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Abstract—Historical data sources, like medical records or
biological collections, consist of unstructured heterogeneous
content: handwritten text, different sizes and types of fonts, and
text overlapped with lines, images, stamps, and sketches. The
information these documents can provide is important, from a
historical perspective and mainly because we can learn from it.
The automatic digitization of these historical documents is a
complex machine learning process that usually produces poor
results, requiring costly interventions by experts, who have to
transcribe and interpret the content. This paper describes hybrid
(Human- and Machine-Intelligent) workflows for scientific data
extraction, combining machine-learning and crowdsourcing
software elements. Our results demonstrate that the mix of human
and machine processes has advantages in data extraction time and
quality, when compared to a machine-only workflow. More
specifically, we show how OCRopus and Tesseract, two widely
used open source Optical Character Recognition (OCR) tools, can
improve their accuracy by more than 42%, when text areas are
cropped by humans prior to OCR, while the total time can
increase or decrease depending on the OCR selection. The
digitization of 400 images, with Entomology, Bryophyte, and
Lichen specimens, is evaluated following four different
approaches: processing the whole specimen image (machine-only),
processing crowd cropped labels (hybrid), processing crowd
cropped fields (hybrid), and cleaning the machine-only output. As
a secondary result, our experiments reveal differences in speed
and quality between Tesseract and OCRopus.

Keywords—Digitization; human-machine; data extraction;
biological collections; optical character recognition; crowdsourcing

L INTRODUCTION

The extraction of information from historical data sources,
like medical records and scientific collections, is a challenging
task. Standards were not used or have changed since these paper
documents were created, and standards will continue to evolve.
These data sources mix typed, printed, and handwritten text on
paper that in some cases already turned yellow or stained.

Nevertheless, the information stored in these documents is a
valuable heritage, which helps us understand the past, and more
importantly could allow us to forecast and improve our future.
Biological collections, for example, could help us model past
and future environmental changes, develop new medicines,
control agricultural pests, and understand or avoid epidemics,
among many other benefits [1].

Governments and institutions have recognized the value of
these biological collections and the importance of providing
access to the cataloged specimens not only to researchers but to
the general public. Projects like the Integrated Digitized
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Biocollections (iDigBio: https://www.idigbio.org), the Global
Biodiversity Information Facility (GBIF: http://www.gbif.org),
and the Atlas of Living Australia (ALA: http://www.ala.org.au),
are stable providers of universal access to millions of specimens.

The challenge is that the actual number of specimens to
digitize, as stored in collections worldwide, has been calculated
in more than a billion [4]. Considering the current digitization
rate, which is on the order of minutes per specimen, these data
could take several decades to be processed [3]. This time does
not account for the time to train the personnel who perform the
digitization or the domain expert’s time to manage the process
and validate results. For mass-digitization of specimens, the
recommended approach has been to divide the process into
image capture and metadata transcription stages [5]. This
alleviates the need for institutions to prioritize only the “most
important” collections or specimens, and focuses the effort on
curation and scanning. The transcription of the text can be
performed at a later time, using the captured image, which opens
the possibility of crowdsourcing [6][7]. In this work, we follow
this mass-digitization approach, and assume that there are
millions of specimen images that require data extraction.

Some researchers believe “there is no point in collecting
complete metadata if these are not going to be used for any
purpose” [5], but in this Big Data era, which has been defined as
“collect now, sort out later” [9], we should not decide what
metadata is important and what is not. The digitization process
needs to be accelerated in order to digitize all historical data
sources, ensuring the best result quality possible, and using
experts only when strictly needed (mainly for verification).
Experts should ensure the digitization’s quality, while crowds
and machines make high volume data processing possible. It is
this mix of human- and machine-intelligent processes where we
believe is the ideal solution. The goal of this study is to
demonstrate that a good balance of these processes, in a single
workflow, can lead to an improved overall process.

Today, a pure machine-intelligent process to transcribe text
from biological specimen images using Optical Character
Recognition (OCR) tools does not produce a good result. This
kind of historical data source includes a wide range of challenges
for the OCR tools, whose recognition algorithm is based on
training. The variety of font types (printed and typed) and sizes,
languages, background colors, lines, stains, and other elements
in the image affect the recognition rate of the OCR. The other
alternative, pure human-intelligent approaches [7][8], like
crowdsourcing, can get better accuracy, but deal with a different
set of challenges, like training the crowd and handling consensus
among the diverse set of results.
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In this paper, we propose to improve the overall output
quality by combining the OCR execution (a machine-intelligent
process) with the help of humans (crowdsourcing), who crop the
text areas that the OCR has to process. The cropping reduces the
complexity, noise and size of data that the OCR tool has to
binarize, segment, and recognize; leading to higher data quality
and time-saving. The crowdsourcing step has been simplified to
only require cropping of text, which does not demand a complex
training and requires less effort than full text transcription.
Crowdsourcing tasks were performed using a cropping web
application developed for the HuMaIN (Human- and Machine-
Intelligent Network) project, see http://humain.acis.ufl.edu.

To demonstrate that the cooperative human-machine data
extraction improves the quality of the OCR process, getting
closer to the ideal (expert-equivalent) result, we use 400
specimen images of the iDigBio project, for which the experts’
transcription of the label and fields are known. These images
cover three specimen types: Entomology (i.e. Insect),
Bryophyte, and Lichen. Four approaches are evaluated:

1. Machine-only: the OCR tool is run on the whole original
image, and the result is compared to the experts’ label
transcription. This establishes a comparison baseline.

2. Hybrid: humans crop the entire labels (using the HuMalN
interface [32]) from the specimen images and the OCR is

run on them. The results are compared to approach 1.

3. Hybrid: considering a higher granularity level, humans crop
individual fields (using the HuMalN interface) from the
specimen images and the OCR is run on them. The result is
compared to the two previous approaches.

4. Improved machine-only: due to the amount of extra
characters and digital noise generated by the OCR on the
whole image, we add a simple cleaning algorithm on the
machine-only results to compare between explicit noise
removal, through cropping, and implicit noise removal,
through elimination of non-interpretable set of characters.

Our results show that OCR’s recognition rate improves by at
least 42% for any of the two approaches where the text areas are
cropped. In order to guarantee that the obtained results are
independent of the used software or metric, two OCR tools
(OCRopus and Tesseract) and three string similarity metrics
(Damerau-Levenshtein, Jaro-Winkler, and the rate of matching
words) were used. The total execution time of the cooperative
data extraction process (machine + human) was reduced when
using OCRopus, but increased when using Tesseract. This is due
to the fact that Tesseract is faster than OCRopus while both
provide similar recognition quality. None of the OCR tools were
trained or tuned, i.e., the default version of the English language
dictionary that these tools provide was used.

IL.

The Human-Computer Cooperation field is broad. In the
HuMalN project, and specifically in this study, we show the
benefits of this interaction and how it can be applied to improve
data extraction. There are data sources for which an automated
data extraction process is sufficient to get the information we
need. But for other data sources, like scientific collections, the
data extraction must still rely on humans.

RELATED WORK
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In 2011, iDigBio created the Augmenting OCR Working
Group (A-OCR) with the goal of generating tools that improve
the OCR process, either in output quality, speed, cost, or
efficiency [10]. The group has organized several events which
have generated a number of software solutions. One of these
tools is the Semi-automatic Label Information Extraction
system (SALIX) [11][12]: using a friendly graphical interface,
the user can run the OCR and SALIX automatically assign text
into individual fields. Corrections can be applied to the result.
We agree with SALIX in the semi-automatic (machine and
human) nature of the solution, considering how difficult it is to
obtain a perfect OCR output for this type of data source.
Nevertheless, in this work, our goal is to improve the output of
the OCR, which would be the input of SALIX, i.e., we do not
create a natural language post-processing tool. Moreover, our
focus is on open source tools, while SALIX is mainly tested with
ABBYYO, a proprietary OCR tool.

The Apiary project (http://www.apiaryproject.org), of the
Botanical Research Institute of Texas (BRIT), has developed a
“High-Throughput Workflow for Computer-Assisted Human
Parsing of Biological Specimen Label Data” [14]. HuMalN
follows the same spirit as Apiary, with the difference that even
though we are using biological collections as a use case, our final
goal is a general platform for the definition of hybrid data
extraction workflows in any area, generalizing the hybrid
(Human-Computer) concept. Apiary includes a web application,
called HERBIS, which inspired SALIX and works similarly.

A good amount of scientific projects (Apiary, the Atlas of
Living Australia, Les Herbonautes, and Symbiota [34], among
many others) have developed products and conducted research
to digitize specimens, creating workflows that integrate
crowdsourcing and machine-intelligent tools. This study uses a
human task (cropping images) to improve the result of a
machine-intelligent process (OCR), reinforcing the idea that we
need both, humans and machines, to get an optimal result.

In the business world, several crowdsourcing vendors serve
as a link between companies and crowds, like computer
programmers, designers, or transcribers. One interesting case is
CrowdFlower, which employs crowdsourcing in data extraction
workflows to ensure or improve data quality, an area where
crowdsourcing has been especially successful. Nevertheless, our
initiative points to an open, customer managed, platform.

Several open source OCR products are available: Tesseract,
JOCR (GOCR - http://jocr.sourceforge.net/), and OCRopus
(OCRopy), among others. In [15] a comparative study between
Tesseract and GOCR conclude that Tesseract has better
accuracy and precision than GOCR. Creators of OCRopus, show
in [16] mixed results for Tesseract and OCRopus error rates.
OCRORACT [13] uses an iterative method, as it trains Tesseract
(segmentation based OCR) with the data from OCRopus
(segmentation-free OCR) and then trains OCRopus with the data
generated by Tesseract. After few iterations, the method is able
to reduce the misinterpretation rate from 23% to 7%.
OCRORACT requires an expert who provides the unique set of
characters for the documents and their Unicode representation.
Nevertheless, in the case of biological collections, with the
diverse mix of typed, printed, and handwritten text, this training
oriented approach would not be the most appropriate.
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III.

This section describes the main characteristics of the images
used in the study, the OCR tools, the Web application used to
crop labels and fields, and the metrics employed to measure
string similarity or quality of the results.

A. Data Set

Between 2011 and 2014, the Augmenting OCR Working
Group (A-OCR) of the iDigBio project, organized several events
to generate content and tools for the digitization community.
Among their results, there is a dataset with 400 images of
cataloged specimens [27] and their corresponding whole label
transcription as well as information parsed into individual fields
by domain experts’ transcription. Individual fields correspond to
Darwin Core standard terms [25]. These images of biocollection
specimens belong to 3 specimen types: 100 insects, 100
bryophytes, and 200 lichens. Distinctive characteristics of the
images are:

DOMAIN DATA SETS AND SOFTWARE TOOLS

- Entomology images (i.e., insect images): include a picture of
the insect and a ruler, which helps measure the size of the
insect. Instead of a single metadata label, there are several
pieces of paper varying in size, color, and border. Some
images have a scientific name written at the bottom left
corner, which is an annotation made by the current institution,
not the original one. See upper right image of Figure 1.

- Bryophyte images: are the largest images of the experiment
(generating longer OCR times). Besides the labels, they
include the specimen and other elements like stamps, maps,
and bar codes. There can be segments of handwritten text and
labels can have different orientations, but the background and
image are mostly clear. See left side of Figure 1.

Entomology

]

01075700

g

Figure 1. Bryophyte, Entomology, and Lichen images.

Lichen
Bryophyte

- Lichen images: do not include the specimen, and are basically
big labels, but the resolution and contrast of the image are not
the best. There is a stamp and a bar code in most of them. See
lower right image of Figure 1.

Challenges in automatically extracting data from these
images are: unformatted text, mixed with pictures, maps,
stamps, and bar codes; different fonts and sizes; several
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languages; different background colors and resolutions;
handwritten and underlined text. Some of their technical
characteristics are specified in the following table:

Table 1. Number, size, and resolution of the specimen types

Specimen type Number of | Avg. Size Dimension Resolution
images (KB) (dpi)
Entomology 100 325 1600x1200 180
Bryophyte 100 1214 3744x5616 300
Lichen 200 153 1530x1128 96

B. Optical Character Recognition (OCR) Technology

The OCR process is the extraction, in machine encoded-
format, of the typed, printed, and handwritten text of an image
[21]. This process consists of a sequence of machine learning
steps. In order to add generality and robustness to our results,
two OCR tools are used:

OCRopus (OCRopy): is a group of open-source document
analysis programs, which can be integrated as a Character
Recognition System [17]. Its modularity makes it ideal for code
reuse and teaching purposes. It requires running three steps or
programs in sequence: the binarization (creates a black & white
version of the image), the segmentation (divides the image in
multiple text segments), and the recognition (applies to each
segment the Recurrent Neural Network for text identification).
We created a script to perform the execution of the three OCR
steps [22]. In our study, OCRopy v1.0 and its ad-hoc English
model were used, no further training or configuration was done.
OCRopus recommends a 300dpi resolution as a minimum,
which only bryophyte images comply.

Tesseract: is an open-source OCR engine initially developed by
HP (between 1984 and 1995). It is sponsored, since 2006, by
Google [18] [19]. Tesseract recommends a minimum resolution
of 300dpi. Its artificial intelligence model must be trained, we
used the default English trained model available in Tesseract
3.04. Tesseract is executed in a single step or program.

By
pleace take yous braniser o sencher web page
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Figure 2. HuMalN interface for fields cropping.

C. HuMalIN

The Human- and Machine-Intelligent Network (HuMalN —
http://humain.acis.ufl.edu) is a project in development by the
Advanced Computing and Information Systems (ACIS)
laboratory (https://www.acis.ufl.edu) of the University Florida.
It is funded by the National Science Foundation, with the goal
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of researching and creating hybrid (crowdsourcing and machine
learning) workflows of software components for data extraction.

Figure 2, shows the interface developed for cropping the
fields of the images. The user picks the field name from one of
the list boxes, selects the area where the value of the field is, and
clicks on the green arrow button of that field. After selecting all
the fields of a specimen, the user clicks on the “Save and Next”
button to store the coordinates in the database. Later, these
coordinates are used to generate cropped images of each field.

The label cropping interface works in a similar way, but the
user only needs to select one text area. These two web
applications were used to get the data for approaches 2 and 3.
They are available at http://humain.acis.ufl.edu/app.html.

D. Metrics

Comparing strings is a common Data Science problem.
Many similarity metrics are token-based, which make them
unsuited to compare sentences. Token-based metrics, require
strings to have the same length and would penalize too much the
characters inserted or omitted by the OCR, being that these
events modify the absolute position of the characters that follow.
Due to these reasons, it was decided to use edit-based metrics.

- Damerau-Levenshtein (DL) similarity: The DL distance of
two strings is the minimum amount of insertions, deletions,
substitutions, and transpositions of two adjacent characters,
required to convert one string into the other [31].
The DL similarity is computed as the complement to 1 of the
normalized DL distance:

DL distance(x,y)

simp (x,y) =1 - max(1xl1y])

1)
For this study, the Geoffrey Fairchild’s DL normalized
distance implementation of the algorithm [33] is used.

- Jaro—Winkler (JW) similarity: The JW algorithm considers
the number of matching characters and adjacent
transpositions, giving better rating to the letters that match at
the beginning of the string [24]. The JW distance is not a
metric in the mathematical sense [20], while its results are
normalized (range 0 - 1), they do not represent a real distance.
In our study, it was used the JW implementation available at
the jellyfish 0.5.3 library [23].

- Matched words (mw) rate: This is an empirical metric, mw(x,
y) is equal to the number of words of x that are in y, divided
by the number of words in x:

__ |wordsin common between x and y|
h IxI

mw(x,y)

@
The order and frequency of words are not considered [22].

For these three metrics, a 0 (minimum value) means totally
different strings, while 1 (maximum value) implies the strings
are exactly the same (or “it is included in” for mw).

Iv.

In this section, the experimental setup is detailed and the four
approaches explained in Section I are evaluated with regard to
consistency of outputs and the effectiveness of the human-
machine cooperation.

EXPERIMENTAL SETUP, RESULTS AND ANALYSIS
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A. Experimental Setup

The machine used to run OCRopus and Tesseract has the
following characteristics:

Hardware:

System: IBM BladeCenter HS22 7870-ACl1

CPU: 2x Intel Xeon, E5540 (8 cores/16 HyperThreads).
Storage: HGST HTS725050A7 (HD, 2.5 Inch, 500 GB)
Memory: 48 GB, 12 x 4GB PC3-10600R DDR3 RAM

Software:

CentOS Linux release 7.2.1511

Python 2.7.5 (default, Nov 20 2015, 02:00:19)
gce (GCC) 4.8.5 20150623 (Red Hat 4.8.5-4)
Tesseract 3.04.00, with leptonica-1.72
OCRopy v1.0 (OCRopus)

&

Approach 1 (Machine-only — OCR whole image)

The OCR process was executed on the 400 images (divided
in Entomology, Bryophyte, and Lichen specimens) using
OCRopus and Tesseract; and evaluated considering the
Damerau-Levenshtein (DL), Jaro-Winkler (JW), and matching
words (mw) similarity metrics. The average similarity, with
respect to the experts’ transcription, is shown in Figure 3 and
summarized, for the DL metric, in table 2.

Entomology Bryophyte Lichen
0.80 0.80 0.80 0.80
0.70 0.70 0.70 0.70
0.60 0.60 0.60 0.60
0.50 0.50 0.50 0.50
0.40 0.40 0.40 0.40
0.30 0.30 0.30 0.30
0.20 0.20 0.20 0.20
0.10 I II 0.10 0.10 0.10
“Por w mw oL W mw oL W e’

B OCRopus M Tesseract
DL: Damerau-Levenshtein, JW: Jaro-Winkler, mw: Matching words
Figure 3. Average similarity per specimen type, OCR tool, and metric

The character recognition process worked better for lichens,
followed by bryophyte and entomology images, considering the
values obtained for the Damerau-Levenshtein (DL) metric.

Table 2. Average Damerau-Levenshtein (DL) similarity

Entomology | Bryophyte Lichen
OCRopus 0.31 0.31 0.64
Tesseract 0.24 0.46 0.66

Despite having the lowest resolution (only 96dpi), the text in
lichen images is the easiest to be interpreted by the OCR: the
three similarity metrics used were better for lichen images than
for entomology and bryophyte images. In lichen images more
than 60% of the words are recognized in both OCR technologies.
These images are basically the label of the specimen, with few
stamps, bar codes, or graphical elements in them, and a mostly
white background.
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Entomology images have text with non-white background,
many lines (boxes and underlined text), and dark or shadowed
regions around the text labels, that create additional borders or
lines which mix with the text. Even though bryophyte images
have more graphical elements than entomology images, their
clean background, better resolution and contrast, make them get
more accurate OCR results.

In Figure 3, the matching words (mw) metric, a string
similarity measure which can be thought as more restrictive than
the DL and JW metrics, got better or similar results (for
Bryophyte and Lichen) than the DL metric. This shows that
many of the words in the image are recognized, but added noise
characters make the DL algorithm getting a worse similarity.
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Figure 4. Result of the binarization (left) and interpreted text (right)
of specimen EMEC 609,705
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The result of the OCRopus binarization process for the
entomology image presented in Figure 1 is illustrated in Figure
4. After the binarization, OCRopus executes the segmentation
and recognition processes, to get the final result (right).

If the background is not completely white, the binarization
process removes some pixels from the characters, making these
letters more difficult to recognize. The dark areas around the
small labels, create figures that the OCR tries to interpret. Boxes
and underlined text also confuse the recognition algorithms.

For the specimen in Figure 4 (EMEC 609,705), the
following similarity results were obtained:

Table 3. Similarity values obtained for specimen EMEC 609,705

Similarity \ OCR software | OCRopus | Tesseract
Damerau-Levenshtein 0.3627 0.3941
Jaro—Winkler 0.5943 0.6514
Matching words 0.4 0.4

In general, Jaro-Winkler metric shows more “optimistic”
results, returning a higher similarity value than the Damerau-
Levenshtein and matching words similarity metrics.

The execution time of the OCR process is shown in table 4.
Tesseract was in average 18.5 times faster than OCRopus.
During the study, none of the tuning features these tools provide
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were utilized. The main reason for the execution time difference
is that OCRopus generates intermediate on-disk results during
the binarization and segmentation steps, while Tesseract works
entirely in memory, as a single process.

Table 4. Approach 1 — OCR’s average execution time (s)

Avg. Execution Time (s)

Specimen type \ Tool | OCRopus | Tesseract
Entomology 28.36 3.60
Bryophyte 158.57 4.54
Lichen 30.46 1.95

In Figure 5, it is shown the similarity box chart for approach
1. We observe the Jaro-Winkler metric offers less variability in
the results. We also notice high maximums (images where
almost every word was identified) and very low similarity
results (images for which the OCRs were not able to correctly
identify a single word).

Entomology Bryophyte Lichen
1.00 1.00 1.00 1.00
0.90 0.90 T 0.90 17| 0s0
DED 080 I 0.20 T i I l 0.80
0.70 [I 0.70 I In_m 0.70
0.60 T 0.60 JJ_ 0.60 { I 0.60
050 0.50 Tl 0.50 0.50
0.40 \ 0.40 B o 0.40
030 0.30 I Lo3o 0.30
D.ZDT 0.20 0.20 0.20
0.10 l W¥ o0 J 0.10 0.10
200 b aw mvl.r “Ooor uw me™@ o ow mw %%
= OCRopus DL: Damerau-Levenshtein

JW: Jaro-Winkler
mw: Matching words

Figure 5. Box and whisker representation of the obtained similarity
per specimen type, metric, and OCR tool.

™ Tesseract

Lichen images have some attributes which make their text
easier to be recognized than the other specimen types, but not all
the images have the same quality. One of the images with poor
conditions is lichen TENN-L-0000003, see Figure 6, for which
the DL similarity was 0.1 in OCRopus and 0.15 in Tesseract;
and none OCR tool was able to match a single word. The low
contrast of the image makes it difficult for the OCR tools
generate good results. Increasing the contrast would improve
these cases, but another machine process would be needed to
auto-select the level of contrast, as elevating contrast for all will
cause other labels to decrease their recognition rate.

_vi

n‘v

Figure 6. Lichen TEN-L0000003

Authorized licensed use limited to: University of Florida. Downloaded on June 08,2020 at 20:37:23 UTC from IEEE Xplore. Restrictions apply.



C. Approach 2 (Cooperative — Crop and OCR label)

Using the HuMalN interface [32], the label of the 400
images were cropped by two volunteers. The result of this
process is a rectangular image with the text in it. In the case of
entomology images, there are several pieces of paper with data,
hence the rectangle includes all these areas. In the case of
bryophyte images, the final cropped label may include pieces of
other elements, which reverts to Approach 1 in these cases.
Figure 7 shows the cropped version of the images in Figure 1.
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Figure 7. Cropped labels of images in Figure 1

The HuMalN’s app, randomly picks, the next image to be
cropped. The coordinates of each cropped label are stored in a
database, as well as the time the user spent in the process. Every
label was cropped at least three times by the volunteers. The
consensus criteria to select the coordinates (image) to process
with the OCR was choosing the image with the largest area.

Entomology Bryophyte Lichen
0.80 0.80 0.80 0.80
0.70 0.70 0.70 0.70
0.60 0.60 0.60 060
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0.0 W mw W omw @bl oW mw®®

l OCRopus [ | Tesseract

DL: Damerau-Levenshtein, JW: Jaro-Winkler, mw: Matching words

Figure 8. Average similarity for cropped label images
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Figure 8 shows the DL, JW, and mw similarity values for the
cropped entomology, bryophyte, and lichen labels, OCRed with
OCRopus and Tesseract.

Figure 9 exhibits the absolute similarity variation when
executing the OCR on the original images (Approach 1) vs. the
cropped labels. For lichen images, there was no significant
variation because the cropped labels are very similar to the
original images. Lichen images are basically a cropped label.

Approaches 1vs. 2 - Similarity variation

Entomology Bryophyte
O-W = T-IW
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0.15

0.1

=

0.0

[

0.00
Lichen

-0.05

nO-DL mT-OL mO-mw | T-mw

Figure 9. Average similarity difference between approaches 1 and 2

In the case of entomology and bryophyte images, there was
a clear improvement. The similarity of the OCR generated text
with respect to the experts’ transcription improved about 0.22
considering Damerau-Levenshtein, 0.08 for Jaro-Winkler, and
0.12 considering the matching words similarity metric. The DL
metric showed a higher improvement than the JW metric, likely
because JW similarity values were already high for Approach 1.

Figure 10 shows the cropped text area of specimen EMEC
609,705 after being binarized, and the final OCRopus result. In
comparison to Figure 4, we can observe that the initial undesired
characters were eliminated and a pair of zones (around “Navajo”
and the first appearance of “J.M. Davidson”) were better
interpreted.
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t8 Mickel OCRopus Result
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Figure 10. Result of the binarization (left) and interpreted text
(right) of the cropped area of specimen EMEC 609,705
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In the box chart of Approach 2 (Figure 11) it is remarkable
how the matching word metric for some bryophyte images
raised to 100%. This increment together with the average results
for approach 2 shown in Figure 8, confirm that cropping the text
area (made by humans) before running the OCR, improved the
quality of the OCR output (a machine-intelligent process).

Entomology Bryophyte Lichen
1.00 1.00 1.00 1.00
0.90 + T 0.90 Ti Tl [I 0.90 i T T I 0.90
0.80 0.80 0.80 l 0.80
0.70 I 0.70 0.70 L 0.70
0.60 T 0.60 T 0.60 I J I 0.60
0.50 I J_ 0.50 I I 0.50 0.50
0.40 0.40 0.40 0.40
0.30 | 0.30 0.30 0.30
0.20 0.20 | 0.20 0.20
0.10 0.10 0.10 0.10
0.00 | . 00 ~ L poo
DL JW mw DL JW mw DL JW  mw
= OCRopus DL: Damerau-Levenshtein

JW: Jaro-Winkler
mw: Matching words

Figure 11. Similarity of the cropped labels per specimen type,
metric, and OCR tool.

™ Tesseract

Comparing figures 11 and 5, we also observe that the
variability increased. Although the average OCR’s recognition
rate improved, there are images which OCR process did not
benefit from processing a smaller version of them.

In Approach 1 the total time is equal to the OCR execution
time. For Approach 2 (see Table 5), we include the time users
spent cropping the image (O: OCRopus, T: Tesseract). This
cropping time was measured as the interval between the web
page loads and the user pressing the “Save and Next” button. In-
between these events, the image loads, the user interprets the
image, marks the area to crop, and clicks the “take coordinates”
(green arrow) button, see Figure 3.

Table 5. Approach 2 - Average execution time (s)

Execution time (s)
Type \ Tool | Cropping | Ocropus | Tesser. | Tot. O | Tot. T.
Entomology 15.36 15.65 247 31.01 17.83
Bryophyte 24.56 32.74 1.68 57.30 26.24
Lichen 15.13 25.52 1.82 40.65 16.95

For entomology and lichen images the average cropping
time was 15 seconds, but for bryophytes the process was more
complex, and took on average 25 seconds. Considering only the
OCR execution time, Approach 2 was on average 2.62 and 1.74
times faster than Approach 1, for OCRopus and Tesseract
respectively. Considering the total time, Approach 2 was 1.48
times faster with OCRopus and 6.48 times slower with
Tesseract, with respect to Approach 1.

D. Approach 3 (Cooperative — Crop and OCR fields)

Using the HuMaIN web interface, 8 Darwin Core fields:
scientific name, event date, latitude, longitude, identified by,
country, county, and state/province were cropped and then
OCRed. It is important to highlight that only 6 of these fields are
not modified or interpreted. The fields Scientific name, Event
date, Latitude, and Longitude were collected as dwc:verbatim
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[26], which means they are the original values present in the
image. Additionally, the fields Identified by, and County are
usually not modified or completed by the expert. On the other
hand, State/Province and Country fields, use to be abbreviations
which are completed or interpreted. For example, in the country
field, “Mex.” is interpreted as “Mexico”’; while “US”, “U.S.A.”,
and “USA” are interpreted as “United States”. This affects the
comparison because we are not doing these interpretations of the
OCR output. As mentioned before, the objective of this study is
not to develop a data extraction product as SALIX [29] or
LabelX [30], but showing the benefits of the human-machine
cooperation in data extraction. Some random examples of
cropped fields are shown in Figure 12.

18-22-5]  HAITI
Ciferriolichen cinchonae (Ach.)
: H.A.Scullen’
Cerceris g4 _ FEE
convergens VW YORK  Rocklind
-] '\
Municipio Quebradillas 68 38 N Calif,

Figure 12. Examples of cropped fields

Every cropped field image was resized to 600 x 600 pixels
because this is the minimum image size permitted by OCRopus.
During this enlargement process, the cropped area was not
changed, but the surrounding area was filled with “silver” (light
gray) color. In preliminary tests, we filled the image with white
background; but we found, after trying with white, silver, gray,
and black colors, that silver gave the best result. In 20 test
images, silver background increased the character recognition
rate by about 12% (in OCRopus and Tesseract) with respect to
white background. The reason for this difference is the artificial
border around the cropped area created by the binarization
process when white background is used. In the case of silver
background, the contrast is reduced and the border disappears or
is minimized, see Figure 13. The border shown around the
scientific name at the left side of Figure 13 does not exist in the
original image, see Figure 1 — entomology specimen. When the
border is present, the recognition rate decreases.

Silver background

White background
Cerceris

onifreor Cémh-ons_

Figure 13. Binarization result of the same cropped image, filled with
white (left) and filled with silver (right)

The amount of cropped fields, per specimen type and field,
is shown in the following table:

Table 6. Numbers of cropped fields per specimen type and field
Entomology | Bryophyte | Lichen
dwc:country 7 75 63
dwc:county 55 0 52
dwc:verbatimEventDate 89 98 191
dwc:identifiedBy 51 55 89
dwec:verbatimLatitude 2 6 89
dwec:verbatimLongitude 2 8 97
ocr:verbatimScientificName 52 97 196
dwec:stateProvince 61 26 157
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The “matching words” (mw) metric, used in the first 2
approaches and defined as the percentage of exact words
recognized by the OCR, was not used in this case because most
of the fields have only one or a very low number of words.
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Figure 14. Average similarity for entomology fields

Figures 14, 15, and 16 present the similarity value for the
entomology, bryophyte, and lichen fields. For simplicity
purposes, we only show the results for the Damerau-Levenshtein
similarity metric in OCRopus (O-DL) and Tesseract (T-DL).

Bryophyte

country date  idertified name

D.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00

mO-DL
EmT-0L

stae
Figure 15. Average similarity for bryophyte fields

Figures 14 and 15 omit the fields for which we collected less
than 10 values per specimen type, see Table 6. Entomology
images show the worst results. Each field has its own challenges:

e The degree symbol in Latitude and Longitude is usually not
recognized. The slash and hyphen symbols of the Event
date also confuse the interpreters.

e Some Scientific names are underlined, which mixes with the
letters and confuses the OCRs.

e State/Province and Country are sometimes abbreviated in
the images and completed in the experts’ results. Hence, the
value for these fields do not really represent the quality of
the OCR’s output.
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Figure 16. Average similarity for lichen fields
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On average, “Identified by” was the easiest field to interpret;
while Country and State fields, because they can be abbreviated,
present the worst similarity. Lichen fields obtained a higher
similarity than entomology and bryophyte fields. Table 7 shows
the average Damerau-Levenshtein similarity per specimen type
in each of the 3 approaches. Fields State/Province and Country
were not considered to calculate the averages for Approach 3.

Table 7. Average DL similarity by approach

Entomology | Bryophyte Lichen
Al: whole image 0.31 0.31 0.64
A2: cropped label 0.59 0.58 0.64
A3: cropped field 0.44 0.69 0.66

Bryophyte and Lichen information was better interpreted in
Approach 3 (Cropped fields), while entomology text was better
recognized in Approach 2 (Cropped label). The result was not
absolute in terms of better similarity for Approach 3, but data
consistently show that when unnecessary areas are discarded,
the OCR generates a better result.

Considering only entomology and bryophyte images, (since
lichens images are already cropped labels), the similarity
improvement when humans cropped the label or the fields, with
respect to approach 1, was on average 0.27. Table 8 shows the
percentage improvement with respect to the machine-only
approach, obtained by the two cooperative approaches.

Table 8. Avg. DL improvement of A2 and A3 with respect to A1l

Entomology | Bryophyte
A2 vs. Al. 90% 87%
A3 vs. Al 42% 123%

The machine-intelligent process performed by the OCR was
improved when a human-intelligent process (cropping the text
areas), was added to the processing workflow.

OCRopus

Ertomology Bryophyte

Tesseract

Ertemology Bryophyte

B.00 0.35
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200 0.10

1.00 0.05

0.00 0.00

Lichen Lichen

Figure 17. OCR Execution time (s) by tool and specimen type

Figure 17 shows that in OCRopus, bryophyte images are the
slowest in being processed, while for Tesseract those are
precisely the fastest to process. It is important to note that the
scales are different. On average, Tesseract spends 0.29 sec
processing a field image, while OCRopus takes 7.39 sec, which
is about 25 times slower than Tesseract.

E. Approach 4 (Machine-only - Data cleaning)

In Approach 1, we executed the OCR process and observed
that the results include unexpected characters, which could
affect the quality of the similarity values. We developed a very
simple and fast filtering script which omits the words (sequence
of characters) that contain symbols which are uncommon
punctuation characters [22].
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Our objective was to simplify the output to improve the
readability and verifying if the similarity values get better.
Figure 18 shows the output after cleaning the OCRopus result of
our example entomology specimen 609,705.

Table 9. Similarity variation when cleaning the Approach 1’s output

Damerau-L. | Jaro-Winkler | Matching w.

Ocro. | Tess. | Ocro. | Tess. | Ocro. | Tess.

Entomology | 0.00 0.00 0.01 0.00 -0.01 | -0.01
Bryophyte 0.08 0.01 0.02 -0.01 | -0.04 | -0.02
Lichen -0.04 | -0.02 | -0.01 0.01 -0.03 | -0.05

The cleaning script was executed on OCRopus and Tesseract
results of Approach 1. The similarity values were recomputed
for these outputs and we compared the obtained results with the
Approach 1’s similarity values. Table 9 shows the variation in
similarity for each OCR tool, metric, and specimen type. The
cleaning process did not improve the similarity, therefore the
comparison of Approaches 2 and 3 with respect to Approach 1
is fair even after cleaning its output. Despite not improving
similarity, the cleaning process reduced the output size and
simplified the result, which is a positive behavior.

F. Time, Cost, and Scalability

Consider 1 billion of scientific images to be processed, a
single server with a Total Cost of Ownership (TCO) of $3000
per year [35], a single person with a base salary of $10/ hour, an
OCR with the average behavior between Tesseract and
OCRopus, and the following 4 approaches:

0) Human-only: where the average transcription time is
about 9 minutes [7]. Instead of DL similarity, the percentage
of tasks where consensus is reached was used [7].

1)  Machine-only: where the average OCR time is 37.9 sec
(OCRopus and Tesseract average), see Table 4.

2)  Cooperative-Crop  Label: where the average
crowdsourcing (cropping) time is 18.3 sec (see Table 5), and
the average OCR time is 13.3 sec.
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3) Cooperative—Crop fields: where 10 fields are
transcribed per specimen, the average cropping time is 20 sec
per field (according to our experiments with volunteers), and
the average OCR time is 3.84 sec per field.

Time and cost can be estimated as summarized in Table 10.
In general, adding human effort increases execution time and

cost, but improves the quality of the result. Note that even
though the total time in years is provided, both machine and
human efforts are fully parallelizable.

Table 10. Time, Cost, and DL Similarity per Approach

Human+Machine Cost ot et
AY0D (Time in years) ($ in Millions) L3 ey
0 17123 -0 (17123) 1500.00 0.79[7]
1 01202 (1202) 3.61 0.42 (Table 7)
2 580 — 422 (1002) 52.10 0.60 (Table 7)
3 6342 — 1218 (7560) 559.21 0.60 (Table 7)

The machine-only option is the cheapest option, but
generates the worst output quality. On the other hand, the
human-only option is the most expensive and the most accurate.
The hybrid approaches balance these two extreme cases. When
adding the most trivial human work (cropping whole labels), the
cost increases, the required overall time is actually reduced and
the quality improves. Cropping fields, requires detecting the
different fields, increasing the time and cost while maintaining
quality when compared to the label-cropping hybrid approach.

In this cost evaluation, we considered that workers are
compensated. However, if the crowdsourcing task can be made
entertaining (e.g., as an application that museum visitors could
use while interacting with the items in displays, or as an online
competition game), where volunteers would be willing to
contribute their work, then the cost would be drastically reduced.

V. CONCLUSIONS

In this work, we demonstrated that a single workflow with
cooperation of human- and machine-intelligent processes led to
improved quality, while not sacrificing significant time, when
compared to a machine-only workflow. Even though we did not
explicitly compare to human-only workflows, related work [7]
has shown that human-only workflows demand user training,
are time intensive (require multiple users to perform the same
task), quality is not perfect, and require solutions to deal with
variations in human opinion, bias, and error.

Improvements in output quality were assessed for two
workflows with machine and human processes that require
minimal user training to generate segments with text from the
image: whole labels and individual parsed fields. These
workflows were compared to a typical machine-only workflow
and an improved machine-only workflow that implicitly
removes noise from the output. The quality of the hybrid
workflow was at least 42% superior. A secondary future goal of
collecting text region information, is to investigate the ability to
train a machine-learning model to look for and find regions with
this characteristic. During segmentation, OCRopus uses
different heuristics to find region of text and eliminate images,
but these heuristics assume publication type layout, and
specimen images do not follow such a constrained format. We
also experimented with other tools that can detect text on
photographs. While those could detect text within an image with
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texture, they failed on biological specimen images. Collecting
training data for tools that make use of supervised machine-
learning algorithms is time demanding, and a hybrid workflow
as presented in this work can also facilitate the tuning of such
machine-only workflows.

In addition to these main findings, we also provided detailed
insights into the performance of OCRopus and Tesseract.
Because Tesseract was on average 25 times faster than
OCRopus while maintaining the quality of output, cropping the
label accelerated the OCRopus execution time, but decreased
Tesseract execution performance. Similarly, when considering
the crowdsourcing time, the hybrid approach resulted in time
efficiency gains with OCRopus, and time efficiency loss with
Tesseract. Factors such as yellowed paper, underlined text, low
contrast text and graphical elements that touch characters, had a
higher negative impact in the character recognition rate than the
resolution.
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