crowdsourcing round 
to the outputs of the ensemble of OCRs, the first, and the second 
rounds of crowdsourced transcriptions, a match was found in 9, 
36, and 38 lines, respectively; totaling 83 lines (13.83%) and 
leaving 77 lines (12.83%) where a match was not found. In these 
lines, other mechanisms to reach consensus can be applied, but 
those methods are not the focus of this paper. 

In summary, 38.3% of the 600 lines required a single human 
transcription, 35.0% required two human transcriptions, and 
13.83% required three human transcriptions. After applying this 
dynamic consensus approach, in 12.83% of the lines, neither 
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hybrid nor human consensus could be reached using three 
human transcriptions.  

Assume that ݊ܮ represents the number of lines to transcribe 
through dynamic human-machine consensus. Assuming the 
proportion of matches found in the experiments above 
generalize, we can state the following: 

 The original, human-only approach requires 3 ×  ܮ݊
crowdsourcing tasks (human transcriptions).  

 1-transcription matches require 0.3833 ×  ܮ݊
crowdsourcing tasks. 

 2-transcription matches require 0.7 ×  .tasks ܮ݊

 3-transcription matches require 0.8 ×  .tasks ܮ݊

Therefore, using dynamic human-machine consensus, we 
save about  ଷ ି ଴.ଷ଼ଷଷ ି ଴.଻ ି ଴.଼ଷ => 37.22% of the crowdsourcing 
tasks, when compared to the human-only version of majority 
voting in crowdsourcing. 

E. Crowdsourcing – Hybrid Transcriber/Reviewer 
The Australian Museum with the DigiVol platform uses 

another method to find the final transcriptions. One user 
transcribes the text and then an advanced user reviews the 
transcription, the result of this review being accepted as the final 
transcription. 

In our hybrid human-machine approach, the output of the 
ensemble of OCRs (which did not get confidence high enough 
to be accepted), is sent to the reviewer. 

For this crowdsourcing method a different subset of 100 
lines per collection, 600 in total, were randomly selected from 
lines not accepted by the ensemble of OCRs. Users were asked 
to review (correct or complete) the content of the 600 lines. One 
single user completed the review of any given line. 

In the review process of the 9,025 characters in the 600 lines, 
the reviewers detected 356 misspelled characters, 288 
omissions, and 89 non-existent characters, for a total CER of 
0.081. In terms of human effort, the review process was 
completely done, arguably with equivalent effort to what would 
require if humans had completed the first transcription, but the 
entire initial human transcription was saved. Therefore, this 
human-machine crowdsourcing approach saved 50% of the 
transcription tasks compared to its human-only version. 

F. Total Savings in the Number of Crowdsourcing Tasks 
If we assume that the behavior presented in IV.D and IV.E 

for hybrid crowdsourcing will be similar for the rest of lines for 
which consensus was not reached in the ensemble-of-OCRs 
method, the final number of crowdsourcing tasks that were 
saved by the quality-aware human machine text extraction 
would be as shown in Table IV. 

TABLE IV.  SAVINGS IN THE NUMBER OF CROWDSOURCING TASKS 

 Tasks 
required 

Ensemble 
savings 

Hybrid crowd.  
savings 

Total 
savings 

Dynamic Human-
Machine Consensus 3 x nL 57.55% 15.801% 73.35% 

Hybrid Transcriber 
/Reviewer 2 x nL 57.55% 21.225% 78.78% 

 In summary, the quality-aware human-machine text 
extraction approach, using an ensemble of OCRs, saves about 
76% of the crowdsourcing tasks when compared to current 
human-only text extraction approaches.  

CONCLUSIONS 
Despite continuing improvements, OCR engines still make 

mistakes when automatically extracting the text from the 
challenging images found in biocollections. This drives 
information extraction projects to rely exclusively on the 
transcriptions of citizen scientists. 

Given the difficulty of the text-extraction task in these types 
of images, humans (crowdsourcing) are needed for some 
especially challenging segments of text. But for the rest of the 
text, the transcription automatically generated by the OCR 
engines can be accepted as correct. 

In this research, we proposed and showed how to identify 
segments of automatically extracted text that are correct, by 
using an ensemble of three OCR engines: OCRopus, Tesseract, 
and the Google Cloud OCR. Using their outputs, the associated 
per-character probability and several statistical methods, we 
were able to detect when the text is correct with an accuracy of 
99.9%. 

For the biocollections used in our studies, 58% of the 
automatically extracted text could be identified as correct. The 
rest was sent to humans for further processing. The consensual 
transcription of the ensemble of OCRs was used to reduce the 
number of crowdsourcing tasks.  

Two common approaches for the generation of the final 
transcription in crowdsourcing experiments were tested. On 
average, the use of the ensemble-of-OCRs result reduced the 
crowdsourcing tasks by 44%. 

In total, considering the reduction in crowdsourcing tasks 
due to accepting part of the text automatically extracted by the 
ensemble of OCRs, and the reduction in crowdsourcing tasks by 
using the ensemble of OCRs as a member of the crowd, our text 
extraction approach reduced the number of crowdsourcing tasks 
by 76%. 

This result suggests that our approach can be applied to more 
efficiently use the time of the citizen scientists and to accelerate 
text and information extraction projects. 

Further research is required to further improve the 
segmentation of text lines, which proved to be crucial for the 
OCR process. 
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