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Abstract—Biological collections store information with broad 
societal and environmental impact. In the last 15 years, after 
worldwide investments and crowdsourcing efforts, 25% of the 
collected specimens have been digitized; a process that includes 
the imaging of text attached to specimens and subsequent 
extraction of information from the resulting image. This 
information extraction (IE) process is complex, thus slow and 
typically involving human tasks. We propose a hybrid (Human-
Machine) information extraction model that efficiently uses 
resources of different cost (machines, volunteers and/or experts) 
and speeds up the biocollections’ digitization process, while 
striving to maintain the same quality as human-only IE processes. 
In the proposed model, called SELFIE, self-aware IE processes 
determine whether their output quality is satisfactory. If the 
quality is unsatisfactory, additional or alternative processes that 
yield higher quality output at higher cost are triggered. The 
effectiveness of this model is demonstrated by three SELFIE 
workflows for the extraction of Darwin-core terms from 
specimens’ images. Compared to the traditional human-driven IE 
approach, SELFIE workflows showed, on average, a reduction of 
27% in the information-capture time and a decrease of 32% in the 
required number of humans and their associated cost, while the 
quality of the results was negligibly reduced by 0.27%. 

Keywords—information extraction; self-awareness; digitization; 
human-machine; biocollections 

I. INTRODUCTION 
The biodiversity research community is vigorously pursuing 

efforts towards the digitization of biocollections [1]. Thousands 
of volunteers, workers, and initiatives are extracting metadata 
from collected specimens and making them available to the 
scientific community and the general public. 

The metadata visible in Figure 1 can be used to better 
understand pests, biodiversity, climate change, species 
invasions, historical natural disasters, diseases, and other 
environmental issues [3]. The potential consumers of these data 
go far beyond scientists, to include decision makers in 
agriculture, food security, public health, genomics, 
bioprospecting, and many other areas [2]. 

 From 2012 through 2017, iDigBio has aggregated over 105 
million digitized records of over 200 million specimens [4]. 
Around the globe, national projects such as Atlas of Living 
Australia [5], or Les Herbonautes in France [6], are amongst the 
many institutions contributing worldwide biodiversity data to 
the Global Biodiversity Information Facility (GBIF). GBIF, in 

existence since 2001, currently reports 740 million occurrences 
in its database [7].  

These and other ongoing successful digitization efforts are 
still short of meeting the daunting challenge of digitizing all 
private and public biological collections, whose specimens have 
been estimated at 1 billion in the US [3] and between 2.5 and 3 
billion in the whole world [8]. Digitization tasks done by 
humans, of which information extraction (IE) is an example, are 
particularly slow by comparison with automated tasks. Using 
only human-driven IE, the digitization of all the biological 
collections could take decades. Similar challenges are faced by 
other collections (e.g., geological and paleontological) [9][10]. 

 
Figure 1. EMEC609675 Cerceris conifrons – Entomology Collection 

Nowadays, workflows for biocollections mass-digitization 
usually require the participation of volunteers who transcribe 
Darwin core terms [11] (such as scientificName, recordedBy, or 
eventDate) and experts who review the digitized information to 
guarantee its quality. Some computational tools can be used to 
assist volunteers and accelerate IE workflows [13][14]. Our 
previous work [12] discusses the impact of using hybrid 
(human-machine) systems on the duration and the quality of 
biocollections’ information extraction; it shows that, in this 
domain, human work usually generates output of better quality, 
but at a lower rate than machine processing. 

This paper considers the following question: How can 
biocollections’ information extraction be accelerated and made 
more efficient while keeping the quality of the results similar to 
what capable humans can provide? Towards answering this 
question, a hybrid (human-machine) Self-aware Information 
Extraction model, called SELFIE, is proposed. SELFIE includes 
tasks that assess themselves to determine whether their results 
have an acceptable quality. Self-aware tasks trigger other tasks 
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when they are unable to produce results that meet acceptance 
criteria. Confidence estimations are computed for each extracted 
value, determining its acceptance or, instead, the processing of 
the original input by an extraction method that has better quality 
at higher cost. The objective of SELFIE is to minimize the use 
of costly resources while maintaining output quality similar to 
the human-driven approach. The model also helps the planning 
and organization of IE work done by data scientists. 

Three experiments are reported in this paper to explain and 
demonstrate the capabilities of the model. The experimental 
results show, on average, a reduction of about 32% in the 
number of required humans and associated crowdsourcing cost, 
a reduction of 27% in the duration of the IE process, and a 
negligible decrease of 0.27% in the IE quality. 

The data and code utilized in this paper can be found at 
https://github.com/acislab/HuMaIN_Self-aware_Information_
Extraction.  

II. RELATED WORK 
The advent of the information era has condemned to 

extinction the traditional sequential and per-specimen 
cataloging process of museum collections described in [15].  

In 2012, the Workshop for Developing Robust Object-to-
Image-to-Data (DROID) Workflows, using the experience of 28 
digitization programs, initiated the construction of a collections 
digitization workflow. Nelson et al. [16] identify three dominant 
digitization workflows: in the first two, metadata are transcribed 
directly from the physical labels; in the third (Image to Data to 
Distribution), the image is collected and, in a posterior process, 
the information is extracted from it. This is the type of workflow 
studied in this paper, because it can lead to partial automation of 
the information extraction process.  

In 2015, during the Herbarium Workflows Workshop at 
Valdosta State University (Georgia, USA), a collections data 
extraction workflow that leverages three years of experience 
was presented. This customizable specimen processing pipeline 
has 14 modules [19]: 

(1) Pre-digitization Curation 
(2) Selecting Components for an Imaging Station 
(3) Imaging Station Setup, Camera/Copy Stand 
(4) Imaging Station Setup, Light Box 
(5) Imaging Station Setup, Scanner 
(6) Imaging 
(7) Image Processing 
(8) Organizing and Implementing a Public Participation 

Imaging Blitz 
(9) Imaging Archiving 
(10) Selecting a Database 
(11) Data Capture 
(12) Organizing and Implementing a Public Participation 

Transcription Blitz 
(13) Georeferencing 
(14) Proactive Digitization 

 The image capture result, an example of which is shown in 
Figure 1, is done by modules 7 through 9 of this workflow. The 
information extraction model proposed in this paper (SELFIE) 

is relevant to the Data Capture (11) and Transcription Blitz 
modules (12). 

 As it can be inferred by the utilization of Transcription 
Blitzes, which are “short periods of intense effort involving more 
than the average number of people involved in digitization”, the 
information extraction from large numbers of specimens relies 
on crowdsourcing, possibly online, thanks to initiatives like 
Notes from Nature [17] and the Zooniverse platform [18]. 

 Nowadays, many data capture processes are intrinsically 
organized around a software-based system that facilitates 
transcription, in a semi-automatic IE process. Examples of these 
applications are Symbiota [25], used for the digitization of the 
New York Botanical Garden; and SALIX [26], used in several 
digitization projects at the Arizona State University Herbarium. 
The latter is reported to accelerate the entry process in nearly 
30%, in comparison to typing. These software products are very 
specific to the type of collection for which they were created, 
some are tied to proprietary software and, more importantly, 
they help accelerate, not replace, human work. Volunteers and 
experts still have to verify each value extracted by the Optical 
Character Recognition software. SELFIE proposes to rely on 
computed confidence to avoid the human verification and 
editing of the extracted values. All these semi-automatic tools 
could be included in the human IE processes of a SELFIE 
workflow. 

 Extracting information from biocollections is complex 
because of its hybrid (human-machine) nature, the heterogeneity 
of the technologies to use, the amount of data to process, its 
interdisciplinary nature, and its multiple optimization goals 
(maximum quality, minimum duration, and effective resource 
utilization). Complexity is the main reason of the rise, in the last 
two decades, of self-awareness and advanced autonomous 
behavior in computing systems [27]. 

There is no definition or model of self-aware computing that 
applies to all domains. In general, “computing systems are self-
aware if they possess the capability to learn and exploit the 
models of themselves and the environment in which they are 
situated so as to act in accordance with high-level goals” [31].  

Self-aware principles have been applied to robotics [32], 
agent theory, and other areas, but we believe it is the first time 
they are applied to IE from biocollections. In hardware design, 
[28] defines a SElf-awarE Computing (SEEC) framework to 
meet conflicting goals (e.g., high performance with low energy 
consumption), using dynamically scheduling actions. In IE from 
biocollections, there are conflicting goals (e.g., low cost with 
high quality) and we search for the optimal orchestration of tasks 
with similar functionality but different cost and quality, in order 
to carry-out an IE job. Heterogeneity (humans & machines) of 
the processes adds additional complexity. SELFIE is a workflow 
model, but it is not a workflow management system (WMS) as 
Pegasus, Triana, Taverna, or Kepler [39]. Its implementation 
could use one of these WMS. 

SELFIE is inherently hybrid: machine and human dynamics 
are combined to improve the IE result. In [12], it was shown that 
hybrid workflows using Optical Character Recognition (OCR) 
can improve the accuracy of information extraction processes by 
more than 42%. It was also observed that the OCR tool Tesseract 
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is, on average, 25 times faster than OCRopus (another open 
source OCR tool) [33], which explains why Tesseract is chosen 
for OCR tasks in our experiments. 

III. SELF-AWARE INFORMATION EXTRACTION MODEL 
Information extraction (IE) is the process of finding and 

linking relevant information from unstructured and semi-
structured machine-readable sources [22][23].  We will use a 
workflow of data processing tasks to represent IE models (see 
Figure 3). 

 The quality of the IE process is commonly controlled and 
verified by data scientists. In order to make the model self-
aware, elements capable of assessing themselves are required. 

 “A self-aware system has knowledge of itself and its 
experiences, permitting reasoning and intelligent decision 
making to support effective autonomous adaptive behavior” 
[24]. In this paper, we will follow this definition, which includes 
both capabilities: assessing and acting, when referring to an 
entity as self-aware. Other authors understand self-awareness as 
just knowing the current state and use self-expressiveness to 
refer to the ability to adapt [36].  

A. Self-aware Task (SaT) 
In the context of this paper, Self-aware Tasks (SaTs) are data 

processing tasks capable of assessing their confidence on the 
quality of their outputs, and deciding whether they should be 
accepted as final results or not. If the output is accepted, the 
processing of the subject’s field ends. If it is rejected, the SaT 
“adapts” the SELFIE workflow by deciding where to send the 
candidate value or original unstructured data for further 
processing.  

In general, a SaT can be represented by a tuple consisting of 
(at least) input type, output type, an adaptable script or program, 
and an adaptable acceptance method with the corresponding 
actions to take. Possible actions include accepting an output and 
selecting an alternate task for further processing. The acceptance 
method could, for example, be implemented using artificial 
intelligence (AI) algorithms, logic rules, or ad-hoc tests. In 
general, both the script/program and the acceptance method can 
change or learn over time on the basis of observed output values 
or other feedback. However, in the cases considered in this 
paper, the adaptation of the script/program is limited to deciding 
where to send its output based on feedback from the acceptance 
method. The reported experiments do not consider the case 
when the acceptance method is adaptable. Future work will 
consider SELFIE workflows where more complex adaptations 
of both the script/program and the acceptance method are 
possible.   

Figure 2 exemplifies the components of a SaT. The 
“Adaptable Acceptance Method” section shows that candidate 
values with quality between b and 1 will be accepted, while 
values with quality lower than b will be sent to Task y. 

 
Figure 2. Components of a Self-aware Task (SaT).  

B. Self-aware Processes (SaP) and the SELFIE Model. 
Generally, data scientists can use and combine different 

methods to extract the information from the data source: 
crowdsourcing, optical character recognition (OCR), natural 
language processing, AI-based methods, experts’ transcription, 
etc. Each of these methods has different implications on 
utilization of resources, running time, monetary cost, and 
quality. For example, using domain experts can generate high-
quality results, but it can be very costly in comparison to other 
options (and very slow when few domain experts are available). 

 
Figure 3. Generic SELFIE workflow. The tasks are sequenced  

according to their (increasing) cost. 

The idea of the Self-aware Information Extraction (SELFIE) 
model (Figure 3), is to opt for using information extraction 
methods in incremental cost order (i.e., least expensive method 
first, followed by more expensive only if previous method has 
poor-quality output). The term “Self-aware Process” is used to 
refer to a sequence of tasks that perform an information 
extraction method. 

The basic principle in the workflow design is the following: 
if a process P has a higher extraction cost than process Q and 
generates results of lower or equal quality, process P should be 
discarded and not considered to be part of the workflow. This 
principle can be repeatedly applied among the IE alternatives to 
build a workflow similar to Figure 3. 

The cost of a SELFIE workflow (and its processes and tasks) 
is a function of one or more metrics that the implementer of the 
model decides as appropriate, e.g., execution time, required 
investment, number of volunteers, or any combination thereof. 
One example is the cost of using resources for the time needed 
to execute the workflow, which can be computed by the product 
of the cost of the resource per unit of time, the number of 
resources, and the execution time. Such a model could be used, 
for example, to capture the cost of using cloud resources. 

A SaP is a logical group of tasks that collectively implement 
an information extraction method, while a SaT is a machine or 
human activity that is part of a SaP. The last task of a SaP is 
always a SaT, while previous tasks can be conventional tasks. A 
SaP can be as simple as a single SaT. The required last SaT of a 
SaP includes the decision to either accept output candidate or 
invoke another task to generate better outputs. 

The model in Figure 3 represents n different SaPs. 
Potentially, more than one SaP could be active at a certain 
moment in time, typically working on different data.  When a 
candidate output of sufficient quality is produced by a given 
process, it is accepted as a final result and the processing finishes 
for the correspondent input. If the minimum quality requirement 
is not satisfied after a given SaP, the candidate output and/or 
input is passed to a SaP of higher cost, which is expected to 
generate a result with better quality. 
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The SELFIE approach is conceived and evaluated for 
extraction of information from biocollections data, but can be 
generalized to other domains. The SELFIE model adaptation 
can occur at different levels: SaT (adapting the program and 
acceptance method), SaP (adapting its tasks), and SELFIE 
model (adapting the SaPs). 

C. Nomenclature  
Figure 4 shows the graphical elements of SELFIE 

workflows. Besides Self-aware Tasks and Self-aware Processes, 
already explained, the following objects are used: 

Unstructured Data: the group of elements to be analyzed, 
which must be in a digital format to allow their use in 
crowdsourcing and/or machine tasks. Internally, the data 
required to extract a particular information item is not explicitly 
demarked. Audio files, images, and unstructured documents are 
common examples of unstructured data in biocollections. 
Unstructured data is usually specified with a logical address 
from where the elements can be retrieved. 

 
Figure 4. SELFIE’s nomenclature 

Information: processed data with some degree of 
organization, common examples being database tables or 
columnar files. Their processing is typically straightforward. 
The objective of the information extraction process is to provide 
the metadata in some structured format. In biocollections, 
outputs are formatted using Darwin Core terms. The SELFIE 
model adds a confidence estimation for each output value. Two 
storage buckets collect the output: one stores the accepted values 
and the other one collects the list of specimens for which a value 
with sufficient certainty could not be identified. 

Data Product (DP): data objects that support the execution of 
tasks during the IE process – e.g., dictionaries, OCR’s confusion 
matrix, or frequency lists. DPs can be created by an external 
entity or by a workflow’s task. A DP is specified through its 
name, location, and internal structure. 

Tasks: data processing steps, which can be executed by 
humans (gray-shaded in the figures) or machines (unshaded) and 
can be interconnected to form a workflow. A task is defined by 
a name, a script or interface to call, its parameters, and the output 
format. Crowdsourcing tasks require the specification of the 
number of users per subject that are expected to complete the 
task.  

D. Hybrid SELFIE for Biocollections 
In biocollections, the images from which the metadata need 

to be extracted are very diverse, as it can be observed in Figure 
5. This variability makes it challenging for artificial intelligence 
methods and automated information extraction to produce high 
quality results. Human intervention is always needed, therefore 
crowdsourcing methods and experts input have been 
historically preferred. 

We propose a hybrid approach where human and machine 
dynamics are integrated in a single model that efficiently uses 
the strength of each type of task. 

As machine-only workflows are typically faster than 
crowdsourcing methods, the key is to identify when machines 
produce results of higher or equivalent quality to that provided 
by humans. It is hereon assumed that SELFIE models are 
hybrid; if that is not the case, it will be explicitly indicated.  

IV. EXPERIMENTAL SETUP 

A. Dataset 
Between 2011 and 2014, the iDigBio’s Augmenting OCR 

Working Group (A-OCR) [29] carried out several initiatives to 
generate content and tools for the scientific digitization 
community. One of the results was a dataset with 400 images 
distributed in three collections: 100 insects (entomology), 100 
herbs, and 200 lichens images [30]. The dataset includes 
experts’ transcription of about 25 Darwin Core terms (fields) for 
these specimens’ images. This dataset was used to evaluate and 
verify the proposed SELFIE model.  

 
Figure 5. Image excerpts from the iDigBio-AOCR dataset. Left: image of the 

lichens collection. Right: image from the entomology collection  
(contains different labels, the specimen, a ruler, and graphical  

characteristics that make its automatic IE processing more difficult). 
Figure 5 shows excerpts of two different images in this 

dataset. Specimens, rulers and graphs are included in the 
pictures, which can have different quality, background, 
language, fonts, font sizes, symbols and types of writing 
(handwriting and/or typed). 

The inputs used in the first two experiments were a subset of 
100 images: 34 insects, 33 herbs, and 33 lichens, randomly 
selected from their respective collections. In the third 
experiment, all the 400 images of the dataset were used as 
inputs. 

B. Crowdsourcing  
 At the ACIS Lab of the University of Florida, a 
crowdsourcing experiment was conducted for the extraction of 
12 fields (Darwin Core terms), using the subset of 100 images 
mentioned above. The processed fields are: Event date, 
Scientific name, Identified by, Country, State, County, Latitude, 
Longitude, Elevation, Locality, Habitat, and Recorded by. 

 Thirty-eight (38) participants, most of them undergraduate 
students, were asked to transcribe the fields. At least three 
different participants transcribed each field of each image. 
Participants were paid at a rate of $10 per hour, being allowed a 
maximum of two hours of work. Each hour of crowdsourcing 
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was divided in three parts: 5-15 minutes of training, 40 minutes 
of work, and 5 minutes to answer a survey. 

 The “Crowdsource Transcription” tasks found below in the 
experiments’ workflows and their generated data correspond to 
this crowdsourcing activity.  

C. Damerau-Levenshtein (DL) similarity. 
Quality estimations for the transcribed (crowdsourced) and 

machine extracted values were computed using the normalized 
DL algorithm, which calculates the distance of two strings as 
the minimum amount of insertions, deletions, substitutions, and 
transpositions of two adjacent characters, required to convert 
one string into the other [21]. 

Symbols were excluded, leading and trailing spaces were 
removed, internal double spaces were converted to a single 
space, and strings were lowercased before computing the DL 
similarity; which is defined as the complement of the 
normalized DL distance: ݉݅ݏ஽௅(ݔ, (ݕ = 1 − ,ݔ)݁ܿ݊ܽݐݏ݅݀ ܮܦ ,|ݔ|) max(ݕ (|ݕ|  

D. Hardware/Software Platform 
The experiments were executed in an ASUS N46J laptop 

(CPU: Quad core i7 and 12 GB of RAM), running Ubuntu 
16.04 Desktop.  

The Optical Character Recognition software product 
utilized was Tesseract [20] version 3.04.01. The information 
extraction scripts were developed in Python and executed using 
Anaconda 4.3.14, Python 3.6.0, and GCC 4.4.7. The Geoffrey 
Fairchild’s implementation of the Damerau-Levenshtein 
normalized distance algorithm [38] was used. 

V. EXPERIMENTS & RESULTS 
Three information extraction experiments using images 

from biocollections were completed. In addition to validating 
and showing the usability of the SELFIE model, they present 
IE alternatives for different types of text fields. 

A. Experiment 1: Event-Date Extraction 
The main purpose of this experiment is to find out whether 

the use of the SELFIE model to process biocollections’ images 
can reduce the information extraction time while maintaining a 
similar quality result. 

 
Figure 6. Event date’s SELFIE model 

The SELFIE model depicted in Figure 6 was used to extract 
the Event date (collection date) of the specimens. In Figure 5, 

for example, the Event dates are “March 12, 1931” (left) and 
“VI-4-60” (right). 

Images from biocollections can contain several dates, but 
the Event date is usually the oldest one, because it is the date 
when the specimen was collected. There can be other dates in 
the image labels, indicating other cataloging events, but these 
are posterior to the collection date. 

The Event date’s SELFIE model has 2 processes: a process 
that tries to automatically extract the Event date, which uses an 
Optical Character Recognition (OCR) algorithm on the image 
and then extracts the dates via regular expressions; and a 
process that uses humans to transcribe the Event date 
(crowdsourcing experiment). In this last case, the crowd is 
asked to transcribe the Event date of a specimen only if the 
automatic process failed to find it or there is not enough 
confidence on the extracted value.  

Each image was transcribed by three participants, and a 
consensus algorithm was used to reconcile possible mistakes 
and/or differences in opinions. The consensus algorithm selects 
one of the dates based on the average similarity to the other 
candidates. Each workflow task is described below. 

OCR: Whole images (Input Data) are processed by the 
Optical Character Recognition software (Tesseract), which 
generates a plain text file with presumably all the textual 
information of the image (Output of the task).  

Reg. Expr.: The text generated by the OCR (Input) is 
scanned in search of patterns with a date format, e.g., Month 
DD, YYYY. Several date patterns are tested. Because the OCR 
process can generate some garbage characters and omit others, 
only long dates, with month in textual format, are considered. 
The confidence is implicitly obtained when the sequence of 
words matches a date pattern with reasonable length. Because 
an image can contain more than one date, the script returns the 
oldest one. In each image, the oldest identified date is 
considered the Accepted Event date for the specimen, which are 
sent to the repository of accepted values. If no date is identified 
in the image, it is sent to the next process for further processing. 
The regular-expression analysis, as all the other scripts utilized 
in this research, can be reviewed and downloaded from the 
GitHub repository of the paper [35]. 

Crowdsource Transcription: Figure 7 shows the Web 
interface used by the participants to complete this 
crowdsourcing experiment, which can be tried online at [34]. 
After a short training, participants completed the Event date 
transcription task.  Users typed in a box the date found in the 
image and clicked on "Save and Next" to proceed with the next 
image. At least three volunteers processed each image. If there 
is no date in the image, the text box must be left blank; and if 
there are more than one date, workers are instructed to write the 
oldest one. The transcription must be verbatim (“write exactly 
what you see, no interpretations or completions”). 

The output of this task are three strings per specimen 
(image), which can be blank. These candidate Event dates are 
sent to the consensus task. 
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Figure 7. Event date Transcription interface 

Consensus: This SaT receives the three candidate dates and 
computes the Damerau-Levenshtein similarity among them. If 
two or more candidate outputs have the same value, this value 
is chosen as the winner and the returned similarity is 1.0. If the 
three values are different, the candidate with the highest 
average similarity is the winner. In order to be accepted, the 
winner must have an average similarity of 0.75 (in a range from 
0 to 1) or higher; otherwise, the three candidate dates are 
rejected. 

After running the first SaP (machine-only), a date was found 
for 48 of the 100 images. The remaining 52 images were sent 
to be extracted by the crowd. From these 52 specimens, one 
image was rejected because consensus was not reached. 

 
Figure 8. Average similarity (0.0 - 1.0) of the Event date IE SaPs & SELFIE. 

The standard error to the mean (left) and the standard deviation (right) are 
shown as error bars for each process and for the whole workflow. 

The generated dates were compared to the experts’ 
transcription using the Damerau-Levenshtein similarity. Figure 
8 shows the average similarity, standard error of the mean (left, 
small range), and standard deviation (right range) for the two 
IE processes and for the entire workflow (SELFIE). The values 
represented in Figure 8, are detailed in Table I.  

TABLE I. SIMILARITY TO EXPERTS’ TRANSCRIPTION – EXPERIMENT 1 

SaP/SELFIE # Accepted Similarity SEM Std. Dev. 
Machine-only 48 0.934 0.024 0.167 
Human-only 51 0.971 0.022 0.155 

SELFIE 99 0.953 0.016 0.162 

The crowdsourcing process obtained a 3.7% higher quality 
(similarity to experts’ output) than the automatic (machine-
only) SaP, with a relatively small error but considerable 
variability in both cases.  

The SELFIE workflow delivered a quality of 0.953, which 
is 1.8% lower than the human-only approach (assuming the 
human-only approach would keep the same quality when 
processing all the 100 images). 

Figure 9 shows the average time required to generate an 
accepted output, assuming a sequential execution and 
disregarding the time required for programming, systems setup, 
advertising campaign, event scheduling, etc. needed for setting 
and executing machine and human IE processes. 

 
Figure 9. Average required time (seconds) per accepted Event date. 

The machine-only process is about 21 times faster than the 
human-only IE approach. The overall (combined) IE workflow 
took 54.25% of the time it would have taken a human-only IE 
process. The hybrid SELFIE model execution was 1.84 times 
faster than the traditional approach for data capture. 

Therefore, using the SELFIE model for processing 
biocollections’ images, it was possible to reduce the IE time, 
while maintaining a result with a quality similar to the common 
information extraction approach. For 99 of 100 images, the 
Event date was collected with an average similarity of 0.953, 
with respect to experts’ transcription. The number of humans 
required for the crowdsourcing experiment and the cost related 
to the crowdsourcing activity were reduced by 48% because 48 
Event dates were automatically extracted. Other observations 
about the experiment are as follows: 

 Since Tesseract was not modified to improve its 
performance on the experiment’s dataset and no 
improvements were made to the images or the OCR 
process, the amount of erroneous characters was high. 
A better or improved OCR process could decrease the 
errors of the extraction script, increase the amount of 
automatically extracted dates and reduce the overall 
execution time. 

 We used a relatively simple script for regular-
expression analysis. More robust data mining and 
machine learning mechanisms could be used to 
potentially improve the quality, recall, and execution 
time of the task. 

 In SELFIE, it is key to create SaTs with an accurate 
quality assessment function. In this experiment, all the 
errors of the automatic process happened because the 
OCR was not able to recognize parts of the text in the 
image. This impacted negatively the accuracy of the 
acceptance criteria and the whole experiment success. 
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B. Experiment 2: Scientific-Name Extraction 
The first experiment demonstrated how to extract Event 

dates, a mostly numeric field with a relatively fixed pattern. 
However, in biocollections, there are fields with values that do 
not follow an obvious pattern. In the last two experiments, we 
show how these other field types can be extracted. 

In this second experiment, we want to check whether it is 
possible to extract a complex field (Scientific name) using a 
SELFIE model to increase time and resource efficiency when 
compared to traditional human-oriented extraction process, 
while producing results of similar quality. 

Scientific names consist of two parts: the genus (first name) 
and the species (second name). One genus can have many 
species. These names, of Latin and Greek roots, have an 
internal structure with some specific meanings; for example, in 
some names, the suffixes “a”, “us”, and “um” are used to 
indicate the gender of the collected specimen, as feminine, 
masculine, and no gender, respectively  [37]. Similarly, suffixes 
-oidea, -idae, and -inae are used to indicate the size or type of 
the family-group. Taking advantage of these suffixes, we 
implemented the SELFIE model as depicted in Figure 10 for 
the extraction of the Scientific name field. 

 
Figure 10. Scientific Name’s SELFIE model 

Existing taxonomies can be used as a dictionary to validate 
the extracted values, while suffixes can help identify candidate 
values and reduce the amount of processing. The workflow was 
divided into three SaPs: 

1. The OCR is run on each specimen’s image and the 
output text is processed by a “Extraction by Suffixes” 
script, which tries to identify Scientific name 
candidates. If the script does not generate any candidate 
for an image, its OCR’s output is sent to the second 
process. Using the Damerau-Levenhstein similarity, 
candidate values are compared to the Scientific names 
of a Dictionary. The Scientific name of the highest 
similarity to the candidate value is accepted if the DL 
similarity is greater than 0.9. Otherwise, the OCR’s 
output is sent to the next process. 

2. The second process scans the text provided by the 
OCR, searching for genus and species with high 
similarity to one of the Scientific names in the 
dictionary. If the similarity is higher than 0.9, the 
Scientific name of the dictionary is accepted. 
Otherwise, it is sent to the next process. The similarity 
comparison performed in this and the previous SaPs 
enables the correction of small errors in the candidates 
values. 

3. In the last SaP, the images are processed by humans. 
After receiving a short training, at least three different 
users transcribed the Scientific name value in each 
image. A consensus algorithm, based on similarity 
among the candidate values picks one winner or sends 
the image to the rejected images container. The 
consensus criteria consists on selecting the candidate 
with the highest average similarity to the other 
candidates; the average needs to be higher than 0.85 for 
the output to be accepted. 

 Table II shows the number of accepted Scientific name 
values and the similarity (quality) with respect to the experts’ 
transcription. Standard error of the mean and standard deviation 
are provided.  SELFIE was unable to generate an acceptable 
output for only nine of 100 images. 

TABLE II. SIMILARITY TO EXPERTS’ TRANSCRIPTION – EXPERIMENT 2 

SaP/SELFIE # Accepted Similarity SEM Std. Dev. 
1. Suffixes 15 1.0 0.00 0.00 
2. Dict. Ex. 10 1.0 0.00 0.00 
3. Crowd 66 0.944 0.026 0.214 
SELFIE 91 0.959 0.019 0.183 

 The quality of the automatic processes was 5.6% better than 
the human-only SaP, which generated a small improvement in 
the quality (i.e., the similarity with respect to the experts’ 
transcription) of the whole SELFIE model, when compared to 
the traditional human-only approach.  

 Figure 11 compares the average Scientific name extraction 
time per accepted output for the different IE processes and the 
SELFIE model. The average duration is the ratio of the total time 
required to process all images by the number of accepted values. 
For example, the Machine 2 process (Dictionary extraction) was 
used to extract the Scientific name from 85 images, taking 
1098.82 seconds in total, but only 10 values were accepted; 
therefore, the graph shows 109.88 seconds, and not 1098.82/85 
= 12.93 seconds. 

 
Figure 11. Average duration (seconds) per accepted Scientific name  

for the SELFIE model and the 3 processes of Experiment 2. 

 The SELFIE model reduced in 15.3% the time required to 
extract the Scientific name of the 100 images compared to the 
traditional human-only approach, while slightly increasing 
(1.5%) the quality of the result. Because 25% of the values were 
extracted using only machines, the human resources required to 
complete this information extraction process and the associated 
cost were reduced in this same proportion.  

 In this experiment, the implementation of two automatic 
SaPs relied on an external data structure (a dictionary) to 
compute confidence. Unfortunately, these processes could not 
extract a large portion of the Scientific names in the images, 
mainly because the OCR was not able to recognize part of the 
text in the images (some of the images have the Scientific name 
in handwritten text). This generated a low efficiency in the 
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Machine 2 (Dictionary Extraction) process (see Figure 11), 
which generated only 10 accepted values from 85 analyzed text 
files. 

C. Experiment 3: Recorded-by Extraction 
For the Scientific name field, it was possible to use a pre-

existing dictionary, but not all the fields have a known list of 
possible values. This last experiment deals with textual fields 
for which possible or valid values are not known. It entails 
executing a human information-extraction process that allows 
the collection of some of the valid values, and then using these 
values for automatic extraction.  

The success of this method depends on how repetitive the 
values are in the specific field. A machine learning algorithm 
could also be used instead of a dictionary in order to identify 
candidate values, converting this first human extraction process 
into a training process. 

Experiment 3 evaluates if a SELFIE model can reduce the 
required time and resources to extract a field that has unknown 
values, while maintaining a quality equivalent to the human-
oriented approach. The field to retrieve is the Recorded-by 
Darwin Core term, which is the name of the person or people 
who collected the specimen at some location. 

 
Figure 12. SELFIE model of the Recorded by field. 

Figure 12 shows the proposed SELFIE model for the 
extraction of Recorded by. The first task, which can be 
considered part of the first SaP, divides the dataset in two 
subsets: a subset of 100 images to be transcribed by the crowd, 
and a larger subset (300 images) to be processed by machine 
algorithms. 

The workflow has three SaPs: 

1. The Recorded-by values of 100 images are transcribed 
by the crowd. Each image is transcribed by at least 
three users. The consensus algorithm computes the 
similarity among the candidate values. The candidate 
with the maximum average similarity, which has to be 
greater than 0.85, is accepted. 

2. Using the Recorded-by values that were accepted in the 
consensus process, a dictionary or list of valid values is 
created. The remaining 300 images are processed by 
the OCR, generating 300 labels or text files. These files 
are scanned by an extraction script that uses the created 
dictionary. The sequence of strings that correspond to 
an entry in the dictionary, are accepted, while 
specimens for which no Recorded by value are found 
are sent to the third process. 

3. This SaP is the same as the first SaP but using the 
remaining images for which no Recorded by value was 
identified in the second SaP. This process was not 

implemented, we assume that its quality is the same as 
the first crowdsourcing process. 

 Table III shows the similarity to the experts’ transcription 
obtained by the human and machine processes of the 
experiment. The quality of the machine-only SaP was 3.8% 
lower than the quality of the human-only process.  

TABLE III. SIMILARITY TO EXPERTS’ TRANSCRIPTION – EXPERIMENT 3 

SaP/SELFIE # Accepted Similarity SEM Std. Dev. 
1. Human 100i 92/100 0.900 0.030 0.288 

2. Machine-only 94/300 0.862 0.027 0.262 
3. Human 300i 191/206 0.900   

SELFIE 375/400 0.895   

 A total of 94 values were automatically extracted, which 
reduced by 23% the humans required in crowdsourcing and the 
cost of it. Assuming that the human IE process for the remaining 
206 images will have a similar quality to the first “training” 
human IE process, the SELFIE workflow can deliver results that 
are only 0.5% worse than the human-only approach. 

 
Figure 13. Average duration (in seconds) for extracting accepted “Recorded 

by” values for the SELFIE model and the processes of Experiment 3. 

 The overall duration of the extraction process was reduced 
by 20.36% (see Figure 13) compared to the human-only 
approach. The machine process is much faster than the human 
process, but only a small subset of values was automatically 
extracted. If this subset increases, the speedup will also increase. 

 Nevertheless, 23% of the Recorded by values were 
automatically extracted thanks to the creation of a dictionary 
from the real data. It would have been much harder, even 
impossible, to extract the field values using regular expressions 
or other basic techniques. 

VI. ERROR AND COST ANALYSIS 
The SELFIE model is highly affected by the accuracy of the 

self-aware tasks in recognizing incorrect candidate values. If 
this self-assessment fails, the quality of the whole process is 
compromised. 

 If the designer of the workflow sets a high-quality threshold 
to accept the extracted values, high execution time and 
utilization of costly resources will be expected. On the other 
hand, if the thresholds are set to a low value, quality cannot be 
guaranteed. 

 
Figure 14. SELFIE’s basic components.  

Consider a SELFIE workflow (see Figure 14) with the 
following characteristics: 
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 Two SaTs: Machine (M) and Human (H). The analysis 
applies regardless of the nature of each task.  

 Each task has an estimator (E) of its level of confidence 
in its output being correct.  

 When the estimator predicts a correct output, the task 
output is routed to the Accept repository. The 
remaining input subjects are forwarded to the next 
information extraction process.  

Error Analysis: 
A self-aware task has two components: an information 

extraction function and an estimator. The extraction function has 
the following associated probabilities: 

P(C) = Probability of extracting the correct value. 
P(I) = 1-P(C) = Probability of extracting an incorrect value. 

 Similarly, the estimator has the following associated 
probabilities: 

P(A) = Estimator’s probability of accepting an extracted value. 
P(R) = 1 – P(A) = Probability of the estimator of rejecting an 
extracted value. 

Four conditions can occur and each has an associated 
probability. They are: 

P(A|C) = Probability of accepting an extracted value given it 
is the correct one (True positive) 
P(A|I) = Probability of accepting an extracted value given it 
is incorrect (False positive). This is the probability of an 
error that affects SELFIE’s output quality. 
P(R|C) = Probability of rejecting an extracted value given it 
is the correct one (False negative). This is the probability of 
an error that affects SELFIE’s cost. 
P(R|I) = Probability of rejecting an extracted value given it 
is incorrect (True negative). 

 These probabilities depend on the accuracies associated with 
the implementations of the IE program and the estimator. In 
order to increase the quality of the process, we want to minimize 
P(A, I), the probability of error all over the inputs. That is to say, 
we want:  min ,ܣ)ܲ (ܫ = min{ܲ(ܫ|ܣ).  {(ܫ)ܲ

 In other words, we need to minimize the false positive 
conditions by using estimator and IE program that are as 
accurate as possible. 

Cost analysis: 
 Let C denote total cost, CM the cost of the task M and CH the 
cost of task H. Let N denote the number of inputs to be 
processed. The total cost is the cost of processing all inputs by 
task M and the cost of processing the subset of inputs forwarded 
to H. The probability of an input being sent to H is the 
probability P(R), i.e., P(R|C) + P(R|I). The formula of the total 
cost would be: ܥ = ெܥ ∗ ܰ + ுܥ ∗ ܰ ∗ (ܥ|ܴ)ܲ ]  +  [(ܫ|ܴ)ܲ 

 In order to minimize the cost, the expression ܲ(ܴ|ܥ)  should be minimized, for which a good estimator and (ܫ|ܴ)ܲ + 
information extraction tasks are again crucial. 

 Cost analysis is shown in general terms because of the high 
variability in hardware infrastructure and crowdsourcing 
implementations that can be used. For example, we decided to 
pay $10 to the participants of the crowdsourcing activity, but 
options like Zooniverse, which is free, could also be used: 
modifying importantly the structure of costs. A more detailed 
analysis will be undertaken in future follow-up work. 

Integrated cost and accuracy analysis: 
The SELFIE approach relies on task types such that the 

larger their cost the more accurate they are. Since we consider 
the combination of human and machine tasks, it is reasonable to 
assume the following: (1) human tasks are the most accurate and 
also much more expensive than machine tasks, and (2) 
compared to human tasks, machine tasks have much lower costs 
that may grow with accuracy requirements. In future follow-up 
studies, task cost models will be analyzed (e.g., constant, linear, 
and exponential), with the objective of making predictions. For 
example, how high must the accuracy of certain machine task be 
in order to accelerate the extraction time by a factor of ten with 
a bounded increase in cost? Similar analysis and questions will 
be addressed for the quality estimators.  

CONCLUSIONS 

The paper proposes SELFIE, a hybrid (human-machine) IE 
model for biocollections. SELFIE is based on the execution of a 
cost-ordered sequence of IE processes and the use of self-aware 
tasks which can evaluate the quality of their results and decide 
whether to accept the values or to send the input to be analyzed 
to a higher quality process. 

Three experiments following the proposed SELFIE model 
showed that it is possible to extract information from 
biocollections datasets using less time, human resources, and 
monetary cost than the human-only IE alternative without 
significantly degrading quality. 

On average, when using the SELFIE model, the time 
required to extract an accepted value was reduced by 27.14%. 
This estimated reduction considers only the tasks execution time 
and the processing time of the data. It does not consider the time 
needed to organize crowdsourcing activities and developing or 
setting the required software infrastructure. Likewise, it was not 
considered the time spent on programming the IE scripts. 

On average, the number of required human-hours and other 
crowdsourcing costs were reduced by 32% when using the 
SELFIE model, while the quality negligibly decreased by 
0.27%. 

Three different types of fields, commonly found in 
biocollections were used in the experiments to demonstrate that 
self-aware tasks can be created for a wide variety of cases. One 
case considers field values that are easily identifiable. Another 
case illustrates a method to create dictionaries from real data in 
order to enable automatic IE. 
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