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In this paper, we consider a load balancing system under a general pull-based policy. In particular, each
arrival is randomly dispatched to one of the servers with queue length below a threshold; if none exists,
this arrival is randomly dispatched to one of the entire set of servers. We are interested in the fundamental
relationship between the threshold and the delay performance of the system in heavy traffic. To this end, we
first establish the following necessary condition to guarantee heavy-traffic delay optimality: the threshold
will grow to infinity as the exogenous arrival rate approaches the boundary of the capacity region (i.e., the
load intensity approaches one) but the growth rate should be slower than a polynomial function of the mean
number of tasks in the system. As a special case of this result, we directly show that the delay performance
of the popular pull-based policy Join-Idle-Queue (JIQ) lies strictly between that of any heavy-traffic delay
optimal policy and that of random routing. We further show that a sufficient condition for heavy-traffic delay
optimality is that the threshold grows logarithmically with the mean number of tasks in the system. This
result directly resolves a generalized version of the conjecture by Kelly and Laws.
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1 INTRODUCTION

We consider a classical load balancing system that consists of a central dispatcher and N servers,
each associated with an infinite buffer queue and a service rate y,. The exogenous tasks arrive
with rate Ay, and upon arrival they must be immediately dispatched to one of the queues. A key to
the performance of such a system is the load balancing policy it uses since it directly determines
which queue the arriving tasks should join.

To design effective load balancing policies and hence provide good delay performance, it is
imperative to develop analytical tools to evaluate the system performance under different load

This work has been funded in part through ONR grant N00014-17-1-2417 and NSF grants CNS-1719371, 1717060, and
1518829.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

2476-1249/2019/1-ART44 $15.00

https://doi.org/10.1145/3287323

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 3, Article 44. Publication date: January 2019.



https://doi.org/10.1145/3287323
https://doi.org/10.1145/3287323

44:2 X. Zhou et al.

balancing policies. Towards that goal, one important line of research has focused on the so-called
heavy-traffic regime, where the exogenous arrival rate approaches the boundary of the capacity
region, i.e., the heavy-traffic parameter € = ) u, — Ax approaches zero. An attractive property
of the heavy-traffic regime, as pointed out in [15], is that ‘the important features of good control
policies are often displayed in the sharpest relief”. It has been shown that well-known policies such as
Join-Shortest-Queue (JSQ) and Power-of-d can achieve asymptotically optimal delay performance
in the heavy-traffic regime [5, 7, 8, 19]. Under these two policies, an incoming task is assigned to a
server with the shortest queue among d > 2 servers (d = N for JSQ) sampled uniformly at random.

However, due to the sampling process, the amount of communication overhead is 2d per arrival (d
for query and d for response), which is undesirable for a large value of d, especially in the JSQ policy
when d = N. More importantly, since the dispatching decision can only be made after collecting
the queue length feedback, there exists a non-zero dispatching delay, which contributes to an
increase in the response time. To avoid these drawbacks, an alternative approach, often called pull-
based load balancing, has received significant recent attention. Instead of actively sending queries
to servers and waiting for responses, the dispatcher under a pull-based load balancing scheme
passively listens to the reports from the servers. In particular, each server will report its ID to the
dispatcher when it satisfies a certain condition (e.g., its queue length drops below a threshold from
above). Then, upon task arrival, the dispatcher checks its record. If it is not empty, the dispatcher
randomly removes one ID and sends the arrival to the corresponding server; otherwise, it just
randomly selects a queue to join. The classical pull-based policy is the Join-Idle-Queue (JIQ) policy
investigated in [16, 22], under which the dispatcher maintains a record of IDs of the idle servers (i.e.,
the reporting threshold is one). JIQ has been shown to enjoy a low message overhead (at most one
per arrival), zero dispatching delay, and better delay performance than Power-of-d under medium
loads. Nevertheless, under high loads, its delay performance degrades substantially due to the lack
of idle servers. This directly suggests that a varying reporting threshold with respect to the load is
necessary to guarantee good delay performance in heavy traffic. Motivated by this observation,
in a recent work [30], the authors propose a specific way to update the reporting threshold in a
pull-based policy, which is proven to be heavy-traffic delay optimal, while still enjoying many of
the nice features of JIQ.

In this paper, instead of focusing on another specific way of determining the reporting threshold,
we step back and work towards answering the following fundamental question: How would different
reporting thresholds affect the (heavy traffic) delay performance of a pull-based policy? To address
this question, we take a systematic approach and summarize the main contributions as follows.

e We first present a necessary condition on the reporting threshold for the delay optimality of
a pull-based policy in heavy-traffic. In particular, we show that to achieve heavy-traffic delay
optimality, the reporting threshold r should grow to infinity as the heavy-traffic parameter
€ approaches zero, however, it cannot grow too fast (slower than a polynomial function:
see Theorem 3.2). An important corollary of Theorem 3.2 is that the delay performance of
the JIQ policy (i.e., constant threshold r = 1) in heavy traffic lies strictly between that of
any heavy-traffic delay optimal policies (e.g., JSQ) and that of random routing. This result is
somewhat counter-intuitive, since at first glance one may guess that JIQ would degenerate
to random routing in heavy traffic since there are hardly any idle servers in the system.
However, it turns out that it is not true, and allows us to get a sharp characterization of the
JIQ policy in heavy traffic.

e We then establish a sufficient condition on the reporting threshold for heavy-traffic delay
optimality of pull-based policies. Specifically, we show that a logarithmic growth rate of the
reporting threshold with respect to the mean number of tasks in the system is sufficient to

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 3, Article 44. Publication date: January 2019.



44:3

guarantee the steady-state delay optimality in heavy traffic (see Theorem 3.3). This result
directly resolves a conjecture by Kelly and Laws in [15]. In particular, the authors in [15]
consider a two-server system with Poisson arrivals and exponential service under a varying
reporting threshold. They conjecture that as long as the threshold is greater than a specified
constant times the logarithm of the mean number of tasks in the system, then asymptotic
delay optimality holds in heavy traffic. Thus, our result not only resolves the conjecture
but generalizes it to any fixed finite number of servers with general arrival and service
distributions. It is also worthing noting that the asymptotic delay optimality achieved in our
paper is in steady-state while the result in [15] holds only for a finite time interval.

The techniques introduced in this paper may be of independent interest for the analysis of
general load balancing policies. More precisely, the key to establishing heavy-traffic delay
optimality in this paper is a notion of state-space collapse, which is different from the state-
space collapse result often adopted in previous works. As a result, it requires us to develop a
new Lyapunov function to conduct the drift analysis. More importantly, due to this new type
of state-space collapse, we have to devise a new approach to relate the state-space collapse
result to the final heavy-traffic delay optimality.

1.1 Related Work

The investigation of queueing delay in heavy traffic with dynamic routing dates back to [8], in
which the authors considered a two-server system under the JSQ policy, and they showed that the
two separate servers under JSQ act as a pooled resource in heavy traffic via diffusion approximations.
Since then, the methodology of diffusion approximations has been adopted in a number of works
on parallel queues [3, 5, 13, 14, 21, 26]. For example, the author in [21] generalized the results in [8]
to the case of renewal arrivals and general service times. The functional central limit theorems
for the JSQ policy in a load balancing system with multiple servers was derived in [13]. In [5], the
Power-of-d policy was shown to have the same diffusion limit as JSQ in the heavy-traffic limit.
Many of the works based on the diffusion approximation method rely on showing that a scaled
version of queue lengths converges to a regulated Brownian motion. This result typically leads
to a sample-path optimality in a finite time interval. However, showing the convergence to the
steady-state distribution requires the additional validation of the interchange of limits, which is
often not taken (some exceptions include [4, 9], in which the authors proved an interchange of limit
argument for generalized Jackson networks with a fixed routing matrix). Motivated by this, the
authors in [7] proposed a Lyapunov drift-based approach, which is able to establish steady-state
heavy-traffic optimality of the load balancing policy JSQ and scheduling policy MaxWeight. One of
the main features of this framework is that it is able to avoid the interchange-of-limits issue by
directly working on the stationary distribution. This approach has been utilized to show steady-
state heavy-traffic delay optimality of Power-of-d in [19]. Moreover, based on this approach, it
has been shown in [25] that a joint JSQ and MaxWeight policy is heavy-traffic delay optimal for
MapReduce clusters.

As discussed in the introduction, while JSQ and Power-of-d enjoy heavy-traffic delay optimality,
they both have non-zero dispatching delay, and a relatively high message overhead. Motivated by
this, a pull-based design of load balancing policies has gained significant recent popularity. The
main feature of pull-based load balancing is the introduction of local memory at the dispatcher,
which maintains a record of servers satisfying a pre-defined condition (e.g., its queue length is below
a threshold in most cases). The dispatching decision is made purely based on the local memory: if
it is nonempty, randomly choosing a server in memory to join; otherwise, randomly choosing a
server from all the servers. For instance, one illustrative example is the JIQ policy proposed and
studied in [16, 22], under which the local memory maintains all the idle servers. As a result, the
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arrival is always dispatched to one of the idle servers if there are any; otherwise, it is dispatched
randomly. It has been shown that JIQ has a low message overhead (at most one per arrival), zero
dispatching delay, and better performance compared to Power-of-2 in medium loads. Nevertheless,
since only the idle servers are stored in memory, when the loads become high, its performance
degrades substantially because the memory is empty and hence random routing is adopted most of
the time. Therefore, this directly suggests that a varying threshold is necessary to guarantee good
performance in heavy traffic for a pull-based policy.

To this end, in a recent work [30], the authors successfully propose a pull-based policy with a
varying threshold, which is proven to be heavy-traffic delay optimal in steady state while keeping
the nice features of JIQ. This naturally raises the question about the fundamental relationship
between the choice of the threshold and the delay performance, which is the main focus of this paper.
In particular, our work is mainly motivated by the seminal paper [15], in which Kelly and Laws give
a conjecture regarding the choice of the threshold that is able to guarantee delay optimality in heavy
traffic. More precisely, they consider a two-server system with Poisson arrivals and exponential
service. The arrival is dispatched randomly, except when one queue is below the threshold r and
the other is above, in which case the arrival is dispatched to the shorter one. Note that this dynamic
policy can be exactly implemented by a pull-based load balancing scheme with a threshold r. Kelly
and Laws conjecture that as long as the threshold r is greater than a specific constant times the
logarithm of the mean number of tasks in the system, then the sum queue lengths process under
this threshold policy has the same diffusion limit as that under JSQ. Therefore, the logarithmic
growth rate result in our sufficient conditions (see Theorem 3.3) not only directly resolves the
conjecture in [15], but generalizes it to systems with any fixed finite number of servers as well as
general arrival and service distributions. Moreover, the diffusion limit result conjectured in [15]
only gives the optimality in a finite time interval while our heavy traffic optimality result obtained
by Lyapunov drift-based approach is in steady state.

It is also worth noting that a logarithmic growth in the threshold is not a coincidence, and has
been found in a wide range of scenarios. For example, the authors in [23] consider an asymmetric
threshold policy for a two-server case. In that setting, only one server has a threshold r (say server
2). The arrivals are always dispatched to server 1 unless the queue length of server 2 is less than the
threshold, in which case the arrival is sent to server 2. One of the main contributions in [23] is that
a logarithmic growth rate of r is sufficient to guarantee that this threshold policy achieves the same
diffusion limit as that under JSQ in heavy traffic. This result can be seen as a first attempt to resolve
the conjecture in [15] with a simpler model. In particular, since there is only one threshold in [23],
the network can be characterized by a one-dimensional reflected Brownian motion in heavy traffic.
In contrast, the limit process in [15] is a two-dimensional Brownian motion, which is harder to
rigorously prove optimality. Besides dynamic routing, a logarithmic growth rate of the threshold
also critically affects the performance of scheduling policies in [2, 14]. Both authors considered
a system of two parallel servers with dedicated arrivals to each of the queues. One server can
only process tasks in its own queue, while a ‘super-server’ can process tasks from both queues. A
threshold policy is proposed in which the ‘super-server’ processes tasks from its own queue when
the other server’s queue length is below a threshold, and otherwise the ‘super-server’ processes
the tasks from the other queue. This policy can be viewed as the scheduling counterpart of the
asymmetric routing policy considered in [23]. In a ‘discrete review’ setting, the author in [14]
proved that a sufficient condition for the asymptotic optimality of this threshold policy is that the
threshold must grow as a constant times the average number of tasks in the system. The same result
was generalized to a ‘continuous review’ setting with more general arrival and service distributions
in [2]. As in the paper by Kelly and Laws [15], the asymptotic optimality in [2, 14, 23] holds in a
finite time interval since the convergence to the stationary distribution is not validated for the
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diffusion approximations. Considering the similarity between the scheduling policies in [2, 14]
and the routing policy in [23], our approach developed in this paper might be applied to establish
heavy-traffic delay optimality in steady state for dynamic scheduling policies as well.

We shall finally point out that the heavy-traffic regime considered in this paper and all the
aforementioned papers assumes that the number of servers is a constant, which is different from
the Halfin-Whitt heavy-traffic regime (also known as many-server heavy-traffic regime or quality-
and-efficiency-driven regime) [12]. In the latter regime, the heavy-traffic parameter € approaches
zero and the number of servers N goes to infinity at the same time [1, 6, 10, 20]. For example,
it has been shown that, on any finite time interval, the limiting process under the JIQ policy is
indistinguishable from that under the JSQ policy in the Halfin-Whitt heavy-traffic regime [20]. In
contrast, in the conventional heavy-traffic regime considered in this paper, its delay performance is
strictly between that of JSQ and random routing as shown by Theorem 3.2.

1.2 Notations
The dot product in RY is denoted by (x,y) = >N x,y,. For any x € RN, the [; norm is denoted

n=1
by |Ix||; = 22]:1 |xn| and I, norm is denoted by [|x|| = V(x, x). In general, the I, norm is denoted
by [Ix]|, = (XN |xn|")". Let N denote the set {1,2,...,N}.

n=1

2 SYSTEM MODEL AND PRELIMINARIES

This section first describes the system model and assumptions considered in this paper. Then,
several necessary preliminaries are presented.

2.1 System model

We consider a discrete-time load balancing system consisting of a central dispatcher and N servers.
Each server maintains an infinite capacity FIFO queue. At the central dispatcher, there is also a
local memory denoted as m(t), through which the dispatcher can have limited information about
the system. In each time-slot, the central dispatcher routes the new incoming tasks to one of the
servers, immediately upon arrival as in [7, 19, 25, 27, 28, 30]. Once a task joins a queue, it will
remain in that queue until its service is completed. Each server is assumed to be work conserving:
a server is idle if and only if its corresponding queue is empty.

2.1.1 Arrival and Service. Let As(t) denote the number of exogenous tasks that arrive at the
beginning of time-slot t. We assume that Ay(t) is an integer-valued random variable, which is
i.i.d. across time-slots. The mean and variance of Ax(t) are denoted by As and 0'5, respectively. We
further assume that there is a positive probability for Ax(t) to be zero. Let S,,(t) denote the amount
of service that server n offers for queue n in time-slot ¢. Note that this is not necessarily equal to
the number of tasks that leaves the queue because the queue may be empty. We assume that S, ()
is an integer-valued random variable, which is i.i.d. across time-slots. We also assume that S, (t) is
independent across different servers as well as the arrival process. The mean and variance of S, ()
are denoted as y, and v2, respectively. Let pus 2 22’:1 1 and V22: 2 Zilvﬁ denote the mean and
variance of the hypothetical total service process Sx(t) = Zfl\]:l Sn(t). To illustrate the key ideas
behind the results, we first assume that both the arrival and service processes have a finite support,
ie, As(t) < Apmax < 00 and S, (t) < Spax < oo for all t and n. However, the main results still hold
when the support is infinite, as discussed in Section 4.

2.1.2  Queue Dynamics. Let Q,(t) be the queue length of server n at the beginning of time slot .
Let A, (t) denote the number of tasks routed to queue n at the beginning of time-slot ¢ according to
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the dispatching decision. Then the evolution of the length of queue n is given by
On(t +1) = Qn(t) + An(t) = Su(t) + Un(t),n =1,2,...,N, (1)

where Uy, (t) = max{S,(t) — Qn(t) — A,(t), 0} is the unused service due to an empty queue.

2.2 Preliminaries

In this paper, we are interested in a general pull-based policy formally defined as follows. In words,
under this policy, the arrival is randomly dispatched to one of the servers whose queue lengths are
below a threshold r, if there are any; Otherwise, it is dispatched to one of N queues randomly.

Definition 2.1. Join-Below-Threshold (JBT) policy is composed of the following components:

(a) Each server is initialized with an empty queue, and a corresponding ID in the local memory of
the dispatcher.

(b) Upon new arrivals at the beginning of each time-slot, the dispatcher checks the available IDs in
memory. If one or more IDs exist, it removes one uniformly at random, and sends all the new
arrivals to the corresponding server. Otherwise, all the new arrivals are dispatched uniformly
at random to one of the servers in the system.

(c) Each server reports its ID to the dispatcher at the end of each time-slot if its queue length is
below the threshold, and the dispatcher does not contain its ID (see the remark below on this
condition).

(d) For the case of heterogeneous servers, in (c) each server also sends its y, to the dispatcher
and in (b) instead of choosing the ID uniformly at random, the dispatcher selects the ID in
proportion to the service rate. Specifically, if the ID of server i is in m(t), the probability for
server i to be chosen is p1;/ 3 jem(r) ;-

Remark 1. It is easy to see that JIQ is a special case of JBT with r = 1. Morevoer, note that in
(c) the server can easily know whether or not its own ID exists at the dispatcher. This is because
whenever there are new arrivals to a server, the server immediately knows that its own ID at the
dispatcher (if exists) has just been removed in order to dispatch the new arrivals. In addition, after
each successful report, the server knows that the dispatcher has just added its ID in the memory.
Of course, in the analysis of JBT, we can simply assume that the set of servers whose queue lengths
are below the threshold are known at the dispatcher without worrying about the implementational
details.

The considered load balancing system under JBT can be modeled as a discrete-time Markov chain
{Z(t) = (Q(¢), m(t)), t > 0} with state space Z, using the queue length vector Q(t) together with
the memory state m(t). We consider a set of load balancing systems {Z(€)(t),t > 0} parameterized
by € such that the mean arrival rate of the exogenous arrival process {A(;) (t),t = 0} is /1(;) = lz —€.
Note that the parameter € characterizes the distance between the arrival rate and the boundary of
the capacity region. We are interested in the throughput performance and more importantly the
steady-state delay performance in the heavy-traffic regime under the JBT policy.

Recall that a load balancing system is stable if the Markov chain {Z(¢), t > 0} is positive recurrent,
and Z = {Q,ﬁ} denotes the random vector whose distribution is the same as the steady-state
distribution of {Z(t),t > 0}. We have the following definition.

Definition 2.2 (Throughput Optimality). A load balancing policy is said to be throughput optimal
if for any arrival rate within the capacity region, i.e., for any € > 0, the system is positive recurrence

and all the moments of HQ(E)H are finite.
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Note that this is a stronger definition of throughput optimality than that in [25, 28, 30], because
besides the positive recurrence, it also requires all the moments to be finite in steady state for any
arrival rate within the capacity region.

To characterize the steady-state average delay performance in the heavy-traffic regime when €
approaches zero, by Little’s law, it is sufficient to focus on the summation of all the queue lengths.
First, recall the following fundamental lower bound on the expected sum queue lengths in a load
balancing system under any throughput optimal policy [7].

LEmMA 2.3. Given any throughput optimal policy and assuming that (oée))2 converges to a constant

O'% as € decreases to zero, then
—(e)
Z o

hm 1nf eE

5 )

where { £ 0% + V.

The right-hand-side of Eq. (2) is the heavy-traffic limit of a hypothetic single-server system with
arrival process A(;)(t) and service process YN S, (t) for all t > 0. This hypothetical single-server
queueing system is often called the resource-pooled system. Since a task cannot be moved from one
queue to another in the load balancing system, it is easy to see that the expected sum queue lengths
of the load balancing system is larger than the expected queue length in the resource-pooled system.
However, under a certain load balancing policy, the lower bound in Eq. (2) can actually be attained
in the heavy-traffic limit and hence based on Little’s law this policy achieves the minimum average
delay of the system in steady-state. This directly motivates the following definition of steady-state
heavy-traffic delay optimality as in [7, 19, 25, 27, 28, 30].

Definition 2.4 (Heavy-traffic Delay Optimality in Steady-state). A load balancing scheme is said to
be heavy-traffic delay optimal in steady-state if the steady-state queue length vector 6(6) satisfies

@ ¢
ZQ}E

lim sup eE
€lo

where { is defined in Lemma 2.3.

In the analysis of the delay performance of JBT, the following region R in RN plays an
instrumental role by the virtue of the JBT policy.

R =RV URY, (3)
where r > 1 and
‘R;r)é {xeRf:anrforallneN}
R

1>

{XERJrN:xHerorallneN}.

By the definition of the JBT policy, we have that whenever the queue length vector is within the
region R"), then JBT reduces to (proportionally) random routing. On the other hand, when the
queue lengths vector is outside the region R("), shorter queues are preferred over longer queues.

3 MAIN RESULTS

In this section, we present both necessary and sufficient conditions on the threshold r for the JBT
policy to be heavy-traffic delay optimal in steady-state. We first establish throughput optimality of
the JBT policy, which serves as a basis for the analysis of heavy-traffic delay optimality.
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3.1 Throughput optimality

We first prove the following result, which establishes that a load balancing system under the JBT
policy is stable with bounded moments on the queue lengths for any threshold r > 1.

LeEmMaA 3.1. BT is throughput optimal with the p-th moment of”Q(e)H being O(1/€?) for any
threshold r > 1 and integer p > 1.

PrOOF. See Appendix A O

Besides throughput optimality, another important aspect of this lemma is that it serves as the
basis for the discussions on heavy-traffic delay optimality in the following sections. This is because,
firstly, a load balancing policy that cannot stabilize the system is incapable of being heavy-traffic
delay optimal at all. Second, the bounded moments result allows us to set the mean drift of Lyapunov
functions concerning queue lengths to be zero in steady state, which plays a pivotal part in the
framework of Lyapunov drift-based heavy-traffic analysis.

3.2 Necessary condition

In this section, we show that a necessary condition for the JBT policy to achieve heavy-traffic
delay optimality is that the threshold r should grow to infinity as the heavy-traffic parameter €
approaches zero. However, as we show it cannot grow too fast. Formally, it is presented in the
following theorem.

THEOREM 3.2. Consider a load balancing system with homogeneous servers under the JBT policy.
(1) Suppose the threshold r is any constant in [1, o), then we have

. =@ _ ¢
1 feE > = 4
1r£1l10n € ngzl 0, 5 (4)
and
S ( )- S (€)
lim sup eE E 0| <limeE E 0 s 5
clo p £ Qn | clo £ Qn,Randj| ( )

where Qg?ea)nd is the steady-state vector under random routing policy.
(2) Suppose the threshold r'®) = (1/€)'* for any constant a > 0, then we have

N N
—@| .. —(e)
nz:; Qn ] - lel?(;l €E ; Qn,Rand] . (6)

ProOF. See Section 5.1 O

lim eE
€elo

Now, we will present the high-level intuitions behind the necessary condition with the illustration
in Fig. 1. These intuitions can not only facilitate understanding of the results, but also motivate the
sufficient condition in the next section.

To start with, let us consider case (2) when r(€) = (1/€)1** for any « > 0. In this case, all the
queue lengths are below the threshold r for high loads since the sum queue length in the system is
only on the order of 1/€. As a result, in case (2), the JBT policy completely degenerates to random
routing, which is not heavy-traffic delay optimal [8]. An illustration of case (2) for a two-server
system is presented in Fig. 1(a).

Then, we turn to case (1) for which the threshold is a constant. In particular, combing Egs. (4)
and (5) yields that the delay performance of JBT under any constant r in heavy-traffic lies strictly
between that of a heavy-traffic delay optimal policy (e.g., JSQ) and that of random routing. This
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Fig. 1. Geometric illustrations of the necessary condition.

reveals an interesting and kind of counter-intuitive insight about the JBT policy under a constant
threshold. For example, consider the special case r = 1, i.e., the JIQ policy. At first glance, one
might expect that the delay performance of JIQ would downgrade to that of random routing in the
heavy-traffic limit, since in this case there are hardly any idle servers, and hence the dispatcher
under JIQ would just randomly choose one server when allocating arrivals, as in random routing.
However, it turns out that this is not true as shown in Eq. (5). That is, the performance of JIQ is still
strictly better than that of random routing even in the heavy-traffic limit. This demonstrates that
JIQ is able to achieve partial resource pooling due to the fact that it adopts queue length information
to prefer shorter queues whenever possible. To see this, note that by positive recurrence, there
always exists some time when the queue length vector is outside the region R(") and hence shorter
queues are preferred (i.e., the orange line in Fig. 1(b)), even though it is much less than the time
within the region R(") (i.e., the green line in Fig. 1(b)). This is totally different from the case in Fig.
1(a) in which the queue-length state always completely remains within the R(") for high loads, and
hence JBT would downgrade to random routing in the limit.

On the other hand, to explain the liminf result in Eq. (4), we will utilize the following result. That
is, the necessary (and sufficient) condition for the JBT policy to be heavy-traffic delay optimal is
given by
lim E [||§(€)(t ; 1)”1”6(6)0)”1] —o. )

€l0

This is a direct application of the results in [29]. Note that since Q, (t + 1)U,(t) = 0, the above
condition basically means that the key for JBT to be heavy-traffic delay optimal is that it should
guarantee that no server is idling while other servers are busy with high loads. In the case when
r is a constant, the event that one queue is zero while others with high loads (denoted by Epaq)
happens with a non-negligible probability since the axes are close to the region 73,(,’) . As a result,
the left-hand side of Eq. (7) is strictly positive, and hence JBT is not heavy-traffic delay optimal
for a constant r. The intuition that we should guarantee that the event Ep,q occurs very rarely in
heavy-traffic also motivates our sufficient condition in the next section where we let the threshold
r grow in a certain rate to guarantee that the axes are far away from the region R,(f).

Remark 2. It is worth noting that in [30], a similar result as Eq. (4) has been established for
the JIQ policy (i.e., the special case r = 1 of JBT) in a two-server system under the constraints
that the service processes are constant and the variance of arrival process should be larger than a
particular value. Thus, our contribution is to generalize the result in [30] to any constant r > 1
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and any finite number of servers without the constraints on service and arrival process as required
in [30]. More importantly, we provide new results given by Egs. (5) and (6), which give us a sharper
understanding of general pull-based policies.

3.3 Sufficient condition

In this section, we now investigate the sufficient condition. In particular, we show that if the
threshold in JBT grows at a logarithmic rate with respect to the average sum queue lengths, i.e.,
(€ > Klog(1/e) for some specified constant K, then the JBT policy is heavy-traffic delay optimal
in steady state, which is formally presented in the following theorem.

THEOREM 3.3. Consider a load balancing system under the JBT policy. Suppose that the threshold r
satisfies r'€) > Klog(1/€) and r'®) = o(1/€), where the constant K = 2(1 + a)/6* for any a > 0 and
0* is the constant in Eq. (9), then JBT is heavy-traffic delay optimal in steady state.

PRrROOF. See Section 5.2 O

The main contributions of this result can be summarized as follows. First, it directly resolves
and generalizes a conjecture in [15]. More precisely, the authors in [15] consider a two-server
system with Poisson arrivals and exponential service under a threshold policy that has the same
implementation as JBT, and conjecture that as long as the threshold is greater than a specified
constant times log(1/¢), the heavy-traffic asymptotic optimality of the threshold routing strategy
holds. Thus, our result resolves this conjecture and also generalizes it to any finite number of servers
case with general arrival and service distributions. More importantly, the asymptotic optimality
defined in [15] holds only for a finite time interval since the convergence to steady-state distribution
is not touched. In contrast, our result directly gives the steady-state characterization of the delay
optimality in heavy-traffic of the JBT policy.

The key step in establishing the sufficient condition in Theorem 3.3 is the notion of state-
space collapse. In words, it says that in heavy traffic the system state under the JBT policy would
concentrate around the region R(") as defined Eq. (3). To that end, we need the following property
of the distance to the region R("). The distance of a point x to the region R"") is related to the
distances to the regions R;r) and ‘R,(f) as follows.

dger(x) = min (dﬂgr) (x). g (x)) : ()

where the distance of a point x to a set A in RN is defined as

da(x) = inf {[x-yll}.

yEA
This equality (8) can be established by contradiction. Suppose that
min (dRY) (x). (x)) = dgn (%) +
for some a > 0, then there exists a y* € R such that
g (0) < [lx =y < min (dgn (9, dgirn ().
1 u

However, since y* € R = R;r) U R,(f), this leads to a contradiction to the right-hand side of the
inequality above.

We say that the system state concentrates around the region R if all the moments of the
distance dg( (Q) are upper bounded by constants. Formally, we have the following definition.
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Definition 3.4 (State-space collapse to R\ ). Suppose that the system process converges in distri-

bution to a steady-state random vector 6(6). Then, we say that the state-space of a load balancing
system collapses to the region R(") if there exist some positive constants €y, §* and C* such that for
all € € (0, &)

E [ee*dk(r) (Q(e))] < (9)

where both 6* and C* are independent of €.

Note that this notion of state-space collapse is different from previous works, as will be explained
later. For any constant threshold r, Eq. (9) trivially holds since the distance to the region R(") is
always bounded by a constant. Thus, in the following we only consider the interesting case when r
grows to infinity, which is also required by the necessary condition in Theorem 3.2. In this case, we
have the following result regarding state space collapse of the JBT policy, which plays a key role in
the proof of Theorem 3.3.

ProposITION 3.5. Consider a load balancing system under the JBT policy. Suppose that the threshold
satisfies lim o r(€) = oo, then the system state-space collapses to the region R\").

PRrROOF. See Section 5.3 O

Remark 3. It should be noted that besides being a key step in proving the sufficient conditions in
Theorem 3.3, Proposition 3.5 has its own contributions. (i) First, the region of state-space collapse
in this paper, i.e., R is not a single dimensional line as in [7, 19, 25, 27, 28, 30], nor a multi-
dimensional convex cone as in [17, 18, 24, 29]. This not only brings new challenges in proving
state-space collapse itself, but also requires new methods to relate the collapse result to heavy-traffic
delay optimality. More specifically, on the one hand, in order to prove state-space collapse result,
we need to handle the non-convexity of R by choosing the minimum of two distances as the
Lyapunov function. The techniques suggested in [29] to handle the non-convex region cannot
apply here since the region R(") cannot be covered by the cone defined in [29]. On the other hand,
in order to utilize the state-space collapse result to conclude heavy-traffic delay optimality, the
conventional decompositions of parallel and perpendicular components of the queue length vector
Q would not work. Instead, we need to carefully divide the system state and then apply Chernoff

bound on the random variable dg) (6(6)), which is possible by the state-space collapse result in
Eq. (9). (ii) Second, the upper bound result in Eq. (9) holds even when the system is not at the
heavy-traffic limit, and hence it is of independent interest for analyzing the system performance in
the pre-limit regime, especially when combined with optimization techniques.

Now, we turn to provide the high-level intuitions on Proposition 3.5 and Theorem 3.3 with the
help of Fig. 2. This will facilitate the understanding of the results as well as their proofs.

To start with, note that by virtue of the JBT policy, when the queue-length state Q is outside
the region R"), there always exists a positive drift towards the region R("). This is because in this
case there exists a positive drift towards the lower region R;r) and a positive drift towards the

upper region 7{3), respectively (see Fig. 2(a) for an illustration). This provides the key intuition as
to why the system state would concentrate around the region R(") since suppose there is no drift
(e.g., under random routing) the expected distance to the region R"”) would go to infinity as r(¢)
goes to infinity (assuming that the growth rate of () is not too fast). In contrast, under the JBT
policy, the distance remains constant (as shown by the gray color in Fig. 2(b)). This is the reason
why we call it a state-space collapse result, which is different from much of previous works where
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dy =7
QZ“ AE — R‘ELT) Qzﬂ / RS‘)
— < >
2 |
dp >~

(r.7) S

R R .
! As —
H .
(a) @ v @

Fig. 2. Geometric illustrations of the sufficient condition.

the system state collapses to a lower dimensional space (e.g., a line or a convex cone) while our
state-space collapse region R(") is of the same dimension as the original queue-length state vector.
Hence, we need to develop new methods to apply this new type of state-space collapse result to
achieve heavy-traffic delay optimality of the JBT policy, as in Theorem 3.3.

To this end, we will utilize the sufficient (and necessary) condition in Eq. (7) again. As discussed
before, it basically requires us to guarantee that no server is idling while other servers are busy
under high loads. To achieve this, a logarithmic growth rate as in Theorem 3.3 is sufficient. For
an illustration of the main ideas behind the proof, let us consider a simple two-server case. In this
case, Eq. (7) reduces to

lim B [@ie)(t + )0 40 + 1)556)] =0. (10)
Take the second term above for example, it can be rewritten as the summation of the following
terms (for simplicity we omit the superscript (¢))

Qy(t+ )ULT (Qp(t +1) < 2,0y (t +1) = 0) (11)

Qy(t + D)ULT (Qp(t +1) > 2,0, (t +1) = 0), (12)
where we use the fact that Q,(t + 1)U, () = 0 again. The expectation of Eq. (11) can be upper

bounded by 2r(€)e since E [51] < e. For the expectation of Eq. (12), we first apply Cauchy-Schwartz
inequality and hence obtain its upper bound as

C6—12P (QZ(t +1)>2r,0,(t+1) = 0),

where C is a constant independent of €. Now, we can apply the state-space collapse result (i.e.,
Eq. (9)) combined with Chernoff bound to show that the probability that one queue is empty and
another queue length is larger than 2r has an exponential decay rate. In particular, we have

_ — (a) —(e) () C*
P(Q,(t+1)>2r.0,(t+1)=0) < P(d(R(r) Q)= r) < 57
where (a) holds since in this case the distance to the region R(") is r (see Fig. 2(b) for an illustration);
(b) follows directly from state-space collapse result and Chernoff bound. Therefore, combining the
expectations of Egs. (11) and (12), yields
1 1

=€) (€) (€)
E[QZ (t+1)U1 ]$2r €+C162W’

which approaches zero whenever r(€) = o(é) and r¢) > Klog(1/€) where K = 2(1 + )/6* for any
a > 0. By the same arguments, we can establish the same result for the expectation of the first term
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in Eq. (10). Therefore, we have reached the sufficient condition for heavy-traffic delay optimality in
Theorem 3.3.

4 GENERALIZATIONS

For the illustration of the key ideas, the main results in the last section are obtained under the
assumptions that both arrival and service processes have finite support. However, it is worth
pointing out that the same results still hold (with only a change in constants) when the support is
infinite. More specifically, we need the following weak condition on arrival and service processes,
which requires that the tails of both arrival and service processes have an exponential decay.

Condition A (Weaker condition on arrival and service). The i.i.d arrival process Ay (t) and service
process S, (t) satisfy

E [eQ‘AZ(t)] <D;and E [e‘gzs"(t)] < D,,
for each n where the constants 6; > 0, 8, > 0, D; < oo and D; < oo are all independent of .

In order to obtain the same main results under the weaker condition above, we should make
some mild changes in our proofs. In the following, we will highlight the key steps involved in this
process.

(i) First, note that in order to establish condition (C1) in Lemma 5.1, we would use the following
upper bound in our proofs based on the finite support assumptions.

E [IA(to) = S(to)I” | Z(to)| < L 2 N max(Amax, Smax)*-

However, under the weaker Condition A, we can still bound the left-hand side by a constant
independent of €. This directly follows from the fact that all the moments of a random variable are
finite if its moment generating function is finite in an open interval containing zero.

(ii) Second, we should now replace condition (C2) in Lemma 5.1 with the following weak stochastic
domination condition (C2’),

o (C2)[AV(X) | X(ty) = X] < W for all ty and E [egw] = D is finite for some 6 > 0.

This condition holds under the weaker Condition A since the arrival and service processes both
have an exponentially bounded tail by the finiteness of their moment generating functions. As
shown by Theorem 2.3 in [11], the combination of (C1) and (C2’) is sufficient to guarantee bounded
moments as required in the proof of our main results.

(iii) Third, we now should take a careful treatment of the unused service. For example, the
following result plays a key role in establishing the necessary and sufficient condition in Eq. (7)

2
|-
1

Under the assumption of finite support for the service process, the left-hand side can be easily
bounded above by NS,,,x€, which approaches zero as € — 0. Now, under the weak condition,
we need to adopt the truncation trick to handle the unbounded service. More specifically, let us
consider any n € N, we have for any ¢t > 0 and constant S’

lim5 |7
€l0

UZ(t) < Un(t)Sn(t)
= Un(t)Sn(t) T (Sn(t) < S") + Un(t)Sn(t)L (Su(t) > S")
S Un(t)S” + S2(t)T (Sa(t) > S').
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In steady state, we have
E [ﬁi] <E[Un] S +E[SE(e0)T (Sn(e0) > S)]
(a) ’ 2 ’
< eS'+E [S2(0)1 (S4(0) > §)]
®
<eS + P,

where (a) follows from the fact that E [Hﬁ(e) H1] = € and service process is i.i.d.; in (b), we choose

S’ such that E [Sfl (0).1 (S,(0) > S’)] < p, which is possible by the exponential decay rate of S, (0)
under the weak condition. Thus, we have

—2
im2[72] < 5
imE Uy | < B

for any f > 0. Hence, we have lim. o E [Ui] = 0 for each n.

Remark 4. The three highlighted key steps could also demonstrate their generalization power in
previous works where the Lyapunov drift-based framework is adopted under the assumption of
finite supports for the arrival and service processes.

5 PROOFS

In this paper, we will adopt the Lyapunov drift-based approach developed in [7] to derive bounded
moments in steady state. In particular, the following lemma, which follows directly from Lemmas 2
and 3 in [18], will be the main tool in our proofs.

LemMmaA 5.1. For an irreducible aperiodic and positive recurrent Markov chain {X(t),t > 0} over a

countable state space X, which converges in distribution to X, and suppose V : X — R is a Lyapunov
function. We define the drift of V at X as

AV(X) = [V(X(to + 1)) = V(X (1)) 11 (X (1) = X),

where I (.) is the indicator function. Suppose the drift of V satisfies the following conditions:
o (C1) There exists ann > 0 and a k < co such that for anyty = 1,2, ... and for all X € X with
V(X) =k,
E[AV(X) | X(t) = X] < —n.
e (C2) There exists a constant D < oo such that for all X € X,
P(IAV(X)| < D) =1.

Then {V(X(t)),t > 0} converges in distribution to a random variable V for which there exists a
0" > 0 and a C* < oo such that

E [eg*v] < C%,

which directly implies that all the moments of V exist and are finite. More specifically, we have for
anyp=1,2,...

E[VX)?] < (2x)? + (4D) (D ;’ ”)P . (13)

We would also utilize the following useful result in our proofs.
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LEMMA 5.2. For the JBT policy with threshold r > 1, it is heavy-traffic delay optimal if and only if
. (6)
limE [“Q (t+ 1) [[U )||1] - 0. (14)

€lo

This lemma is a direct application of the results in [29], which establishes that Eq. (14) is the
sufficient and necessary condition for any load balancing policy to be heavy-traffic delay optimal
if the system is stable with bounded moments. By Lemma 3.1, we have that the JBT policy is
throughput optimal with all the moments being bounded for any r > 1, and hence the above lemma

holds.
5.1 Proof of Theorem 3.2

Before we present our proof, we first give the following useful result, which can be established by
setting the mean drift a chosen Lyapunov function to zero in steady state. For completeness, the
proof is given at Appendix B.

LemMA 5.3. Consider a load balancing system with homogeneous servers under the JBT policy. For
any thresholdr > 1, we have

e L
ZZZE [( NETY + @)U ))] =7 g @)

i=1 j>i

where

sy i i . [ (@fa Q(f’) (Zjﬂ _ g;a)]

i=1 j>i
(e) SR (&) =le) =&  =(e)?
€) a —(e —(e —=(e —=(e
T, :ZZE[(A,. A =57 +5; )]
i=1 j>i
SRS —(e) —(e)\?
«;;(6)52215[((][ - U; )]
i=1 j>i
Q £Q(t+1)

and 7{56) and ﬁﬁe) are dependent of Q for each i and € > 0.
Now, we are ready to present the proof of Theorem 3.2.

Proor oF THEOREM 3.2. To start with, we first note that the sufficient and necessary condition
in Lemma 5.2 can be rewritten as follows under the JBT policy.

22 (| + ] Ju ) |

iEK )(e)U +(§;)(€)Ui(€)):|

>

Sal@rer)

>

i(i kT P((Ql ) =k, @) =0T > )) (15)

j>i \k=

(@)

2

IS s
~. ~.

s
N
INGERINSEIINGE

1l
—
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in which (a) and (c) follow from the fact Q;(t + 1)U;(t) = 0 for each i and ¢ > 0; (b) holds by the
symmetry property of JBT policy for homogeneous servers.
Thus, by Lemma 5.2, Lemma 5.3 and the above equation, in order to analyze heavy-traffic delay

optimality of JBT under any constant threshold, all we need to do is to focus on terms 71(6), 75(6)

and 7'3'(6), respectively.
Now, let us first focus on case (1) in Theorem 3.2.
For ‘7;(5), we have

70 1 i iE [(an B @je)) (de) _Z;e))]
=23 315((@-0) (i~ 7) 7 (@, 2, =)

()

< 4l (k-m)P(Q; =k.Q; =m), (16)

where (a) follows from the definition of the JBT policy, i.e., when both queues are in memory or
both queues are not in memory, they have the same probability to be selected in the homogeneous
case; (b) is true since when the ID of server j is in m(t) while the ID of server i is not, we have
A;i(t) = 0 and A;(t) < As(t) by the definition of the JBT policy; (c) holds since Q(t + 1) has the
same distribution as Q(¢) in steady state.

In order to further simplify the term ﬂ(e), we need to define the following events in which k > r
and1<m<r-1

Egem = {0/ = k.0; =m)

Efom = {@i(t +2) =k, Q;(t+2) = m}

[0 =k.0; =0.T; =0}

Ef o0 = {0t +2) =k.Q,(t+2) =0,U; =0}
Egoo.sn 2 {07 =k, 0 =0.T; = 1)

E(+k,o,21) = {@i(t +2) = k,éj(t +2) = o,ﬁ; > 1} )

Note that by the assumptions of arrival and service processes, there exists a positive probability p
(independent of €) such that there is no arrival during one time-slot and meanwhile the potential

1>

E(k,0,0)
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service of all the servers are d for some d between 1 and Sy, 4. For ease of exposition, we take d = 1
in the following proof, and the same techniques apply for the case where d # 1. Now, for each

occurrence of event E(x ), there exists a positive probability p such that E}, (k—t.m Will happen.
Therefore, we have
(@) .
P (Ee-rm-n) = P (Efeymory) = PP (Egem)) (17)
where (a) holds due to the fact that both events are defined in steady state. Similarly, we have
P (E(k—l,o,o)) =P (E?k_l,o,o)) > pP (E(k,l)) (18)
P (Eg-1.020) =P (Ejr0.51) = PP (Ek00)) - (19)

Now, we can further simplify 7'(6) as follows

T(E) —41s Z Z(Z kP E(k 0, >1) EAZ E(k 1,0,>1 ))
i=1 j>i \k=r p k=r
N N r—1

1+1 (k —m)P (E(k—m—l,O,Zl)))
hP (E(h,o,zn))
(E(h 0, >1)))

&
&
™

1l
—_

"Q>

|

|
W~
~
™

0 o —m—
M
M T

M= 9

1
P

N
- I
=
Il
I
|
i

D1
%[ -
g

|
W
>
™

M= 1M1=
Mz ¥

i=1 j>i (1:1 h=r— lp
(b) N N r 1 ©
> 4/1222( thUjP E(h0>1)))
i=1 j>i \[=0 h=0
N N r 1
— 45 Z Z ( 17 ) (20)
i=1 j>i \[=1
where (a) follows from egs. (17) to (19); (b) holds since U;(t) > 1and E [ ] <E [HU(E) ] = €. The

latter fact can be easily obtained by setting mean drift of V(Z(t)) £ ||Q(t)]], to be zero in steady
state, which is true since all the moments of HQH are bounded.

For ‘7'2'(6), we can simplify it as follows.

(€) » 7€ _ <e> =6  =(e)\?
7, ZZE[( -5,7+5, )]

i=1 j>i
@sa (=@ =@\ (=) =)
=Y YEIAT-47) +(57 -5
i=1 j>i
b
-1 (o) + (29) +2), 21)

where (a) holds since the arrival and service are independent and the servers are homogeneous;
(b) is true because A;(t)A;(t) = 0 foralli # jand t > 0, and the service is independent and
homogeneous.
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For 7, ©) we can simplify it as follows.
:ii [( 7@ _ <e>)]
=1 j>i
YN-1E [”U ]
()

< € (N = 1) Smaxs (22)

(e)

where (a) follows from the fact that U, (¢) > 0 for any n € N; (b) holds because of U, (t) < Spmax
for any n € N and the fact E [“U( )”
Now, substituting Egs. (15), (20), (21) and (22) into the equation in Lemma 5.3, yields

4ii(Z kTP (@D = k@) = 0.7, > 1))

i=1 j>i \k=1
N N (o
-4 Z Z (Z kU ,;P (E(k,o,zl))>
i=1 j>i \k=1
N N [(r o MY (&1
2_4,1222(2 IZ U;pP E(h0>1)> 4/1222(qu>
i=1 j>i \[ h=0 i=1j>i \l= b

0
+ N =1) (o) 4 (1) + ) = Smax N = D€,

which can be simplified as

1=0 i=1 j>i \k=1
N N r 1

_41222( —e +(N—1)((U§e>) + (1) +v§)
i=1 j>i \[=1 p

Then taking liminf on both sides gives

~ _ 2 2 2
hrglgan Z (Z T, P E(k . >1))) (N -1) (az +rﬂz T VE) =0 23)

i=1 j>i 4 +4ps 2[:017

which holds since threshold r is a constant and p would not vanish as e — 0. Therefore, by Lemma
5.2 and Eq. (15), we have

¢

hm mf eE s
2

Z Q(e)

where { is the constant defined as in Lemma 2.3.
To establish the inequality (5) in Theorem 3.2, note that the term 7I(6) is equal to 0 for any € > 0

under random routing, and 7;(6) and 7;(6) converge to the same constant for both random routing
and JBT. Thus, based on Lemma 5.2 and Lemma 5.3, all we need to show is that under the JBT

policy limsup, |, 7;(6) < 0. To this end, we can upper bound it as follows by reusing the equation
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(a) in Eq. (16).

i=1 j>i
22 iirji(k_
= "N-1 m)P(Q,—k,Qj_m)
i=1 j>i m=0 k=r
425 N N [ _
: _Smax(N 1) ; ; (; kUjP (E(k 0. >1)))’

where (a) holds since when Q;(t) > r and Q;(¢) < r, the lower bound on the probability of server j
being chosen under JBT is 1/(N — 1). Now, taking limsup on both sides, yields

4l N N
lim sup 7€) < ">  liminf
€lo Ph Smax(N - 1) €lo Z Z

<0,

(i kU P (E(k,o,zl)))

i=1 j>i \k=1

where the last inequality follows directly from Eq. (23). Hence, we have completed the proof of the
first case in Theorem 3.2.

Now, let us turn to case (2) in Theorem 3.2. Based on the discussions above, in order to show
that the JBT policy with r(¢) = (1/€)'*® and a > 0 achieves the same limit as random routing, all

we need to show is that lim, o 7;(6) = 0. Again, using the equation (a) in Eq. (16), we obtain

~0)) (A ~A) 1 (020, <7)]
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l
\Y2
>
2l
I
S

> 45
Jj>i m=0
(@) N3 M eorale
2 —4hs Z 2 g0
c— € e’
i=1 j>i m=0

where (a) follows from the bounded moments in Lemma 3.1 and Chernoff bound based on Eq. (32)

in the proof of Lemma 3.1. Thus, if r(€) = (1/€)1*¢ for any constant a > 0, we have lime o 7;(6) =0.
Hence, we have established the second case in Theorem 3.2. ]
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5.2 Proof of Theorem 3.3

ProoF oF THEOREM 3.3. Based on the result in Lemma 5.2, in order to prove Theorem 3.3, we
need just focus on the left-hand side of Eq. (14). Let us first define

70 280+ 0l 00

sl

in which for brevity we omit the references t and €, and use §+ to denote Q(t + 1). Thus, all we

need to show is that lim, ;o 7 (¢) = 0 under the assumptions of Theorem 3.3. Since ﬁléf = 0 by the
queue-length dynamic in Eq. (1), we have for eachi € N,

=E

E(U:| .0
j=1
— (& —+ —+
=E |T; ZQJ 1(0; = 0)]
Jj=1
N
=E |U; Z@ [(5?:0,max§?£rVN—l+r) (24)
Jj=1 !
N
+E|U; (Z @;)I(@j =0, max@}r >rVYN -1+ r)} . (25)
j=1 !

Now, it remains to show that both Egs. (24) and (25) approach 0 as € — 0. To start with, we can
bound Eq. (24) as follows.

E

U(ZQ) ( —OmaxQ <r\/_+r)

<r(N-1)(VN -1+ 1)E [U]
<r(N - 1)(VN =1 + 1)e,

where the last inequality follows from the fact E [HU( )” ] = €. Thus, Eq. (24) approaches 0 as

€ — 0 since r(©) = o(1/¢).
Then, we can turn to bound Eq. (25) in the following way.

N

U; (Z@;)I(éj = O,mjgix§; > VN - 1r + r)
j=1

L5mur2 [0, 7(0 = 0.m2xD, > VW17 )

J IRl 2 (ax (0) > )

(c) 1 C*
Ssmax MZ

E

€2 e@r
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where (a) follows from the fact that U;(t) < Si(t) < Smax for any i € N and t > 0; (b) holds due
to Cauchy-Schwartz inequality and the following facts. For any system state Z(t) that satisfies
Qi(t) = 0 for some i and max; Q; > VN — 1r + r, we have

dRY) (Q(#)) >rVN -1
r < dgn(Q() < rVN-1.
Thus,
dgr) (Q(1)) = min{d ) (Q(1)). dy(r (Q(1)} 2

and hence we have (b). The inequality (c) comes from the Chernoff bound, the moments bound in
Lemma 3.1 and state-space collapse in Proposition 3.5, in which the constants M, C* and 0" are
all independent of . Now, under the condition that r(¢) > Klog(1/€) where K = 2(1 + a)/0* and
a > 0, we have that Eq. (25) approaches zero as € — 0. Hence, we have completed the proof of
Theorem 3.3.

O

5.3 Proof of Proposition 3.5

Before we present the proof, let us first introduce some useful results. First, let us define

VL(Z(1) = dgon (Q(2))
Vi(Z(1) = dpin (Q(1))
Viu(Z(1)) = dp (Q(1))-

By Eq. (8), we have V, (Z(t)) = min{V,;(Z(t)), VL,(Z(t))}. As a result, the drift of V, (Z) has the
following four cases.

Case 1: AV, (Z) = AV 1(Z)

Case 2: AV, (Z) = AV, ,(Z)

Case 3: AVL(Z) = [VLi(Z(to + 1)) = Vou(Z(10)))1 (Z(t0) = Z)

Case 4: AVL(Z) = [Vou(Z(to + 1)) = VLi(Z(40))1L (Z(t0) = Z).

Note that the drift in Case 3 can be upper bounded by AV, ,(Z) and the drift in Case 4 can be
upper bounded by AV, ;(Z). Thus, in order to establish upper bounds on the drift of V, (Z), we only
need to focus on the first two cases. In the following, we might omit the superscript ") for ease of
exposition, and revive it when necessary.

Let us also define

R; = R;r) —-rand R, = R") 1.

where r = r1. Correspondingly, we shift the queue-length vector in the same direction. That is, we
let

Q’ =Q-r. (26)

The main motivation behind this shifting process is that it allows us to decompose queue-length
vector into parallel and perpendicular components. In particular, given a queue length vector Q,
we have the following decompositions

r ’

Q' = Q||72; +QLR;
r ’

Q' =Qg, + Qg
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where QII & and QT‘ & are the projections of Q’onto R} and R;, referred as parallel components.
l u
", and Q’ _, are the corresponding remainders, referred as perpendicular components. Note
1R 1R p g p p p
l u

that the two decompositions are well defined and unique because R and R;, are both closed and
convex. Moreover, we have

Vi(Z(D) = Qg || and Viu(Z (1) = Qg ||

This follows directly from the fact that the shifting process would not change the distance.
Now, we are ready to present our proof.

(27)

PROOF OF PROPOSITION 3.5. Since the chain {Z(t),t > 0} is ergodic under JBT for any r > 1 by
Lemma 3.1, we can apply Lemma 5.1 to establish bounded moments of V. In particular, all we need
to do is to check the drift conditions (C1) and (C2), respectively. As discussed above, we should
only focus on the drifts AV, ;(Z) and AV, ,(Z).

For condition (C2), we have the following result, the proof of which is relegated to Appendix C.

CLamm 1. Foranyt > 0, we have
IAV(Z())| < VN max(Amax. Smax)-

This directly verifies condition (C2) in Lemma 5.1. Now, we turn to check condition (C1) for
V. (Z). To this end, we need the following result, the proof of which is relegated to Appendix D.

Cramm 2. Foranyt > 0, we have

E[AVL(Z) | Z(t) = Z]

1 , ~

and

E[AVL(Z) | Z(t) = Z]

1 , _
SWE [(20Q1g, (. A(t) = S(t)) + L) | Z(t) = Z] (29)

where L = NmaX(AmaJm Smax)2~

From Claim 2, we can see that the upper bounds on the mean drifts of AV, ;(Z) and AV, ,(Z)
have the same formula. Thus, we can rewrite it in a compact way as follows.
E[AVLs(Z) | Z(t) = Z]
1
<——— B [(2Q x (1),A(t) =S(t)y+ L) | Z(t) = Z 30
210, O [(20Q7 (1), A1) = S(1)) + L) | Z(t) = Z] (30)
where the subscript s € {l,u}. To upper bound the right-hand side of Eq. (30), we resort to the
following result, the proof of which is relegated to Appendix E.

Cramm 3. Fors € {l,u} and any system state Z(t) with V. (Z(t)) > 0, we have

19}
B [(QLg, (0-A®) =S | Z(1) = 2] < =220l )]

5 . .
whenever € < 2‘1@5, in which

,uminﬂmin,Z
§ = —mmimin?
s (ps = Hmin)
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where [min = MiNyep [y, i€, the smallest service rate among all servers. pimin,2 is the second smallest
service rate among all the servers. Hence, § is a constant independent of €.

Now substituting the upper bound in Claim 3 into Eq. (30), yields
E[AVLs(2) | Z(t) = Z]

1 7
ST T (22 01 A0 =S(0) L) 1 20) = 2]

) L
<- i + ——— whenever € < #z0
2N 2V, (Z) 2N +6
< B9
4N
for s € {l,u} and for any Z(t) such that V, (Z(t)) > 0 and V, ;(Z(¢)) > Zlg—g.

Therefore, since the drift of V, (Z(t)) is either upper bounded by the drift of V, ;(Z(t)) or the
drift V, ,(Z(t)), and V (Z(t)) = min{V,;(Z(t)), VL4 (Z(t))}, we have

1) 2NL
E[AV.(Z) | Z(t) = Z] < —% whenever V, (Z(t)) > 5
Hs
forany e < ¢y = zﬁfé'
Thus, condition (C1) in Lemma 5.1 is validated with x = Z#I;’—fg andn = %, both of which are

independent of € (since § is independent of € by Claim 3). Having established conditions (C1)
and (C2) for the Lyapunov function V, (Z), by Lemma 5.1, we have that there exist some positive
constants €, 8* and C* such that for all € € (0, &)

E [ee*dﬁ(r) (Q(e))] <c,

where both 6" and C* are independent of €. Hence, we have completed the proof of Proposition
3.5. ]

6 CONCLUSION

We have investigated the performance of load balancing systems under a general pull-based policy
with a varying threshold. In particular, we have shown that a necessary condition for steady-state
heavy-traffic delay optimality is that the threshold must grow to infinity as the load intensity
approaches one but its growth rate should be slower than a certain polynomial function of the
mean number of tasks in the system. We then showed that a sufficient condition to guarantee
steady-state heavy-traffic delay optimality in pull-based load balancing systems is that the threshold
must grow logarithmically with the mean number of tasks in the system, which directly resolves a
generalized version of the conjecture by Kelly and Laws [15]. Both of the necessary and sufficient
conditions are achieved by overcoming various technical challenges, and the methods developed
in this paper could be of independent interest. In particular, the methods developed in this paper
might provide new directions on establishing steady-state delay optimality for dynamic threshold
based scheduling policies in [2, 14].

We finally conjecture that a logarithmic growth rate of the threshold is also necessary for
heavy-traffic delay optimality in pull-based load balancing systems, and one possible future work
is to extend the current proof of Theorem 3.2 to prove this result, hence providing a tighter
characterization of general pull-based load balancing schemes in heavy traffic.
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APPENDIX
A PROOF OF LEMMA 3.1

Proor. To begin with, we first show that the Markov chain {Z(t) = (Q(t), m(t)),t > 0} is
irreducible and aperiodic. Let the initial state be Z(0) = (Q(0),m(0)) = (01xn,mo) Where my
is the memory state in which all the N IDs of servers are in the memory. The Markov chain is
irreducible since for any state Z in the state space, the Markov chain is able to reach the initial
state within a finite step. This happens when there are no exogenous arrivals and all the offered
service is at least one during each time-slot, which has a positive probability under our assumptions.
The aperiodicity of the Markov chain {Z(t) = (Q(t), m(t)),t > 0} follows from the fact that the
transition probability from the initial state to itself is positive. In order to show positive recurrence,
we adopt the Foster-Lyapunov theorem. In particular, we only need to consider the Lyapunov

function W(Z) £ ||Q||* since the memory state is finite. Now for any t,, the one-step drift is given
by

(Z(tg + 1)) = W(Z(t0)) | Z(t0)]
1Q(t0) + A(to) = S(t0) + U(to)|I* = 1Qt0) I | Z to)]

E[W

=E|

ZE[IQw) + Atts) - S - QU | Z(t0)]

=E [2(Q(to), A(to) = S(t0)) + | A(t0) = S(to) I” | Z(to)]

<E [2¢Q(t0), A(to) — S(t0)) | Z(to)] + L
N
< ; O (to) (—65—;) +L

(d) ;
< - ze”;”" 1Q(to) | + L, (31)
»)

where (a) follows from the facts that Q,, (¢) + A, (t) =S, (t) + U, (t) = max(Qy () +A,(t)—S,(t),0) for
any t > 0, and (max(a, 0))? < a? for any a € R; (b) holds since both the arrival and service processes
have finite supports and L = N max(Amax, Smax)?; (¢) is true since under the JBT policy the worst
case is when (proportionally) random routing is adopted, which happens if the ID in memory is
either empty or full; (d) comes from the fact that ||x||; > ||x|| for any x € RV, Therefore, by the
Foster-Lyapunov theorem, the Markov chain {Z(t) = (Q(t), m(t)),t > 0} is positive recurrent.

Having established the fact that {Z(¢) = (Q(¢), m(¢)),t > 0} is irreducible, aperiodic and positive
recurrent, we are now ready to apply Lemma 5.1 to show bounded moments of ”6” Let us consider
the Lyapunov function V(Z) = ||Q||, and check the two conditions (C1) and (C2) in Lemma 5.1,
respectively.
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For condition (C1), we have
E[AV(Z) | Z(t) = Z]
=E[[1Q(to + DI = Q)| | Z(t0) = Z]

ﬂﬂJmm+nW—ﬁmmw|mm=z]
(a)

——F (to + D> = |0t |I* | Z (o)
(é) i L
ps o 2[1Q()l|
where (a) follows from the fact that f(x) = +/x is concave; (b) comes from Eq. (31). Thus, condition
(C1) is valid with k = eLiz,,, and n = e’;ﬁ
For condition (C2), we have

IAV(Z)| = [|Q(to + D] = |Qt)|| I T (Z(to) = Z)
10 + 1) - QU T(Z(ty) = 2)
(b)\/_max Amaxs Smax)s

where (a) holds since | ||x|| — |ly]|| < [|x — y]| for each x, y in RY; (b) follows from the assumptions

that Ay (t) < Amax and S, (t) < Spax for any ¢t > 0 and n € N. Thus, condition (C2) is valid with
D= \/NmaX(Amaxs Smax)-

Therefore, according to Eq. (13) in Lemma 5.1, we get for p = 1, 2

— 1 (2Lps\P 1 (8Dus\P
E [”Q(e) p] < — (ﬂ) +— ( HZ) (D +/Jmin)pp!
Hmin €l \ Pmin
< %
s o

where the constant M, = ( 2Lyty )p

Dps \P
Hmin +p! (iml,lj) (D + pmin)?.
In addition, if we apply Theorem 2.3 in [11], we can obtain that

E [ee*né‘”n] < Kol Kele, (32)
where the positive constants 0%, K; and K, are all independent of €
B PROOF OF LEMMA 5.3

ProoF. Let us consider the following Lyapunov function:

M=

I
—_

nz sy Y (e-0)

i=1 j>i

\
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We start with the conditional mean drift of V;(Z). Note that we shall omit the time reference (t)
after the first step and Q* = Q(¢ + 1).

E[Vi(Z(t+1)) -Vi(Z(1)) | Z(t) = Z]

N N 9
=3 2 E[(@ut+ -0+ ) - (00 - 0,0) 1 20 = 7]
N N 9
:ZZE[Z A=A = Si+ ) — (Ui - 1) |Z]

N N 9
+ZZE|:<A,'—AJ'—S,'+SJ') +2<Q1+_Q;)(U1_U]>|Z:|

i=1 j>i

@ZN:iE[Z(Q ~0) (A -4) - (Ui-u)’ |Z]

i=1 j>i

in which (a) follows from the fact that the service is independent of queue lengths and homogeneous,
as well as Q,(t + 1)U, (t) = 0 forallnand t > 0.
Since ||Q|| has a finite second moment in steady state under JBT by Lemma 3.1, the steady-state

mean E [Vl (2(6))] is finite for any € > 0. As a result, the mean drift of V;(-) is zero in steady state,

which directly implies the result in Lemma 5.3. O

C PROOF OF CLAIM 1

Proo¥. For any t, > 0, we have
AV (Z)]
DIQ, g, (0 + DIl = QL (T (Z(10) = 2)
LUQL g 10+ 1) ~ Qg (W17 (Z(10) = 2)
1Q'(t + 1) - Q) IT (Z(t5) = 2)
D1t + 1) - QT (Z(t) = 2)
VN max(Amars Smas)

where (a) follows from Eq. (27); (b) comes from the fact that | ||x|| — ||y]|| < ||x — y|| holds for any
x,y € RV; (c) is due to the non-expansive property of projection and the fact that Q' & is the

1
projection of Q’ onto the polar cone of R7; (d) follows from the definition of Q’ in Eq. (26); () holds
due to the assumptions that the As(t) < Ajax and S, (t) < Spax forallt > 0andall1 <n < N.
With the same arguments, we can establish that

AV . (Z)] £ WmaX(Amax’ Smax)-
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Since the drift of V, (Z) is either upper bounded by AV, ;(Z) or AV,,(Z), we finally get

AV (Z)] < \/Nmax(Amax’ Smax)-

D PROOF OF CLAIM 2
Proor. We first start with inequality (29) in Claim 2. Let us define

AW (Z) = [IQ'(t + DI = IQ'OI*] L(2(t) = 2)
AW (Z) = [I1Q)z, (¢ + DII* = 1Q], ()I*] T(Z(2) = 2).

Then, the mean drift of AV, ,(Z) can be decomposed as follows.

E[AVLu(Z) | Z(t) = Z]

B (110, (¢ + DIl - Q)5 DI 1 Z(t) = Z]

= |1, €+ DI = Q' g, OIF] 7(201) = 2)
(b) 1

S -
21Q 5, @]
()

E[I1Q g, (t + DI* = 1Qz, BI* | Z(2) = Z]

1
" 21Q) ., O E[AW(Z) - AW, (2) | Z(t) = Z] 33

where (a) follows from Eq. (27); (b) holds due to the concavity of function f(x) = v/x for x > 0; (c)
comes from the Pythagorean theorem. Next, we will bound each term in Eq. (33), respectively. To
begin with, we have an upper bound for the first term as follows.

[AW(2) | Z(t) = Z]
=E[IIQ'(t + DI = IQ I | Z(t) = Z]
B0 + 1) - 1l - 1Q() - 1l | Z(¢) = Z]
=E [11Q(t) + A(t) = S(t) + U(®) — Il = 1Q(t) — rl|* | Z(t) = Z]
=E [IIQ(t) + A(t) - S(t) — rll* = 1Q(t) - rlI* | Z(t) = Z|
+ B [IU@)IP +2Q(t +1) -t = U(t), U(1)) | Z(t) = Z]

mm

' [20Q'(1). A) — (1) + IA() — SO — 2. V(1)) | Z(t) = Z]
LB [2(Q/(0. A) - S(1) - 2. U(®) | Z() = 2] + L. (59
where (a) follows from Eq. (26); (b) holds because of (Q(t + 1),U(¢#)) = 0 and the dropping of

—1U®)11%;in (c), L = N max(Amax> Smax)?, Which is true since both the arrival and service processes
have finite support.
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We now turn to provide a lower bound on the second term in Eq. (33) as follows.

E [AW)4(2) | Z(t) = Z]
=E [1Q)z, (t + DI = 1Q], ()II* | Z(2) = Z]
=E [%Q] g, (1): Qg (t + 1) = Qfi ()} | Z]
+E “ Qg (t+ 1) = Qe ] | Z]
2B [2(Q)z, (£), Qg (t +1) = Qe (1)) | Z]
=2B [(Q)z, (1, Q' (t+ 1) - Q'(t)) | Z]
— 2B [(Q) g, (1), Qg (t + 1) = Qg (1)) | Z]
R [2Q)p, (1.Q/(t+1) - Q1) | Z]

VB [2Q), (0. A0 - S 1 ] (55)

where (a) holds because <QTI‘R; (1), QLR;, (t)) = 0and <Q3_'R;, (t+1), th (t)) < 0since QLR;, (t+1)
is in the polar cone of R/; (b) follows from Eq. (26) and the fact that all the components of QﬂR' ()
and U(t) are nonnegative. Thus, substituting Eqgs. (34) and (35) into Eq. (33), yields

E[AV.(2) | Z(t) = Z]

gWE [(z<Q;R;(t>,A(t) -5+ L) 20,00 | Z]
(@) ,
O (26005, 0.8 =50 + 1) 1 2]

where (a) holds since all the components of r and U(¢) are nonnegative. Thus, we have the bound
in Eq. (29) of Claim 2.
Next, we turn to the bound in inequality (28). Let us define

AW(Z) = [11Q], (¢ + DI = Q) (DI | T(Z(1) = 2).

With the same arguments as in Eq. (33), the mean drift of AV, ;(Z) can be decomposed into two
terms.

E[AVL(Z) | Z(t) = Z]

=E Qg (t + DIl = 1Q) &, ()l | Z(t) = Z
1

SWE [AW(Z) - AW (2) | Z(t) = Z] . (36)
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The first term can be upper bounded as in Eq. (34). The second term can be lower bonded in a
similar way as in Eq. (35) except the last step.

E

(@
>E

AW (Z) | Z(t) = Z]
2(Q), (0, Q (¢ + 1) - Q1)) 1 Z]

28 [2(Q) 5, (1), A1) = $() + V(W) | z]

()
>E

[
) [
200}, (1. A() = 5(0)) - 265, U 1 2] (37)

where (a) follows from the same arguments as in Eq. (35); (b) comes from the definition of Q” in Eq.
(26); (c) is true since any component of Qh & (t) is greater or equal to —r by the definition of R].
1

Thus, substituting Eqs. (34) and (37) into Eq. (36) yields the bound in Eq. (28) of Claim 2. Hence, we
complete the proof of Claim 2. O

E PROOF OF CLAIM 3

Proor. In order to analyze the inner product in Eq. (30), it is advantageous to reorder the
queue-length vector Q(t). More precisely, let 0;(-) be a permutation of (1,2,...,N) such that
Qs,(1)(t) £ Qos,2)(t) < ... £ Qq,(n)(t) and ties are broken randomly. We define the permutation
vectors as follows

Q1) 2 (o, (1y(1), Qo 2y (1) - - -, Qo () (1))
A(t) 2 (Ao, () (1), Agy ) (£)s - -+ Agy () (1))
S(1) 2 (S, 1) (1) S () (£)s - - > S () (£))-

Let p,(t) be the probability that the new arrivals are dispatched to queue n at time-slot ¢, and
P(t) = (Ps,1)(t), Po,2)(t)s - . ., P,y (E)), ie., the i-th component of P(t) is the probability of
dispatching arrivals to the i-th shortest queue at time-slot . We define

—~

A(t) = P(t) = Prana (1), (38)

where ﬁrand(t) denotes the permutation of the dispatching distribution p(¢) under proportionally
random routing, i.e., the i-th component of ﬁrand(t) is po, (iy/ -

As before, we let Q'(t) = Q(t) —r. By the symmetry of R with respect to theline1 = (1,1,...,1),
we have that the permutation of the perpendicular component Q’LR; (t) is equal to the perpendicular
component of the permutation of Q’(t), which is denoted by le(t) That is, le (t) = Q’(t) -
QIIR’; (t) in which QHR; (t) is the projection of the vector Q’(t) onto R; and s € {l,u}.
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Based on the notions introduced above, the inner product in Eq. (30) can be rewritten as follows.
E [(Q g, (£), A(t) = S()) | Z(t) = Z]
@[, m) 8~ =
SE [(Q1 (0. A() -S() | Z(t) = Z|

N
(b) =, ar(n
=3 0lynlt) [Az (Anu) + %) - umn)]

n=1

© = .ucr,(n))

- ; /12 + Z QJ_S n ( U3
N

<3 0Ly (85 + €07, 1)) (39)
n=1

where (a) follows from the fact inner product remains the same under permutation and the fact

that the permutation of Q' , (¢) is equal to @l (1) as shown above; (b) holds due to the definition

LR
of A(t) and le,n(t) is the n-th component of Qis(t); (c) simply follows from Ay = us — €.

In order to further analyze Eq. (39), we need the following results, which are proved at the end
of this proof.

CrLaM 4. Regarding the vectors @is(t) and A(t) in Eq. (39), we have the following properties for
any system state Z(t) such that V,(Z(t)) > 0.

(a) The vectorQLs ) satisfies QLS (1) < le () <... < ’Q\is’N(t) and’Q\isyl(t) <0, Q\is’N(t) >0,
where s € {I,u}. More precisely, we have

QL. ()=0andQ’, \(t)>0 (40)

QL (1) <0 and Q' y (1) = 0. (41)

(b) The vector A(t) satisfies for somek € {2,3,...,N}
Ap(t) 20,n<kandA,(t) <0,n>k
and
min (|A; ()], [AN(£)]) = 8,
for some constant § that is independent of €.

Based on Claim 4, we can bound the first term in Eq. (39) for any system state Z(¢) such that
Vi (Z(t)) > 0 as follows

ZQLS W(DAR(1)As < =258 (107, ()] + 107, N (D)]). (42)

This inequality can be verified as follows. Since A(t) satisfies the property (b) in Claim 4, it can be
constructed in the following way. To start with, all the A, (¢) is equal to 0. Then, we decrease An (1)
and increase A;(t) by the same amount of §. After this process, the left-hand side of Eq. (42) is
equal to A5(6Q7 ; ; (t) — 6Q ; \(#)), which is equivalent to the right-hand side of Eq. (42) because
of Qis’l(t) <0, Qis ~(t) 2 0in (a) of Claim 4. Then, due to the first condition in (b) of Claim 4
and the fact that 22’:1 A, (t) = 0, any further construction (if necessary) for A(t) can only take the
following way: it decreases some amount (say ) from A;(t) where i > k, and then increase the
same amount, i.e., § for some A;(t) where j < k. Through this process, the left-hand side of Eq. (42)
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can only further decrease due to the monotone nondecreasing property of @is (t) in (a) of Claim 4.
As a result, we have established the upper bound in Eq. (42).

Next, we can further bound the right-hand side of Eq. (42) in terms of ||le(t) ||. First, consider
the case when s = [, we have

Mz

DAz < =258 (10, , (0] + 107, (D))

< —Aza@;, N
/125‘

(43)

where (a) holds since ||§'U(t) [l < N|§il ()] by the monotone nondecreasing property of éls(t)
and Eq. (40) in (a) of Claim 4. Similarly, when s = u, we have

N
D 0lun A5 < =258 (10,1 (O] + 107, (1))
n=1

< —Azcs@iu,l(m

<0, 0, (44)

where (a) holds since [|Q’,, (t)|l; < N @i ..n (1)1 by the monotone nondecreasing property of Q' (1)
and Eq. (41) in (a) of Claim 4.

Therefore, based on Eqs. (43) and (44), the left-hand side of Eq. (42) can be upper bounded in
terms of ||§ls(t)||1 as follows.

N —
>0l (AR5 <

n=1

for s € {{,u} and any system state Z(¢) with V, (Z(¢)) > 0. Now, substituting Eq. (45) into Eq. (39),
yields

L), (45)

E [(Qlg, (. A1) = S(1)) | Z(1) = Z]

<(e- 22 oo,

psd
2N +6

< - @HQLS H whenever € < ————

el ol
for s € {l,u} and any system state Z(¢) with V, (Z(t)) > 0, in which the last inequality follows
from the fact ”QiR;(t)Hl = ||le(t)||l and ||x||; > ||x|| for any x € RN, Hence, we establish the
result in Claim 3.

Now, we give the proof of Claim 4.

For (a), by the definition of Q’(t), we have @{(t) < @(t) <...< é;v(t) The projection of@’(t)
onto R;,, which is equal to Qll(t)’ is given by

Q',(t) = Q) (t) = max (Q'(1),0). (46)
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As a result, we have
Q1. (1) = Q'(t) - Q) (t) = min (Q'(¢),0) . (47)

Therefore, we have éis,l(t) < Q\’LS,z(t) <...< Q\is’N(t) for s € {I,u}. Moreover, since V, (Z(t)) >
0, we have Q(t) ¢ R\, which implies that Q’(t) ¢ R} and Q’(t) ¢ R,,. Thus, we have there exist
queues i and j such that Q/(t) < 0 and ij(t) > 0, which further gives Q{(t) < 0and Q}V(t) > 0. As
a result, by Egs. (46) and (47), we have

Q' () =0and Q) (1) >0

Q\iu,l(t) < 0and Qiu,N(t) = 0’

which establishes Qis,l(t) < 0and Qis,N(t) > 0, where s € {I,u}. Hence, we have completed the
proof of (a) in Claim 4.

Now let us consider (b) in Claim 4. First, since V. (Z(t)) > 0, we have Q(t) ¢ R, which implies
that there exists queues i and j such that Q;(t) < r and Q;(t) > r. This means that the number of
IDs in memory denoted by |m(t)] is between 1 and N — 1. Suppose |m(t)| = M € {1,2,...,N =1},
then we have

Ap(t) >0,n<kand A,(t) <0,n > k,
where k = M + 1. This is because for n < k
(g) Hoi(m)  Hoi(n) (i)

An(t) y
Zgl Hoy (i) Hz

07

and forn > k
An(t) (2 0— Hoy(n)
H

where (a) and (c) follow from the definition of A(t) in Eq. (38) and the JBT policy; (b) holds due to
ps = YN Mo, (i) and M < N. Moreover, with simple calculations, we get

<0,

. HminHmin,2
min (|A; ()], [AN()]) 2 ————,
Hx (;UZ ~ Hmin)
where pmin = mingep Un, €., the smallest service rate among all servers. y,,in 2 is the second
smallest service rate among all the servers. Hence, we complete the proof of Claim 4. O
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