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Abstract— State-of-the-art object grasping methods rely on
depth sensing to plan robust grasps, but commercially available
depth sensors fail to detect transparent and specular objects. To
improve grasping performance on such objects, we introduce
a method for learning a multi-modal perception model by
bootstrapping from an existing uni-modal model. This trans-
fer learning approach requires only a pre-existing uni-modal
grasping model and paired multi-modal image data for training,
foregoing the need for ground-truth grasp success labels nor
real grasp attempts. Our experiments demonstrate that our
approach is able to reliably grasp transparent and reflective
objects. Video and supplementary material are available at
https://sites.google.com/view/transparent-specular-grasping.

I. INTRODUCTION

Robotic grasping is a key prerequisite for a variety of tasks
involving robot manipulation. Robust object grasping would
enable a wide range of applications in both industrial and
natural human environments. The challenge with grasping is
that many factors influence the effectiveness of a grasp, such
as gripper and object geometries, object mass distribution and
friction, and environmental conditions like illumination.

Most state-of-the-art grasping methods rely on depth input
from structured light or time-of-flight sensors to determine
the best grasp for an object [1], [2], [3]. Under normal
operation, such devices emit light patterns onto a scene
and use a receiver to construct depth based on changes
in the returned pattern. However, such depth sensors fail
to detect objects that are transparent, specular, refractive,
or have low surface albedo [4], causing depth-based grasp
prediction methods to fail. These failures can take the form
of both missing depth readings, as is the case with specular
objects that deflect structured light patterns, and incorrect
depth values, which occur when the emitted light passes
through transparent objects (see Fig. 1).

Transparent and specular objects are common in a range
of environments, such as in manufacturing facilities, retail
spaces, and homes. Under certain lighting conditions and
object properties, even seemingly opaque objects can exhibit
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Fig. 1: Transparent and specular objects provide poor depth
readings with conventional depth sensors, posing a challenge
for depth-based grasping techniques. (left) Robot workspace
with fixed overhead sensor for grasping. (top right) Color
image of scene from overhead sensor. (bottom right) Depth
image of scene showing that most values in depth image are
close to the table.

sensor noise similar to transparency and specularity. The
ubiquity of objects with these challenging properties requires
us to design methods capable of bridging the sensory gap so
that robots can robustly grasp a diverse set of objects.

Our contribution in this work is a method for learning to
grasp transparent and specular objects that leverages existing
depth-based models. Transparent and specular objects are
more identifiable in RGB space, where transparencies and
specularities produce changes in coloration, rather than the
inaccurate or missing values that occur in depth space.
Therefore, we make use of both color and depth modalities
in our approach. We first train a color-based grasp prediction
model from a depth-based one using supervision transfer [5],
a technique for transferring a learned representation from one
modality to another. This transfer technique only requires
paired RGB-D images and an existing depth-based grasping
method from which to transfer; our method does not require
robot grasp attempts nor human annotations.

We conduct real robot grasping experiments on both
isolated objects and clutter to show that (1) the RGB-only
network produces better grasp candidates for transparent
and specular objects, compared to the depth-only network
that it was trained from, and (2) the RGB-only network
is complementary to the original depth model, such that
combining the outputs of both models results in the best
overall grasping performance on all three object types. We
conduct additional experiments to demonstrate the robustness
of our method against slight variations in illuminance, and
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we discuss failure cases as part of our analysis.

II. RELATED WORK
A. Sensing Transparent and Specular Objects

Sensing transparent and specular objects is a well-studied
challenge in the computer vision community. Ihrke ez al. [4]
provide a survey of recent approaches to transparent and
specular object reconstruction. Curless et al. [6] perform
space-time analysis on structured light sensing to achieve
better triangulation on transparent objects. Structured light
sensing can also be paired with additional equipment like
polarization lenses, light fields, or immersion in fluorescent
or refractive liquids to detect transparent objects. While
structured light sensing is the closest to commercial sensing,
the survey also presents methods that improve on multi-view
stereo matching to detect transparent and specular objects.

Light field photography for depth reconstruction is another
direction for detecting specular and transparent objects [7],
[8]. Light field photography has been used in robotics by
Oberlin et al. [9] applied light field photography to robot
manipulation tasks like grasping non-Lambertian objects un-
der running water. However, this method requires capturing
a dense set of images in a 3D volume over the scene of
interest at both training and test time to construct suitable
synthetic images for grasping. In comparison, our proposed
method requires a single, static RGB-D sensor, resulting in
faster and simpler training and deployment.

Commercial RGB-D sensors (e.g., Intel RealSense, Mi-
crosoft Kinect, PrimeSense) use structured-light or time-
of-flight techniques to estimate depth. These techniques
fail on transparent and specular surfaces, either allowing
light emitted by the sensor to pass through or scattering it
by reflection. IR stereo and cross-modal stereo techniques
have been used to improve depth reconstruction, but the
reconstruction quality is still not comparable to that of
Lambertian, or diffusely reflective, objects [10], [11], [12].
Lysenkov et al. [13], [14] painted over transparent objects to
create a dataset of paired transparent and opaque objects,
but this approach scales poorly for objects with arbitrary
geometries and material properties. Our proposed method is
able to use conventional RGB-D sensors without hardware
and environmental modifications by combining depth and
color information.

B. Grasp Synthesis

Grasp synthesis refers to the problem of finding a stable
robotic grasp for a given object and is a longstanding research
problem in robotics. Approaches to grasp synthesis can be
classified into analytic and empirical methods; see Bohg et
al. [15] for a survey. Analytic approaches use physics-based
contact models to compute force closure on an object, using
the shape and estimated pose of the target object [16], [17],
[18], but work poorly in the real world due to noisy sensing,
simplified assumptions of contact physics, and difficulty in
placing contact points accurately.

Empirical approaches, on the other hand, learn to predict
the quality of grasp candidates from data on a diverse set

of objects, images, and grasp attempts collected through
human labeling [19], [20], [21], [22], self-supervision [23],
[24], or simulated data [25], [26], [3], [27], [1]. Saxena et
al. [19] trained a classifier on human-labeled RGB images to
predict grasp points, triangulated the points on stereo RGB
images, and demonstrated successful grasps on a limited
set of household objects, including some transparent and
specular objects. However, the predicted grasp points for
transparent and specular objects were limited to grasps
on points where stereo triangulation was successful. The
Cornell Grasping Dataset [20], consisting of 1k RGB-D
images of objects and human-labeled grasps parameterized
as an oriented bounding box, has been used to train many
deep learning-based grasping methods [21], [26], [22]. Self-
supervised methods such as those by Pinto and Gupta [23]
or Levine et al. [24] forego the need for human labels by
training a robot to grasp directly from real grasp attempts,
but these methods require tens of thousands of attempts to
converge.

Recently, approaches trained on data gathered in simu-
lation have demonstrated state-of-the-art performance. The
Jacquard dataset by Amaury et al. [25] uses a grasp spec-
ification similar to the Cornell Grasping Dataset, contains
simulated objects and grasp attempts, and has been success-
fully used for training by Morrison et al. ’s GG-CNN [26].
Mabhler et al. [27] developed GQCNN, which was trained on
a dataset of simulated grasps generated using analytic model,
representing a hybrid empirical and analytic approach.

As we will show, these depth-only grasping approaches
fail on transparent and reflective objects. Note that GG-CNN
could be modified to incorporate RGB images, which could
potentially be used to grasp transparent and specular objects
after training on simulated images (such as those in the
Jacquard dataset [25]); however, such performance has not
been demonstrated; this method has only been demonstrated
for depth-based grasping of opaque objects. In this work,
we build upon the fully convolutional version of GQCNN
(FC-GQCNN) proposed by Satish et al. [1], but our method
is agnostic to the specific network architecture used. Our
method does not require any real-world grasps or labeled data
but instead relies on supervision transfer from a pre-trained
depth network to obtain a multi-modal grasping method. The
pre-trained depth network also may not require real-world
grasps or human labels; for example, FC-GQCNN is trained
entirely on simulated grasps.

C. Cross-modal Transfer Learning

Supervision transfer has been explored in the past for tasks
such as image classification and object detection [28], [5],
[29]. These approaches are typically used to transfer image-
based networks trained on ImageNet [30] to depth-based or
RGB-D based classification or detection networks. To our
knowledge, such approaches have not been used previously
in the context of multi-modal grasping. We show that such
an approach can lead to greatly improved performance for
grasping transparent and reflective objects, and can even
improve performance on some opaque objects.



III. APPROACH

Here we describe our approach for supervision transfer,
which enables us to transfer a grasping method trained in
one modality M to also incorporate an additional modality
M, without needing any additional real grasp attempts,
simulation, nor human-labeled data (other than the data used
to train the initial uni-modal grasping method, which in our
case is only simulated rendered depth data [1]).

A. Problem Statement

We assume that we initially have a grasping method that
takes input from a given modality Mg, such as depth.
Specifically, we assume that we have a grasping method
that, given a candidate grasp q and an image /5 of modality
M, (e.g., a depth image), outputs a grasp score G(q,Iy).
We wish to transfer this scoring method to a new input
modality M (e.g., RGB). Ideally, this new modality M
will allow our grasping method to succeed in grasping certain
types of objects (e.g. transparent and specular) where the
previous modality, M, failed. In later sections, we will
discuss combining these modalities to create more robust
grasping methods.

We assume access to a dataset of image pairs (14, Is),
where each pair consists of one image from each modality.
We assume that each pair of images was taken at approx-
imately the same time and thus represent images of the
same scene under the two modalities My and M. Paired
images for RGB and depth modalities can be captured
using commercially available RGB-D sensors (e.g., Intel
RealSense, Microsoft Kinect, PrimeSense).

Note that these paired images can be collected without
needing to perform any grasp attempts or human labeling,
making the collection of this dataset very efficient. Further-
more, because these paired images are collected in the real
world, they contain all of the real-world noise and artifacts
that one would encounter in a realistic setting, avoiding the
need to create such artifacts in simulation.

B. Supervision Transfer for Multi-modal Perception

In attempting the modality transfer described above, we
observe the following: different input modalities (e.g., depth
vs RGB) have complementary advantages. In other words,
data that is difficult for computing successful grasps in one
modality might not be as difficult for another modality, and
vice versa. For example, transparent and reflective objects are
extremely difficult for depth-based grasping methods, due
to the resulting noise or missing data in the depth image.
However, our experiments show that RGB-based grasping
methods have a much higher success rate for these objects.
On the other hand, highly textured objects may present
difficulties for RGB grasping methods, but these textures do
not manifest in depth-based methods.

Based on this observation, we first filter our dataset D
into a new dataset D’ for which we expect the grasping
method of modality M, to perform well. In other words,
for images I; € D', the grasp score G(q,I;) should have
a high correlation with the success of an executed grasp. In
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Fig. 2: We train a grasp quality CNN that takes RGB input by
supervising the loss of the network on the output of a trained
depth model for paired, unlabeled RGB-D image data.

our case, because I; is a depth image, our filtered dataset
D’ contains only images of opaque objects, for which depth-
based grasping methods typically perform well.

We then train a grasping method for modality M,
(e.g., RGB) using supervision transfer [28], [5], [29] over
dataset D’. For each paired image (I, I;) in dataset D’,
we compute the grasping score G(gq,I;) for the modality
M . Because of our filtering, this grasp score is likely to be
accurate. We then train a method for computing the grasping
score G(g, Is) of the second modality M using the grasp
score from modality M, as the grasp label; thus we define
the loss to be

L(p) =G(q, Ia) — Gy(q, L)|I? 4))

For paired images of dataset D’, we train the grasping
method on the new modality M, (e.g., RGB) to output
the same grasping score as the score output of the previous
grasping method on the original modality M (e.g., depth).
This procedure is shown in Figure 2.

Because of the complementary nature of the two sensors,
this grasping score function will often perform well on
data that was originally filtered out of D and not included
in D', even though G,(g,I;) was only trained on data
from D’. Specifically, we filter out transparent and reflective
objects from D’ because depth-based grasping methods per-
form poorly on these objects. Nonetheless, the image-based
grasping method G(q, I;) still performs well on images of
transparent and reflective objects, because the difference in
appearance for these objects in the RGB modality is much
smaller than the difference in appearance for these objects in
the depth modality. Our experiments confirm this to be the
case.

Further, because the modalities are complementary, we
show that we can get the best performance by combining the
grasping scores from the two modalities. Although there are
many potential ways to do this, we evaluate two possibilities.
The “early fusion” approach for combining modalities is to
transfer from a depth-based grasping network to a RGB-
D grasping network (“RGBD-ST”, see Fig. 3c). RGBD-ST
takes as input both depth and RGB modalities concatenated
together. For our second, “late-fusion” approach, we fuse the
scores of each modality, averaging the outputs of the depth-
based grasping network with a RGB-based grasping network



trained using supervision transfer. We define the multi-modal
grasping score as

1
Gylq,1a,I5) = 3 (G(q, 1a) + Gylq, 1s)) (2)

This method is referred to below as “RGBD-M” (see
Fig. 3d). Both of these approaches share the benefits that they
represent multi-modal grasping methods that were trained
from a depth-based grasping method only using paired RGB
and depth images, without requiring real grasp attempts or
human labels.

C. Implementation of Supervision Transfer

Our supervision transfer formulation is agnostic to the spe-
cific grasping method or representation we use for grasping
in modality M. For this work, we use the Fully Convolu-
tional Grasp Quality CNNs (FC-GQCNN) representation as
the pre-trained depth model from Satish ef al. [1], although
other depth-based grasping methods could equivalently be
used.

FC-GQCNN learns a function G(qq,I;) which predicts
a grasp success rate for each grasp ¢ based on a depth
image I;. In FC-GQCNN, grasps ¢4 are parameterized as
qga = (x,y,0,z), where = and y are horizontal planar
coordinates designating the desired grasp point of the gripper,
z is the grasp depth relative to the camera, and 6 is the
clockwise rotation angle of the gripper about the vertical z
axis. FC-GQCNN takes as input just a single depth image
I; and outputs a 4-dimensional tensor of grasping scores,
producing one score per binned (z,y,z) position as well as
binned orientation coordinates §. FC-GQCNN is designed to
be fully convolutional in order to output dense predictions
G(qq, 1) across the entire depth image. Our methods, shown
in Figure 3, use a similarly dense (z, y) output and the same
output angular encoding 6.

We wish to use the output of FC-GQCNN to train an
image-based grasping method G(q, ;). Because the image
modality does not have access to depth information, for
image-based grasping we change the grasping parameteri-
zation to just ¢ = (x,y,#), without including a parameter
for the grasp depth z. With this specification, each grasp
starts at an approach height and moves down until it makes
contact with either the table or an object before closing the
gripper. Due to the difference in grasp representations, we
modify our loss slightly, to be:

L(¢:q,1a,15) = ||max G((q, 2), La) = Go(q. L) (3)

where (g, z) is the concatenation of z to a grasp ¢ = (z,y, 0)
to form the new grasp representation (z,y,0,z). In other
words, to compute the target grasp score for some grasp ¢ =
(z,y,6), we append various depths z to form a depth-based
grasp parameterization (x,y, z,6); for each of these grasp
parameterizations we can compute the depth-based grasping
score G((g,2),14) using our depth-based grasping method
(e.g. FC-GQCNN). We then compute the maximum grasp
score over the values of z to obtain max, G((q, 2), I4).

The network architecture that we use for image-based
grasping is very similar to the architecture used in FC-
GQCNN for depth-based grasping (see Appendix A). The
only modification that we make is that we modify the first
layer to accept a 3-channel RGB input rather than a 1-
channel depth input. This is accomplished by adding an
extra dimension to the first layer convolutional filters. In
some of the experiments, we will alternatively use an RGB-D
grasping network (“RGBD-ST”), in which case we modify
the first layer to accept a 4-channel input, in a similar manner.

IV. EXPERIMENTAL SETUP

Following the reproducibility guidelines for grasping re-
search as presented in [12], we describe our experimental
setup and protocols below.

A. Physical Components

We use an ASUS Xtion Pro Live RGB-D sensor, fixed
0.7 m above and pointing down towards the workspace (see
Fig. 4). Robot experiments were performed on a 7 DOF
Rethink Robotics Sawyer robot equipped with an electric
parallel jaw gripper, though our method can be applied to
other robots and end-effectors. The robot’s workspace is an
approximately 0.65 m x 0.38 m area that is reachable by the
robot with a vertical grasp. Aluminum extrusions enclose the
workspace to prevent objects from rolling or sliding out of
the space.

All experiments and network training were performed on
an Ubuntu 16.04 machine with an NVIDIA GTX 1080 Ti
GPU, a 2.1 GHz Intel Xeon CPU, and 32 GB RAM allocated
per job. Grasp planning was implemented using off-the-shelf
Movelt! software.

B. Training the Network

We first collected a set of 100 opaque objects from home
and office retail stores. Using the ASUS Xtion Pro Live
RGB-D sensor fixed above the workspace, we captured 200
paired RGB-D training images and 50 paired validation
images of the objects in varying amounts of clutter and with
lighting conditions ranging from standard office illuminance
(approx. 500 lux) to dimmed illuminance (approx. 175 lux).
We resized the images to account for differences between
our sensor’s intrinsic parameters and those of the pretrained
FC-GQCNN model. To increase the amount of training
data and improve domain robustness, we applied spatial
augmentations (e.g., random rotations and flips) and color-
based augmentations (e.g., hue, brightness, and contrast),
generating approximately 20k paired training images. This
image dataset is available at the URL in the abstract.

The network architecture was implemented in Python
using Tensorflow and Keras. The RGB or RGB-D network’s
weights were randomly initialized, and the model was trained
to convergence using an Adam optimizer with cross-entropy
loss [31], [32]. We experimented with mean squared error
loss, but it performed worse in initial experiments. The loss
was supervised from the output of FC-GQCNN, taking the
maximum over all values of z as discussed in Sec. III-C.
Hyperparameters are provided in Appendix C.
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Fig. 3: Diagrams of the four methods evaluated in this work. We compare against FC-GQCNN [1], which takes a depth
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and RGBD-ST are both trained using supervision transfer, but differ in the input they accept (3-channel RGB or 4-channel
RGB-D input). RGBD-M takes the outputs of the RGB and Depth networks and averages them to produce the final output.

C. Test Objects

We collected objects distinct from the training objects to
form three sets of 15 test objects each, one set per category
(see Fig. 4). For the opaque object set, we primarily use
YCB [33] objects that fit within the 5 cm stroke width of
our gripper. We collected our own transparent and specular
object sets due to the lack of existing benchmark sets for
these categories.

Following typical procedures for grasping evaluations [27],
[34], we remove bias related to object pose through the
following procedure: objects are shaken in a box and then
emptied onto the robot’s workspace for each grasp attempt.
This procedure is used for both isolated object grasping as
well as for grasping in clutter.

V. EXPERIMENTAL RESULTS
We design experiments to answer the following questions:

o To what extent can supervision transfer be used to grasp
objects from new modalities (e.g. depth to RGB)?

o To what extent can supervision transfer from depth to
RGB be used to learn to grasp transparent and reflective
objects?

e Do the depth and image modalities complement each
other? That is, will combining both modalities outper-
form either modality alone?

Note that grasping performance is not directly comparable

with previous work like FC-GQCNN [1] as we use a different
robot, gripper, and depth sensor.

A. Multi-modal Perception

We evaluate whether multi-modal perception that com-
bines depth and RGB data is better than uni-modal perception
using either depth or RGB data alone. We refer to our
method for Depth-to-RGB supervision transfer, described in
Sections III-B and III-C, as “RGB-ST” (see Fig. 3b).

We evaluate two approaches to multi-modal perception,
both of which are described in Sections III-B and III-C.
The first “early-fusion” approach uses supervision transfer
to directly train an RGB-D grasp prediction network from
a depth-based network, called “RGBD-ST” (see Fig. 3c).
The second “late-fusion” approach involves taking the mean
of the outputs of an RGB-only network and a depth-based
network. Specifically, we take the mean of the RGB-ST and
FC-GQCNN grasping networks; we call this multi-modal
method “RGBD-M” (see Fig. 3d).

The results are shown in Table I. RGBD-ST and RGBD-
M both significantly outperform depth-only grasping (FC-
GQCNN) on transparent and specular objects, while main-
taining comparable performance on opaque objects.

We also see that the multi-modal methods perform sim-
ilarly to the RGB-based grasping method (RGB-ST) on
opaque and transparent objects, but outperform this method
on specular objects. These results support the notion that
combining both RGB and depth modalities gives better
grasping performance than using either modality alone.

TABLE I: Isolated object grasping, averaged over five trials

Method Opaque Transparent Specular

FC-GQCNN* 0.92+0.06 0.40+0.08 0.48£0.17
RGB-ST' 0.89 £ 0.04 0.79 £ 0.09 0.71+£0.04
RGBD-STT 0.91 +£0.06 0.77+0.08 0.83+0.04
RGBD-M' 091+0.14 0.85+0.06 0.81+0.07

*Trained on simulated grasps

TTrained on simulated grasps and opaque object images

B. Grasping in Clutter

We also evaluated our methods for grasping in clutter, as
this is important for robots in various cluttered environments
like homes and warehouses. The same test objects used in
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isolated object grasping were used for clutter experiments.
Five trials of grasping in clutter were conducted for each
object category. Following the procedure from Viereck et
al. [34], a trial concluded after all objects were successfully
grasped, 3 consecutive failed grasp attempts occurred, or all
objects were outside the workspace.

To prevent a network from getting repeatedly stuck on
attempting a bad but highly rated grasp, we randomly sample
a 0.2m square crop of the input image and select the grasp
location within that region with the maximum predicted suc-
cess probability. All methods including baselines performed
similarly or worse without this sampling (see Appendix
B). Crops whose grasp probabilities all fall below below a
threshold are discarded and resampled to avoid attempting
grasps based on noisy sensor readings.

The results are shown in Table II. The results from grasp-
ing in clutter corroborate the result of isolated grasping. All
methods perform well on opaque objects, although RGBD-M
(averaging the output of depth-only grasping and RGB-only
grasping networks) performs slightly better than the others.
On non-opaque objects (e.g. transparent and specular), FC-
GQCNN (e.g. depth-only grasping) performs poorly.

Table II shows that RGB-ST (RGB-only grasping) and

TABLE II: Grasping in clutter, averaged over five trials

Method Opaque Transparent Specular

FC-GQCNN* 0.84 £+ 0.06 0.23+£0.21 0.35+£0.16
RGB-ST' 0.77+0.11 0.67+0.10 0.68+0.12
RGBD-STt 0.86 £+ 0.09 0.67 £0.27 0.35+0.10
RGBD-M' 0.97+0.15 0.51+0.32 0.63£0.12

*Trained on simulated grasps
TTrained on simulated grasps and opaque object images

RGBD-M (averaging the output of depth-only grasping and
RGB-only grasping networks) perform well across all three
object categories. We note that, despite averaging across
five trials, the results of grasping in clutter have relatively
high variance and should be considered accordingly. Overall,
our main conclusions are similar to that of isolated object
grasping from Section V-A: depth-only grasping performs
poorly on transparent and specular objects; with supervision
transfer, we can obtain a method that performs much better
on grasping transparent and specular objects while main-
taining similar performance on opaque objects. This method
requires only paired RGB and depth images for training
and does not require any real grasp attempts or human



annotations, other than the simulated depth rendering data
that was used to train the original FC-GQCNN [1] depth-
based grasping method.

C. Lighting Variation Experiments

We note that domain shifts like lighting can be a problem
for RGB methods, as mentioned in previous work [12]. To
enable our method to be robust to lighting variations, our
training images were collected with slight lighting variations,
and we applied color-based augmentations like brightness
and contrast.

We conducted experiments to evaluate the robustness of
the trained networks to lighting variations. We varied the
lighting by moving a floor lamp around the robot workspace
as shown in Fig. 6a and performed the isolated object
grasping experiments for RGBD-M. The additional lighting
increased illumination to between 750 and 950 lux. With
this variation in lighting, the RGBD-M network performed
comparably, achieving grasp success rates of 0.81 £ 0.12
for transparent objects and 0.79 £ 0.09 for specular ones
(compare with Table I).

(a) Lighting setup.

(b) Extreme lighting.

Fig. 6: (a) Setup for lighting variation experiments. Lighting
is controlled using the overhead lights and floor lamp. (b)
Failure case in the extreme lighting condition. The method
predicts the best grasp to be on the object’s shadow.

However, we found that the network performed poorly
under more drastic lighting changes, in which we turned off
the overhead lights and reduced the height of the floor light,
dropping illumination to approx. 175 lux and causing long
object shadows to appear. In this case, grasp performance
dropped to 0.52+0.18 on transparent objects and 0.60+0.12
for specular ones. In such extreme lighting conditions, we
observed the method predicting grasps on shadows for trans-
parent objects (see Fig. 6b). Such drastic lighting would not
normally occur in structured applications like bin-picking.

D. Fuailure Cases

In this section we discuss the most frequent and notable
failure cases from our experiments. This section covers
failures due to our approach, as well as external factors.
Some examples of failure cases discussed in this section can
be seen in Fig. 7 and the supplementary video.

Methods that used the depth modality like RGBD-ST
and RGBD-M at times selected grasps that were highly
rated by the depth network, but did not sufficiently account
for transparencies or specularities (Fig. 7, top left). Both
the color-based and depth-based networks at times failed

to distinguish very transparent objects from the workspace
surface, though this was rare and occurred far less frequently
than with FC-GQCNN (Fig. 7, top right). Object mass
distribution and deformability were not accounted for by our
methods (Fig. 7, bottom row).

Fig. 7: Examples of failure cases. (top left) Grasp does not
account for transparent part of sharpener. (top right) Gripper
fails to detect transparent plastic cube and grasps at table.
(bottom left) Mass distribution of squeegee causes grasp to
fail. (bottom right) Foil on top of balloon weight appears
graspable but the gripper passes through.

A failure case external to the methods evaluated involved
our gripper hardware. Our parallel electric gripper has a
relatively small stroke width, and is unable to execute pinch
grasps with a Scm opening width. This limitation causes
grasps on thin parts of objects to fail, because the fingertips
do not completely come together. While it is possible to
adjust the fingertips to be closer together to enable pinch
grasps, the opening width of the gripper would be reduced,
which would prevent the gripper from being able to grasp
large objects. This issue reduced performance across all
methods and would likely be mitigated by other grippers.

Since our paper focused on static grasping, our method
fails to grasp objects that start rolling due to perturbation in
clutter. Others have investigated ways to address this issue
using closed-loop control techniques like visual servoing [2].

VI. CONCLUSION

We present an approach for improving grasping on trans-
parent and specular objects, for which existing depth-based
grasping methods perform poorly. Our method transfers
information learned by a depth-based grasping network to
RGB or RGB-D networks, enabling multi-modal perception.
Our method for supervision transfer requires only real-world
paired depth and RGB images, and does not require any
human labeling nor real-world grasp attempts. We explore
two avenues to multi-modal perception and demonstrate that
making use of the RGB modality outperforms depth-only
grasping in isolated object grasping as well as grasping in



clutter. The method is extensible to other robots, environ-
ments, and end effectors. One potential direction for future
work may be to adaptively weight predictions from different
modalities instead of averaging them. Another is applying
transfer learning techniques to other, less similar modalities
like haptics and tactile feedback. Combining different sensor
modalities might also be useful in determining the appropri-
ate grasp height for each object.

While we are able to get improved performance without
using any real grasping data, we believe that real grasps can
be used to further improve the performance of the network.
We are also interested in extending this work to other types of
grasping, such as 6-DOF, multi-fingered, or suction grasping.
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Fig. 8: Architecture diagram for supervision transfer networks, adapted from the FC-GQCNN [1] architecture. The input
can be either 3-channel RGB input or 4-channel RGB-D input. The output is a 3D array of grasp quality scores over image
coordinates x, y and rotation # about the depth axis, discretized into 16 bins. The orange color accents correspond to ReLU
activations and purple corresponds to sigmoid activation. The red layers are max pooling layers.

APPENDIX A
NETWORK ARCHITECTURE

Fig. 8 illustrates the architecture of the networks trained
with supervision transfer.

APPENDIX B
EVALUATIONS WITHOUT RANDOM CROPPING

Table III provides results for grasping in clutter without
random cropping.

TABLE III: Performance on grasping in clutter by method
without random cropping, averaged over five trials

Method Opaque Transparent Specular

FC-GQCNN*  0.95+0.05 0.26+0.25 0.35+0.23
RGB-ST' 0.77+£0.10 0.77+0.15 0.68+£0.15
RGBD-STT 0.62+0.26 0.67+0.19 0.75+£0.08
RGBD-MT 0.75+0.13 0.60+0.18 0.47+£0.28

*Trained on simulated grasps
TTrained on simulated grasps and opaque object images

Random cropping refers to sampling a 0.2m square crop
from the input image and choosing the grasp with the highest
probability from within the crop. Crops which have do not
have any objects in them, as determined by whether the max
grasp probability within the crop falls below a hand-defined
threshold, are discarded and a new crop is sampled. This
procedure helps prevent networks from repeatedly choosing
highly rated false positive grasps. However, the cropping
threshold must be tuned based on the performance of the
grasping network. For our experiments, we used a threshold
of 0.4.

APPENDIX C
HYPERPARAMETERS

Hyperparameters for networks trained with supervision trans-
fer are:

e Learning rate: le-05

o Batch size: 64

o Number of rotation augmentations per image: 32

o Loss: Binary cross-entropy
The FC-GQCNN model we evaluated against was a pre-
trained model from https://berkeleyautomation.
github.io/ggcnn/.


https://berkeleyautomation.github.io/gqcnn/
https://berkeleyautomation.github.io/gqcnn/
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