A New Flexible Multi-flow LRU Cache Management
Paradigm for Minimizing Misses

GUOCONG QUAN, The Ohio State University, USA

JIAN TAN, Alibaba Group, USA & The Ohio State University, USA
ATILLA ERYILMAZ, The Ohio State University, USA

NESS SHROFF, The Ohio State University, USA

The Least Recently Used (LRU) caching and its variants are used in large-scale data systems in order to provide
high-speed data access for a wide class of applications. Nonetheless, a fundamental question still remains open:
in order to minimize miss probabilities, how should the cache space be organized to serve multiple data flows?
Commonly used strategies can be categorized into two designs: pooled LRU (PLRU) caching and separated
LRU (SLRU) caching. However, neither of these designs can satisfactorily solve this problem. PLRU caching
is easy to implement and self-adaptive, but does not often achieve optimal or even efficient performance
because its set of feasible solutions are limited. SLRU caching can be statically configured to achieve optimal
performance for stationary workload, which nevertheless could suffer in a dynamically changing environment
and from a cold-start problem.

To this end, we propose a new insertion based pooled LRU paradigm, termed I-PLRU, where data flows can
be inserted at different positions of a pooled cache. This new design can achieve the optimal performance of the
static SLRU, and retains the adaptability of PLRU in virtue of resource sharing. Theoretically, we characterize
the asymptotic miss probabilities of I-PLRU, and prove that, for any given SLRU design, there always exists
an I-PLRU configuration that achieves the same asymptotic miss probability, and vice versa. We next design
a policy to minimize the miss probabilities. However, the miss probability minimization problem turns out
to be non-convex under the I-PLRU paradigm. Notably, we utilize an equivalence mapping between I-PLRU
and SLRU to efficiently find the optimal I-PLRU configuration. We prove that I-PLRU outperforms PLRU and
achieves the same miss probability as the optimal SLRU for stationary workload. Engineeringly, the flexibility
of I-PLRU avoids separating the memory space, supports dynamic and refined configurations, and alleviates
the cold-start problem, potentially yielding better performance than both SLRU and PLRU.

CCS Concepts: « Theory of computation — Caching and paging algorithms; » General and reference —
Performance; « Mathematics of computing — Stochastic processes;

Keywords: Caching; LRU; Miss probability

ACM Reference Format:

Guocong Quan, Jian Tan, Atilla Eryilmaz, and Ness Shroff. 2019. A New Flexible Multi-flow LRU Cache
Management Paradigm for Minimizing Misses. In Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, 2, Article 39
(June 2019). ACM, New York, NY. 30 pages. https://doi.org/10.1145/3326154

This work is supported by the DTRA grants: HDTRA-14-1-0058, HDTRA1-15-1-0003, HDTRA1-18-1-0050, the NSF grants:
CMMI-SMOR-1562065, CNS-1446582, CNS-ICN-WEN-1719371, CNS-NeTS 1409336, CNS-NeTS-1514260, CNS-NeTS 1518829,
CNS-NeTS-1717045, CNS-NeTS-1717060, CNS-SpecEES-1824337, CSR-NeTS 1717060, and the ONR grant: N00014-17-1-2417.

Authors’ addresses: Guocong Quan, The Ohio State University, USA, quan.72@osu.edu; Jian Tan, Alibaba Group, USA &
The Ohio State University, USA, j.tan@alibaba-inc.com, tan.252@osu.edu; Atilla Eryilmaz, The Ohio State University, USA,
eryilmaz.2@osu.edu; Ness Shroff, The Ohio State University, USA, shroff.11@osu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

2476-1249/2019/6-ART39 $15.00

https://doi.org/10.1145/3326154

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

https://doi.org/10.1145/3326154
https://doi.org/10.1145/3326154

39:2 G. Quan, et al.

1 INTRODUCTION

With increasingly deployed data-intensive applications, the critical role of caching in accelerating
data access is becoming even more important. When a requested data item is found in the cache,
called a cache hit, it can be served fast. Otherwise, a cache miss occurs, causing a significantly longer
delay. A number of caching policies[5, 6, 11, 13, 20, 22, 23] have been proposed to update the data
items in the cache. Among them, the least recently used (LRU) policy or its variants [4, 19, 24, 27, 29]
are implemented as default [1, 2], owing to their simplicity and self-adaptive property [28]. For
LRU, data items are listed in descending order of their last requested times. Upon a data item
being requested, it is moved to the head of the list. If a miss occurs and the cache is full, the least
recently used data item(s), i.e., the one(s) at the end of the list, would be evicted from the cache to
accommodate the newly requested one.

A fundamental question still remains open: in order to minimize the miss probabilities, how should
the cache space be organized to serve multiple data flows? Commonly used strategies to organize LRU
caching can be categorized into two designs: pooled LRU (PLRU) caching and separated LRU (SLRU)
caching. For PLRU, the entire cache space is pooled as a single LRU cache and serves multiple
data flows by allowing complete cache sharing among the data flows. In contrast, for SLRU, the
cache space is separated into multiple LRU cache partitions, and each flow is served by a dedicated
partition.

Theoretical studies have been conducted to compare the performance of PLRU and SLRU [9, 26,
28] through characterizing the miss ratios of LRU caching [12, 13, 15-18, 25]. Remarkably, PLRU
caching enjoys a nice adaptivity property [23, 28], which often yields good performance for data
request flows that dynamically change over time. However, in a stationary setting, it is proven [9, 28]
that the optimal SLRU caching achieves asymptotic miss probabilities at least as good as PLRU
caching. In a general setting, it is reported that separating cache space is more advantageous [8].
However, due to lack of adaptivity, it is difficult for SLRU to retain the optimal performance when
data statistics, e.g., data item popularities and item request rates, are time-varying. This could cause
low utilization and inefficiency since the separated multiple cache partitions could be unbalanced.
Importantly, dynamically resizing these separate cache partitions incurs overhead, e.g., using
auto-mover for Memcached [1]. Specifically, a so-called cold-start problem [10] can deteriorate the
performance during a transition period immediately after resizing the cache (see Section 3.3 on the
cold-start problem). Other problems of dynamic resizing have also been reported, e.g., memory
fragmentation [3, 21, 30].

To mitigate these problems, we develop a new insertion based pooled LRU (I-PLRU) caching
paradigm. It achieves the optimal performance of static SLRU caching, provides more flexibility
with refined control, and alleviates the cold-start problem in dynamically changing environments.
For this new design, the cache space is pooled together and the data flows are inserted into the
cache from different positions along the ordered data item list (see Section 4.1 for the formal
definition). The miss probabilities can be optimized by configuring the insertion position of each
flow. Moreover, when arrival rates or popularity distributions of the data flows dynamically change
over time, the configuration can be easily adapted to retain the high efficiency.

Notably, the analysis of I-PLRU is more challenging than PLRU and SLRU. Different insertion
positions significantly complicate the way that the data flows interact with each other. More
concretely, 1) the maintained data item list is not completely sorted anymore; 2) the data items of
different flows could be organized in the same cache space through various ways to achieve more
refined control. Fortunately, we establish an equivalence mapping between I-PLRU and SLRU, based
on which, we rigorously characterize the asymptotic performance of [-PLRU, and prove that I-PLRU

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

39:3

can achieve the same miss probabilities as the optimal SLRU. We summarize our contributions as
follows.

Summary of contributions:

(1) We propose a new LRU cache management paradigm, termed I-PLRU, for multiple flows.
It can be flexibly configured to optimize various performance objectives, and effectively
alleviate the cold-start problem that hurts the performance of LRU caching during resizing.

(2) We rigorously characterize the asymptotic miss probability of I-PLRU caching. Under I-PLRU,
the data flows are coupled together in a complicated way. Existing analytical tools for LRU
caching cannot be directly applied. Instead, we overcome the difficulties by establishing an
equivalence mapping between I-PLRU and SLRU. Specifically, we prove that for any given
SLRU configuration, there always exists an I-PLRU configuration under which the asymptotic
miss probability of each flow is the same as that under the SLRU configuration, and vice
versa. Furthermore, we prove that the equivalence mapping is one-to-one.

(3) We study a class of performance optimization problems for I-PLRU caching based on miss
probabilities. Such problems turn out to be non-convex. Though solving a general non-
convex optimization problem is difficult, this class has a special structure to exploit. By using
the equivalence mapping, we prove that the non-convex problem has only one stationary
point, which is the global optimum. Interestingly, this equivalence mapping transfers the
non-convex problem under I-PLRU to a convex problem under SLRU, which is analytically
tractable. In a reverse direction, the optimal SLRU configuration can be mapped back to the
optimal I-PLRU configuration.

The rest of the paper is organized as follows. In Section 2, we introduce notations and formulate
the miss probability minimization (MPM) problem. In Section 3, we present the limitations of PLRU
and SLRU. In Section 4, we propose the new caching paradigm I-PLRU and rigorously characterize
its asymptotic performance. We also solve the MPM problem for I-PLRU in this section. In Section 5,
we discuss the engineering issues including general or unknown popularity distributions. The
theoretical results are validated by simulations in Section 6. In Section 7, we conclude our work.
The proofs of main theorems are provided in Section 8.

2 PROBLEM FORMULATION

The broad objective of this paper is to systematically develop an easy-to-implement and provably
efficient LRU-based cache management mechanism that allows multiple flows to flexibly share
a total memory space. To that end, in this section, we introduce the basic setting and the miss
probability minimization (MPM) problem that we will tackle in the subsequent sections.

Consider M data flows, where a data flow is a sequence of data requests from a data domain or
an application. Let D, = {d;m), i > 1} denote the set of data items that are requested by flow m,
1 < m < M. Assume that D,,’s are disjoint sets and the data items have unit sizes. Note that if D,,’s
are overlapped, we can always separate the flows into multiple subflows such that the subflows
have no overlap, and the results of this paper will hold for the subflows. A similar trick can be
found in [9, 28]. The requests of flow m arrive according to a Poisson process with an arrival rate
Ams 1 < m < M. Let {r,, —00 < n < oo} denote the sequence of epochs when the requests arrive.
Let I, and R,, denote the flow index and the requested data that arrive at 7,,, respectively. Note that
I, €{1,2,--- ,M} and R, € Dy, . After the system reaches its stationarity, it suffices to analyze the
system at a given epoch, say 7. We assume an independent reference model (IRM) [29], i.e., for
1<m<M,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

39:4 G. Quan, et al.

1) the requests of different flows arrive independently with
M

vm 2 Bl = m] = Am| D i
k=1

2) the requests within each flow are independent and follow the popularity distribution
™ EP[Ry =d |l =m|. iz1.

As reported by analysis on real data traces [31], the requests typically follow a Zipf’s distribution.
Thus, we assume, fori > 1,1 <m <M

pl(m) ~ cm/iam’ am > ls (1)
where f(x) ~ g(x) means limy_,o f(x)/g(x) = 1.
Let 7 be the cache management paradigm (e.g., PLRU, SLRU) that organizes the cache space to
serve multiple flows. We use Q7, to denote the miss probability of flow m under the paradigm 7,
ie.,

on Lp [Ro is a miss|ly = m;] .

Miss probability minimization:

Miss probability minimization (MPM) is a fundamental problem for caching systems that support
data-intensive applications. For a given cache space of total size C, the objective is to minimize the
miss probability. The problem is formulated as follows

M
mﬂin Z Wi - O (2)
m=1
subject to The total cache size is C,

where w,’s are arbitrary positive weights. The analysis in this paper for Problem (2) can be easily
extended to general objective functions %:1 um(Qr) where up,(-)’s are convex functions. More

comments on the extension is provided in Section 4.3.

3 EXISTING APPROACHES

In this section, we summarize two commonly used design strategies, SLRU and PLRU, that are used
to organize LRU caching for multiple data flows. We discuss their limitations, which motivate a
new flexible cache management paradigm, i.e., [-PLRU.

3.1 Separated LRU (SLRU) Caching

Separated LRU (SLRU) caching is one of the most commonly used methods to organize cache space
for multiple data flows [1, 2]. Under the SLRU paradigm, the total cache space is separated into
multiple LRU caches and each flow is served by a dedicated partition as shown in Fig. 1. In general,
consider M data flows served by SLRU with the total cache size C. Assume data flow m is only
served by the m™ LRU cache, 1 < m < M. Let 6,,C denote the size of the cache space allocated to
the m™ LRU cache with anjzl 0m =1,0<0, <1,1 <m < M. Although each cache can only store
an integer number of data items, we assume that the cache size can take continuous real values
for analytical convenience, because the discrete constraints will have a vanishing impact on the
asymptotic results as C — oo. Note that the SLRU caching can be characterized by the allocation
configuration 6 and the total cache size C. Therefore, we introduce the following definition.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

39:5

Flow 1 s

,,,,,
LRU Cache 1: Flow2 —=
Flow 3 ===
LRU Cache 2: m

Flow 3
|

o caches: | TN

Fig. 1. Three data flows organized by SLRU caching.

Definition 3.1 (SLRU). Set @ = (61,05, ,0xr), 0 > 0,1 <m < M, %:1 0., = 1. Define S(0;C)
as the SLRU paradigm where the total cache size is C and the size of the cache space allocated to
flow m is 6,,C.

Notably, under the SLRU paradigm, the flows are served independently by the corresponding
LRU caches. The miss probability of each flow can be obtained using the analytical tool for standard
LRU caching. Applying existing results in [16], the asymptotic miss probabilities under SLRU are
provided in the following lemma.

LEmMA 3.2 ([16]). Consider M data flows organized by the SLRU paradigm S(0;C). Let anLRU(O; C)
denote the miss probability of flowm, 1 < m < M. We have, as C —
L(1-1/am)™™ Cm
m (ch)am—l '

SLRU(O; C) -

m

whereI'(x) = f:o t~"letdt is the gamma function.

Recall that f(x) ~ g(x) indicates limy_, f(x)/g(x) = 1. The miss probability can be minimized
by optimizing the cache space allocated to each flow. We formulate the MPM problem under SLRU
as

M
: SLRU
mgm Z W - O, (0;0)
m=1
subject to 0, >0, 1<m<M, (3)

M
Z O =1,
m=1

where wy,’s are positive weights. Lemma 3.2 shows that the asymptotic miss probability of SLRU is
a convex function with respect to 8. As a result, the MPM problem under SLRU is asymptotically a
convex problem. Let 8*(C) denote the optimal solution given the total cache size C. According to
the KKT conditions [7], we have as C — oo, forany 1 < i,j <M

0;(C) T(1-1/a)* (1 - 1/ai)ciwi

- C-aitay
070 " T - 1/a)@ (1~ aew,)

Combining (4) and the fact that Z?il 6% (C), we can solve 6"(C) explicitly. Moreover, even for

general objectives 2%21 Um (QSIRY(9; C)), the problem remains convex as long as u,, (-)’s are convex
functions. More details of the MPM problem under SLRU are discussed in [9, 28].

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

39:6 G. Quan, et al.

3.2 Pooled LRU (PLRU) Caching

Instead of separating the cache space into multiple LRU cache partitions that serve data flows
dedicatedly, PLRU caching organizes the total cache space as a single LRU list as shown in Fig. 2.
Once a request arrives, the requested data will be placed to the head of the list, no matter which
flow it belongs to. In order to make room for newly requested data, the least recently used data
item (i.e., the data stored at the rear) will be evicted if necessary. As we can see in Fig 2, the entire
cache is shared by all data flows under LRU. Consequently, the cache space occupied by each flow
is not fixed.

Flow 1 mm=m
Flow2 ——
Flow 3 ===

all flows share the cache space

Fig. 2. Three data flows organized by PLRU caching.

The PLRU paradigm has the advantage of simplicity and resource pooling nature whereby
the cache space can be used more adaptively by all flows, when data statistics (e.g., popularities,
request rates) are time-varying. The asymptotic miss probability of PLRU is characterized in [9, 28].
Different from SLRU, PLRU does not support flexible configurations and consequently does not
generally achieve the minimum miss probability of SLRU. However, it is proven in [28] that PLRU
automatically optimizes the MPM problem with a specific objective function Y*_. v,, Q7 for any
Zipf’s popularity distributions, where v, = P[l = m].

3.3 Limitations of SLRU & PLRU

Despite their appealing characteristics outlined above and successful applications, both SLRU and
PLRU have limitations. In this section, we illustrate their limitations by simulation examples.

1. Limitations of SLRU:

Deteriorating performance in a dynamically changing environment: When the statistics of the
workload change over time, a static cache space allocation cannot always achieve the optimal
performance. On the other hand, if dynamically resizing the cache partitions reallocated among
flows, a so-called cold-start problem will deteriorate the system performance [10]. When a portion
of cache space is reallocated, the data stored in this portion will be invalidated, which incurs high
miss probabilities before the cache becomes full again. This phenomenon is called the cold-start
problem. SLRU will suffer from the cold-start problem when changing the configuration. Consider
an SLRU system serving two flows with the objective to minimize the overall miss probability
Vi Q?LRU + szg’LRU. Let a; = ay = 1.2 and C = 4000. Assume that the data set for each flow has 10°

data items. We have ¢; = ¢, = 1/ 2}261 i1 = 0.1895. Assume that the workload has two stages.
In Stage 1, the system only serves flow 1, i.e., vy = 1, v; = 0. To minimize the miss probability, all
cache space is allocated to flow 1. After serving 10° requests from flow 1, the system enters Stage 2
and starts to serve two flows with v; = v, = 0.5. The optimal cache space allocation in Stage 2 is
01 = 6, = 0.5 due to the symmetric setting. At the beginning of Stage 2, no valid data is stored in
the cache space allocated to flow 2, and the system suffers from the cold-start problem. We define
the transient period as the time period when the cache of flow 2 is not full. After that, the system is

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

39:7

0.35 ; — —

I Transient | Stationary period

= period :

= 0.3f ' J

£ '

O 1

— 1

o

» 025

g

= 02t

[}

>

o !

0.15 ; — ’ ;
0 10 20 30 40 50
Number of requests (x500)
(a) Transient period of cold-start.
08—
=
= 0.22F 1
Q
= +16.50% - -
< 021f ’ 1
= +10.28%
z 021 1
=
— 0.191]
g
> 0.18f 1
3 0.18
0.17
SLRU SLRU I-PLRU I-PLRU
(transient) (stationary) (transient) (stationary)

(b) Increased miss probability during transient period.

Fig. 3. Deteriorating performance of SLRU. The figures show that the cold-start increases the miss probability,
but I-PLRU is less impacted than SLRU.

in the stationary period. In Fig. 3a, we illustrate how the overall miss probability changes over time
in Stage 2 under the SLRU paradigm. The miss probability is approximated by the miss frequency
of every 500 requests. It can be observed that the overall miss probability during the transient
period is much higher than that during the stationary period. In Fig. 3b, we plot the average miss
probability of the transient period and the stationary period for both SLRU and I-PLRU. It can be
observed that the miss probability of I-PLRU only increases by 10.28% during the transient period,
compared with a 16.50% increment of SLRU. Therefore, the new I-PLRU paradigm is less impacted
by the cold-start problem. Moreover, I-PLRU achieves the same stationary miss probability with
the optimal SLRU.

2. Limitations of PLRU:

Lack of refined control for individual flows: Once the total cache space is given, the PLRU paradigm is
fixed. It does not support flexible configurations for individual flows to optimize general performance
objectives. We overcome this limitation by proposing I-PLRU paradigm, which assigns individualized
insertion positions for different flows.

Consider 2 data flows with v; = v, = 0.5, ¢; = ay = 2. Assume that the data set for each flow
has 10° data items with ¢; = ¢; = 1/ 23261 i~ = 0.6079. The performance objective is to minimize
the overall miss probabilities w; QT + w2Q7 . Let w; = 0.1, w, = 0.9. We plot the overall miss
probabilities achieved by PLRU and the optimal I-PLRU in Fig. 4. We observe that the new I-PLRU
paradigm achieves better performance than PLRU.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

39:8 G. Quan, et al.

0.02

¢ PLRU
-+|-PLRU

o
o
=
(3]
ol

0.01

0.005

Overall miss probability

0 1 1 1
100 200 300 400 500
Total cache size: C

Fig. 4. Suboptimal performance of PLRU. The figure shows that I-PLRU can achieve better miss probabilities
than PLRU.

4 A NEW FLEXIBLE CACHE MANAGEMENT PARADIGM

In this section, we propose an insertion based pooled LRU caching design, termed I-PLRU. It
achieves the high efficiency of SLRU and retains the adaptability of PLRU at the same time. In
Section 4.1, we introduce the definition of I-PLRU. In Section 4.2, we rigorously characterize the
asymptotic miss probability achieved by I-PLRU, and establish an equivalence mapping between
I-PLRU and SLRU. In Section 4.3, we formulate the MPM problem for I-PLRU and find the optimal
I-PLRU configuration based on the equivalence mapping.

4.1 Definition of I-PLRU

Under the I-PLRU paradigm, the memory space is organized as a single list and serves multiple
flows in a common shared cache as in the PLRU mechanism. However, different from the PLRU
paradigm, data flows can be inserted at different positions rather than merely at the head of the
list. Specifically, each data flow is assigned with an insertion position. Once a request arrives, the
requested data will be inserted at the corresponding position in an LRU fashion. Note that PLRU is
a special case of I-PLRU where the insertion positions of all flows are the head of the list. If a miss
occurs and the cache is full, the data stored at the rear of the list will be moved out of the cache to
make room for the newly requested one. Remarkably, under I-PLRU, data items are not fully sorted
as in the PLRU mechanism, because the data flows can be inserted at different positions.

Flow 1 s
Flow2 ——
Flow 3 Flow3 ===

Fig. 5. Three data flows organized by I-PLRU caching.

Without loss of generality, assume the flows are sorted according to their insertion positions,
such that flow 1 is inserted at the head of the list. We illustrate an I-PLRU paradigm serving 3 flows
in Fig. 5. The cache can be labeled as M consecutive blocks (say B,, 1 < m < M) such that flow m

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

39:9

is inserted at the first position of B,. According to the insertion and eviction policy, the memory
block By, is shared by flows 1, - - - , m, but not flows m + 1, - - - , M. Notably, an I-PLRU paradigm
can be characterized by the total cache size C and the insertion positions (or equivalently, the size
of Bp,’s).

Definition 4.1 (I-PLRU). Set n = (n1,M2,* " »Am)>s Im = 0,1 < m < M, Zﬁle Nm = 1. Define
I (n;C) as an I-PLRU paradigm where the total cache size is C and the cache size of By, is n,,C.

We list the key advantages of I-PLRU over PLRU and SLRU as follows.

(1) High Efficiency: I-PLRU supports flexible configurations to optimize system performance. As
one of the main results of this paper, we will show (in Theorem 4.9) that I-PLRU can achieve
the same miss probabilities as the optimal SLRU paradigm, and significantly improves the
performance of conventional PLRU.

(2) High Adaptability: When configurations require adaptive updates in dynamically changing
environments, I-PLRU is less impacted by the cold-start problem compared to SLRU. By
changing insertion positions rather than cache partitions, the memory space under I-PLRU is
not pre-allocated to a flow until sufficient requests arrive. Consequently, the cache is never
empty even when configurations are dynamically adapted. We show the benefits of I-PLRU
under the cold-start through simulation results (in Experiment 3).

Despite all these advantages, the theoretical analysis for I-PLRU is far more challenging than
that for PLRU and SLRU. We will show (in Section 4.3) that the MPM problem under I-PLRU is
non-convex. To illustrate the difficulties, consider three flows served by PLRU and I-PLRU shown
in Fig. 2 and Fig. 5, respectively. Under the PLRU paradigm, data items of the three flows are evenly
distributed in the cache if popularity distributions are similar. Under the I-PLRU paradigm, however,
data items of each flow are more concentrated around its insertion position. As a result, the flows
are coupled together in a complicated way.

4.2 Equivalence Mapping Between I-PLRU and SLRU Paradigms

In this section, as the total cache size C — oo, we characterize the asymptotic behavior of the
proposed I-PLRU paradigm by establishing an equivalence mapping between I-PLRU and SLRU.

Let the random variable X, (n7; C) denote the number of data items of flow m stored in the [-PLRU
I(n;C). Let QNFIRYU(p; C) denote the miss probability of flow m under I (n; C). In this section, we
rigorously characterize the asymptotic behavior of X, (n; C) and QLP*RY(p; C) as the total cache
size C — 0.

Definition 4.2 (Equivalence). Consider M data flows and the cache space of size C. We say that
the I-PLRU paradigm 7 (n; C) and the SLRU paradigm S(60; C) are equivalent, denoted by

I'(n;C)=8(6;0),
if, for any 1 < m < M, as the total cache size C — oo
Xm(n; C) a.s.
_—
0mC
An I-PLRU configuration is equivalent to an SLRU configuration, if for each flow, the number of
items stored in the I-PLRU paradigm is almost surely concentrated around the cache space allocated
to that flow in the SLRU paradigm, when the total cache space is sufficiently large. Note that n and
0 in Definition 4.2 can be functions of the total cache size C. Based on this definition, we show that

equivalent SLRU and I-PLRU configurations achieve the same asymptotic miss probabilities in the
following theorem.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

39:10 G. Quan, et al.

THEOREM 4.3. Consider the I-PLRU configuration I (n); C) and the SLRU configuration S(0;C). If
I(n;C)=8(6;0),
then for1 < m < M, we have, as the total cache size C — oo
w1 C) ~ 0Y(6:C)
T(1—1/am)*™ cm
Um (OmC)em=1
The proof is presented in Section 8.1. If an I-PLRU configuration and an SLRU configuration
are equivalent, then each flow will achieve the same asymptotic miss probability under these two
paradigms. Therefore, we can characterize the miss probability for I-PLRU by first identifying its

equivalent SLRU configuration and then applying Theorem 4.3. Next, we will show how to find the
equivalent SLRU configuration S(0; C) for a given I-PLRU configuration 7 (; C), and vice versa.

THEOREM 4.4. Consider M data flows served by an I-PLRU paradigm I (n; C). Assume that there
exists f € (—1,0] such that ny; > CP as C — co. Let F;(n; C) denote the output of Algorithm 1 with i
and C as its input. We have

I(n;C) =S(Fi(n;C);C).

Algorithm 1: Finding the equivalent SLRU for I-PLRU
Output: 6,,, 1 <m <M
Input: n,,, 1 <m <M, C
Initialization: set 8,, = 0,t,, = 0,1 < m < M ;
01 « ny;
for m < 2to M do
fori— 1tom—1do

[24]
. 0;,C .
‘ bi e (r(l_l/ai)cil/ai) ’

end
Solve z as the unique solution of

m m
Z T (1-1/a;) ¢/ (t + viz)"/ % = Z niCs
i=1 i=1

fori — 1tomdo
0; —T(1-1/a;) Cil/ai(l’i + ViZ)l/ai/C;
end
end

Note that f(x) 2 g(x) means limy_, f(x)/g(x) > 1. The assumption in Theorem 4.4 requires
that 1, cannot be too small. For example, 17, can take any constant value in (0, 1]. In Algorithm 1,
we calculate 0 recursively. Recall that the I-PLRU cache can be labeled as M blocks (i.e., By,
1 < m < M) by the insertion positions. In Algorithm 1, we start from the first two blocks B; and
B,. We calculate the equivalent SLRU configuration for the subsystem that consists of B; and By,
based on which, the equivalent SLRU configurations for the subsystems that consist of 3, -+ ,M — 1
blocks are calculated recursively. And finally we derive the equivalent SLRU configuration for the
system that consists of all M blocks, i.e., our original I-PLRU system. Detailed explanations and
proofs of Theorem 4.4 are presented in Section 8.2. Next, we consider the inverse mapping that
finds the equivalent I-PLRU configuration 7 (n; C) for a given SLRU configuration S(0; C).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

39:11

THEOREM 4.5. Consider M flows served by an SLRU paradigm S(0;C). Assume that for 1 <
m < M, there exists B, € (—1,0] such that 6, = CPm as C — oo, and the flows are sorted such
that (0,C)% [(T(1 — 1/am)*™ V) is decreasing with respect to m. Let F»(0;C) be the output of
Algorithm 2 with 0 and C as its input. We have

S(0;C) = I(F,(0;C);0).

Algorithm 2: Finding the equivalent I-PLRU for SLRU

Output:7,,, 1 <m<M

Input: 0,,, 1 <m <M, C
Initialization: set n, = 1,1 <m < M ;
form <« Mto 2 do

Am
0,,C)
2 (F(l—l/am>(cmvm)”""") ’
fori— 1tom—1do
aj
0;C .o
ti — (r(lfl/ai)cil/ai) ViZ;

9,’ «T (1 - 1/0{,') (Citi)l/ai/c;

end

Nm-1 < Z:qu 0;;

NMm < Nm — Z:Z;l 0i;
end

The assumption of Theorem 4.5 guarantees that the flow with a smaller index should be inserted
in front of the flow with a larger index under the equivalent I-PLRU paradigm. In Algorithm 2,
the equivalent I-PLRU configuration is calculated recursively. We first decide the last insertion
position, i.e., the size of By;. Then, the problem is reformulated as finding the equivalent I-PLRU
configuration for an SLRU paradigm serving M — 1 data flows. Repeating the same process, we can
find the insertion positions for flows M — 1, - - - , 2, respectively. The insertion position for flow 1 is
just the head of the cache. Detailed explanations and proofs are presented in Section 8.3.

Notably, Algorithm 2 can be simplified if 8,,’s are constants and the decay rates of the Zipf’s
popularity distributions, i.e., a1, &z, - - - , apy, are all different.

COROLLARY 4.6. Consider M flows served by an SLRU paradigm S(0;C). Assume that 0,,,’s are
constants and the flows are sorted such that a; > aj, forany1 < i < j < M. We have

S(6;C) = I (n;0),
where , = 0y, 1 <m < M.

The proof is presented in Section 8.4. Corollary 4.6 indicates that for M flows with a; > a; >

- > ayy, the I-PLRU paradigm behaves as if the memory block B,,, 1 < m < M, only serves
flow m, as the total cache size goes to infinity. Note that the equivalent I-PLRU configuration found
by Algorithm 2 is more accurate than Corollary 4.6 when the total cache size is relatively small.

In Theorems 4.4 and 4.5, we introduce the methods to find the equivalent SLRU configuration for
a given I-PLRU, and vice versa. A remaining question is whether the mapping between equivalent
I-PLRU and SLRU configurations is one-to-one or not. In the next theorem, we show that for any
I-PLRU configuration 7 (n; C), the configuration S(8; C) of its equivalent SLRU paradigm is unique,
and vice versa.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

39:12 G. Quan, et al.

THEOREM 4.7. Consider the I-PLRU paradigm I (n; C) and the SLRU paradigm S(0;C) that are
equivalent (i.e., I (n;C) = 8(0;C)). Assume that for 1 < m < M, there exists f,,, € (—1,0] such that
O,n > CPm. We have, for any5 and, asC — o
1) if I(n;C) = S(0;C), then 6 ~ O, 1 < m < M;
2)ifS(6;C) = I (n;C), then either i, ~ Nm, or imc o T /Om = iMc e §m/0m = 0,1 < m < M.

We give an example to help the understanding of case 2) of Theorem 4.7. Consider two flows
with the same popularity distributions and request rates, and an SLRU paradigm with 8; = 6, = 0.5.
Any I-PLRU paradigms with n; = o(C) are equivalent to the SLRU paradigm, because X, (n; C),
1 < m < 2 is almost surely dominated by the number of items of flow m in B; as C — oo. To
guarantee the uniqueness, we can simply let 1, = 0 if any #,, with limc_c0 §m/0m = 0 is a solution
for the equivalent I-PLRU. Combining Theorems 4.4, 4.5 and 4.7, we know that F;(-) and F,(:)
define a one-to-one mapping between the equivalent I-PLRU and SLRU configurations in the
asymptotic regime. By leveraging this mapping, we find the I-PLRU configuration that optimizes
system performance in the following section.

4.3 Optimal I-PLRU Configuration

In this section, we consider the MPM problem under I-PLRU. Our objective is to find the insertion
positions that achieve the smallest asymptotic miss probability. The problem is formulated as
follows:

M
. -PLRU
min Z Wi QPR (1 €)
m=1
subject to Mm =0, 1<m<M, (5)

M
Z Nm = 1.
m=1

Let n*(C) denote the optimal solution of Problem (5). We aim to characterize its asymptotic behavior,
i.e., lime_e 17 (C). Before solving the problem, we first show that the problem is non-convex.

LEMMA 4.8. The miss probability Q5PERU(n; C) is a non-convex function with respect to n. Moreover,
as C — oo, we have

FPLRU(p- C) ~ QSERU(Fy (1 C); C),

where Q3LRU(0; C) is asymptotically a convex function with respect to @ and F,(-) is the one-to-one
mapping defined by Algorithm 1.

The non-convexity can be easily verified by considering the case with M = 2. Remarkably,
although the MPM problem for I-PLRU is non-convex, it has a special structure, i.e., each term in its
objective function is asymptotically a convex function Q3-RV(., C) in conjunction with a one-to-one
mapping function F; (). Thus, n*(C) should be the same as the solution of the following problem
in the asymptotic regime.

M
min Z Wi ‘:’HLRU(Fl(r]; C);C)

n =

m=1
subject to Mm =0, 1<m<M, (6)

M
D m =1
m=1

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

39:13

Furthermore, let @ = F;(n; C). We have 17 = F,(0; C) by Theorem 4.7. Let 8" (C) denote the solution
of the following problem,

. SLRU py.
min Z wm Q" (6;C)
m=1
subject to 0pn=>0, 1<m<M, (7)
0,=1
m=1

Since F;(-), F>(+) are one-to-one mappings, we have n*(C) ~ F, (6"(C);C) as C — co. Note that
Problem (7) is actually the MPM problem under SLRU and is strictly convex (see Section 3.1).
Therefore, the asymptotic optimal solution limc_,« 6*(C) is unique. Since F;(-) is a one-to-one
mapping, the asymptotic optimal solution limc_,« 7" (C) of the non-convex problem (5) is also
unique. We formally state the relationship between 68*(C) and n*(C) in the following theorem.

THEOREM 4.9. Recall that n*(C) is the optimal I-PLRU configuration of Problem (5). We have, as
the total cache size C — oo

n*(C) ~ F, (6*(C);C)
and fort <m <M
QI=PLRU (n*(C), C) ~ QSIRV (9*(C), ©),

where 0" (C) is the optimal SLRU configuration of Problem (7) and F,(-) is the one-to-one mapping
defined by Algorithm 2.

The poof is a direct application of Theorems 4.3, 4.5 and 4.7. By leveraging the special structure of
Q;PLRU(II; C) characterized in Lemma 4.8, we transfer the non-convex problem to a convex problem,
and are able to find the optimal I-PLRU configuration based on Equation (4) and Algorithm 2.
Notably, although the result is only rigorous in the asymptotic regime, it is still very accurate when
the total cache size C is small as shown by Experiment 2 in Section 6. In addition, Theorem 4.9 can
be easily extended to general objective functions Z’r\rle um(Qp,) where up,(+)’s are convex, because
the MPM problem under SLRU (i.e., Problem (7)) retains the convexity for such objective functions.

5 DISCUSSIONS ON ENGINEERING ISSUES

Based on our theoretical analysis, in this section, we present heuristic algorithms that build over
our analytical investigations to deal with general and unknown popularity distributions in real
applications.

5.1 General popularity distributions and non-identical data sizes

Our investigations have focused on the case of the commonly used Zipf’s distribution for the
popularity profile. However, in general the popularities may not follow a Zipf’s distribution. In this
section, we address the question of whether we can still identify an I-PLRU configuration that is
equivalent to a given SLRU configuration, and vice versa. In particular, by leveraging the character-

istic time approximation [12, 14], we propose Algorithms 3, 4 that generalize Algorithms 1, 2 for
(m)

popularity distributions beyond Zipf’s. Let p; ", sl(.m) denote the popularity and the size of data

item dim), respectively, i > 1,1 <m < M.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

39:14 G. Quan, et al.

CoNJECTURE 5.1. Consider M data flows served by an I-PLRU paradigm I (n; C). Let F3(n; C) denote
the output of Algorithm 3 with g and C as its input. We have

I(n;C) =S(F(n;C);0).

Algorithm 3: Finding the equivalent SLRU for I-PLRU
Output: 6,,, 1 <m <M
Input: n,,, 1 <m <M, C
Initialization: set 8,, = 0,t,, = 0,1 < m < M ;
01 < nq;
for m < 2to M do

fori«<— 1tom—1do
Solve t; as the unique solution of

25" (1=exp (=q"n)) = o

j=1

end
Solve z as the unique solution of

m
Z Z exp (i)(t,- + viz))) = Z n:C;
i=1 j=1 i=1
fori < 1to m do

‘ 0; «— Z;>1 s; (1 - exp(q;.i)(ti + viz))) /C;
end

end

CONJECTURE 5.2. Consider M flows served by an SLRU paradigm S(0;C). Assume without loss
of generality that the flows are sorted such that ty, is decreasing with respect to m, where t,, is the

unique solution of
D s (1= exp (=p{" vimtm)) = OmC.

i>1
Let F4(6; C) be the output of Algorithm 4 with 6 and C as its input. We have
S(0;C) = I(F4(0;C);0).

Similar to the procedures in Algorithms 1 and 2, we use recursive arguments to find the equivalent
SLRU and I-PLRU configurations in Algorithms 3 and 4, respectively. However, the parameters
tm and t,, + vz, 1 < m < M in Algorithms 3 and 4 are computed using the characteristic time
approximation [12, 14] without rigorous accuracy guarantees for general distributions. We validate
the accuracy of Algorithms 3 and 4 using real-world traces in Experiment 4. It is observed that the
generalized algorithms are not only accurate for popularity distributions beyond Zipf’s, but also
robust to time correlations among the requests. Note that when the popularities satisfy the Zipf’s
assumption (i.e., Equation (1)) and the data sizes are 1, Algorithms 3, 4 degenerate to Algorithms 1, 2,
respectively.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

39:15

Algorithm 4: Finding the equivalent I-PLRU for SLRU
Output: 7,,, 1 <m<M
Input: 0,,, 1 <m <M, C
Initialization: set n,, = 1,1 <m < M ;

form < M to 2 do
Solve z as the unique solution of

Z sj(.m) <1 — exp (—q;m)vmz» = 0,C;

j=1

fori<— 1tom—1do
Solve t; as the unique solution of

> (1= (-af'0)) =0
Jj=
ti < t; —viz;

0 & Xjs1 sj(.i) (l — exp (—qj(.i)ti)) /C;

end

Nm—t < 207" 0

Dm < Nm — Z;ﬁ;l 0i;
end

5.2 Unknown popularity distributions

In our investigations so far, we have assumed that the popularity distributions of items are known,
while the popularities of individual content are unknown. Although this assumption is acceptable
in many scenarios, in other real-world applications the popularities of the data could be unknown
and time-varying. This motivates us in this section to address the question of how to efficiently
find the optimal insertion positions for I-PLRU under unknown popularities. To this end, we next
present zeroth and first order methods to incorporate learning of popularity distributions into our
design.

Zeroth-order method: A heuristic method is to update the insertion positions along the direction
that can potentially reduce the miss probability. Specifically, we can first randomly initialize the
insertion positions 7(*), and evaluate the miss probability of each flow denoted by QES), 1<m<M.
Next, we randomly update the insertion positions as V) = 7 + Ap(®, and evaluate the miss
probabilities Qg,l,), 1 £ m < M achieved by the new insertion positions. Then, for t = 1,2,3,-- -, let

v (0 01) we (0= 08) (0 - 04”)
Af]l ’ AT]Z

An(t) = ’ s ’

Anm
and update

A,,(t)

(t+1) _ .
1AR®]|

()

n no-y
where y is the step size and Q,(,,tl) is the miss probability of flow m achieved by the insertion positions
n®. Note that updating n*) along the opposite direction of Ap*) can potentially decrease the
overall miss probability and get closer to the optimum. In [9], a similar approach is applied to find

the optimal SLRU configurations for unknown popularities.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

39:16 G. Quan, et al.

First-order method: Assume that the popularities follow Zipf’s distributions with the same decay
rate, i.e., pgm) ~cm/i* a > 1,i > 1,1 £ m < M, and the parameters ¢,,, @ are unknown. We
are able to estimate the gradient of the objective function and then apply the gradient descent
algorithm to find the optimum. Define the gradient for MPM problems under I-PLRU as

(i 6Q£;1PLRU M an;lPLRU M OQ;PLRU>
Wm — — DY — .

VI = ’ Wm ’ s Wm
m=1 on onz — onm
Fort =0,1,2,- -, and the initial insertion position n*), we can update the insertion position as
Vi |g=n®
n(t+1) — n(t) —_ "I n ’ (8)
”VI "1=r1<”

where y is the step size. The remaining problem is how to estimate the direction of the gradient.
Define the gradient for MPM problems under SLRU

SLRU SLRU SLRU
Vs =|w 90, WzaQ2 WMaQM
a0, "t a0, ™M a0y)
and

a0, 96 96,
an Jan T Onm
20, 96, 90,

_ | 9m On, "7 Onu

Js=1 . . i

59}\[(99]\1 691\[
om o, "7 Onm

The gradient for MPM problems under I-PLRU can be expressed as Vi = Vs Js, if the SLRU paradigm
and the I-PLRU paradigm are equivalent. Moreover, recalling Definition 4.2 and Theorem 4.3, we
have

Om =~ Xm(n;C)/C, for1<m< M,

wy Q{—PLRU Wy QgPLRU W Qk})LRU)

6, 0, Om

Vsz—(a—1)~(

The direction of Vg can be approximated by estimating QLPMRU (i.e., the miss ratio of flow m), and
Xm(n; C) (i-e., the cache space occupied by flow m), 1 < m < M, even when the parameters «,
¢m’s are unknown. In addition, the matrix Js can be also approximated using such information.
Combining the estimation of Vs and Js, we can approximate the direction of V; and adaptively
update the insertion position for I-PLRU based on (8).

6 EXPERIMENTS

In this section, we conduct four experiments to validate our results as well as to test various
metrics-of-interest under our proposed I-PLRU framework.

Experiment 1. In this experiment, we validate the mapping from I-PLRU to the equivalent SLRU
by simulating 4 flows served by both paradigms. Let (a1, a3, a3, a4) = (1.8, 1.8, 2.0, 2.2). Assume that
the data set of each flow has 10° distinct data items. We have ¢,,, = 1/ 2}2"’1 im%m Let (vi, Vo, V3, V) =
(0.1,0.3,0.2,0.4). Set the configuration n of the I-PLRU paradigm as (11, n2, 3, 74) = (0.2,0.3,0.2,
0.3). Then, we apply Algorithm 1 to calculate the equivalent SLRU configuration 6. We simulate the
I-PLRU paradigm and the equivalent SLRU paradigm. The empirical miss probabilities under these
two paradigms are plotted in Fig. 6a. It can be observed that the I-PLRU achieves the same miss

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

39:17

0.05 T T :
—flow 1, theoretical O flow 1, I-PLRU
- - flow 2, theoretical | |2 flow 2, I-PLRU
. 0.04 flow 3, theoretical | |O flow 3, I-PLRU |
= ---flow 4, theoretical | | flow 4, I-PLRU
Z 00 SLRU ||
s - SLRU
S SLRU
=~ 0.02 SLRU |
g
0.01
0 ‘ ‘ ‘ ‘
200 300 400 500 600 700
Total cache size: C
(a) Miss probability of I-PLRU.
1.2 T T

1.1F ' - o . _ — 4

—_ - -

= 09f - - 1

—_

Xi(n; C)/(6:C)

0.8— : : : : : :
200 300 400 500 600 700 800
Total cache size: C'
(b) Cache space occupied by flow 1.

Fig. 6. Four flows served by [-PLRU. It is observed in (a) that equivalent I-PLRU and SLRU paradigms achieve
the same miss probability. Moreover, the theoretical result is accurate even when the cache size is relatively
small. It is observed in (b) that the ratio of the cache space occupied by flow 1 under I-PLRU to the one under
SLRU is more and more concentrated around 1 when the total cache size becomes larger.

probability as its equivalent SLRU, which validates the accuracy of Algorithm 1 even for relatively
small cache space (e.g., C = 200). We also plot the miss probability calculated by Theorem 4.3. The
theoretical results match well with the empirical ones. In addition, we sample X;(1; C) (i.e., the
number of items of flow 1 stored in the cache) for 500 times, and plot the quantiles of the samples in
Fig. 6b. The box represents the 25™ and 75" percentiles. The whiskers extend to the most extreme
data points. The red line and the symbol “+” represent the median and the mean, respectively.
We can observe that X;(n; C)/(6;C) is more and more concentrated around 1 as C becomes larger,
which directly verifies the equivalence by Definition 4.2. Due to limited space, we omit the similar
results of other flows. Note that if we apply Algorithm 2 to compute the equivalent I-PLRU for the
SLRU paradigm presented in this experiment, the same result will be obtained, which validates the
inverse mapping.

Experiment 2. In this experiment, we optimize I-PLRU and SLRU configurations and compare
them with PLRU. Consider 3 data flows with (v, v5, v3) = (0.2,0.3,0.5), a1 = oy = a3 = 2. Assume
that the data set of each flow has 10° distinct data items. n* = (0.39,0.37,0.24), 8" = (0.47, 0.34,0.19).
Therefore, we have ¢; = ¢y = ¢3 = 1/ 23261 i~% = 0.6079. Assume the system objective is to minimize
the overall miss probability an’f:l wm Q7 with (wy, wa, ws) = (0.6,0.3,0.1). Applying Theorem 4.9,
we obtain the optimal I-PLRU and SLRU configurations. We compared the overall miss probability
achieved by the optimal I-PLRU, the optimal SLRU and PLRU in Fig. 7. It can be observed that by

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

39:18 G. Quan, et al.

optimizing the insertion positions, I-PLRU significantly improves the performance of conventional
PLRU, and achieves the same miss probabilities as the optimal SLRU. Moreover, all empirical results
match well with the theoretical ones obtained from Theorem 4.3 and Theorem 4.9.

0.035 T T T T T
—PLRU, theoretical
- - optimal, theoretical
< PLRU, empirical

O SLRU, empirical :
* |-PLRU, empirical

0.03r

0.025%

0.02 .

Overall miss probability

0.015}]
. @
0.01 e T
‘®_>____~$
0.005 : ' : ' :
100 150 200 250 300 350 400

Total cache size: C'

Fig. 7. Optimal performance of I-PLRU. The figure shows that the optimal I-PLRU achieves much better miss
probabilities than PLRU.

Experiment 3. In this experiment, we compare I-PLRU and SLRU under the cold-start. Consider
two flows with a; = a, = 1.2. Assume that the data set for each flow has 10° data items. We
have ¢; = ¢, = 1/2}261 i72 = 0.1895. The system objective is to minimize the overall miss
probability v; OSRY + 1, OSFRU. Assume the workload has two stages. In Stage 1, the system only
serves flow 1, i.e., v; = 1,1, = 0. To minimize the miss probability, the optimal configurations in
Stage 1 are 8° = (1,0) for SLRU and n* = (1, 0) for I-PLRU. Then, after serving 10° requests from
flow 1, the system enters Stage 2. Assume the arrival rates of two flows are equal in Stage 2, i.e.,
vy = v, = 0.5. To retain high efficiency in stationary periods, the configurations should be updated
as 0" = (0.5,0.5) and " = (0, 1). In Fig. 8, we plot the average overall miss probabilities for both

0.28 : : . ;
o ©SLRU
= 0.27% - I-PLRU | |
£ 026f
£ 025f
= .
z 0.24 ke
023 1 1 1 1 T
2000 2200 2400 2600 2800 3000

Total cache size: C'

Fig. 8. Comparison of SLRU and I-PLRU performance under cold-start. The figure reveals the robustness of
I-PLRU over SLRU.

paradigms during the transient period of SLRU (i.e., the time period when the cache space allocated
to flow 2 is not full). Compared with SLRU, I-PLRU achieves lower overall miss probabilities and
therefore alleviates the negative impact of the cold-start.

Experiment 4. In this experiment, we test the accuracy of the equivalence mapping under popu-
larity distributions obtained from real-world traces. The trace is collected on a content delivery
network and originally used for evaluation in [6]. We use a part of the trace that consists of 107

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

39:19

requests accessing 2265308 distinct data items. The data sizes are set to be 1. We randomly distribute
the data items into three flows with probabilities (0.2, 0.3, 0.5), and estimate the popularity of each
data item by its request frequency. Setting n = (0.1,0.4, 0.5) for I-PLRU, we apply Algorithm 3

Aflow 3, I-PLRU
O flow 2, I-PLRU
<&-flow 1, I-PLRU

£ <flow 3, SLRU
Z * flow 2, SLRU
2 0654 +flow 1, SLRU
2 06
2 | T ®--.
£ 055 g B
0.5
0.45 ‘
2 3 4 5 6 7 8
Total cache size: C' «10%

Fig. 9. Equivalent [-PLRU and SLRU evaluated by real-world traces. The figure verifies that the equivalence
mapping defined by Algorithms 3 and 4 is accurate for real-world popularity distributions.

to compute the cache space allocation @ for the equivalent SLRU. We use the same trace to eval-
uate the miss probability of each flow under the equivalent I-PLRU and SLRU, respectively. The
results are plotted in Fig. 9. It can be observed that the miss probabilities achieved by the two
paradigms are almost the same, which verifies that the equivalent SLRU configuration calculated
by Algorithm 3 is accurate. The experiment can also validate Algorithm 4 since it is the inverse of
Algorithm 3. Notably, the data requests in the trace do not follow an exact Zipf’s distribution and
have correlations over time. The experiment indicates that the equivalence mapping defined by
Algorithms 3 and 4 is not only accurate under real-world popularity distributions but also robust
to time correlations.

7 CONCLUSION

In this paper, we proposed a new flexible multi-flow LRU cache management paradigm, termed
I-PLRU. Unlike, in the traditional SLRU paradigm, in I-PRLU, we do not separate the memory
space, thus alleviating the cold-start problem. Further, I-PLRU improves the conventional PLRU
by supporting dynamic and refined configurations for individual flows. We rigorously derived the
asymptotic miss probability of I-PLRU by establishing an equivalence mapping between I-PLRU
and SLRU. We formulated a class of miss probability minimization (MPM) problems for I-PLRU,
which turn out to be non-convex. Nonetheless, by leveraging the one-to-one equivalence mapping,
we were able to find the optimal I-PLRU configuration. We show that 1) for stationary workload,
[-PLRU outperforms PLRU and achieves the same miss probability as the optimal SLRU; 2) for
workload with dynamically changing data statistics (e.g., data popularities, request rates), I-PLRU
empirically achieves lower miss probabilities than the optimal SLRU by alleviating the cold-start
problem.

8 PROOFS

In this section, we provide detailed proofs for our main theorems.

Before investigating the proposed I-PLRU paradigm, we first introduce a two-level caching
paradigm shown in Fig. 10 to help the analysis. Consider M flows served by the two-level caching
paradigm. The total memory space is separated into M cache partitions with the first M —1 partitions
organized as the first level and the M™ partition organized as the second level. Once a request from

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

39:20 G. Quan, et al.

Flow 1
Flow 2 Flow M
avez - ([[T]——— T
. Cache M
FlowM — 1

Fig. 10. A two-level caching paradigm M(p;C).

flow m arrives, the requested data will be inserted at the head of cache m, 1 < m < M. And if the
cache is full, according to the LRU algorithm, the data at the rear will be evicted. However, different
from the SLRU paradigm, the data items evicted from caches 1,--- , M — 1 will be inserted to the
head of cache M immediately after the eviction. Notably, caches 1,2, - - - , M — 1 are LRU caches that
serve flows 1,2, -+ , M — 1 dedicatedly. And cache M is shared by all data flows. Let C be the total
cache size and p,,C be the size of cache m, 0 < p,,, < 1, Zﬁle pm=1,1<m< M. Let M(p;C)
denote the caching paradigm shown in Fig. 10, and Y,,(p; C) denote the cache space occupied
by flow m in the whole system. As the total cache size C — co, we characterize the asymptotic
behavior of Y, (p; C) in the following lemma.

LeEMMA 8.1. Consider M flows served by the caching paradigm M(p; C). Assume that there exists
B € (=1,0] such that pyr 2 CF as C — oo. We have

Y, ;C) a.s.
M a-5¢ 1, as C — oo, 9)
Um
where
Ym =T (1= 1atm) e % (tm + vim2) /%" for1 <m < M, (10)

PmC om
. (—r(1—1/am)cm1/am) fort <m<M-1,
=

0 form =M,
and z is the unique solution of
M
Z T (1—1/am) em ! (tm + vmz) % = C.
m=1
The proof is presented in Appendix A. Lemma 8.1 shows that, as the total cache size C goes to
infinity, Y, (p; C) will be concentrated around y,, almost surely. We will apply Lemma 8.1 to prove
the main theorems.

8.1 Proof of Theorem 4.3

Proor. Consider a data flow organized by an LRU cache with a total cache size C. Assume all
data items (including the data items that are not stored in the cache) are maintained as a list and
sorted according to the last request time. The most recently requested data item is listed at the first
position. Note that only the first C data items are stored in the cache.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

39:21

Consider M data flows organized by the I-PLRU caches. We also maintain a list for each flow,
where the data items are sorted according to the last request time. Note that the order of the data
items in the list is only determined by the requests and independent with the cache size. A hit of
flow m occurs at time 75 under the I-PLRU architecture 1 (n; C), if and only if the requested data is
placed at the first X,,,(n; C) positions in the list of flow m, where X,,,(n; C) is the number of data
items of flow m stored in the I-PLRU cache at time 7y. Notably, the same request result (hit or miss)
will occur at time 7y if the flow m is organized by the LRU cache with a cache size X,,,(n; C), since
the list of the data items remains the same.

Assume 7 (n;C) = §(0;C). For any € € (0, 1), there exists Cy(€), such that forall1 <m < M
and any C > Cy(€)

P(1 - €)0C < Xpn(n;C) < (1 +€)0,C] = 1.

Therefore, letting QXY (x) denote the miss probability of data flow m organized by a LRU cache
with cache space x, we have, for C > Cy(€)

0 (1= €)0m0) = Q™ V(1 0) 2 0V (1 + €)6,C) - (11)
In addition, according to the result in [16], we have, as C — oo
OV (6:C) = QY (mC)
r(l - 1/am)am Cm
~ . 12
Um (ch)am—l ()
Combining (11) and (12) finishes the proof. O

8.2 Proof of Theorem 4.4

Proor. First, we prove the theorem under the assumption that for 1 < m < M, there exists
Bm € (—1,0] such that n,,, 2> Cﬁ. Then we will show that the assumption only need to hold for 7.
We use an induction argument to prove the theorem. First, for one flow, the I-PLRU paradigm is
exactly the same as the SLRU paradigm with the same cache space, i.e., ; = n;.

Then, assume that we have the equivalence mapping for M — 1 flows, i.e.,

I (s snma);C) = S (65,6315 C) (13)

based on which, we will investigate the equivalent SLRU paradigm for M data flows organized by
the I-PLRU paradigm 7 ((11, - , a1, 7ar); C). Assuming

I (1, snm-10m);C) =S (01, -+, 00 — 1,04);C) ,

we will derive 8,,’s as functions of 0;,’s. Let Z((ryl, -+ ,npm-1); C), 1 < i < M—1denote the number
of data items of flow i stored in the I-PLRU cache 7 ((11,- -, 7m-1); C), and X;((n1,- - ., nm); C),
1 £ j £ M, denote the number of data items of flow j in the I-PLRU cache 7 ((n1,- - , na1); C).

The behavior of the I-PLRU paradigm 7 ((71, -+ ,jum); C) is the same as the behavior of the
caching paradigm M((p1, - , pm); C) introduced in Fig. 10, where p;C = 55:’((’71» <o nm-1);0),
1<i<M-1,and pyC = nuC. Recalling the assumption (13) and Definition 4.2, we have, as
C >

Xi ((m,-+ s nm=1);C) as
GfC

Therefore, for any € € (0, 1), there exists Cy(€) such that for all C > Cy(e) and 1 <i <M -1
(1-€)0;C < X;i (1, mar=1);C) < (1+ €)6;C.

1. (14)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

39:22

Therefore, applying Lemma 8.1, we have for C > Cy(e),
Ym < 0,C < y;,
where

yt =T (1= 1/am) e (£} + vzt)*m for 1 <

A
3
IA
=

A
3
IA
=

Y =T (1= 1/an) cm ®m (8, + vz)/ for 1 <

_ (+e)l,c for1<m<M
1t = { \Taamen 7o orl<ms<M-1,
0 form = M,
_ (-efc M
m
0 form =M,
z* is the unique solution of
M
DT (1= 1) em ™ (1, + vmz)V o = (1+ €)C,
m=1

and z~ is the unique solution of

Z T (1= 1/tm) em ™ (£, + vz)V = (1 - €)C.
£

Define

Ym =T (1 =1/am) em Y (tm + vmz) % for1 < m < M,

(Q;)"—C)am fori<m<M-1
by = T(1=1/am)cmt/am = = ’
0 form = M,
and z is the unique solution of
M
Z T (1—1/am) em ! (tm + vmz) % = C.
m=1

We have, for1 <m <M

C—ooo ym

So far, we derive the equivalent I-PLRU paradigm for M data flows.

G. Quan, et al.

(15)

(16)

Using the induction argument, we can calculate the equivalent I-PLRU paradigm for any SLRU

paradigm. This induction argument is summarized as Algorithm 1.

Notably, if for 1 <m < M -1, n,,C ~ [,,(C), where [,,,(-)’s are slowly varying functions that
satisfy limy e I (bx)/l(x) = 1 for any positive constant b, then the cache space occupied by each

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

39:23

flow in By,’s can be ignored compared with 8,,C as C — oo. Therefore, the result still holds for
such n,,’s. O

8.3 Proof of Theorem 4.5
Proor. We assume that the flow indices are sorted such that
(Bm, C) (6m, C) 2
T(1—1/am) ™ cmVm, T(1 = 1/my)*™ Copy Vi,

(17)

for any 1 < my; < my < M. We will first prove that the insertion position of flow m; is in front of
the insertion position of flow m, for 1 < m; < my, < M.

Consider 2 flows (i.e., flow 1 and flow 2) organized by an I-PLRU cache I ((#1, fj2); C), where
flow 1 is inserted at the head of the cache and flow 2 is inserted at 7;C + 1. Theorem 4.4 implies
that the I-PLRU paradigm is equivalent to the SLRU paradigm S((6y, 6,); C) where

0mC =T (1 = 1/ctm) cm /%™ (tyy + vimz) %,
mC “

F(l - 1/0{1)c11/0¢1

t, =0,

=

and z is the unique solution of
T(1-1/am)cem " (vi2)Y% + T (1 = 1/am) em ' " (1 + v22) /% = C.
Thus, we have

6,0

— /v +z
I'(1—-1/ar)%cin 1/

(60"

> /vy +z = ——m .
2/ 2 F(l— l/ag)aZCQVQ

(18)
Note that the inequality (18) is sufficient to guarantee that flow 1 is inserted in front of flow 2.
For M flows organized by the I-PLRU cache, the inequality (18) still holds. Therefore, under the
assumption (17), the flows are sorted such that the insertion position of flow m; is in front of the
insertion position of flow m; for 1 < m; < my; < M.

Next, we will use an induction argument to find the equivalent I-PLRU paradigm 7 (; C). In each
iteration, there are two steps. In iteration 1, we will decide the insertion position for flow M. Given
the SLRU paradigm S(0;C), using Lemma 8.1, we can find the equivalent M(p(l); C) paradigm,
where

pﬁ,?c =T (1—1/am)cm'/*mt, /% for1<m<M-1,

M-1
1 1
pC=C=) phiC,
m=1
e ®m for1<m< M1
T(1=1/ctym)em i/ @m —Vmz forl<m<M-1,
tm =
0 form = M,
(O C)*™

z=)
(1 - 1/ap)*cpvm

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

39:24 G. Quan, et al.

This is the first step. The second step for iteration 1 is simply letting 5y = pay, i.e., the size of By
is pMC.

In iteration 2, we will decide the insertion position for flow M — 1. Notably, in the caching system
M(p(l); C), the caches 1,2, - -+ , M — 1 can be viewed as a new SLRU system 3(0(2); C(z)), where
forl<m<M-1,

(2) P(z) (2)
O = 3@ O =CpuC
i=1 Pi

The first step is to find the equivalent M(p®; C®)) paradigm for S(0@;C®) based on Lemma 8.1.
The second step is to construct the system shown in Fig. 11, where the first M — 2 flows are served
by M — 2 separated LRU caches, and flows M — 1, M are served by an I-PLRU paradigm. Let the

K | M(p(z); (;(2)) N

1
coir [.- I
’
Flow 2 ‘FlowM —1 iFlowM |-PLRU
| X] |
U

1
1
1
. 1
1

1
- \ By-1 : By ,
Flow M — 2 Se------ Fo=mmmm—--r
| |
1
\
Y //

Fig. 11. ldentifying the insertion position for flow M — 1.

cache space of cache m be pf,zl)C(z), 1 < m < M — 2. Let the cache space of the blocks Bas—1, By in
the I-PLRU paradigm be pﬁ)_lc @ and px[)C , respectively. Applying Lemma 8.1, we can prove that
the caching system shown in Fig. 11 is equivalent to the original SLRU system S(0;C).
So on so forth, repeating these two steps for M — 2 more iterations, we eventually find the I-PLRU
paradigm 7 (n; C) that is equivalent to the original SLRU architecture S(0; C), where
N = pl(gf—m*'l)C(M—m-#l)/c’ c®— o

This induction process is summarized as Algorithm 2. O

8.4 Proof of Corollary 4.6
Proor. In Algorithm 2, a critical step is to update t;, 1 <i < m—1, as
0;:C i
ti=|l———| -z,
I‘(l - 1/0{1‘)61‘1/0{"

where

(o)
z = .
F(l - 1/am)(cmvm)l/am

If we have «a,,, < «;, then, as C — oo
0;C i
i~ —0—/——————— . 19
l (r(l_l/ai)cil/ai) 49
Combining (19) with the remaining steps of Algorithm 2, we prove Corollary 4.6. O

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

39:25

8.5 Proof of Theorem 4.7

Proor. Consider equivalent [-PLRU paradigm J (1; C) and SLRU paradigm S(6; C). First, assume
towards contradiction that 7 (n;C) = S (5, C), with lime_,e O1n/0pm # 1 for some m. Then, applying
Theorem 4.3, we know that the asymptotic miss probability achieved by S(0;C) and S(0;C) are
different. Since I-PLRU achieves the same asymptotic miss probability as its equivalent SLRU
paradigm, S(8;C) and S (5; C) cannot be both equivalent to 7 (n; C). We have a contradiction and
therefore prove 0=06.

Then, assume S(0;C) = I(n;C) and S(0;C) = I(7;C). Recall the proof of Theorem 4.5.
The equivalent I-PLRU configuration is obtained by constructing a two-level caching paradigm
M(p,C) (shown in Fig. 10) that is equivalent to S(0;C). Moreover, according to Lemma 8.1, if
there exist two caching paradigms M(p, C) and M(p, C) that are both equivalent to S(8; C). Then
we must have either lime_,co prm/pm = 1, or imeeo pm/Om = im0 P /0m = 0,1 < m < M.
Note that p,s indicates the last insertion position of the equivalent I-PLRU. Thus, we have either
limecooo 7ar/nar = 1. Applying the recursive argument used in Section 8.3, we can prove the
theorem. =

REFERENCES

[1] Memcached. http://memcached.org/.

[2] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny. 2012. Workload analysis of a large-scale
key-value store. In ACM SIGMETRICS Performance Evaluation Review, Vol. 40. ACM, 53-64.

[3] Muhammad Abdullah Awais. 2016. Memory management: Challenges and techniques for traditional memory allocation
algorithms in relation with today’s real time needs. Advances in Computer Science: an International Journal 5, 2 (2016),
22-217.

[4] Sorav Bansal and Dharmendra S Modha. 2004. CAR: Clock with adaptive replacement.. In FAST, Vol. 4. 187-200.

[5] Nathan Beckmann, Haoxian Chen, and Asaf Cidon. 2018. LHD: Improving cache hit rate by maximizing hit density. In
15th USENIX Symposium on Networked Systems Design and Implementation (NSDI 18). USENIX Association.

[6] Daniel S Berger, Ramesh K Sitaraman, and Mor Harchol-Balter. 2017. AdaptSize: Orchestrating the hot object memory

cache in a content delivery network.. In NSDI. 483-498.

Stephen Boyd and Lieven Vandenberghe. 2004. Convex optimization. Cambridge university press.

[8] Jacob Brock, Chencheng Ye, Chen Ding, Yechen Li, Xiaolin Wang, and Yingwei Luo. 2015. Optimal cache partition-
sharing. In 2015 44th International Conference on Parallel Processing (ICPP). IEEE, 749-758.
[9] Weibo Chu, Mostafa Dehghan, Don Towsley, and Zhi-Li Zhang. 2016. On allocating cache resources to content

providers. In Proceedings of the 3rd ACM Conference on Information-Centric Networking. ACM, 154-159.

[10] Malcolm C Easton and Ronald Fagin. 1978. Cold-start vs. warm-start miss ratios. Commun. ACM 21, 10 (1978), 866—-872.

[11] Gil Einziger, Roy Friedman, and Ben Manes. 2017. TinyLFU: A highly efficient cache admission policy. ACM Transactions
on Storage (TOS) 13, 4 (2017), 35.

[12] Ronald Fagin. 1977. Asymptotic miss ratios over independent references. J. Comput. System Sci. 14, 2 (1977), 222-250.

[13] Nicolas Gast and Benny Van Houdt. 2015. Transient and steady-state regime of a family of list-based cache replacement
algorithms. ACM SIGMETRICS Performance Evaluation Review 43, 1 (2015), 123-136.

[14] Nicolas Gast and Benny Van Houdt. 2017. TTL approximations of the cache replacement algorithms LRU(m) and
h-LRU. Performance Evaluation 117 (2017), 33-57.

[15] Ryo Hirade and Takayuki Osogami. 2010. Analysis of page replacement policies in the fluid limit. Operations research
58, 4-part-1 (2010), 971-984.

[16] PredragR. Jelenkovi¢. 1999. Asymptotic approximation of the move-to-front search cost distribution and least-recently-
used caching fault probabilities. The Annals of Applied Probability 2 (1999), 430-464.

[17] Predrag R Jelenkovi¢ and Xiaozhu Kang. 2007. LRU caching with moderately heavy request distributions. In 2007
Proceedings of the Fourth Workshop on Analytic Algorithmics and Combinatorics (ANALCO). SIAM, 212-222.

[18] Kaiyi Ji, Guocong Quan, and Jian Tan. 2018. Asymptotic miss ratio of LRU caching with consistent hashing. In IEEE
Conference on Computer Communications (INFOCOM 2018). Honolulu, USA.

[19] Song Jiang, Feng Chen, and Xiaodong Zhang. 2005. CLOCK-Pro: An effective improvement of the CLOCK replacement.
In USENIX Annual Technical Conference, General Track. 323-336.

[20] Song Jiang and Xiaodong Zhang. 2002. LIRS: An efficient low inter-reference recency set replacement policy to improve
buffer cache performance. ACM SIGMETRICS Performance Evaluation Review 30, 1 (2002), 31-42.

—
~
—

—

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

39:26 G. Quan, et al.

[21] Mark S Johnstone and Paul R Wilson. 1998. The memory fragmentation problem: Solved?. In ACM Sigplan Notices,
Vol. 34. ACM, 26-36.

[22] Conglong Li and Alan L Cox. 2015. GD-Wheel: A cost-aware replacement policy for key-value stores. In Tenth European
Conference on Computer Systems. ACM, 5.

[23] Nimrod Megiddo and Dharmendra S Modha. 2003. ARC: A self-tuning, low overhead replacement cache. In FAST,
Vol. 3. 115-130.

[24] Elizabeth J O’neil, Patrick E O’neil, and Gerhard Weikum. 1993. The LRU-K page replacement algorithm for database
disk buffering. ACM Sigmod Record 22, 2 (1993), 297-306.

[25] Guocong Quan, Kaiyi Ji, and Jian Tan. 2018. LRU caching with dependent competing requests. In IEEE Conference on
Computer Communications (INFOCOM 2018). Honolulu, USA.

[26] Guocong Quan, Jian Tan, and Atilla Eryilmaz. 2019. Counterintuitive characteristics of optimal distributed LRU caching
over unreliable channels. In IEEE Conference on Computer Communications (INFOCOM 2019). Paris, France.

[27] Yannis Smaragdakis, Scott Kaplan, and Paul Wilson. 1999. EELRU: Simple and effective adaptive page replacement. In
ACM SIGMETRICS Conference on Measuring and Modeling of Computer Systems. ACM, 122-133.

[28] Jian Tan, Guocong Quan, Kaiyi Ji, and Ness Shroff. 2018. On resource pooling and separation for LRU caching.
Proceedings of the ACM on Measurement and Analysis of Computing Systems 2, 1 (2018), 5.

[29] Andrew S. Tanenbaum. 2001. Modern operating systems (2rd ed.). Prentice Hall Press, Upper Saddle River, NJ, USA.

[30] Paul R Wilson, Mark S Johnstone, Michael Neely, and David Boles. 1995. Dynamic storage allocation: A survey and
critical review. In Memory Management. Springer, 1-116.

[31] Yue Yang and Jianwen Zhu. 2016. Write skew and Zipf distribution: evidence and implications. ACM Transactions on
Storage (TOS) 12, 4 (2016), 21.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

39:27

A PROOF OF LEMMA 8.1

Before presenting the proof, we introduce some additional concepts and notations. Since the
requests are all independent, it is sufficient to prove the result for a given time (saying 7o) after the
system reaches its stationarity. Consider the two-level caching framework M(p; C) introduced in
Section 8. For 1 < m < M, n € N, define

V(m)() 1 if data d;m) is requested during [7_,, 7_1],
. n)=
! 0 otherwise.

Define, for0 <m<M-1,n €N,

W.(m)(n) _ 1 if data dgm) is not stored in cache m during [7_(s11), 7_n),
! 0 otherwise.

and Wi(M)(n) = 1. Let

M

® = min {n : Z Z Vl.(m)(n)Wi(m)(n) = PMC}. (20)

m=1i>1

Note that the data items stored in cache M at time 7; are determined by the requests during
[7—w, 7-1] and independent with the requests before 7_,,. We have, for 1 < m < M

Y (p;C) = pmC + > V™ (@)W ™ ().

i>1

Notably, >;54 Vi(m)(w)Wi(m) (w) is the total size of distinct data items that are requested by flow m
during [7_,, 7_1] and not stored in cache m right before 7_,.

Define S,,,(n) as the total size of distinct data items of n requests from flow m for 1 < m < M.
Define T,;, = min{n : S;,(n) = pC}for1 < m < M—1and Ty = 0. Let n,, = Zi_:l_m 1(1,=m) denote
the number of requests that are from flow m during [7_,,,7_1], 1 < m < M. Since the requests are
all independent, we have

Yn(p;C) = 3 VI (@)W ™ (@) + pmC & STy + 1), (21)

i>1

given the condition that j,\,’f:l Sm (T +) = C, where X 4 Y denotes that the random variables
X and Y have the same probability distribution.
Define, for1 <m < M,

sm(n) =T (1= 1/ap) e/ “mnt/%m. (22)

Recalling (10), we have y,, = spm(tm + Vimz) and an’le Sm(tm + vmz) = C. Before proving Lemma 8.1,
we first establish the following lemma showing that S,,(n) is concentrated around s, (n) with high
probability when n is large.

LEmMMA A.1. Fore € (0,1), there exists a constant Ny, (€) that for alln > Np,(€) and1 <m < M,
P[Sm(n) = (1 + €)sm(n)] < exp(—€’s(n)/36).
Proor. First, we will show that as n — oo, E[S,,(n)] ~ sp,(n). Recalling the definition of S, (n),

we have
E[Sm(n)] = Z (1-(1-p™)").

1

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

39:28 G. Quan, et al.

As n — oo, we have

NgE

$10-(-7))-

1

(- (-])
(- (50))

«© Cmll
"ﬁ (1—exp (ta’_m))dt
~T(1-1/am) le/amnl/am
= sm(n),

which implies E[S,,(n)] ~ sm(n), i.e., limye B[S (n)]/sm(n) = 1.
Therefore, for any € € (0, 1), there always exists Ny, (¢) such that for all n > N, (¢) E[S,,(n)] <
(1 + €/2)s;(n). Therefore, for n > Ny, (€), we have

—_

8

—_

1+¢€

P[Sm(n) 2 (1+€)sm(n)] < P |Sm(n) = E[Sm(n)]
1+¢€¢/2
SP[Sm(n) 2 (1+€/3)E[Sm(n)]]
Then, applying Lemma 7.1 in [28], we complete the proof. O

Now we are ready to prove Lemma 8.1.

Proor. Recalling (10), (21) and (22), in order to prove (9), it is sufficient to show
—Sm(Tm * M) &5 1, as C — oo. (23)
Sm(tm + Vin2)
To prove this, we will first show
—Sm(Tm + 1) &% 1, as C— oo, (24)
Sm(tm + Vo)
We need prove that for any € € (0, 1), the events
{Sm(Tin + nm) > (1 + €)sm(tm + vme) | the total cache space is C}_,
and
{Sm (T + 1) < (1 — €)sm(tm + vmw) | the total cache space is C}?=1
are not infinitely often (i.0.) almost surely, i.e.,
P[Sm(Tm + nm) > (14 €)sm(tm + vmw) 1.0. | the total cache space is C] = 0, (25)
P[Sm(Tm + nm) < (1 —€)sm(tm + vmw) 1.0. | the total cache space is C] = 0. (26)
In order to prove P [S,,,(Ty, + nm) > (14 €)sm(tm + Vo) 1.0. | the total cache space is C] = 0, we
will show

S BlAc] < o @)

c=1
and then apply the Borel-Cantelli lemma, where
Ac 2 (S (T +) > (14 €)sm(tm + vmo) | the total cache size is C}.
In the rest of the proof, we always assume that the total cache size is C and do not write it as the

condition for simplicity. We first prove the lemma with the assumption that for 1 < m < M, there

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

39:29

exists B, € (=1,0] such that p,, > CPm. Then we will show that the result is still correct if the
first M — 1 flows do not satisfy this assumption.
Define & = {n,;, > (1 + €/2)vpw} and & = {n,, < (1 - €/2)vpw}. We can bound P[Ac] by
PlAc] = P[Sm(Tm + nm) > (1 + €)sm(tm + vmw)]
SP|Su(Tm + nm) > (1 + €)sp(tm + vm)|EF N ELC

+P[E]+P[&E]], (28)

where & and &] ¢ denote the complements of &; and &, respectively.

The remaining proof for (27) consists of two steps. We will first derive an upper bound for
PLSm(Tm + nm) > (1 + €)spm(tm + vim@)|E; N E] in Step 1, and then derive upper bounds for
P[&]] and P[&E;] in Step 2.

Step 1: P[Sy (T + nm) > (1 + €)sm(tm + vmw)|EF N E; €] can be upper bounded as

ST + 1) > (1 + €)sp (b + Vinw)

&N 6;6]

< P[Su (T + 1) > (1 + €)5m(tm + /(1 + €/2))

&N a;f]

1+¢€

W xejgyian L+ €/2)tm + nm)

=P |Su(Tm + nm) >

&°n 8;“]

< P [Su (T + 1) > (1 + €/3)5m (1 + €/2)t + 1)

&N a;”]

< P[S (T + 1) > (14 €/3)s5m (1 + €/2)t + 1)

EFNE T < (14 6/2)tm]

+P [Tm > (1+¢€/2)ty

E°nE”

= B[S, ((1 4+ €/2)tm + 1) > (1 + €/3)5m (1 + €/2)tm + 1)

&N 8;”]

+P [Tm > (14 €/2)tm|EF N E°

éll + L.

Note that since n,, is a random variable, we cannot directly use Lemma A.1 to bound I;. Given
{E7° N &}, we have

Sm((1+€/2)tm +np) > sm((1+€/2)ty + (1 —€/2)ny,)
> s ((1 = €)(tm + Vpw)).

Recalling (20), we have w > pyC. Lemma A.1 implies that there always exists Cy_, (€) such that for
all C > Cy,m(e),

€25 (1= €)(tm + vmpmC))/324)

I < exp(—
(e2(1— €)%, (tm + vmpMC)/324)

—€(1 = €)% 5, (vmpiC) /324)
(1—6)1/“'" 1 y
= T (1- =] CmVmpmC) . 29
eXP(324 o (emVmpmC) (29)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

39:30 G. Quan, et al.

Similarly, I, can be upper bounded by Lemma A.1. Recall S, (Ty,) = sm(tm) = pmC. Lemma A.1
yields that there exists Cz (€) such that for all C > Cy , (€)

L=P [Sm((l T €/2)tm) < Sm(To)
=P[Sm((1 + €/2)ty) < pmC]
=P [Sm((1+€/2)tm) < (1+€/2)7V 55 (1 + €/2)tm) |
< exp (—((1+€/2)" = 1)25,((1 + €/2)tm) /36)
< exp (—((1+€/2)" = 1)%5p (tm) /36)

& n a;c]

€2pmC
< - . 30
- exp(324am2) (30)
Combining (29) and (30) implies that, for any € € (0,1) and C > max{Cy n,(€) : 1 < k < 2},
P [sm(rm F) > (14 €)smltm + vmz)|67° N 8;0]
€2(1 —e)V/am 1 €%p,,C
< exp (—%F (1 - E) (CmvmpMc)l/am) + exp (_3250(,,12) . (31)

Up to now, we finish Step 1.

Step 2: To complete the proof, we will derive upper bounds for P[] and P[] in Step 2. Note
that E[n,|w] = vmo. Applying the Chernoff bound and the fact that v > paC, we have

2
P[E]] =P [nm < (1 - €/2)vpma] < exp (—%) (32)
and
+ EZVmpA[C
P[ET] =P[nm > (1 +€/2)vu0] < exp (_T)) (33)

Combining (28), (31), (32) and (33) implies that, for any € € (0,1) and C > max{Ci m(€) : 1 <
k <2},

62(1 _ E)l/am
P[Ac] <exp (—TF (

ezme ezvmpMC
+ - +2 -—r.
eXp(324am2) eXp(8)

Recall the assumption that for 1 < m < M, there exists f,, € (~1,0] such that p,, > CF~. We
have },_, P[Ac] < oo, which implies (25) by applying the Borel-Cantelli lemma. Using a similar
approach we can prove (26). Combining (25) and (26) yields (24). Combining (24) and the fact that
%:1 Sm(tm + Vinz) = %:1 Sm(Tm + ny,) = C, we prove (23).
Notably, the result still holds when p,,C ~ [,,(C) for 1 < m < M — 1, where [,,,(-)’s are slowly
varying functions that satisfy limy_, I, (bx)/l,,,(x) = 1 for any positive constant b, because in this
case, ty + Vmz is dominated by vy,z and Y, (p; C) is almost surely dominated by the cache space

occupied by flow m in cache M, 1 < m < M, as the total cache size C — oo.]

1
1- a—) (CmePMC)l/am)

m

Received February 2019; revised March 2019; accepted April 2019

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 39. Publication date: June 2019.

	Abstract
	1 Introduction
	2 Problem Formulation
	3 Existing Approaches
	3.1 Separated LRU (SLRU) Caching
	3.2 Pooled LRU (PLRU) Caching
	3.3 Limitations of SLRU & PLRU

	4 A New Flexible Cache Management Paradigm
	4.1 Definition of I-PLRU
	4.2 Equivalence Mapping Between I-PLRU and SLRU Paradigms
	4.3 Optimal I-PLRU Configuration

	5 Discussions on Engineering Issues
	5.1 General popularity distributions and non-identical data sizes
	5.2 Unknown popularity distributions

	6 Experiments
	7 Conclusion
	8 Proofs
	8.1 Proof of Theorem 4.3
	8.2 Proof of Theorem 4.4
	8.3 Proof of Theorem 4.5
	8.4 Proof of Corollary 4.6
	8.5 Proof of Theorem 4.7

	References
	A Proof of Lemma 8.1

