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Abstract—We present an interactive HPC framework for
coupled fire and weather simulations. The system is suitable
for urgent simulations and forecast of wildfire propagation and
smoke. It does not require expert knowledge to set up and run
the forecasts.

The core of the system is a coupled weather, wildland fire,
fuel moisture, and smoke model, running in an interactive
workflow and data management system. The system automates
job setup, data acquisition, preprocessing, and simulation on
an HPC cluster. It provides animated visualization of the results
on a dedicated mapping portal in the cloud, and as GIS files or
Google Earth KML files. The system also serves as an extensible
framework for further research, including data assimilation and
applications of machine learning to initialize the simulations from
satellite data.

Index Terms—WRF-SFIRE, coupled atmosphere-fire model,
MODIS, VIIRS, satellite data, fire arrival time, data assimilation,
machine learning

I. INTRODUCTION

The United States has entered a new era of increasing
wildfire frequency and intensity, which has culminated in
a number of devastating wildfire seasons over the past decade.
The landscape has become more fire-prone due to climate
change and urban development, which has resulted in steeply
rising fire-suppression costs. On the other hand, fire is a part of
the natural environment, and fire prevention practices can often
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lead to excessive fuel accumulation and catastrophic fires that
are difficult to manage. There is a significant need for man-
agement decisions that are based on a multifaceted analysis
of risks and benefits associated with wildfires and prescribed
burns. As a result, new advanced decision support tools that
integrate satellite/aerial remote sensing with a coupled fire,
weather, fuel and smoke modeling framework are needed.
Configuring a real weather-fire simulation requires signifi-

cant expertise. The forecast system described here is a dis-
tillation of such expertise into a system that is relatively
easy to use. The authors found this forecast system to be
the most convenient way for setting up fire simulations for
research applications, instead of manually configuring model
simulations.
This communication is primarily concerned with the HPC

work flow and with the aspects of the models and data
which affect the ability to provide a forecast. See [1]–[7]
for more information on the modeling and data assimilation
methodologies employed.
The rest of this paper is organized as follows. In Sections II

and III, we provide a brief overview of the physics models
employed. Section IV contains a description of the overall
HPC workflow. Section V deals with data acquisition. The
next two sections outline two breaking extensions of the sys-
tem and demonstrate its applicability for advancing research
purposes: ignition from satellite fire detection data by machine
learning in Section VI, and assimilation of the satellite data
in Section VII. Case studies showing the capability of the
system to deliver forecasts are presented in Section VIII, and
Section IX is the conclusion.

��

�����*&&&�"$.�)1$�GPS�6SHFOU�%FDJTJPO�.BLJOH�	6SHFOU)1$


����������������������������¥�����*&&&
%0*���������6SHFOU)1$����������������



II. COUPLED FIRE-ATMOSPHERE MODEL

The core of the system is WRF-SFIRE, which couples
a high-resolution multi-scale atmospheric model, NCAR’s
Weather Research and Forecasting (WRF) model [8], with
a spread fire model (SFIRE). WRF-SFIRE was developed at
the University of Colorado Denver and NCAR [2]. WRF-
SFIRE became part of the WRF release in 2011 as WRF-
Fire [3], [9], which was recently selected by NCAR as the
foundation of the operational Colorado Fire Prediction System
(CO-FPS), and is currently under further development at
NCAR [10], [11]. WRF-SFIRE was further developed by
coupling with smoke [1], a fuel moisture model [4], [5], and
spin-up of the atmosphere model for perimeter ignition and
data assimilation [7], [12]. An older iteration of WRF-SFIRE
also serves as the foundation of the Israel national wildfire
simulation and danger system MATASH [13]. See [14] for
a survey of wildland fire models.
WRF-SFIRE has grown out of [15] by replacing the atmo-

sphere model with WRF and its HPC infrastructure, and by
using a level set method to trace fire progression. The fire
rate of spread is parameterized based on the local wind speed,
topography and fuel characteristics at the fireline, and also
coupled with a prognostic dead fuel moisture model. Smoke
propagation is modeled by WRF tracers, which are transported
by the wind field. The tracers are emitted at a rate proportional
to fuel consumption and inserted into the lowest layer of the
WRF grid. Through the integration of a fuel moisture module
that is driven by surface atmospheric conditions, this model
can resolve the diurnal and spatial variability of fuel moisture,
and its impact on the fire behavior, plume rises, and downwind
smoke dispersion. As a result, the predicted fire behavior
and plume dynamics are linked to the atmosphere through
winds and fuel moisture, which are in turn locally affected by
the fire. WRF-SFIRE is designed to simulate the landscape-
scale physics of the coupled fire-atmosphere phenomena and
focuses on the importance of rapidly changing meteorological
conditions at the fire line by accounting for local feedbacks
between the fire, fuel, terrain, smoke [16], and atmospheric
boundary layer evolution. This modeling framework is driven
by operational numerical weather prediction products to gen-
erate downscaled weather forecasts at a resolution of sev-
eral hundred meters, which enables capturing fire-atmosphere
interactions as well small-scale meteorological phenomena
such as thunderstorms, micro-bursts, and topographical flows.
WRF-SFIRE is a community, open source software,1 which
benefits from being built upon the community WRF code and
the expertise of an international team of atmospheric modelers
contributing to WRF.

III. FUEL MOISTURE MODEL

One of the unique aspects of WRF-SFIRE is its integration
with the fuel moisture model. The fuel moisture code uses air
temperature, relative humidity, and precipitation to estimate

1https://github.com/openwfm/wrf-fire

the equilibrium fuel moisture contents, and then runs a time-
lag differential equation to trace the time evolution of the
moisture content in four fuel time-lag classes (1 h, 10 h,
100 h, and 1000 h). Spatial maps of fuel moisture in these
classes correspond to the fuel elements that have diameters
that range from less than 1.81 mm (1 h) to 20.3 cm (1000 h).
The differential equation is run at each node of the atmospheric
mesh (hundreds of meters resolution) on the surface, so the
computational cost compared to the cost of the atmospheric
model is negligible. The fuel moisture contents in all classes
are then interpolated to the finer fire mesh, and combined
according to the proportion of the fuel moisture classes for
each fuel type. The integrated contribution from these classes
provide the overall fuel moisture at the fire model resolution
(tens of meters), which is used in the computation of the fire
progression.
In addition to the fuel moisture model integrated in WRF-

SFIRE, a standalone implementation of the fuel moisture
model with assimilation of dead fuel moisture observations
from remote automated weather stations (RAWS) was devel-
oped [5]. The system uses a trend surface model (TSM), which
accounts for the effects of topography and meteorological
conditions on the spatial variability of fuel moisture. At each
grid point, the TSM provides a pseudo-observation, which is
assimilated via Kalman filtering into the fuel moisture model
state and parameters. The standalone fuel moisture model with
RAWS data assimilation is used for fuel moisture nowcasting.
The output from this system (updated hourly) is processed
through the visualization pipeline (Section IV-C below), as
well as used to initialize the fuel moisture model and its
parameters in WRF-SFIRE.

IV. REAL-TIME HPC WORKFLOW

A flowchart of the entire system is in Fig. 1. The sys-
tem consists of three main components: graphical front
end wrfxctrl2, HPC simulation and management system
wrfxpy3, written in Python, and web-based visualization
wrfxweb4 in JavaScript. There are no services running, ex-
cept for the inevitable web servers. Jobs are independent shell
scripts calling Python and running as background processes.
This design and the initial implementation were developed

by Martin Vejmelka. They resulted in a transparent and ex-
tensible architecture, with a reasonable learning curve for new
developers.

A. Initialization
The fire simulations are initialized and their execution moni-

tored from the graphical front end control system wrfxctrl.
The front end allows a user to click on a map to ignite
a simulated fire anywhere in the Continental United States
(CONUS), define ignition time, forecast length as well as
to select a simulation profile with a predefined horizontal
resolution, domain sizes, and type of meteorological forcing

2https://github.com/openwfm/wrfxctrl
3https://github.com/openwfm/wrfxpy
4https://github.com/openwfm/wrfxweb
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Fig. 1. Overall system flowchart. Dashed connectors are research pathways
which are functional, but their use is currently not automated.

TABLE I
SIMULATION PROFILES

Profile
Parameter 1 2 3 4

Number of grid points
in the innermost 166 x 166 97 x 97 70 x 70 61 x 61
domain (X × Y )
Resolution of
the innermost 555 m 555 m 333 m 333 m

atmospheric mesh
Fire mesh 28 m 28 m 33 m 33 m

resolution (m)
Meteorological forcing NAM218 NAM218 NAM227 HRRR
Max. forecast length 84 h 84 h 60 h 36 h

used to initialize the weather model. Examples of typically
used simulation profiles are presented in Table I.
Then, the job description is created and encoded as a JSON

file with all needed initialization parameters, data sources,
HPC resources requested, and a selection of visualization prod-
ucts. The front-end starts the simulation as a background script
forecast.sh in the wrfxpy system with the JSON job
description file as command line argument. For experiments,
the JSON input file can be modified and the forecast script
run by hand. The front end monitors the progress of jobs
graphically as well as by a scrolling the text log. The graphical
front end is implemented as a single-user web server, running
as a local application on a front end node of HPC cluster. Since
the functionality of the front end controls is implemented by
inquiring files, it can be restarted and continued without any
adversary effects.
After a job is started by running wrfxpy/forecast.sh,

it completes job parameters with defaults, creates the job
directory, and creates a JSON file with the initial job state
and various control text files, called namelists and tables in
WRF, which contain description of the simulation domains
and simulation parameters.

B. Preprocessing

The WRF Preprocessing System (WPS) [17] consists of
three programs, GEOGRID, UNGRIB, and METGRID, and
it is followed by REAL, which is distributed with WRF rather
than WPS. In the preprocessing step, the system first starts
two or more processes in the background, and waits for their
completion:
1) GEOGRID defines the simulation domains and interpo-

lates static data to the grids. GEOGRID is run on stan-
dard static data, which come with WRF, plus GeoTIFF
files with fine-scate topography and fuel information
(Section V-A below). WRF-SFIRE contains an extended
version of GEOGRID with GeoTIFF support [18] for
this purpose. If the job specifies the use of the output of
the fuel moisture model with RAWS data assimilation,
its state and parameters become one more dataset to be
processed by GEOGRID.
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2) Download atmospheric data (Section V-B below) for the
simulation period and process them by the UNGRIB
utility. UNGRIB processes meteorological data, which
comes in GRIB format, to an intermediate format.
There may be more than one such process; e.g., the
CFSR product comes as two collections of files, each
containing different 3D atmospheric fields, and the two
collections of files are downloaded and processed in
parallel.

The outputs of GEOGRID and UNGRIB are then processed
by METGRID, which interpolates the meteorological data
horizontally to the model grid, and then by REAL to create
vertical levels and finalize the WRF input files.
The prescribed fire arrival time obtained from ignition by

machine learning (Section VI below) or data assimilation
(Section VII below) can be written into the WRF input files
at this point.

C. Running the Simulation on HPC Cluster
Once the WRF input files are ready, the forecast script

submits an MPI job to the queuing system on the cluster and
waits until the log files appear, and then waits for a line in
the log that indicates that WRF wrote a frame to the output
files. If the frame is not found in the output files, which may
happen on a distributed system, where a head node may not
be presented with a timely image of the filesystem, the script
will wait and keep trying. The system also inquires the cluster
queuing system for the status of the MPI job and updates the
job JSON status file, otherwise, if the job does not complete
successfully, the system might wait for its output forever.
When the new time frame is found in the WRF output

files, the system processes the frame and produces geolocated
PNG files for each specified output product, then transfers the
PNG files by ssh to the visualization server (wrfxweb, Sec-
tion IV-D below) along with metadata as a JSON file. When
the transfer is completed, the system executes a command
remotely on the visualization server to add the metadata for
the frame to its global JSON catalog of simulations.
Aside from the default products, such as the fire area, fire

heat flux, wind vector field, and smoke, the post-processing
system supports also custom products, such as integrated
particulate matter (PM2.5), smoke at a specified height, or
winds at a specified pressure height, often used for aviation
support.
If specified in the job description, the visualization system

can create from each time frame Geographical Information
Systems (GIS) output files in the standard GeoTIFF format.
The conversion is designed not to lose information, i.e.,
each fire mesh node becomes a GeoFIFF pixel, without any
interpolation. This is achieved by specifying in the GeoTIFF
the same geographic coordinate system and projection that
WRF uses (a special Lambert Conformal Conic projection
centered on the simulation grid, based on spherical Earth with
the radius 6370 km). In addition, the coordinate system needs
to be adjusted for the fact that WRF mesh nodes are in the
centers of the mesh cells, while the coordinates of GeoTIFF

pixels refer to their corners. Wind vectors are written as
GeoTIFF files with two bands comprised of the two directional
components. This approach allows the map portal to choose
a more appropriate display for a given scaling.
In addition, when processing a time interval, satellite data

acquired and used in the system is also postprocessed into
geolocated PNG files and and written as GeoTIFF files using
the same fire mesh limits. The system takes into account that
their geolocation uses WGS-84 ellipsoid without projection.
After the visualization files are created and transmitted, the

system waits for the next time frame, or a line in the log
indicating that the job has completed.

D. Web Visualization Portal
The web visualization portal wrfxweb is written in

JavaScript. It uses the global JSON catalog of simulations,
transmitted to it by wrfxpy, to build its menus and display an-
imations of simulations. Each animation runs in a loop, which
gets longer as additional time frames arrive. The visualization
server is able to treat satellite data interpolated to the fire mesh
the same way as fire simulations. The web server also makes
available the download of a Google Earth file, with the same
structure and overlays as the animation.
An instance of the visualization server wrfxweb runs

publicly at http://demo.openwfm.org. It was used to obtain the
screenshots in Fig. 6 below.

V. DATA ACQUISITION

A. Static Data
The atmospheric model WRF runs at scales of hundreds

of m to several km. In addition to standard surface data in
numerical weather prediction (NWP), such as elevation and
land use, WRF-SFIRE requires fine-scale elevation maps and
fuel information for the fire propagation. Fuel information
is available from LANDFIRE5 as the number of one of 13
fuel categories [19], at the 30m resolution. This information
is processed into a single GeoTIFF file covering CONUS.
Elevation data from LANDFIRE are likewise processed into
a single GeoTIFF file with 30m resolution for the whole
CONUS.

B. Atmospheric Data
The atmospheric model for WRF-SFIRE uses initial and

boundary conditions provided by a coarser-scale, gridded, 3D
numerical weather prediction product, which needs to span
the duration of the simulation. wrfxpy currently supports
a number of weather forecast models such as the High-
Resolution Rapid Refresh model (HRRR) [20], the North
American Mesoscale model (NAM) [21], the North American
Regional Reanalysis (NARR) [22] and the Climate Forecast-
ing System Reanalysis (CFSR) [23]. The CFSR is a global
reanalysis product at approximately 38 km resolution, and is
available from 1979 to now, at 6 h intervals. The NAM and
NARR models have coverage of North America, while CFSR

5https://www.landfire.gov
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Fig. 2. Example of Level 2 MODIS data, one granule restricted to a fire
simulation domain. Red pixels are fire detection, green pixels are no fire
detections, and transparent pixels are missing data. 2015 Cougar Creek fire,
WA.

offers a global coverage. Two NAM versions are supported:
NAM218 (executed 4 times a day and providing 12 km
resolution forecast), and NAM227 (runs on the same schedule,
but at 5 km horizontal resolution). The NAM218 is available
up to 84h into the future, while the NAM227 is limited to
60h. The HRRR offers only a 36h forecast and its coverage is
limited to the continental US, but it, unlike the other reanalysis
and forecasting products, is executed in-line with an extensive
data assimilation system ingesting radar data in order to help
initialize convective processes. The HRRR archive starts at the
end of 2014. The NARR reanalysis product has a grid-spacing
of 32 km and provides grided historical meteorological data
from 1979 to near present.
The fuel moisture nowcasting model is running off the

Real Time Mesoscale Analysis (RTMA) [24], providing hourly
surface meteorological fields, as well as elevation, on the
2.5 km resolution CONUS grid.

C. Satellite Fire Detection Data

Satellite data come as raw instrument readings (Level 0
and Level 1), which are processed into Level 2 products.
Level 2 data consists of logically rectangular arrays of pixels
along the satellite flight path, called granules, accompanied by
a separate geolocation file for each granule, which contains
the geographical coordinates of each pixel. The geolocation
files are large and shared by all Level 2 products. Level 2
data are recommended for science use [25], while Level 3
data, which consists of fire detection pixels only, are typically
used in operational applications to mark the fire locations.
Level 3 products are compact, since only the fire detection
pixels and their coordinates are transmitted, but they do not
make a distinction between a pixel with no data available,
e.g., because of clouds or obscuration by the terrain, and an
observation of clear ground without a fire detected.

The satellite fire detection products acquired by our sys-
tem are Level 2 Active Fires satellite data (Fig. 2) from
polar-orbiting satellites, Terra and Aqua with the Moderate
Resolution Imaging Spectroradiometer (MODIS) [25] and
Suomi NPP with Visible Infrared Imaging Radiometer Suite
(VIIRS) [26]. This satellite fire detection data consists of
a categorical mask, where every pixel is classified to be either
unknown, non-fire, or fire, and may be further distinguished
by a confidence level.
Metadata of all available Active Fires granules intersecting

the space-time bounding box of the fire mesh of WRF-
SFIRE and the simulation interval are collected using Python
CMR API.6 The metadata contains links to NASA Land,
Atmosphere Near real-time Capability for EOS (LANCE)7
for current data and the NASA Land Processes Distributed
Active Archive Center (LP DAAC)8 for archive data. In
the LANCE database, only data in the previous 7 days is
stored and it is made available within 3 hours of the satellite
observation. In contrast, LP DAAC database contains all past
available granules after additional cleaning and calibration,
with the latency within 8-40 hours of the satellite overpass.
Sometimes a granule is found in both resources; in that case,
the LP DAAC database is selected because of better data
quality compared to the LANCE database. Finally, geolocation
and Active Fires products for each granule are matched and
downloaded using their url link from the metadata.
Best-case resolutions for satellite products are roughly

375 m [27] and 1 km [25] for the VIIRS and MODIS products,
respectively. Because these satellites scan the terrain below
them in a “back and forth” manner perpendicular to the flight
path, resolution decreases as the scan angle increases from the
nadir view. The new geostationary GEOS satellites provide
observations several times each hour, but at a lower resolution
of approximately 2 km and much less in high latitudes.
All atmospheric and satellite data files and the outputs of

UNGRIB are cached, so repeated runs are faster when they
require files already in the cache.

VI. AUTOMATIC IGNITION BY MACHINE LEARNING

We now present a procedure for automated initialization of
a coupled fire-atmosphere simulation from satellite data when
the fire has already grown. We want to retrieve the fire arrival
time for all nodes on the fire simulation grid, and then we can
start the coupled model in a consistent state using a spin-up
(Section VII-B below). Existing approaches to estimation of
the fire arrival time from satellite data include direct mapping
of the first time in a year when fire was detected [28], spatial
interpolation [29], and kriging [30].
We cast the estimation fire arrival time as a separation

problem, which can be solved by a support vector ma-
chine (SVM, [31]). The fire arrival time can be interpreted
as a surface in time-space, with two horizontal dimensions
(longitude and latitude) and time as the vertical dimension.

6https://pypi.org/project/Python-cmr
7https://earthdata.nasa.gov/earth-observation-data/near-real-time
8https://lpdaac.usgs.gov
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Fig. 3. Estimation of the fire arrival time for the 2018 Pole Creek fire from
satellite Active Fires detections. Upper and lower bounds from satellite fire
detections as red and green points respectively, and fire arrival time as the
separating surface from SVM as contour lines plot.

Then, the presence of a fire can be interpreted as burning
and not burning points in time-space, and the fire arrival time
becomes a separating surface between the burning and non-
burning time-space points (Fig. 3).
We apply the SVM with training data consisting of pairs

(ui, vi), where vi = (ti, xi, yi) ∈ R3 (time, longitude, latitude)
are points in space-time, and ui = 1 if there is fire detected
at vi and ui = −1 if not. The SVM then proceeds by fitting
a function f of the form

f(v) = b+
N∑

j=1

wj K(v, vj), f(vi) ≈ ui,

with kernel K and suitable weights wj , and predicts that an
arbitrary time-space point v is on fire if f(v) > 0 and v
is not on fire if f(v) < 0. We use the standard Gaussian
kernel K(v, v′) = e−γ||v−v′||2 . The fire arrival time T (x, y)
at location (x, y) is then found from the separating surface
f(v) = 0 by solving for T from

f(v) = 0, v = (T, x, y). (1)

SVM has no notion of looking for the graph of a function.
Thus, the data needs to be preprocessed so that artificial
fire and no-fire detections are added after each real fire and
before each real no-fire detection respectively (once on fire,
always on fire after, and clear ground, always clear before)
and no-fire detections after a fire detection are blocked (once
on fire, never clear ground). After that, the function f is
found using the svm.SVC method from the Python package
scikit-learn [32]. The hyperparameters, the kernel width
and a penalty constant, are optimized by a grid search cross-
validation. Finally, T (x, y) at each node (x, y) of the fire grid
is found as the minimal solution T of (1) by line search and
inverse cubic spline interpolation.
The procedure is done in near-real time on a single core.

Download of all fire detection data the MODIS sensor on
on Terra and Aqua satellites and VIIRS on the Suomi-NPP

satellite in the a typical 100 km by 100 km simulation
domain and 7-day simulation window takes currently about
25 min. Then, the preprocessing and interpolation to the fire
model mesh takes about 6 seconds. After that, currently an
automatic 5-fold cross validation is performed to tune the
hyperparameters and is the main bottleneck, taking 1 to 2 h
depending on the complexity of the data. The crossvalidation
executes the SVM many times, evaluating possible values of
the hyperparameters by a 2D grid search. This bottleneck could
be overcome exploring a method called the Relevance Vector
Machine [33] (RVM), which performs similarly to SVM but
without the necessity of tuning a pair of hyperparameters.
Once we have the best values for the hyperparameters, the
training is done in 70 s and the classification of the 3D mesh
in 3 min. Finally, the postprocessing part where we define the
final fire arrival time is done in 2 min. Therefore, currently
the process takes between 1-3 h.

VII. ASSIMILATION OF SATELLITE FIRE DETECTION DATA

Many methods exist to update a fire spread model from data,
see, e.g., the survey [34]. Reinitializing simulation directly
from satellite fire detection pixels was proposed in [35] for
a fire-spread model and in [36] for a coupled model. But
since satellite data is much lower resolution than the fire
model and burdened with errors and missing data, we use data
assimilation to improve the model output only in a statistical
sense.
Monte-Carlo data assimilation methods, such as ensemble

and particle filters, run a large number of fire simulations,
e.g., [2], [37]–[41]. However, the computational cost of run-
ning an ensemble of high-resolution coupled fire-atmosphere
simulations is large, and when only the fire state is updated, the
fire and the atmosphere states become inconsistent. Therefore,
we are currently using a Maximum Aposteriori Probability
(MAP) estimator from Bayesian statistics, e.g., [42], which op-
erates only on a single simulation, and we keep the atmosphere
and the fire states in sync by a spin-up, originally developed
for perimeter ignition [12], [13].

A. Maximum Aposteriori Probability Estimate

With fire arrival time denoted by T f , the MAP is formulated
as the minimization problem

−
∑

G

∑

(x,y)∈G

cG(x, y)fG,x,y(T − tG,x,y)

+
α

2
∥T − T f∥2A → min

T
.

Here, the function fG,x,y(T − tG, x, y) is the log likelihood of
the conditional probability of a satellite observation in location
(x, y) at the time tG, which is the time associated with the
satellite granule G containing the pattern of detections of fire,
of no-fire condition, and and of missing data in the area of
interest. The term cG(x, y) is the confidence level.

The data likelihood function can be derived from validation
studies of the VIIRS Active Fires detection algorithm [27] as
well as from the MODIS geolocation documentation [43]. This
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Fig. 4. The effect of data assimilation on the model forecast for the Patch
Springs Fire of 2013. Note how the analysis has moved the fire perimeter to
encompass the large number of fire detections on the western section of the
fire but has not done so for the comparatively sparser sets of detection in the
southwest.

data likelihood function gives the conditional probability of
the satellite fire detections given the state of the model. More
details on this likelihood function are given in [6]. The penalty
term in the MAP reflects a prior belief about the state of the
fire, to favor smooth changes in the fire arrival time and prevent
overfitting to the satellite data. The operator A in the squared
norm ∥T−T f∥2A is a fractional power of the Laplace operator,
implemented by Fast Fourier Transform. Further details of the
derivation of this term are given in [12].

B. Atmosphere Model Spin-up
Because the WRF-SFIRE system couples a fire spread

model with an atmosphere model and data assimilation of
satellite fire detections changes the model’s fire arrival time but
does not change the state of the atmosphere, inconsistencies
between the state of the fire and the state of the atmosphere
develop, effectively breaking the coupling between the two
models as the simulation is advanced forward in time. In order
to overcome these inconsistencies, a technique for using an
artificial fire history called the spin-up has been created [4].
In spin-up, the fire model is suspended and heat fluxes are
computed from a prescribed fire history, i.e., a given fire arrival
time.
After the fire arrival time has been modified by data

assimilation (Fig. 4), the fire and the atmosphere model are
brought back into a consistent coupled state again over a spin-
up period (Fig. 5). For this purpose, we create an artificial
fire history to blend the forecast and the analysis fire arrival
time as follows. The coupled model produces a forecast fire
arrival time T f . Data assimilation of satellite fire information
collected over a time interval T r (restart time) to T p (perimeter
time) is performed in order to generate an analysis fire arrival
time T a. Then, the spin-up fire arrival time T s is computed as
a weighted average of the analysis T a and the forecast T f for
the time period over which the satellite fire detections were
collected. The heat fluxes from the spin-up are inserted into
the atmosphere model, bringing the state of the atmosphere
back into a consistent state with the fire model. Finally, the

Fig. 5. Flow chart of the data assimilation process, progressing in a clockwise
manner from the upper right. 1) The WRF-SFIRE coupled model is advanced
from an initial ignition or from a previous cycle’s spinup, creating the forecast
T f . The fire and atmosphere are in a consistent state. 2) Assimilation of
satellite data changes the state of the fire, giving the analysis Ta, but does not
change the state of the fire. Fire and atmosphere are no longer in a consistent
state. 3) The spin-up T s, an artificial fire history, is made from a weighted
average of the forecast and analysis. 4) Heat fluxes from the spin-up are
computed and input into the atmosphere model, bring the fire and atmosphere
back into a state of consistency. The model can now be advanced into the
next cycle.

coupled model is advanced again from the state of the fire and
the atmosphere at the end of the spin-up period, T p.
For each location (x, y) in the fire simulation mesh, the

spin-up T s is computed as a weighted average of the forecast
T f and the analysis T a according to the weighting equations

wf = max(T f − T r, 0) wa = max(T p − T a, 0)

vf = 1− wf

wf + wa
va = 1− wa

wf + wa
.

We note that wf +wa is always a positive quantity and that
that vf + va = 1. Finally, the spin-up is given by

T s = vfT
f + vaT

a.

VIII. CASE STUDY

The Pole Creek Fire was ignited by lightning on September
6, 2018 in Juan County, Utah. This wildfire burned over
98,000 acres, making it one of the largest wildfires in Utah
state history. On September 12, strong winds and low relative
humidity caused an explosive fire growth resulting in the
evacuations of several communities adjacent to active burn
region. By September 17, the Pole Creek Fire merged with
the Bald Mountain fire and was classified in the Incident
Command System as an incident Type 1, which defines the
wildfire as a major incident as it was very large, complex,
and requiring multi-agency efforts and national resources for
successful suppression and control. On October 6, the fire was
finally reported by fire management officials as being fully
contained.
Due to the fire’s close proximity to major population centers

(Provo and Salt Lake City), a number of WRF-SFIRE simu-
lations were carried out to forecast the fire growth, smoke
transport, and predict potential impacts on air quality. The
first set of forecast simulations were generated on September
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14 at 0000 UTC, with the forecasts going out 48 hours
from the initialization time. Each simulation was re-initialized
every 12 hours (0000 and 1200 UTC) until the fire’s eventual
containment in October. The model domains for this forecast
simulation were centered over the fire location, and utilized 2-
way nesting between 3 WRF domains at 5, 1.66, and 0.55 km
grid spacing. All WRF domains had 97x97 horizontal grid
points, each with 41 vertical levels. The fire growth was
computed on fire mesh that had a horizontal grid spacing that
was 1/20 the size of the innermost WRF domain (1940×1940
grid points). In order to ensure that the Courant-Friedrichs-
Lewy (CFL) condition for numerical stability was met, a time
step of 3.33 seconds was set for the innermost WRF domain.
On average, a 48-hour simulation was completed in approx-

imately 3 hours and 5 minutes, with each simulation utilizing
150 GB of storage space.
GeoMAC infrared fire perimeters were used to initialize

the fire position and locate regions with active burning, when
available. The fuel moisture model was initialized with fuel
moisture estimates from the National Fuel Moisture Database,
which was obtained from the Wildland Fire Assessment Sys-
tem9.
The atmospheric component of the WRF-SFIRE modeling

system was initialized using boundary conditions derived from
the NAM model [21], which is described in further detail in
section VB. For a 48-hour forecast, 2 days worth of NAM
forecast boundary conditions were needed, which used 3.6
GB of storage space. The total time to preprocess boundary
conditions and fire input data took an average of 11 minutes.
Downloading the NAM model data10 took approximately 3
minutes, on average.
Visualized output from our WRF-SFIRE forecast simula-

tions were publicly displayed on http://demo.openwfm.org,
with the first frame being available 16 minutes after the
simulation was initiated. An example of the visualized output
can be seen in Fig. 6, which shows the fire location and area,
downwind smoke dispersion, and wind vectors at forecast time
+0400 hours.
Smoke forecasts from WRF-SFIRE were validated against

air quality observations from Salt Lake City and Provo. Air
quality was particularly bad at these cities during the morn-
ing of September 15th, when drainage flows from nighttime
cooling advected smoke from the mountains into the basins
below, where Salt Lake City and Provo are located (see the
middle panel in Fig. 6). During this time, PM2.5 concentrations
significantly increased, especially at the QNP air quality site,
which was located 7 km north of Provo (Fig. 7). Observations
saw an enhancement of PM2.5 concentrations that exceeded
80 μg m-3 at 1800 UTC, while the model predicted a similar
enhancement at the same time, albeit the increase was more
gradual from 1200 to 1800 UTC. By 2000 UTC, PM2.5
concentrations dropped off sharply, which was likely the result
of flow reversal due to daytime heating.

9http://www.wfas.net
10https://nomads.ncep.noaa.gov

Fig. 6. wrfxweb visualization of WRF-SFIRE simulation of the Pole
Creek Fire on September 16th at 0400 UTC (forecast hour = +0400 hours).
Color filled contours represent column integrated smoke, dark filled contours
represents the predicted fire area, while near-surface winds are plotted as wind
vectors. Top panel: 5 km resolution domain 1, middle panel 1.66 km domain
2, bottom panel: 0.55 km domain 3.
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Fig. 7. Observed and model predicted PM2.5 concentrations at the North
Provo air quality site for a WRF-SFIRE simulation initialized on September
15th at 0000 UTC.

TABLE II
CASE STUDY TIMINGS

Profile from Table I
Time 1 2 3 4

All preprocessing 15 min 11 min 38 min 1 h 10 min
Data download 8 min 8 min 32 min 1 h 2 min
HPC simulation 4 h 19 min 3 h 5 min 5 h 39 min 6 h 10 min

Long-range smoke transport was also well captured by the
forecast simulations as seen in Fig. 8. GOES-16 satellite data
observed a smoke plume that originated from the Pole Creek
Fire and drifted to the northeast towards the Uinta mountains
and southwest Wyoming on September 16th at 0000 UTC.
a smoke plume, with a similar orientation and width was
also predicted by WRF-SFIRE, 24-hours into the forecast
simulation (initialized on September 15th at 0000 UTC).
The timings of various configurations shown in Table 1, are

presented in Table 2. Generally depending on the domain sizes,
resolution and the meteorological data, 48 h forecasts required
3-4 hours to complete. The runs with higher resolution of the
external meteorological data were expected to provide some
computational benefit because of higher starting resolution of
the outermost domain. However, as indicated in Table 1, the
overall timing of the runs initialized with 5 km and 3 km data
came out to take longer than the run initialized with 12 km
forcing. The main reason, besides slightly higher resolution
of the innermost domains requiring smaller time steps, was
due to the download time, which contributed significantly the
to total execution time. For instance, download of the 5 km
data took 32 min while 12 km forcing were acquired in just 8
minutes. An even bigger difference was observed for the run
initialized with the 3 km data, in which case the download
time exceeded 1 h.
The system can be configured to interact with schedulers

and queues on common HPC systems. The computations
reported here were done on 7 Intel Xeon E5-2680v4 2.4GHz
nodes with 28 cores each for total 196 cores, in a dedicated
queue under the control of the SLURM scheduler on the

Fig. 8. (a) Model-derived smoke plume top heights [mAGL] on September
16th at 0000 UTC (forecast hour = 24). (b) GOES-16 visible satellite data
centered over northern Utah for the same time.

Kingspeak cluster11 at the University of Utah. The nodes form
a partition owned by the project group in a condo model; they
can be used by other users when idle but they are preempted
by jobs from the project. The front end node used to run the
system and to submit the jobs was a shared interactive dual
Intel Xeon E5-2670v2 2.5GHz node. The visualization server
is a virtual machine in Digital Ocean cloud with 2 dedicated
Intel Xeon E5-2650Lv3 1.8GHz cores, 2GB of memory, and
243GB SSD.

IX. CONCLUSION AND FURTHER WORK

The Pole Creek case study presented here highlights the
ability of the model to make accurate, real-time smoke fore-
casts in an operational setting. Methods for operational use of
satellite data were demonstrated and will be moved inside the
framework in future work.
Incorporating fire detections from the VIIRS sensor on the

NOAA-20 satellite and the ABI sensor on geostationary GOES
satellites is in progress. These new sources will require a dif-
ferent API and retrieval from Amazon S3, respectively. Also,
GOES fire detection data has a different error profile [44],
which may call for some modifications of the methods.
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