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Abstract—Historical data sources, like medical records or 
biological collections, consist of unstructured heterogeneous 
content: handwritten text, different sizes and types of fonts, and 
text overlapped with lines, images, stamps, and sketches. The 
information these documents can provide is important, from a 
historical perspective and mainly because we can learn from it. 
The automatic digitization of these historical documents is a 
complex machine learning process that usually produces poor 
results, requiring costly interventions by experts, who have to 
transcribe and interpret the content. This paper describes hybrid 
(Human- and Machine-Intelligent) workflows for scientific data 
extraction, combining machine-learning and crowdsourcing 
software elements. Our results demonstrate that the mix of human 
and machine processes has advantages in data extraction time and 
quality, when compared to a machine-only workflow. More 
specifically, we show how OCRopus and Tesseract, two widely 
used open source Optical Character Recognition (OCR) tools, can 
improve their accuracy by more than 42%, when text areas are 
cropped by humans prior to OCR, while the total time can 
increase or decrease depending on the OCR selection. The 
digitization of 400 images, with Entomology, Bryophyte, and 
Lichen specimens, is evaluated following four different 
approaches: processing the whole specimen image (machine-only), 
processing crowd cropped labels (hybrid), processing crowd 
cropped fields (hybrid), and cleaning the machine-only output. As 
a secondary result, our experiments reveal differences in speed 
and quality between Tesseract and OCRopus. 

Keywords—Digitization; human-machine; data extraction; 
biological collections; optical character recognition; crowdsourcing  

I. INTRODUCTION 
The extraction of information from historical data sources, 

like medical records and scientific collections, is a challenging 
task. Standards were not used or have changed since these paper 
documents were created, and standards will continue to evolve. 
These data sources mix typed, printed, and handwritten text on 
paper that in some cases already turned yellow or stained. 

Nevertheless, the information stored in these documents is a 
valuable heritage, which helps us understand the past, and more 
importantly could allow us to forecast and improve our future. 
Biological collections, for example, could help us model past 
and future environmental changes, develop new medicines, 
control agricultural pests, and understand or avoid epidemics, 
among many other benefits [1]. 

Governments and institutions have recognized the value of 
these biological collections and the importance of providing 
access to the cataloged specimens not only to researchers but to 
the general public. Projects like the Integrated Digitized 

Biocollections (iDigBio: https://www.idigbio.org), the Global 
Biodiversity Information Facility (GBIF: http://www.gbif.org), 
and the Atlas of Living Australia (ALA: http://www.ala.org.au), 
are stable providers of universal access to millions of specimens.  

The challenge is that the actual number of specimens to 
digitize, as stored in collections worldwide, has been calculated 
in more than a billion [4]. Considering the current digitization 
rate, which is on the order of minutes per specimen, these data 
could take several decades to be processed [3]. This time does 
not account for the time to train the personnel who perform the 
digitization or the domain expert’s time to manage the process 
and validate results. For mass-digitization of specimens, the 
recommended approach has been to divide the process into 
image capture and metadata transcription stages [5]. This 
alleviates the need for institutions to prioritize only the “most 
important” collections or specimens, and focuses the effort on 
curation and scanning. The transcription of the text can be 
performed at a later time, using the captured image, which opens 
the possibility of crowdsourcing [6][7]. In this work, we follow 
this mass-digitization approach, and assume that there are 
millions of specimen images that require data extraction. 

Some researchers believe “there is no point in collecting 
complete metadata if these are not going to be used for any 
purpose” [5], but in this Big Data era, which has been defined as 
“collect now, sort out later” [9], we should not decide what 
metadata is important and what is not. The digitization process 
needs to be accelerated in order to digitize all historical data 
sources, ensuring the best result quality possible, and using 
experts only when strictly needed (mainly for verification). 
Experts should ensure the digitization’s quality, while crowds 
and machines make high volume data processing possible. It is 
this mix of human- and machine-intelligent processes where we 
believe is the ideal solution. The goal of this study is to 
demonstrate that a good balance of these processes, in a single 
workflow, can lead to an improved overall process. 

Today, a pure machine-intelligent process to transcribe text 
from biological specimen images using Optical Character 
Recognition (OCR) tools does not produce a good result. This 
kind of historical data source includes a wide range of challenges 
for the OCR tools, whose recognition algorithm is based on 
training. The variety of font types (printed and typed) and sizes, 
languages, background colors, lines, stains, and other elements 
in the image affect the recognition rate of the OCR. The other 
alternative, pure human-intelligent approaches [7][8], like 
crowdsourcing, can get better accuracy, but deal with a different 
set of challenges, like training the crowd and handling consensus 
among the diverse set of results. 
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In this paper, we propose to improve the overall output 
quality by combining the OCR execution (a machine-intelligent 
process) with the help of humans (crowdsourcing), who crop the 
text areas that the OCR has to process. The cropping reduces the 
complexity, noise and size of data that the OCR tool has to 
binarize, segment, and recognize; leading to higher data quality 
and time-saving. The crowdsourcing step has been simplified to 
only require cropping of text, which does not demand a complex 
training and requires less effort than full text transcription. 
Crowdsourcing tasks were performed using a cropping web 
application developed for the HuMaIN (Human- and Machine-
Intelligent Network) project, see http://humain.acis.ufl.edu.  

To demonstrate that the cooperative human-machine data 
extraction improves the quality of the OCR process, getting 
closer to the ideal (expert-equivalent) result, we use 400 
specimen images of the iDigBio project, for which the experts’ 
transcription of the label and fields are known. These images 
cover three specimen types: Entomology (i.e. Insect), 
Bryophyte, and Lichen. Four approaches are evaluated:  

1. Machine-only: the OCR tool is run on the whole original 
image, and the result is compared to the experts’ label 
transcription. This establishes a comparison baseline. 

2. Hybrid: humans crop the entire labels (using the HuMaIN 
interface [32]) from the specimen images and the OCR is 
run on them. The results are compared to approach 1. 

3. Hybrid: considering a higher granularity level, humans crop 
individual fields (using the HuMaIN interface) from the 
specimen images and the OCR is run on them. The result is 
compared to the two previous approaches.  

4. Improved machine-only: due to the amount of extra 
characters and digital noise generated by the OCR on the 
whole image, we add a simple cleaning algorithm on the 
machine-only results to compare between explicit noise 
removal, through cropping, and implicit noise removal, 
through elimination of non-interpretable set of characters. 

 Our results show that OCR’s recognition rate improves by at 
least 42% for any of the two approaches where the text areas are 
cropped. In order to guarantee that the obtained results are 
independent of the used software or metric, two OCR tools 
(OCRopus and Tesseract) and three string similarity metrics 
(Damerau-Levenshtein, Jaro-Winkler, and the rate of matching 
words) were used. The total execution time of the cooperative 
data extraction process (machine + human) was reduced when 
using OCRopus, but increased when using Tesseract. This is due 
to the fact that Tesseract is faster than OCRopus while both 
provide similar recognition quality. None of the OCR tools were 
trained or tuned, i.e., the default version of the English language 
dictionary that these tools provide was used.  

II. RELATED WORK 
The Human-Computer Cooperation field is broad. In the 

HuMaIN project, and specifically in this study, we show the 
benefits of this interaction and how it can be applied to improve 
data extraction. There are data sources for which an automated 
data extraction process is sufficient to get the information we 
need. But for other data sources, like scientific collections, the 
data extraction must still rely on humans.  

In 2011, iDigBio created the Augmenting OCR Working 
Group (A-OCR) with the goal of generating tools that improve 
the OCR process, either in output quality, speed, cost, or 
efficiency [10]. The group has organized several events which 
have generated a number of software solutions. One of these 
tools is the Semi-automatic Label Information Extraction 
system (SALIX) [11][12]: using a friendly graphical interface, 
the user can run the OCR and SALIX automatically assign text 
into individual fields. Corrections can be applied to the result. 
We agree with SALIX in the semi-automatic (machine and 
human) nature of the solution, considering how difficult it is to 
obtain a perfect OCR output for this type of data source. 
Nevertheless, in this work, our goal is to improve the output of 
the OCR, which would be the input of SALIX, i.e., we do not 
create a natural language post-processing tool. Moreover, our 
focus is on open source tools, while SALIX is mainly tested with 
ABBYY©, a proprietary OCR tool.  

The Apiary project (http://www.apiaryproject.org), of the 
Botanical Research Institute of Texas (BRIT), has developed a 
“High-Throughput Workflow for Computer-Assisted Human 
Parsing of Biological Specimen Label Data” [14]. HuMaIN 
follows the same spirit as Apiary, with the difference that even 
though we are using biological collections as a use case, our final 
goal is a general platform for the definition of hybrid data 
extraction workflows in any area, generalizing the hybrid 
(Human-Computer) concept. Apiary includes a web application, 
called HERBIS, which inspired SALIX and works similarly. 

A good amount of scientific projects (Apiary, the Atlas of 
Living Australia, Les Herbonautes, and Symbiota [34], among 
many others) have developed products and conducted research 
to digitize specimens, creating workflows that integrate 
crowdsourcing and machine-intelligent tools. This study uses a 
human task (cropping images) to improve the result of a 
machine-intelligent process (OCR), reinforcing the idea that we 
need both, humans and machines, to get an optimal result. 

In the business world, several crowdsourcing vendors serve 
as a link between companies and crowds, like computer 
programmers, designers, or transcribers. One interesting case is 
CrowdFlower, which employs crowdsourcing in data extraction 
workflows to ensure or improve data quality, an area where 
crowdsourcing has been especially successful. Nevertheless, our 
initiative points to an open, customer managed, platform. 

Several open source OCR products are available: Tesseract, 
JOCR (GOCR - http://jocr.sourceforge.net/), and OCRopus 
(OCRopy), among others. In [15] a comparative study between 
Tesseract and GOCR conclude that Tesseract has better 
accuracy and precision than GOCR. Creators of OCRopus, show 
in [16] mixed results for Tesseract and OCRopus error rates. 
OCRoRACT [13] uses an iterative method, as it trains Tesseract 
(segmentation based OCR) with the data from OCRopus 
(segmentation-free OCR) and then trains OCRopus with the data 
generated by Tesseract. After few iterations, the method is able 
to reduce the misinterpretation rate from 23% to 7%. 
OCRoRACT requires an expert who provides the unique set of 
characters for the documents and their Unicode representation. 
Nevertheless, in the case of biological collections, with the 
diverse mix of typed, printed, and handwritten text, this training 
oriented approach would not be the most appropriate.  
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III. DOMAIN DATA SETS AND SOFTWARE TOOLS 
This section describes the main characteristics of the images 

used in the study, the OCR tools, the Web application used to 
crop labels and fields, and the metrics employed to measure 
string similarity or quality of the results.  

A. Data Set 
 Between 2011 and 2014, the Augmenting OCR Working 
Group (A-OCR) of the iDigBio project, organized several events 
to generate content and tools for the digitization community. 
Among their results, there is a dataset with 400 images of 
cataloged specimens [27] and their corresponding whole label 
transcription as well as information parsed into individual fields 
by domain experts’ transcription. Individual fields correspond to 
Darwin Core standard terms [25]. These images of biocollection 
specimens belong to 3 specimen types: 100 insects, 100 
bryophytes, and 200 lichens. Distinctive characteristics of the 
images are: 

- Entomology images (i.e., insect images): include a picture of 
the insect and a ruler, which helps measure the size of the 
insect. Instead of a single metadata label, there are several 
pieces of paper varying in size, color, and border. Some 
images have a scientific name written at the bottom left 
corner, which is an annotation made by the current institution, 
not the original one. See upper right image of Figure 1. 

- Bryophyte images: are the largest images of the experiment 
(generating longer OCR times). Besides the labels, they 
include the specimen and other elements like stamps, maps, 
and bar codes.  There can be segments of handwritten text and 
labels can have different orientations, but the background and 
image are mostly clear. See left side of Figure 1. 

 
Figure 1. Bryophyte, Entomology, and Lichen images. 

- Lichen images: do not include the specimen, and are basically 
big labels, but the resolution and contrast of the image are not 
the best. There is a stamp and a bar code in most of them. See 
lower right image of Figure 1. 

 Challenges in automatically extracting data from these 
images are: unformatted text, mixed with pictures, maps, 
stamps, and bar codes; different fonts and sizes; several 

languages; different background colors and resolutions; 
handwritten and underlined text. Some of their technical 
characteristics are specified in the following table: 

Table 1. Number, size, and resolution of the specimen types 

Specimen type Number of 
images 

Avg. Size 
(KB) Dimension Resolution 

(dpi) 
Entomology 100 325 1600x1200 180 
Bryophyte 100 1214 3744x5616 300 

Lichen 200 153 1530x1128 96 

B. Optical Character Recognition (OCR) Technology 
 The OCR process is the extraction, in machine encoded-
format, of the typed, printed, and handwritten text of an image 
[21]. This process consists of a sequence of machine learning 
steps. In order to add generality and robustness to our results, 
two OCR tools are used: 

OCRopus (OCRopy): is a group of open-source document 
analysis programs, which can be integrated as a Character 
Recognition System [17]. Its modularity makes it ideal for code 
reuse and teaching purposes. It requires running three steps or 
programs in sequence: the binarization (creates a black & white 
version of the image), the segmentation (divides the image in 
multiple text segments), and the recognition (applies to each 
segment the Recurrent Neural Network for text identification). 
We created a script to perform the execution of the three OCR 
steps [22]. In our study, OCRopy v1.0 and its ad-hoc English 
model were used, no further training or configuration was done. 
OCRopus recommends a 300dpi resolution as a minimum, 
which only bryophyte images comply.  

Tesseract: is an open-source OCR engine initially developed by 
HP (between 1984 and 1995). It is sponsored, since 2006, by 
Google [18] [19]. Tesseract recommends a minimum resolution 
of 300dpi. Its artificial intelligence model must be trained, we 
used the default English trained model available in Tesseract 
3.04. Tesseract is executed in a single step or program.  

 
Figure 2. HuMaIN interface for fields cropping. 

C. HuMaIN 
 The Human- and Machine-Intelligent Network (HuMaIN – 
http://humain.acis.ufl.edu) is a project in development by the 
Advanced Computing and Information Systems (ACIS) 
laboratory (https://www.acis.ufl.edu) of the University Florida. 
It is funded by the National Science Foundation, with the goal 
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of researching and creating hybrid (crowdsourcing and machine 
learning) workflows of software components for data extraction. 

 Figure 2, shows the interface developed for cropping the 
fields of the images. The user picks the field name from one of 
the list boxes, selects the area where the value of the field is, and 
clicks on the green arrow button of that field. After selecting all 
the fields of a specimen, the user clicks on the “Save and Next” 
button to store the coordinates in the database. Later, these 
coordinates are used to generate cropped images of each field.  

 The label cropping interface works in a similar way, but the 
user only needs to select one text area. These two web 
applications were used to get the data for approaches 2 and 3. 
They are available at http://humain.acis.ufl.edu/app.html. 

D. Metrics 
Comparing strings is a common Data Science problem. 

Many similarity metrics are token-based, which make them 
unsuited to compare sentences. Token-based metrics, require 
strings to have the same length and would penalize too much the 
characters inserted or omitted by the OCR, being that these 
events modify the absolute position of the characters that follow. 
Due to these reasons, it was decided to use edit-based metrics. 

- Damerau-Levenshtein (DL) similarity: The DL distance of 
two strings is the minimum amount of insertions, deletions, 
substitutions, and transpositions of two adjacent characters, 
required to convert one string into the other [31]. 
The DL similarity is computed as the complement to 1 of the 
normalized DL distance: 

                          �����(�, �) = 1 −
�� 	
��
���(�,�)

��� (|�|,|�|)
                           (1) 

For this study, the Geoffrey Fairchild’s DL normalized 
distance implementation of the algorithm [33] is used. 

- Jaro–Winkler (JW) similarity: The JW algorithm considers 
the number of matching characters and adjacent 
transpositions, giving better rating to the letters that match at 
the beginning of the string [24]. The JW distance is not a 
metric in the mathematical sense [20], while its results are 
normalized (range 0 - 1), they do not represent a real distance. 
In our study, it was used the JW implementation available at 
the jellyfish 0.5.3 library [23]. 

- Matched words (mw) rate: This is an empirical metric, mw(x, 
y) is equal to the number of words of x that are in y, divided 
by the number of words in x: 

           ��(�, �) =
|���	� 
� ������ ������� � 
�	 �|

|�|
                (2) 

 The order and frequency of words are not considered [22]. 

For these three metrics, a 0 (minimum value) means totally 
different strings, while 1 (maximum value) implies the strings 
are exactly the same (or “it is included in” for mw). 

IV.  EXPERIMENTAL SETUP, RESULTS AND ANALYSIS 
 In this section, the experimental setup is detailed and the four 
approaches explained in Section I are evaluated with regard to 
consistency of outputs and the effectiveness of the human-
machine cooperation.  

A. Experimental Setup 
 The machine used to run OCRopus and Tesseract has the 
following characteristics: 

Hardware: 
� System: IBM BladeCenter HS22 7870-AC1 
� CPU: 2x Intel Xeon, E5540 (8 cores/16 HyperThreads). 
� Storage: HGST HTS725050A7 (HD, 2.5 Inch, 500 GB) 
� Memory: 48 GB, 12 x 4GB PC3-10600R DDR3 RAM  

Software: 
� CentOS Linux release 7.2.1511 
� Python 2.7.5 (default, Nov 20 2015, 02:00:19) 
� gcc (GCC) 4.8.5 20150623 (Red Hat 4.8.5-4) 
� Tesseract 3.04.00, with leptonica-1.72 
� OCRopy v1.0 (OCRopus) 

B. Approach 1 (Machine-only – OCR whole image) 
 The OCR process was executed on the 400 images (divided 
in Entomology, Bryophyte, and Lichen specimens) using 
OCRopus and Tesseract; and evaluated considering the 
Damerau-Levenshtein (DL), Jaro-Winkler (JW), and matching 
words (mw) similarity metrics. The average similarity, with 
respect to the experts’ transcription, is shown in Figure 3 and 
summarized, for the DL metric, in table 2. 

 
Figure 3. Average similarity per specimen type, OCR tool, and metric 

 The character recognition process worked better for lichens, 
followed by bryophyte and entomology images, considering the 
values obtained for the Damerau-Levenshtein (DL) metric.  

Table 2. Average Damerau-Levenshtein (DL) similarity 
 Entomology Bryophyte Lichen 
OCRopus 0.31 0.31 0.64 
Tesseract 0.24 0.46 0.66 

 
 Despite having the lowest resolution (only 96dpi), the text in 
lichen images is the easiest to be interpreted by the OCR: the 
three similarity metrics used were better for lichen images than 
for entomology and bryophyte images. In lichen images more 
than 60% of the words are recognized in both OCR technologies. 
These images are basically the label of the specimen, with few 
stamps, bar codes, or graphical elements in them, and a mostly 
white background. 
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 Entomology images have text with non-white background, 
many lines (boxes and underlined text), and dark or shadowed 
regions around the text labels, that create additional borders or 
lines which mix with the text. Even though bryophyte images 
have more graphical elements than entomology images, their 
clean background, better resolution and contrast, make them get 
more accurate OCR results. 

 In Figure 3, the matching words (mw) metric, a string 
similarity measure which can be thought as more restrictive than 
the DL and JW metrics, got better or similar results (for 
Bryophyte and Lichen) than the DL metric. This shows that 
many of the words in the image are recognized, but added noise 
characters make the DL algorithm getting a worse similarity.  

 
Figure 4. Result of the binarization (left) and interpreted text (right)  

of specimen EMEC 609,705 

 The result of the OCRopus binarization process for the 
entomology image presented in Figure 1 is illustrated in Figure 
4. After the binarization, OCRopus executes the segmentation 
and recognition processes, to get the final result (right). 

 If the background is not completely white, the binarization 
process removes some pixels from the characters, making these 
letters more difficult to recognize. The dark areas around the 
small labels, create figures that the OCR tries to interpret. Boxes 
and underlined text also confuse the recognition algorithms.  

 For the specimen in Figure 4 (EMEC 609,705), the 
following similarity results were obtained: 

Table 3. Similarity values obtained for specimen EMEC 609,705  
Similarity \  OCR software OCRopus Tesseract 

Damerau-Levenshtein 0.3627 0.3941 
Jaro–Winkler 0.5943 0.6514 

Matching words 0.4 0.4 
 
 In general, Jaro-Winkler metric shows more “optimistic” 
results, returning a higher similarity value than the Damerau-
Levenshtein and matching words similarity metrics.  

 The execution time of the OCR process is shown in table 4. 
Tesseract was in average 18.5 times faster than OCRopus. 
During the study, none of the tuning features these tools provide 

were utilized. The main reason for the execution time difference 
is that OCRopus generates intermediate on-disk results during 
the binarization and segmentation steps, while Tesseract works 
entirely in memory, as a single process. 

Table 4. Approach 1 – OCR’s average execution time (s) 
 Avg. Execution Time (s) 

Specimen type \ Tool OCRopus  Tesseract  
Entomology 28.36 3.60 
Bryophyte 158.57 4.54 

Lichen 30.46 1.95 
 
 In Figure 5, it is shown the similarity box chart for approach 
1. We observe the Jaro-Winkler metric offers less variability in 
the results. We also notice high maximums (images where 
almost every word was identified) and very low similarity 
results (images for which the OCRs were not able to correctly 
identify a single word). 

 
Figure 5. Box and whisker representation of the obtained similarity 

per specimen type, metric, and OCR tool. 

 Lichen images have some attributes which make their text 
easier to be recognized than the other specimen types, but not all 
the images have the same quality. One of the images with poor 
conditions is lichen TENN-L-0000003, see Figure 6, for which 
the DL similarity was 0.1 in OCRopus and 0.15 in Tesseract; 
and none OCR tool was able to match a single word. The low 
contrast of the image makes it difficult for the OCR tools 
generate good results. Increasing the contrast would improve 
these cases, but another machine process would be needed to 
auto-select the level of contrast, as elevating contrast for all will 
cause other labels to decrease their recognition rate. 

 
Figure 6. Lichen TEN-L0000003 

45

Authorized licensed use limited to: University of Florida. Downloaded on June 08,2020 at 20:37:23 UTC from IEEE Xplore.  Restrictions apply. 



C. Approach 2 (Cooperative – Crop and OCR label) 
 Using the HuMaIN interface [32], the label of the 400 
images were cropped by two volunteers. The result of this 
process is a rectangular image with the text in it. In the case of 
entomology images, there are several pieces of paper with data, 
hence the rectangle includes all these areas. In the case of 
bryophyte images, the final cropped label may include pieces of 
other elements, which reverts to Approach 1 in these cases. 
Figure 7 shows the cropped version of the images in Figure 1.  

 
Figure 7. Cropped labels of images in Figure 1 

 The HuMaIN’s app, randomly picks, the next image to be 
cropped. The coordinates of each cropped label are stored in a 
database, as well as the time the user spent in the process. Every 
label was cropped at least three times by the volunteers. The 
consensus criteria to select the coordinates (image) to process 
with the OCR was choosing the image with the largest area. 

 
Figure 8. Average similarity for cropped label images 

 Figure 8 shows the DL, JW, and mw similarity values for the 
cropped entomology, bryophyte, and lichen labels, OCRed with 
OCRopus and Tesseract.  

Figure 9 exhibits the absolute similarity variation when 
executing the OCR on the original images (Approach 1) vs. the 
cropped labels. For lichen images, there was no significant 
variation because the cropped labels are very similar to the 
original images. Lichen images are basically a cropped label. 

 
Figure 9. Average similarity difference between approaches 1 and 2 

 In the case of entomology and bryophyte images, there was 
a clear improvement. The similarity of the OCR generated text 
with respect to the experts’ transcription improved about 0.22 
considering Damerau-Levenshtein, 0.08 for Jaro-Winkler, and 
0.12 considering the matching words similarity metric. The DL 
metric showed a higher improvement than the JW metric, likely 
because JW similarity values were already high for Approach 1. 

 Figure 10 shows the cropped text area of specimen EMEC 
609,705 after being binarized, and the final OCRopus result. In 
comparison to Figure 4, we can observe that the initial undesired 
characters were eliminated and a pair of zones (around “Navajo” 
and the first appearance of “J.M. Davidson”) were better 
interpreted.  

 
 Figure 10. Result of the binarization (left) and interpreted text 

(right) of the cropped area of specimen EMEC 609,705 
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 In the box chart of Approach 2 (Figure 11) it is remarkable 
how the matching word metric for some bryophyte images 
raised to 100%. This increment together with the average results 
for approach 2 shown in Figure 8, confirm that cropping the text 
area (made by humans) before running the OCR, improved the 
quality of the OCR output (a machine-intelligent process). 

 
Figure 11. Similarity of the cropped labels per specimen type,  

metric, and OCR tool. 

 Comparing figures 11 and 5, we also observe that the 
variability increased. Although the average OCR’s recognition 
rate improved, there are images which OCR process did not 
benefit from processing a smaller version of them. 

 In Approach 1 the total time is equal to the OCR execution 
time. For Approach 2 (see Table 5), we include the time users 
spent cropping the image (O: OCRopus, T: Tesseract). This 
cropping time was measured as the interval between the web 
page loads and the user pressing the “Save and Next” button. In-
between these events, the image loads, the user interprets the 
image, marks the area to crop, and clicks the “take coordinates” 
(green arrow) button, see Figure 3. 

Table 5. Approach 2 - Average execution time (s) 
 Execution time (s) 

Type \ Tool Cropping Ocropus Tesser. Tot. O Tot. T. 
Entomology 15.36 15.65 2.47 31.01 17.83 
Bryophyte 24.56 32.74 1.68 57.30 26.24 

Lichen 15.13 25.52 1.82 40.65 16.95 
 
 For entomology and lichen images the average cropping 
time was 15 seconds, but for bryophytes the process was more 
complex, and took on average 25 seconds. Considering only the 
OCR execution time, Approach 2 was on average 2.62 and 1.74 
times faster than Approach 1, for OCRopus and Tesseract 
respectively. Considering the total time, Approach 2 was 1.48 
times faster with OCRopus and 6.48 times slower with 
Tesseract, with respect to Approach 1. 

D. Approach 3 (Cooperative – Crop and OCR fields) 
 Using the HuMaIN web interface, 8 Darwin Core fields: 
scientific name, event date, latitude, longitude, identified by, 
country, county, and state/province were cropped and then 
OCRed. It is important to highlight that only 6 of these fields are 
not modified or interpreted. The fields Scientific name, Event 
date, Latitude, and Longitude were collected as dwc:verbatim 

[26], which means they are the original values present in the 
image. Additionally, the fields Identified by, and County are 
usually not modified or completed by the expert. On the other 
hand, State/Province and Country fields, use to be abbreviations 
which are completed or interpreted. For example, in the country 
field, “Mex.” is interpreted as “Mexico”; while “US”, “U.S.A.”, 
and “USA” are interpreted as “United States”. This affects the 
comparison because we are not doing these interpretations of the 
OCR output. As mentioned before, the objective of this study is 
not to develop a data extraction product as SALIX [29] or 
LabelX [30], but showing the benefits of the human-machine 
cooperation in data extraction. Some random examples of 
cropped fields are shown in Figure 12. 

 
Figure 12. Examples of cropped fields 

 Every cropped field image was resized to 600 x 600 pixels 
because this is the minimum image size permitted by OCRopus. 
During this enlargement process, the cropped area was not 
changed, but the surrounding area was filled with “silver” (light 
gray) color. In preliminary tests, we filled the image with white 
background; but we found, after trying with white, silver, gray, 
and black colors, that silver gave the best result. In 20 test 
images, silver background increased the character recognition 
rate by about 12% (in OCRopus and Tesseract) with respect to 
white background. The reason for this difference is the artificial 
border around the cropped area created by the binarization 
process when white background is used. In the case of silver 
background, the contrast is reduced and the border disappears or 
is minimized, see Figure 13. The border shown around the 
scientific name at the left side of Figure 13 does not exist in the 
original image, see Figure 1 – entomology specimen. When the 
border is present, the recognition rate decreases. 

 
Figure 13. Binarization result of the same cropped image, filled with 

white (left) and filled with silver (right)  

 The amount of cropped fields, per specimen type and field, 
is shown in the following table: 

Table 6. Numbers of cropped fields per specimen type and field 
 Entomology Bryophyte Lichen 

dwc:country 7 75 63 
dwc:county 55 0 52 
dwc:verbatimEventDate 89 98 191 
dwc:identifiedBy 51 55 89 
dwc:verbatimLatitude 2 6 89 
dwc:verbatimLongitude 2 8 97 
aocr:verbatimScientificName 52 97 196 
dwc:stateProvince 61 26 157 
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 The “matching words” (mw) metric, used in the first 2 
approaches and defined as the percentage of exact words 
recognized by the OCR, was not used in this case because most 
of the fields have only one or a very low number of words. 

 
Figure 14. Average similarity for entomology fields 

 Figures 14, 15, and 16 present the similarity value for the 
entomology, bryophyte, and lichen fields. For simplicity 
purposes, we only show the results for the Damerau-Levenshtein 
similarity metric in OCRopus (O-DL) and Tesseract (T-DL).  

 
Figure 15. Average similarity for bryophyte fields 

Figures 14 and 15 omit the fields for which we collected less 
than 10 values per specimen type, see Table 6. Entomology 
images show the worst results. Each field has its own challenges: 

� The degree symbol in Latitude and Longitude is usually not 
recognized. The slash and hyphen symbols of the Event 
date also confuse the interpreters. 

� Some Scientific names are underlined, which mixes with the 
letters and confuses the OCRs. 

� State/Province and Country are sometimes abbreviated in 
the images and completed in the experts’ results. Hence, the 
value for these fields do not really represent the quality of 
the OCR’s output.  

  
Figure 16. Average similarity for lichen fields 

 On average, “Identified by” was the easiest field to interpret; 
while Country and State fields, because they can be abbreviated, 
present the worst similarity. Lichen fields obtained a higher 
similarity than entomology and bryophyte fields. Table 7 shows 
the average Damerau-Levenshtein similarity per specimen type 
in each of the 3 approaches. Fields State/Province and Country 
were not considered to calculate the averages for Approach 3.  

Table 7. Average DL similarity by approach 
 Entomology Bryophyte Lichen 

A1: whole image 0.31 0.31 0.64 
A2: cropped label 0.59 0.58 0.64 
A3: cropped field 0.44 0.69 0.66 

 

 Bryophyte and Lichen information was better interpreted in 
Approach 3 (Cropped fields), while entomology text was better 
recognized in Approach 2 (Cropped label). The result was not 
absolute in terms of better similarity for Approach 3, but data 
consistently show that when unnecessary areas are discarded, 
the OCR generates a better result.  

 Considering only entomology and bryophyte images, (since 
lichens images are already cropped labels), the similarity 
improvement when humans cropped the label or the fields, with 
respect to approach 1, was on average 0.27. Table 8 shows the 
percentage improvement with respect to the machine-only 
approach, obtained by the two cooperative approaches. 

Table 8. Avg. DL improvement of A2 and A3 with respect to A1 
 Entomology Bryophyte 

A2 vs. A1. 90% 87% 
A3 vs. A1 42% 123% 

 

 The machine-intelligent process performed by the OCR was 
improved when a human-intelligent process (cropping the text 
areas), was added to the processing workflow. 

  
Figure 17. OCR Execution time (s) by tool and specimen type 

 Figure 17 shows that in OCRopus, bryophyte images are the 
slowest in being processed, while for Tesseract those are 
precisely the fastest to process. It is important to note that the 
scales are different. On average, Tesseract spends 0.29 sec 
processing a field image, while OCRopus takes 7.39 sec, which 
is about 25 times slower than Tesseract. 

E. Approach 4 (Machine-only - Data cleaning) 
 In Approach 1, we executed the OCR process and observed 
that the results include unexpected characters, which could 
affect the quality of the similarity values. We developed a very 
simple and fast filtering script which omits the words (sequence 
of characters) that contain symbols which are uncommon 
punctuation characters [22].  
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Figure 18. Data cleaning process: source (left), result (right) 

 Our objective was to simplify the output to improve the 
readability and verifying if the similarity values get better.  
Figure 18 shows the output after cleaning the OCRopus result of 
our example entomology specimen 609,705.  

Table 9. Similarity variation when cleaning the Approach 1’s output 
 Damerau-L. Jaro-Winkler Matching w. 
 Ocro. Tess. Ocro. Tess. Ocro. Tess. 
Entomology 0.00 0.00 0.01 0.00 -0.01 -0.01 
Bryophyte 0.08 0.01 0.02 -0.01 -0.04 -0.02 
Lichen -0.04 -0.02 -0.01 0.01 -0.03 -0.05 

 

 The cleaning script was executed on OCRopus and Tesseract 
results of Approach 1. The similarity values were recomputed 
for these outputs and we compared the obtained results with the 
Approach 1’s similarity values. Table 9 shows the variation in 
similarity for each OCR tool, metric, and specimen type. The 
cleaning process did not improve the similarity, therefore the 
comparison of Approaches 2 and 3 with respect to Approach 1 
is fair even after cleaning its output. Despite not improving 
similarity, the cleaning process reduced the output size and 
simplified the result, which is a positive behavior. 

F. Time, Cost, and Scalability 
 Consider 1 billion of scientific images to be processed, a 
single server with a Total Cost of Ownership (TCO) of $3000 
per year [35], a single person with a base salary of $10/ hour, an 
OCR with the average behavior between Tesseract and 
OCRopus, and the following 4 approaches: 

0) Human-only: where the average transcription time is 
about 9 minutes [7]. Instead of DL similarity, the percentage 
of tasks where consensus is reached was used [7]. 

1) Machine-only: where the average OCR time is 37.9 sec 
(OCRopus and Tesseract average), see Table 4. 

2) Cooperative-Crop Label: where the average 
crowdsourcing (cropping) time is 18.3 sec (see Table 5), and 
the average OCR time is 13.3 sec. 

3) Cooperative–Crop fields: where 10 fields are 
transcribed per specimen, the average cropping time is 20 sec 
per field (according to our experiments with volunteers), and 
the average OCR time is 3.84 sec per field. 

 Time and cost can be estimated as summarized in Table 10. 
In general, adding human effort increases execution time and 
cost, but improves the quality of the result. Note that even 
though the total time in years is provided, both machine and 
human efforts are fully parallelizable. 

Table 10. Time, Cost, and DL Similarity per Approach 

Appr. Human+Machine 
(Time in years) 

Cost 
 ($ in Millions) DL similarity 

0 17123 – 0 (17123) 1500.00 0.79 [7] 
1 0 – 1202 (1202) 3.61 0.42 (Table 7) 
2 580 – 422 (1002) 52.10 0.60 (Table 7) 
3 6342 – 1218 (7560) 559.21 0.60 (Table 7) 

 
The machine-only option is the cheapest option, but 

generates the worst output quality. On the other hand, the 
human-only option is the most expensive and the most accurate. 
The hybrid approaches balance these two extreme cases. When 
adding the most trivial human work (cropping whole labels), the 
cost increases, the required overall time is actually reduced and 
the quality improves. Cropping fields, requires detecting the 
different fields, increasing the time and cost while maintaining 
quality when compared to the label-cropping hybrid approach. 

In this cost evaluation, we considered that workers are 
compensated. However, if the crowdsourcing task can be made 
entertaining (e.g., as an application that museum visitors could 
use while interacting with the items in displays, or as an online 
competition game), where volunteers would be willing to 
contribute their work, then the cost would be drastically reduced. 

CONCLUSIONS 
In this work, we demonstrated that a single workflow with 

cooperation of human- and machine-intelligent processes led to 
improved quality, while not sacrificing significant time, when 
compared to a machine-only workflow. Even though we did not 
explicitly compare to human-only workflows, related work [7] 
has shown that human-only workflows demand user training, 
are time intensive (require multiple users to perform the same 
task), quality is not perfect, and require solutions to deal with 
variations in human opinion, bias, and error. 

Improvements in output quality were assessed for two 
workflows with machine and human processes that require 
minimal user training to generate segments with text from the 
image: whole labels and individual parsed fields. These 
workflows were compared to a typical machine-only workflow 
and an improved machine-only workflow that implicitly 
removes noise from the output. The quality of the hybrid 
workflow was at least 42% superior. A secondary future goal of 
collecting text region information, is to investigate the ability to 
train a machine-learning model to look for and find regions with 
this characteristic. During segmentation, OCRopus uses 
different heuristics to find region of text and eliminate images, 
but these heuristics assume publication type layout, and 
specimen images do not follow such a constrained format. We 
also experimented with other tools that can detect text on 
photographs. While those could detect text within an image with 

V. 
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texture, they failed on biological specimen images. Collecting 
training data for tools that make use of supervised machine-
learning algorithms is time demanding, and a hybrid workflow 
as presented in this work can also facilitate the tuning of such 
machine-only workflows. 

In addition to these main findings, we also provided detailed 
insights into the performance of OCRopus and Tesseract. 
Because Tesseract was on average 25 times faster than 
OCRopus while maintaining the quality of output, cropping the 
label accelerated the OCRopus execution time, but decreased 
Tesseract execution performance. Similarly, when considering 
the crowdsourcing time, the hybrid approach resulted in time 
efficiency gains with OCRopus, and time efficiency loss with 
Tesseract. Factors such as yellowed paper, underlined text, low 
contrast text and graphical elements that touch characters, had a 
higher negative impact in the character recognition rate than the 
resolution.  
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