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Abstract

Deep neural network (DNN) has become an effective compu-

tational tool because of its superior performance in practice.

However, the generalization of DNN still largely depends

on the training data, no matter in quantity or quality. In

this paper, we propose a knowledge instillation framework,

named NeuKI, for feed-forward DNN, aiming to enhance

learning performance with the aid of knowledge. This task

is particularly challenging due to the complicated nature

of knowledge and numerous variants of DNN architectures.

To bridge the gap, we construct a separate knowledge-DNN

faithfully encoding the instilled knowledge for joint training.

The core idea is to regularize the training of target-DNN

with the constructed knowledge-DNN, so that the instilled

knowledge can guide the model training. The proposed

NeuKI is demonstrated to be applicable to both knowledge

rules and constraints, where rules are encoded by structure

and constraints are handled by loss. Experiments are con-

ducted on several real-world datasets from different domains,

and the results demonstrate the effectiveness of NeuKI in

improving learning performance, as well as relevant data ef-

ficiency and model interpretability.

1 Introduction

In the past decade, deep neural networks (DNN) have
achieved a huge success in various application domains,
such as computer vision [1] and natural language pro-
cessing (NLP) [2]. Following an end-to-end design [3],
DNN is typically trained with label information under
supervised settings, and seeks to avoid the explicit struc-
ture and feature engineering in data. With the current
facilities of abundant labelled data and affordable com-
puting resources, DNN somewhat balances well between
the data efficiency and learning performance [4].

Meanwhile, it has been well-received that human
knowledge has a great potential in facilitating real-world
applications [5]. Analogous to the human’s decision
making, which involves both nurture (e.g., experiences)
and nature (e.g., cognition), combining data with do-
main knowledge can be beneficial in enhancing learn-
ing performance. For example, in medical domains, the
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quantity and quality of the labelled data are usually
very limited, because collecting valid samples for one
disease could be labor-intensive and time-consuming [6].
To alleviate such problems, researchers usually employ
structured approaches, such as graphical models [7], to
improve the sample complexity with prior knowledge.
This methodology naturally enlightens people to utilize
human knowledge for further enhancement of DNN un-
der similar scenarios in deep learning era.

To make use of human knowledge in DNNs, a
straightforward way is to build a hybrid system which
combines both expert systems and DNN models [8].
With this integration, people can directly inject do-
main knowledge into the expert system, so as to en-
hance DNN performance. Beyond this, constructing
neural-symbolic system is another methodology to com-
bine knowledge with DNN [9], which generally manip-
ulates architectures from given knowledge to perform
reasoning. In addition, researchers recently try to in-
corporate knowledge by adding logical constraints to
DNN [10], aiming to integrate structured knowledge
through model regularization.

While initial attempts have been made, effective
knowledge incorporation in DNN is still considered to
be challenging due to the following reasons. First,
most of the human knowledge, such as domain the-
ory, are structured with hierarchy, which makes it non-
trivial to be encoded. For example, the distillation
method [10], though powerful, has the limitation to re-
flect the knowledge structure. Second, human knowl-
edge can be diversified with different forms, thus build-
ing a general framework for incorporation is hard. Ex-
isting method [11], for instance, is designed only for se-
mantic constraints. Third, the target-DNN for integra-
tion can have different architectures. With the example
of recent method CILP++ [9], it is simply applicable to
multilayer perceptron (MLP) and fails for convolutional
neural network (CNN), for knowledge incorporation.

To tackle the aforementioned challenges, we pro-
pose a general knowledge instillation framework, named
NeuKI, to instill human knowledge into feed-forward
DNN. Particularly, besides the target-DNN, we build
another separate knowledge-DNN artificially. The
knowledge-DNN is faithfully constructed to regularize
the training of target-DNN, so that instilled knowledge
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can affect the model prediction intentionally. NeuKI
is demonstrated to be applicable to different forms of
knowledge, including both structured rules and declar-
ative constraints. Besides, NeuKI does not have addi-
tional requirements on the type of target-DNN as long
as it is feed-forward, which makes it convenient to incor-
porate knowledge into different types of DNN. The main
contributions of this paper are summarized as follows:

• We propose a general knowledge instillation frame-
work NeuKI, for feed-forward DNN to incorporate
knowledge through regularized model training.

• We design a general architecture for knowledge-DNN,
which can incorporate different forms of knowledge,
including structured rules and declarative constraints.

• We conduct experiments on several real-world
datasets from different domains, demonstrating the
effectiveness and superiority of NeuKI.

2 Preliminaries

In this section, we briefly introduce some basics within
the context of this paper, and formulate the problem.

2.1 Human Knowledge Within this paper, the
concept of knowledge specifically refers to those human
knowledge (e.g., domain theory) which can assist peo-
ple to make better predictions in practice. To enhance
human’s decision with knowledge, logic plays an impor-
tant role for reasoning [12]. To this end, most of hu-
man knowledge is organized as either structured rules in
first-order logic [13] or declarative constraints in propo-
sitional logic [14]. The general definitions of knowledge
rules and knowledge constraints are given as below.

Definition 1 (Knowledge Rule): It is an explicit
regulation formulated from structured human knowl-
edge, which can be generally represented as:

(2.1) Rule r : A ←− A1,A2, · · · ,Am, (m ≥ 0),

where A is the head and {A1, · · · ,Am} is the body of r.
Knowledge rules are comprehended from right to

left side: if all the body atoms are true, then the head
atom is also true. Each atom (e.g., A and Am) in
rule r is essentially a tuple p(t1, t2, · · · , tn) (n ≥ 1),
where p denotes an n-ary predicate and t1, t2, · · · , tn
are the corresponding input terms. When n = 1, the
predicates in r can be regarded as the attributes of
input term. Consider one knowledge rule of animal:
Is Carnivore(x) ← Is Mammal(x), Eat Meat(x), for
example. Is Carnivore(x) is the head atom, and
Eat Meat(x), Is Mammal(x) are the body atoms,
where x denotes the input instance of animal. This

knowledge rule just indicates that, if an animal is
mammal and eats meat, then this animal is a carnivore.

Definition 2 (Knowledge Constraint): It is gen-
erally represented as a declarative statement, which is
built by atoms representing basic propositions.

Knowledge constraint is essentially a propositional
formula, whose atoms may simply have the value true
or false. Usually, atoms are combined into propositional
formulas through various logical operators, such as con-
junction (∧) and disjunction (∨). For example, ”Lion is
a mammal and eats meat” is a typical knowledge con-
straint, where two atoms (i.e., ”is a mammal” and ”eats
meat”) are combined in conjunction with value true.

2.2 Feed-Forward DNN Feed-forward DNNs, such
as MLP and CNN, are widely used neural models, where
neurons are structured by layers and neuron connections
only exist between different layers. In feed-forward
DNNs, each neuron connection has an associated weight
and is established without cycles. Typically, the first
layer is input, the last layer is output, and others are
named hidden layers. The neurons in the input provide
information from outside. The hidden neurons are
responsible for model computation. The neurons in the
output generate predictions to outside. All information
flows inside the model move in only one direction.
Considering an input feature vector x = [x1, x2], the
output of one hidden neuron ho can be expressed as:

(2.2) ho = f(w0 · 1 + w1 · x1 + w2 · x2),

where f(·) indicates the activation function, w0 is the
bias term and w = [w1, w2] denotes the connection
weights. Given samples with features x and target y,
feed-forward DNN can learn the relationship between
x and y. The common training method is the back-
propagation (BP) algorithm. With proper loss, op-
timizer and hyper-parameters, feed-forward DNN can
work well for both classification and regression tasks.

2.3 Problem Statement We denote the target-
DNN for incorporation as N t

W, where W indicates the
network parameters. With conventional training, W is
iteratively updated to make correct predictions for the
labels in training data D. Assuming knowledge K is
available for prediction, we aim to enhance the learn-
ing performance of N t

W with the aid of K. To achieve
this, K need to be integrated with the training pro-
cess of N t

W, so that the information in K could be ef-
fectively injected into W. Overall, compared with the
standard training simply with D, our goal is to conduct
a knowledge-regularized training for N t

W with both D
and K. In this paper, specifically, we refer this joint
training process as the knowledge instillation.
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3 Knowledge Instillation

(3.3) L(zt, zk,y, h)=λt
∑
i∈M

Lt
(
qi(z

t, h), yi
)

︸ ︷︷ ︸
loss for target-DNN

+λk
∑
j∈M′

Lk
(
qj(z

k, h), yj
)

︸ ︷︷ ︸
loss for knowledge-DNN

+λd
∑

l∈M∩M′

Ld
(
1− ql(zt, h), 1− ql(zk, h)

)
︸ ︷︷ ︸

loss for knowledge consensus

Labeled Data

Overall Loss Function

Training

Testing
Loss Term

Target Neural Network
（Learn from nurture）

Loss Term

Knowledge Neural Network
（Learn from nature）

Figure 1: The overall framework of NeuKI.

In this section, we formally introduce NeuKI, illustrated
by Fig. 1. Then, we generally design knowledge-DNN,
and introduce how to instill rules and constraints.

3.1 Overall Framework Design We design NeuKI
to instill knowledge specifically for feed-forward DNNs.
To effectively integrate K with target-DNN N t

W, we
particularly design a separate knowledge-DNN N k

T as
the model regularizer. N t

W and N k
T are jointly tuned

for instillation during training, while only N t
W is kept

for prediction during testing. Moreover, N t
W and N k

T

have the same access to D, but they are essentially
different in design, where target-DNN is built based
on particular task and knowledge-DNN is constructed
by specific knowledge. The details of knowledge-DNN
construction will be introduced in Sec. 3.2.

For N t
W, the logit vector [15] can be indicated by

zt = [zt1, · · · , ztM ], considering M classes in total. The
softmax function with temperature h is defined as:

(3.4) qi(z
t, h) = exp(zti/h)

/∑M

j=1
exp(ztj/h),

where h controls the distribution softness. For N k
T,

since knowledge for instillation could be partial, the
corresponding logit vector zk may only cover part of the
classes. We denote the original class set as M (|M| =
M), and the class set covered by knowledge as M′
(M′ ⊆M). Through similar softmax function qi(z

k, h)
in Eq. 3.4, the probability distribution over |M′| classes
would be obtained for N k

T. To effectively regularize W,

we let the probability distribution fromN k
T influence the

distribution from N t
W accordingly. Thus, in the overall

loss, a term on prediction difference between N t
W and

N k
T is designed to achieve the knowledge regularization.

The overall loss of NeuKI can be formulated as
Eq. 3.3, where λt, λk, λd indicate the associated term
weights, and y = [y1, · · · , yM ] corresponds to the la-
bels in D. The first term in Eq. 3.3 aims to measure
the training loss of target-DNN and its specific form
depends on the task we handle. For example, in a clas-
sification task, Lt could be the cross-entropy expressed
as Lt = −yi log(qi(z

t, 1)) − (1 − yi) log(1 − qi(z
t, 1)).

The second term is to measure the training loss of
knowledge-DNN, and Lk could be selected as either con-
ventional losses or some special knowledge losses, which
will be introduced specifically in Sec. 3.4. The third
term is the key for knowledge instillation, where we mea-
sure the consensus between target-DNN and knowledge-
DNN. The intuition is that the predictions from N t

W

and N k
T need to be as close as possible, since the train-

ing samples from real world ought to be matched with
valid knowledge. Particularly, Ld is employed as the
distance-based loss (e.g., cosine distance), measuring
the classification difference with reverse probabilities1.

As for the training of NeuKI, considering the con-
vergence speed, we apply simultaneous stochastic gradi-
ent decent (SSGD) to optimize the framework for joint
training, which has been proved to be efficient in [16].
With the overall loss in Eq. 3.3, the objective function
for SSGD optimization can be further expressed as:

(3.5) min
W,T

L(zt, zk,y, h) + µtΦ(W) + µkΦ(T),

where µt, µk denote the balance coefficients, and Φ(·)
indicates the L2 regularization. By optimizing Eq. 3.5,
N t

W andN k
T are jointly tuned for knowledge instillation.

3.2 Knowledge Network Structure Constructing
a faithful knowledge-DNN regarding to the instilled
knowledge is pivotal for the proposed NeuKI. In-
spired by neural-symbolic systems [17] and graph net-
works [18], we design a general knowledge-DNN to map
human knowledge. Instead of conducting full connec-
tion in MLP or local connection in CNN, we create the

1Since M′ ⊆ M, measuring difference from the reverse side
can help incorporate classification probabilities from all M classes.
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Input Layer

Value Layer

Intermediate Layer

Conjunction Layer

Head Layer

Figure 2: The structure of knowledge-DNN.

neuron links specifically according to the structured re-
lations in knowledge. In this way, the relational induc-
tive bias [18] from knowledge can be effectively encoded
into the DNN architecture. The general structure of
knowledge-DNN is shown in Fig. 2.

To make effective mappings, we design five different
layers for knowledge-DNN. The input layer is designed
to handle the predicates in D. The value layer aims
to associate input with specific values, since human
knowledge could involve numerical conditions beyond
binary ones. The intermediate neurons are arranged
to mimic the knowledge structure, usually representing
some high-level concepts. Through the conjunction
layer, different pieces of knowledge are merged together.
One conjunction neuron typically indicates an unique
knowledge item, corresponding to one decision criterion.
Head neurons represent all possible outcomes with
knowledge. Note that the number of head neurons may
not necessarily equal to the class number in D, because
the instilled knowledge could be incomplete.

Knowledge-DNN is basically a special MLP with
sparser connections, encoding the relational interac-
tions reflected by knowledge. Knowledge-DNN has bet-
ter model interpretability compared with conventional
DNNs, due to its intuitional network architecture. Es-
sentially, the relational insights from knowledge-DNN
are obtained by sacrificing its general computation ca-
pability. Although knowledge-DNN may not work well
in general cases, it could be beneficial for the specific
task with particular knowledge. The loss function of
knowledge-DNN is left to be discussed in Sec. 3.4.

3.3 Instilling Knowledge Rules We now introduce
how to handle the knowledge rules, indicated by Eq. 2.1.
The overall steps include two parts: rule representation
and parameter initialization. Without loss of generality,
we consider the body atom as the input attribute, which
is the 1-ary predicate for knowledge rules.

Rule Representation. Given a set of knowledge
rules, we can map the corresponding relations to the
architecture of knowledge-DNN by customizing neuron
connections. Fig. 3 shows a simple example of rule rep-

Input

A1 A2 A3 A4 A5

B1 B2

Knowledge Rule Set:

i. B1  A1 , A2

ii. B1  A3 , A4 , A5

iii. B2  A1 , A2 , A3 , ¬A5

iv. B2  ¬A3 , A5

Conjunction Head

Figure 3: The example of rule representation.

𝜃 𝜃 𝜃 𝜃 𝜃 -𝜃 𝜃 -𝜃

(a) (b)

𝑏𝑖𝑎𝑠 = −
7

2
𝜃 𝑏𝑖𝑎𝑠 = −

3

2
𝜃

Figure 4: The examples of parameter initialization.

resentation by knowledge-DNN. Moreover, if the rule set
contains different values for the same predicate, a value
layer need to be employed to further discriminate. Also,
if the rule set is organized hierarchically, intermediate
layers need to be introduced for representation as well.

Parameter Initialization. To guarantee the
faithfulness, we need to further initialize the parameters
of knowledge-DNN, including bias and weight terms. By
manual initialization, we aim to guide the knowledge-
DNN to behave as rules define. Here, we employ a
similar scheme used in [19]. Referring rules, we assign
weight θ to each connection with positive attribute
input, and assign −θ to connections with negative
inputs. The bias of the aggregate neuron can be
initialized based on the activation marginR and positive
connection number P , which is indicated by:

(3.6) bias = −(P −R) · θ, (0 < R < 1).

To illustrate the points, we show two examples in
Fig. 4, where both of them assume binary attribute
input for simplicity. In both examples, R is set to
be 1

2 . Besides, for some special knowledge rules whose
atoms are arranged in disjunction manner, we can set
the corresponding P as 1, since the aggregate neuron
would be activated if any of the input attribute is true.

Furthermore, it is remarkable to note that the
knowledge-DNN in NeuKI is applicable to different
types of knowledge rules, including deterministic, prob-
abilistic and fuzzy rules. For deterministic ones, the
weights could be stored in constant tensors simply with
value θ, −θ and 0, which would not be updated by
the BP algorithm. Under this scenario, the designed
knowledge-DNN is reduced to a decision tree with cer-
tainty. For probabilistic and fuzzy rules, we could
use variable tensors to store the weights, and further
tune the weights through BP process. The normalized
weights in knowledge-DNN can indicate the conditional
firing probability as well as fuzzy truth value.
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3.4 Instilling Knowledge Constraints Declara-
tive constraint is another important carrier for knowl-
edge. By employing special losses, knowledge-DNN is
also capable of incorporating constraints. With NeuKI,
referring Eq. 3.3, we aim to encode constraints through
Lk. Specifically, let Lαk denotes the knowledge loss on α,
where α is a declarative statement for constraint. Then,
Lαk measures the satisfaction extent for α, and Lαk = 0
when α is perfectly satisfied. With similar principles,
the knowledge loss on complex formulas with conjunc-
tion and disjunction, can be further indicated by:

(3.7) Lα∧βk = Lαk + Lβk and Lα∨βk = Lαk · L
β
k ,

where Lα∧βk = 0 holds only when Lαk = Lβk = 0,

and Lα∨βk = 0 holds for either Lαk = 0 or Lβk = 0.
As for the loss on formulas with negation, it could
be handled by transformation with De Morgan’s laws.
Recent work [11, 20] have already conducted some initial
exploration on the functional form of Lαk , and effectively
encoded some specific semantic constraints. Here, we
will not investigate the general form of Lαk , but instead
discuss the differences for constraint instillation between
NeuKI and other existing work.

Despite the specific functional form of Lαk , existing
work [11, 20] all treat Lαk as an additional regularization
term for training. Instead of appending Lαk at the
end of loss, NeuKI directly employs Lαk to train a
separate model (i.e., knowledge-DNN) for constraint
instillation. There are some nice properties of doing
this: (1) The auxiliary training of knowledge-DNN
provides another view from the constraint perspective,
which potentially improve the network convergence; (2)
The knowledge consensus term Ld, referring Eq. 3.3,
enables the knowledge reciprocity from different tasks
(i.e., label prediction and constraint satisfaction), which
is beneficial for performance enhancement. Thus, we
note that NeuKI is more advantageous in handling
knowledge constraints compared with existing efforts.

4 Experiments

In this section, we evaluate NeuKI on several real-world
datasets from different domains. With the experiments,
we aim to answer three key research questions:

• How effective is NeuKI in improving learning perfor-
mance of the target-DNN with human knowledge?

• How does the data efficiency change by knowledge
instillation with NeuKI regarding to the target-DNN?

• How is the model interpretability of the target-DNN
after instilling specific human knowledge with NeuKI?

4.1 Experimental Settings

Table 1: Dataset statistics in experiments.

Datasets #Instance #Class Domain

ASD 704 2 Clinical Diagnosis
SGS 3, 190 3 Life Science
MR 10, 662 2 Sentiment Analysis

IMDB 50, 000 2 Sentiment Analysis

4.1.1 Datasets We employ four real-world datasets
to evaluate NeuKI. The relevant knowledge depends
on the specific task, which is formulated from different
perspectives. The data statistics are given in Table 1.

• Autistic Spectrum Disorder (ASD): It is a recent
dataset on ASD classification for adults, which is used
to evaluate NeuKI on knowledge rules;

• Splice-junction Gene Sequences (SGS): It in-
volves the sequence data with imperfect domain the-
ory, which is used to evaluate rule instillation as well.

• Movie Review (MR): It is a benchmark dataset
for sentiment classification, which is used to evaluate
NeuKI on knowledge constraint instillation.

• IMDB2: It is another large-scale benchmark dataset
for binary sentiment classification, which is also used
for evaluation of constraint instillation.

4.1.2 Alternatives and Baselines We employ the
following alternatives for knowledge instillation.

• KBANN [19]: This is one of the earliest knowledge-
based models, which is designed by manipulating
MLP architecture based on knowledge rules.

• Rule-p/q [10]: This is a recent method to incorpo-
rate rules for DNN, which is developed by iterative
projections between student (p) and teacher (q).

• Semantic Loss [11]: This method is designed to
incorporate semantic constraints for DNN, which
appends a knowledge loss term for regularization.

Besides, we also include some DNN baselines as follows.

• MLP [21]: The basic DNN for prediction. We use it
as the baselines for most of the tasks in experiments.

• CNN-seq [22]: The CNN designed for sequence
classification, which is our baseline for SGS data.

• CNN-text [23]: The CNN designed for text classifi-
cation, which is our baseline for MR and IMDB data.

• LSTM [24]: The recurrent model for text classifica-
tion, which is the baseline for MR and IMDB data.

2http://ai.stanford.edu/~amaas/data/sentiment/
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4.2 Experimental Results In the following, we
present and discuss the experiment results of NeuKI.
Sec. 4.2.1 and Sec. 4.2.2 study NeuKI on learning per-
formance with knowledge rules. Then, in Sec. 4.2.3,
we focus on the data efficiency with NeuKI. Further,
model interpretability aided by NeuKI is discussed in
Sec. 4.2.4. Finally, we investigate the NeuKI with
knowledge constraints in Sec. 4.2.5. For all the experi-
ments, DNNs are implemented with Keras3, and we set
h = 1, λt = λk = 1, µt = µk = 10−3.

4.2.1 Learning with Extracted Rules. In this
part, we first evaluate the learning performance of
target-DNN with NeuKI on a clinical application. Par-
ticularly, we employ the ASD dataset, and split the data
where 80% is for training and 20% is for testing. Con-
sidering the data type (i.e., categorical) and prediction
task (i.e., classification), we employ target-DNN N t

W

as an MLP model with one hidden layer. Lt, Lk take
the binary cross-entropy loss, and Ld is implemented as
the Euclidean distance. Besides, we set λd = 1.6 for
overall training. Since there is no available knowledge
directly applied to ASD dataset, we use the extracted
rules as potential probabilistic knowledge for classifica-
tion. Specifically, we use WEKA 3.84 to mine relevant
knowledge rules from ASD dataset, and the correspond-
ing rules are listed as below. In the mined rule set, the
head atoms indicate the predicted label (i.e., ”YES”
and ”NO”), and the body atoms correspond to the at-
tributes of each patient (e.g., ”A1 Score”).

Classification Rules for ASD Dataset ---

NO←A9 Score=0,result=4; NO←result=6;

NO←A5 Score=0,A6 Score=0,A9 Score=0;

NO←result=5; NO←A4 Score=0; NO←A7 Score=0,jundice=no;

YES←A4 Score=1,A5 Score=1,A10 Score=1;

YES←A1 Score=1,A3 Score=1; YES←A5 Score=1,A6 Score=1;

Relevant experiment results are shown in Fig. 5(a).
Among all the experiments, each method is run ten
times with different random seeds, and the final results
are reported based on the average. From the results, we
see that all knowledge-based models can somewhat im-
prove the accuracy with the aid of the extracted knowl-
edge rules. Besides, NeuKI outperforms all other alter-
natives and the baseline, which directly demonstrates
the effectiveness of NeuKI in enhancing learning perfor-
mance with the aid of knowledge rules.

4.2.2 Learning with Domain Theory. In this
part, we evaluate NeuKI with specific domain theory,
which is typically a set of rules organized hierarchically.

3https://keras.io/
4https://www.cs.waikato.ac.nz/ml/weka/downloading.html
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Figure 5: Classification accuracy with knowledge rules.

Specifically, we employ SGS dataset, and split the data
for 10-fold cross validation. Since the prediction task is
the sequence classification, we employ both MLP and
CNN-seq as baselines. Also, since Rule-p/q method
is not applicable to hierarchical rules, the alternative
we compare with only contains KBANN. In this task,
the employed MLP consists of two hidden layers, and
the employed CNN-seq contains one convolutional layer.
The hyper-parameters for the overall loss is the same as
those in the ASD prediction task. As for the knowledge
rules of this task, we refer to literature [25] and present
the rules as follows. These rules are also considered
to be probabilistic ones due to their uncertain nature
in life science. In the rule set, the head atoms corre-
spond to high-level concepts (e.g., ”pyramidine-rich”)
or predicted labels (e.g., ”EI”), and the body atoms in-
dicate the relative location to reference point (e.g., @3)
or the corresponding DNA symbols (e.g., ‘TAG’). The
standard notations of all possible combinations with nu-
cleotides are introduced in [26].

Domain Theory for SGS Dataset ---

EI ← @-3’MAGGTRAGT’, ¬EI-stop;
EI-stop←@-3’TAA’;EI-stop←@-4’TAA’;EI-stop←@-5’TAA’;

EI-stop←@-3’TAG’;EI-stop←@-4’TAG’;EI-stop←@-5’TAG’;

EI-stop←@-3’TGA’;EI-stop←@-4’TGA’;EI-stop←@-5’TGA’;

IE ← pyramidine-rich, @-3’YAGG’, ¬IE-stop;
pyramidine-rich ← 6 of (@-15’YYYYYYYYYY’);

IE-stop←@1’TAA’; IE-stop←@2’TAA’; IE-stop←@3’TAA’;

IE-stop←@1’TAG’; IE-stop←@2’TAG’; IE-stop←@3’TAG’;

IE-stop←@1’TGA’; IE-stop←@2’TGA’; IE-stop←@3’TGA’;

Fig. 5(b) shows the results on SGS dataset. Ac-
cording to the results, we note that CNN-seq performs
much better than MLP for the sequence classification
task, and it even outperforms the alternative knowledge-
based model KBANN. As for NeuKI, it works well
on both MLP and CNN-seq architecture, and enables
a higher accuracy compared with all other baselines
and alternatives accordingly. This set of experiments
demonstrate that NeuKI is also capable of instilling do-
main theory with knowledge rules to further enhance
the learning performance of the target-DNN.

4.2.3 Data Efficiency with Rules. In this part,
we evaluate the data efficiency of target-DNN with
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Figure 6: Data efficiency comparison.
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Figure 7: Model interpretability illustration.

NeuKI in both ASD and SGS dataset. To test the
data efficiency, we train each DNN with different data
scale regarding to the whole training set, and observe
the corresponding accuracy. In particular, under the
same scale, the model with higher test accuracy is
regarded to be more efficient in training. Fig 6 shows the
experiment results for both datasets. For ASD dataset,
in Fig 6(a), we note that NeuKI and other alternatives
are more efficient than the baseline MLP, especially
when the training data is largely limited to 10% or
20%. Compared with alternatives, the data efficiency
of NeuKI is competitive, and can slightly outperform
them when the training scale is over 20%. Besides,
for the scenario where training scale is extremely small
(under 10%), we also note that KBANN is the best
performer, which may benefit from its specific structure
and initialization. In Fig 6(b), we have some similar
observations for SGS dataset. With NeuKI, the target-
DNN (i.e., MLP or CNN-seq) acquires enhanced data
efficiency compared with baselines accordingly, and
slightly outperforms the alternative KBANN when the
training scale is over 20%. From this set of results, we
demonstrate that the data efficiency of the target-DNN
can be improved by knowledge instillation with NeuKI.

4.2.4 Model Interpretability with Rules. We in-
vestigate the model interpretability of target-DNN with
NeuKI in this part. Conventional DNN typically lacks
interpretability, because what they learn highly depends
on the training data itself. However, with the aid of
NeuKI, we can obtain some model insights for target-
DNN according to the knowledge we instill. Specifically,
to evaluate the model interpretability, we intentionally
perturb the instilled knowledge and further observe the

classification changes. If the target-DNN could alter its
predictions in the perturbation direction, the instilled
knowledge is then shown to be effective in reflecting the
model mechanism, which can be regarded as a lens to
the target-DNN. In particular, we make perturbations
on both the extracted rules in ASD dataset and the
domain rules in SGS dataset. The perturbation prin-
ciple is to reverse all the rules whose head atom in-
volves prediction labels. For example, if the head atom
of one knowledge rule in ASD dataset is ”YES”, then we
would reverse it to ”NO” as our perturbative rule. In
SGS dataset, along with this principle, we don’t modify
those knowledge rules with high-level concepts.

In the experiments, we observe the performance of
target-DNN under three different scenarios, i.e., with-
out knowledge rules, with normal rules and with per-
turbative rules. We use λd, referring Eq. 3.3, to control
the knowledge regularization strength. The results are
shown in Fig. 7, where NeuKI N and NeuKI P respec-
tively indicate the instillation with normal and pertur-
bative rules. According to the results in both datasets,
we note that instilling perturbative rules is detrimental
to the accuracy of target-DNN, which demonstrates the
fact that perturbative rules potentially alternate some
predictions which are correctly classified without rules.
Besides, with the increase of λd, NeuKI N can help im-
prove the accuracy of target-DNN where the best im-
provements are reached at λd = 1.4 or λd = 1.6 depend-
ing on the task. Similarly, within some extent, the larger
λd will also enable NeuKI P to depress the learning per-
formance significantly. With this set of experiments, we
note that the model interpretability of target-DNN is
improved due to the instilled knowledge with NeuKI.

4.2.5 Learning with Knowledge Constraints. In
this part, we evaluate the effectiveness of NeuKI on
knowledge constraints. To be specific, we employ the
exactly-one constraint, which is evaluated in [11], for
classification tasks. The declarative statement α for
the constraint can be stated as: the network output for
classification tasks should be mutually exclusive, i.e.,
exactly one binary indicator must be true. Accordingly,
the semantic knowledge loss Lαk is indicated by [11]:

(4.8) Lαk = − log

M∑
i=1

qi

M∏
j=1,j 6=i

(1− qj),

where M is the number of classes, and qi denotes the
probability of class i. Particularly, in our experiments,
we focus on the sentiment classification task, and use
MR as well as IMDB dataset for evaluation.

The experiment results are shown in Table 2. As for
the CNN-text rand and CNN-text static, they indicate
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Table 2: Accuracy with knowledge constraints.

Model
Accuracy (%)

MR IMDB

LSTM 78.8 84.1

CNN-text rand 76.1 83.4

CNN-text static 81 86.9

LSTM + Semantic Loss 78.8 84.2

CNN-text rand + Semantic Loss 76.3 83.9

CNN-text static + Semantic Loss 81.3 87.6

CNN-text rand + NeuKI 76.6 84.1

CNN-text static + NeuKI 81.5 88.2

two different modes of the baseline CNN-text, referring
the notations in [23]. According to the results, we note
that both the semantic loss and NeuKI help improve the
accuracy, with the aid of the exactly-one knowledge con-
straint. Since this constraint is not strong, we can only
observe a limited improvement with knowledge instilla-
tion. Besides, with the benefits of auxiliary training and
knowledge reciprocity, NeuKI obtains slightly higher en-
hancement accordingly, compared with the alternative.
This set of experiments directly demonstrate the effec-
tiveness of NeuKI in instilling knowledge constraints,
and show the advantages of NeuKI for constraint instil-
lation over the existing method.

4.3 Discussion With conducted experiments, we
give a further discussion about the target-DNN and in-
stilled knowledge. Although some promising results are
shown, we still need to point out that human knowl-
edge cannot always guarantee the improvement despite
the knowledge correctness. The key lies in the match-
ing extent between knowledge and data. Take one of
our initial experiments on the lung cancer dataset (not
reported in this paper) for example. Smoking and air
pollution have been generally considered as two impor-
tant reasons for lung cancer. However, after we instill
such knowledge, we obtain the worse performance than
baselines. A quick overview for the data help us find the
answer, which shows that there does exist many patients
who never smoke and inhale polluted air. This example
just demonstrates the importance of knowledge match-
ing with regards to data. Thus, to better enhance the
performance, the instilled knowledge can be partial, but
it need to be matched with specific data. This actually
explains why we employ WEKA to extract knowledge in
Sec. 4.2.1, instead of using some social theory, because
we need the exact knowledge for ASD dataset rather
than the general knowledge for autistic disorder.

5 Related Work

Combining human knowledge with learning models has
been regarded as a significant problem for a long
while [27]. So far, various efforts have been paid to
enhance the generalization and interpretability of DNN
with the aid of knowledge. We categorize those work
into two lines, and introduce some representative ones.

The first line of efforts lies in how to utilize the
structured rules for DNN. Recently, [10] proposed a dis-
tillation framework to transfer the knowledge in rules
into the parameters of DNN, which is applicable to di-
versified DNN architectures. Focusing on image clas-
sification tasks, the authors in [28] designed a method
to incorporate prior deterministic knowledge rules with
semantic based regularization. In addition, the struc-
tured rules formulated by relation graphs were studied
in [29], with the goal of enhancing accuracy in object
classification. Moreover, in [30], the authors employed
the local patterns and the rule-modulated map to in-
tegrate the structured knowledge, aiming to strengthen
conventional DNN with long-term dependencies.

The second line focuses on the knowledge constraint
integration with DNN. The authors in [11] designed a
general semantic loss function to reflect the constraint
satisfaction, which regularizes the learning process of
DNN based on human knowledge. In [20], the authors
proposed a way to translate knowledge constraints into
a differentiable loss term with desirable mathematical
properties, and further optimized DNN with constraint
regularization. Authors of [31] studied the constrained
CNN for image segmentation tasks, where a novel loss
function was employed to tune the models with set of
linear constraints on outputs. As for work [32], the
authors directly imposed hard constraints on DNN with
a computationally feasible way, and showed promising
results aided by knowledge constraints.

6 Conclusion and Future Work

In this paper, we propose a general knowledge instilla-
tion framework, named NeuKI, to incorporate human
knowledge for enhancement of feed-froward DNN. In
particular, a separate knowledge-DNN is faithfully de-
signed to encode knowledge, which is jointly trained
with target-DNN for knowledge regularization. By
customizing the architecture as well as the loss of
knowledge-DNN, NeuKI can sufficiently handle both
structured rules and declarative constraints. Experi-
ments on several real-world datasets demonstrate the
improved learning performance with NeuKI, as well as
the enhanced data efficiency and model interpretability.
Promising future extensions of this work may include in-
stilling more general knowledge and enabling reasoning
capability of DNN with the aid of human knowledge.
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