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A Framework for Adversarially Robust Streaming Algorithms
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Abstract

We investigate the adversarial robustness of streaming algorithms. In this context, an
algorithm is considered robust if its performance guarantees hold even if the stream is chosen
adaptively by an adversary that observes the outputs of the algorithm along the stream and
can react in an online manner. While deterministic streaming algorithms are inherently
robust, many central problems in the streaming literature do not admit sublinear-space
deterministic algorithms; on the other hand, classical space-efficient randomized algorithms
for these problems are generally not adversarially robust. This raises the natural question
of whether there exist efficient adversarially robust (randomized) streaming algorithms for
these problems.

In this work, we show that the answer is positive for various important streaming
problems in the insertion-only model, including distinct elements and more generally F)-
estimation, F-heavy hitters, entropy estimation, and others. For all of these problems, we
develop adversarially robust (1+¢)-approximation algorithms whose required space matches
that of the best known non-robust algorithms up to a poly(logn, 1/¢) multiplicative factor
(and in some cases even up to a constant factor). Towards this end, we develop several
generic tools allowing one to efficiently transform a non-robust streaming algorithm into a
robust one in various scenarios.

1 Introduction

The streaming model of computation is a central and crucial tool for the analysis of massive
datasets, where the sheer size of the input imposes stringent restrictions on the memory, com-
putation time, and other resources available to the algorithms. Examples of theoretical and
practical settings where streaming algorithms are in need are easy to encounter. These include
internet routers and traffic logs, databases, sensor networks, financial transaction data, and
scientific data streams. Given this wide range of applicability, there has been significant effort
devoted to designing and analyzing extremely efficient one-pass algorithms. We recommend the
survey of [33] for a comprehensive overview of streaming algorithms and their applications.
Many central problems in the streaming literature do not admit sublinear-space deterministic
algorithms, and in these cases randomized solutions are necessary. In other cases, randomized
solutions are more efficient and simpler to implement than their deterministic counterparts.
While randomized streaming algorithms are well-studied, the vast majority of them are defined
and analyzed in the static setting, where the stream is worst-case but fixed in advance, and
only then the randomness of the algorithm is chosen. However, assuming that the stream
sequence is independent of the chosen randomness, and in particular that future elements of
the stream do not depend on previous outputs of the streaming algorithm, may not be realistic
[31, 15, 16, 20, 34, 5], even in non-adversarial settings. For example, suppose that a user
sequentially makes queries to a database, and receives an immediate response after each query.
Naturally, future queries made by the user in such a setting may heavily depend on the responses
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given by the database to previous queries. In other words, the stream updates are chosen
adaptively, and cannot be assumed to be fixed in advance.

A streaming algorithm that works even when the stream is adaptively chosen by an ad-
versary (the precise definition given next) is said to be adversarially robust. Deterministic
algorithms are inherently adversarially robust, since they are guaranteed to be correct on all
possible inputs. However, the large gap in performance between deterministic and randomized
streaming algorithms for many problems motivates the need for designing adversarially robust
randomized algorithms, if they even exist. In particular, we would like to design adversarially
robust randomized algorithms which are as space and time efficient as their static counterparts,
and yet as robust as deterministic algorithms. The study of such algorithms is the main focus
of our work.

The Adversarial Setting. There are several ways to define the adversarial setting, which
depends on the information the adversary (who chooses the stream) can observe from the
streaming algorithm, as well as other restrictions imposed on the adversary. For the most
part, we consider a general model, where the adversary is allowed unbounded computational
power and resources, though we do discuss the case later when the adversary is computationally
bounded. At each point in time, the streaming algorithm publishes its output to a query for
the stream. The adversary observes these outputs one-by-one, and can choose the next update
to the stream adaptively, depending on the full history of the outputs and stream updates. The
goal of the adversary is to force the streaming algorithm to eventually produce an incorrect
output to the query, as defined by the specific streaming problem in question.!

Formally, a data stream of length m over a domain [n] is a sequence of updates of the
form (a1, A1), (ag,A2), ..., (am,Ay) where a; € [n] is an index and A; € Z is an increment
or decrement to that index. The frequency vector f € R™ of the stream is the vector with i
coordinate f; = .., _; Ay We write f ®) to denote the frequency vector restricted to the first

t updates, namely fi(t) = ngt:aj:i Aj. It is assumed at all points ¢ that [ £®]|0e < M for some
M > 0, and that log(mM) = O(logn). In the insertion-only model, the updates are assumed
to be positive, meaning A; > 0, whereas in the turnstile model A; can be positive or negative.

The general task in streaming is to respond to some query Q about the frequency vector
f® at each point in time t € [m]. Oftentimes, this query is to approximate? some function
g:R" = R of f®. For example, counting the number of distinct elements in a data stream is
among the most fundamental problems in the streaming literature; here g(f (t)) is the number
of non-zero entries in f (). Since exact computation cannot be done in sublinear space [9], the
goal is to approximate the value of g(f®*)) to within a multiplicative factor of (1 +¢). Another
important streaming problem (which is not directly an estimation task) is the Heavy-Hitters
problem, where the algorithm is tasked with finding all the coordinates in f) which are larger
than some threshold 7.

Formally, the adversarial setting is modeled by a two-player game between a (randomized)
STREAMINGALGORITHM and an ADVERSARY. At the beginning, a query Q is fixed, which the
STREAMINGALGORITHM must continually reply to. The game proceeds in rounds, where in the
t-th round:

1. The ADVERSARY chooses an update u; = (at, A¢) for the stream, which can depend, in
particular, on all previous stream updates and outputs of STREAMINGALGORITHM.

n the streaming literature, an algorithm is often required to be correct on a query made only once, at the end
of the stream. This is a one-shot guarantee, as opposed to the tracking guarantee as defined here. However, the
two settings are nearly equivalent. Indeed, for almost all streaming problems, a one-shot algorithm can be made
into a tracking algorithm with at most an O(logn) blow-up in space, by simply setting the failure probability
small enough to union bound over all points in the stream.

2Ideally, one might wish to exactly compute the function g; however, in many cases, and in particular for the
problems that we consider here, exact computation cannot be done with sublinear space.



2. The STREAMINGALGORITHM processes the new update u; and outputs its current response
R! to the query Q.

3. The ADVERSARY observes R (stores it) and proceeds to the next round.

The goal of the ADVERSARY is to make the STREAMINGALGORITHM output an incorrect re-
sponse R to Q at some point ¢ in the stream. For example, in the distinct elements problem,
the adversary’s goal is that on some step ¢, the estimate R’ will fail to be a (14¢)-approximation

of the true current number of distinct elements |{i € [n] : fi(t) # 0}].

Streaming algorithms in the adversarial setting. It was shown by Hardt and Woodruff
[20] that linear sketches are inherently non-robust in adversarial settings for a large family
of problems, thus demonstrating a major limitation of such sketches. In particular, their re-
sults imply that no linear sketch can approximate the Euclidean norm of its input to within
a polynomial multiplicative factor in the adversarial (turnstile) setting. Here, a linear sketch
is an algorithm whose output depends only on values Af and A, for some (usually random-
ized) sketching matrix A € R**"™, This is quite unfortunate, as the vast majority of turnstile
streaming algorithms are in fact linear sketches.

On the positive side, a recent work of Ben-Eliezer and Yogev [5] showed that random
sampling is quite robust in the adaptive adversarial setting, albeit with a slightly larger sample
size. While uniform sampling is a rather generic and important tool, it is not sufficient for
solving many important streaming tasks, such as estimating frequency moments (F),-estimation),
finding Lo heavy hitters, and various other central data analysis problems. This raises the
natural question of whether there exist efficient adversarially robust randomized streaming
algorithms for these problems and others, which is the main focus of this work. Perhaps even
more importantly, we ask the following.

Is there a generic technique to transform a static streaming algorithm into an
adversarially robust streaming algorithm?

This work answers the above questions affirmatively for a large class of algorithms.

1.1 Our Results

We devise adversarially robust algorithms for various fundamental insertion-only streaming
problems, including distinct element estimation, F,, moment estimation, heavy hitters, entropy
estimation, and several others. In addition, we give adversarially robust streaming algorithms
which can handle a bounded number of deletions as well. The required space of our adversarially
robust algorithms matches that of the best known non-robust ones up to a small multiplicative
factor. In contrast, we demonstrate that some classical randomized algorithms for streaming
problems in the static setting, such as the celebrated Alon-Matias-Szegedy (AMS) sketch [3] for
F5-estimation, are inherently non-robust to adaptive adversarial attacks in a strong sense.

Our adversarially robust algorithms make use of two generic robustification frameworks that
we develop, allowing one to efficiently transform a non-robust streaming algorithm into a robust
one in various settings. Both of the robustification methods rely on the fact that functions of
interest do not drastically change their value too many times along the stream. We combine
this observation with a rounding technique so as to avoid leaking information to the adaptive
adversary.

The first method, called sketch switching, maintains multiple instances of the non-robust
algorithm and switches between them in a way that cannot be exploited by the adversary. The
second technique bounds the number of computation paths possible in the two-player adversar-
ial game. This technique maintains only one copy of a non-robust algorithm, albeit with an
extremely small probability of error §. We show that a carefully rounded sequence of outputs
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Table 1: A summary of our adversarially robust algorithms (in bold), as compared to the best
known upper bounds for randomized algorithms in the static setting and lower bounds for
deterministic algorithms. Note that all stated algorithms provide tracking. All results except
for the last two (which hold in restricted versions of the turnstile model) are for insertion only
streams. We write O, Q to hide loge™! and loglog n factors. The lower bound for deterministic
entropy estimation follows from a reduction from estimating F), for p =1+ (:)(log%n) to entropy
estimation [21].

generates only a small number of possible computation paths, which can then be used to ensure
robustness by union bounding over these paths. The framework is described in Section 3.

The two above methods are incomparable: for some streaming problems the former is more
efficient, while for others, the latter performs better, and we show examples of each. Specifically,
sketch switching can exploit efficiency gains of strong-tracking, resulting in particularly good
performance for static algorithms that can respond correctly to queries at each step without
having to union bound over all m steps. In contrast, the computation paths technique can
exploit an algorithm with good dependency on 4 (the failure probability). Namely, algorithms
that have small dependency in update-time or space on § will benefit from the computation
paths technique.

For each of the problems we consider, we show how to use the framework, in addition to some
further techniques which we develop along the way, to solve it. Interestingly, we also demon-
strate how cryptographic assumptions (which were not commonly used before in the streaming
context) can be applied to obtain an adversarially robust algorithm against computationally
bounded adversaries for the distinct elements problem at essentially no extra cost over the
space optimal non-robust one. See Table 1 for a summary of our results in the adversarial set-
ting compared to the state-of-the-art in the static setting, as well as to deterministic algorithms.

Distinct elements and Fj-estimation. Our first suite of results provides robust streaming
algorithms for estimating Fj, the p frequency moment of the frequency vector, defined as
E, = |[fI5 = >, |filP, where we interpret 0° = 0. Estimating frequency moments has
a myriad of applications in databases, computer networks, data mining, and other contexts.
Efficient algorithms for estimating distinct elements (i.e., estimating Fp) are important for
databases, since query optimizers can use them to find the number of unique values of an
attribute without having to perform an expensive sort on the values. Efficient algorithms for
F5 are useful for determining the output size of self-joins in databases, and for computing the
surprise index of a data sequence [18]. Higher frequency moments are used to determine data
skewness, which is important in parallel database applications [12].

We remark that for any fixed p # 1,2 including p = 0, any deterministic insertion-only
algorithm for Fj-estimation requires 2(n) space [9]. In contrast, we will show that randomized
adversarially robust algorithms exist for all p, whose space complexity either matches or has a

3Note that there is a trivial O(log n)-bit insertion only Fy estimation algorithm: keeping a counter for Do A



small multiplicative overhead over the best static randomized algorithms.

We begin with several results on the problem of estimating distinct elements, or Fy estima-
tion. The first of them utilizes an optimized version of the sketch switching method to derive an
upper bound. The result is an adversarially robust F{ estimation algorithm whose complexity
is only a ©(2loge™!) factor larger than the optimal static (non-robust) algorithm [6].

Theorem 1.1 (Robust Distinct Elements by Sketch Switching; see Theorem 5.1). There is an
algorithm which, when run on an adversarial insertion only stream, with probability at least
1 — & produces at every step t € [m] an estimate R* such that Rt = (1 +¢)||f® o . The space
used by the algorithm is

0 <log(1/€) <log€1 + log 52*1 + loglogn 4 log n>> .
5 5

The second result utilizes a different approach, by applying the computation paths method.
Th? space complexity is slightly worse, which is a result of setting the failure probability § <
n~: 18" for any given static algorithm. However, we introduce a new static algorithm for
Fy estimation which has very small update-time dependency on §, and nearly optimal space
complexity. As aresult, by applying our computation paths method to this new static algorithm,
we obtain an adversarially robust Fy estimation algorithm with extremely fast update time (note
that the update time of the above sketch switching algorithm would be O(¢~!logn) to obtain

the same result, even for constant ).

Theorem 1.2 (Fast Adversarially Robust Distinct Elements, see Theorem 5.4). There is a
streaming algorithm which, with probability 1 — n~(C/)18 for any constant C > 1, when run
on an adversarial chosen insertion-only data stream, returns a (1+¢) multiplicative estimate of
the number of distinct elements at every step in the stream. The space required is O(EL3 log® n),

and the algorithm runs in O((log?log 10%) - (loglog log 1OE")) worst case time per update.

The third result takes a different approach: it shows that under certain standard cryp-
tographic assumptions, there exists an adversarially robust algorithm which asymptotically
matches the space complexity of the best non-robust tracking algorithm for distinct elements.
The cryptographic assumption is that an exponentially secure pseudorandom function exists (in
practice one can take, for instance, AES as such a function). While our other algorithms in this
paper hold even against an adversary which is unbounded computationally, in this particular
result we assume that the adversary runs in polynomial time. See Section 10 for more details.

Theorem 1.3 (Robust Distinct Elements by Cryptographic Assumptions; see Theorem 10.1).
In the random oracle model, there is an Fy-estimation (tracking) streaming algorithm in the
adversarial setting, that for an approzvimation parameter ¢ uses O(e~2(log 1/e+loglogn)+logn)
bits of memory, and succeeds with probability 3/4.

Moreover, under a suitable cryptographic assumption, assuming the adversary has bounded
running time of n®, where m is the stream length and c is a constant, the random oracle can be
replaced with a concrete function and the total memory is O(e~2(log 1/e + loglogn) + clogn).

Here, the random oracle model means that the algorithm is given read access to an arbitrarily
long string of random bits.

Our next set of results provides adversarially robust algorithms for F),-estimation with p > 0.
The following result concerns the case 0 < p < 2. It was previously shown [9] that for p bounded
away from one, Q(n) space is required to deterministically estimate || f|/5, even in the insertion
only model [9]. On the other hand, space-efficient non-robust randomized algorithms for F),-
estimation exist. We leverage these, along with an optimized version of the sketch switching
technique to save a logn factor, and obtain the following.



Theorem 1.4 (Fj,-estimation for 0 < p < 2; see Theorem 4.1). Fiz 0 <¢e,6 <1 and 0 <p < 2.
There is a streaming algorithm in the insertion-only adversarial model which outputs at each
step a value R such that Rt = (1+¢)||f®||, at every step t € [m], and succeeds with probability
1 — 6. The algorithm uses O(e3lognloge !(loge™! +1logd~! +loglogn)) bits of space.

We remark that the space complexity of Theorem 1.4 is within a © (s~ loge~!) factor of the
best known static (non-robust) algorithm [7] . While for most values of §, the above theorem
using sketch switching has better space complexity than the computation paths reduction, for
the regime of very small failure probability 0 it is actually preferable to use the latter, as we
now state.

Theorem 1.5 (F), estimation for small §; see Theorem 4.2). Fiz any 0 <e <1, 0<p < 2,

and § < n~Czlogn for a sufficiently large constant C' > 1. There is a streaming algorithm for
the insertion-only adversarial model which, with probability 1 — J, successfully outputs at each
step t € [m] a value R such that R® = (1 +¢)|f®|,. The space used by the algorithm is
O (s%lognlog 5*1) bits.

In addition, we show that for turnstile streams with bounded F, flip number (defined for-
mally in Section 3), efficient adversarially robust algorithms exist. Roughly speaking, the F),
flip number is the number of times that the F, moment changes by a factor of (1 4 ¢). Our
algorithms have extremely small failure probability of ¢ = n~*, and have optimal space among
turnstile algorithms with this value of § [25].

Theorem 1.6 (F, Estimation for A-flip number turnstile streams; See Theorem 4.3). Let Sy
be the set of all turnstile streams with F, flip number at most A > Az (|- ||5) for any 0 < p < 2.
Then there is an adversarially robust streaming algorithm for the class Sy of streams that, with
probability 1 — n=C for any constant C > 0, outputs at each time step a value R' such that
Rt = (1+¢)||f|[b. The space used by the algorithm is O(e~2\log®n).

The next result concerns Fj-estimation for p > 2. Here again, we provide an adversarially
robust algorithm which is optimal up to a small multiplicative factor. This result applies the
computation paths robustification method as a black box. Notably, a classic lower bound of
[4] shows that for p > 2, Q(n'~2/P) space is required to estimate ||f||b up to a constant factor
(improved lower bounds have been provided since, e.g., [29]). By using our computation paths
technique, we obtain adversarially robust F}, moment estimation algorithms as well for p > 2.

Theorem 1.7 (Robust Fj, estimation for p > 2; see Theorem 4.4). Fiz any ¢ > 0, and fix
any p > 2. There is a streaming algorithm for the insertion-only adversarial model which, with
probability 1 — n=(¢1087)/ for any constant ¢ > 1, successfully outputs at each step a value R*
such that Rt = (1+¢)||f®||, at every step t € [m]. The space used by the algorithm is

O (nl_Q/p (5_3 log?n + e 6/P (log2 n) 2/p log n))

Attack on AMS On the negative side, we demonstrate that the classic Alon-Matias-Szegedy
sketch (AMS sketch) [3], the first and perhaps most well-known F» estimation algorithm (which
uses sub-polynomial space), is not adversarially robust. Specifically, we demonstrate an adver-
sary which, when run against the AMS sketch, fools the sketch into outputting a value which is
not a (1 £ ¢) estimate of the F5. The non-robustness of standard static streaming algorithms,
even under simple attacks, is a further motivation to design adversarially robust algorithms.

In what follows, recall that the AMS sketch computes S - f throughout the stream, where
S € R™™ is a matrix of uniform {t~/2, —t=1/2} random variables. The estimate of the F} is
then the value ||Sf3.



Theorem 1.8 (Attack on AMS sketch; see Theorem 9.1). Let S € R™™ be the AMS sketch,
1 <t <n/c for some constant ¢ > 1. Then there is an adversary which, with probability 9/10,
succeeds in forcing the estimate ||Sf||3 of the AMS sketch to not be a (1 £ 1/2) approzimation
of the true norm ||f||3. Moreover, the adversary needs to only make O(t) stream updates before
this occurs.

Heavy Hitters We also show how our techniques can be used to solve the popular heavy-
hitters problem. Recall that the heavy-hitters problem tasks the streaming algorithm with
returning a set S containing all coordinates i such that |f;| > 7, and containing no coordinates
J such that |f;| < 7/2, for some threshold 7. Generally, the threshold 7 is set to 7 = ¢l| f||p,
which is known as the L, heavy hitters guarantee.

For L; heavy hitters in insertion-only streams, a deterministic O(% logn) space algorithm
exists [32]. However, for p > 1, specifically for the highly popular p = 2, things become more
complicated. Note that since we can have || f|l2 < ||f|l1, the Ly guarantee is substantially
stronger. For sketching-based turnstile algorithms, an £2(n) lower bound for deterministic algo-
rithms was previously known [13]. Since ||f|l1 < v/n|f|l2, by setting € = n~/2, one can obtain
a deterministic O(y/nlogn) space insertion only Ly heavy hitters algorithm. Recently, a lower
bound of (y/n) for deterministic insertion only algorithms was given, demonstrating the near
tightness of this result [26]. Thus, to develop a more efficient adversarially robust Ly heavy
hitters algorithm, we must employ randomness.

Indeed, by utilizing our sketch switching techniques, we demonstrate an adversarially robust
Ly heavy hitters (tracking) algorithm which uses only an O(e~!loge™!) factor more space than
the best known static Lo heavy hitters tracking algorithm [8].

Theorem 1.9 (Robust Lo heavy hitters: see Theorem 6.5). Fiz any € > 0. There is a
streaming algorithm in the adversarial insertion only model which solves the Lo heavy hitters
problem at every step t € [m] with probability 1 —n=C (for any constant C > 1). The algorithm

uses O(lo'i?,_1 log® n) bits of space.
Entropy Estimation Additionally, we demonstrate how our sketch switching techniques can
be used to obtain robust algorithms for empirical Shannon Entropy estimation. Here, the

Shannon Entropy H(f) of the stream is defined via H(f) = -, |||}CT||1 log (”‘ffﬁ‘l > Our results

follow from an analysis of the exponential of a-Renyi Entropy, which closely approximates
the Shannon entropy, showing that the former cannot rapidly change too often within the
stream. Our result is an adversarially robust algorithm with space complexity only a small
polylogarithmic factor larger than the best known static algorithms [11, 23].

Theorem 1.10 (Robust Entropy Estimation; see Theorem 7.3). There is an algorithm for e-
additive approzimation of the Shannon entropy in the insertion-only adversarial streaming model
using O(EL5 log? n)-bits of space in the random oracle model, and O(EL5 log® n)-bits of space in
the general insertion only model.

We remark that by making the same cryptographic assumption as in Theorem 1.3, we can
remove the random oracle assumption in [23] for correctness of the entropy algorithm in the
static case. Then, by applying the same techniques which resulted in Theorem 1.10, we can
obtain the same stated bound for entropy with a cryptographic assumption instead of a random
oracle assumption.

Bounded Deletion Streams Lastly, we show that our techniques for F},, moment estimation
can be extended to data streams with a bounded number of deletions (negative updates).
Specifically, we consider the bounded deletion model of [22]. Formally, given some a > 1, the
model enforces the restriction that at all points ¢ € [m] in the stream, we have || f®[[) > L||n®)||P,



where h is the frequency vector of the stream with updates u, = (a;, A}) where Al = |A,| (i.e.,
the absolute value stream). In other words, the stream does not delete off an arbitrary amount
of the Fj, weight that it adds over the course of the stream.

We demonstrate that bounded deletion streams have the desirable property of having a
small flip number, which is a measurement of how often the F}, can change substantially (see
Section 3 for a formal definition). Using this property and our sketch switching technique, we
obtain the following.

Theorem 1.11. Fiz p € [1,2] and any constant C > 1. Then there is an adversarially robust
F, estimation algorithm which, with probability 1 — n~C, returns at each time step t € [m] an
estimate R* such that Rt = (14¢)||f®|b. The space used by the algorithm is O(as=+P) log®n).

1.2 Other Related Work

The need for studying adversarially robust streaming and sketching algorithms has been noted
before in the literature. In particular, [15, 16] motivate the adversarial model by giving ap-
plications and settings where it is impossible to assume that the queries made to a sketching
algorithm are independent of the prior outputs of the algorithm, and the randomness used by
the algorithm. One particularly important setting noted in [16] is when the privacy of the
underlying data-set is a concern.

In response to this, in [20] the notion of adversarial robustness for linear sketching algorithms
is studied. Namely, it is shown how any function g : R™ — R, defined by g(z) = f(Ax) for some
A € RF*™ and arbitrary f : R¥ — R cannot approximate the F» moment ||z[3 of its input to
an arbitrary polynomial factor in the presence of an adversary who is allowed to query g(z;)
at polynomial many points (unless k is large). Since one can insert and delete off each z; in
a turnstile stream, this demonstrates a strong lower bound for adversarially robust turnstile
linear sketching algorithms.

We remark that other work has observed the danger inherent in allowing adversarial queries
to a randomized sketch with only a static guarantee [1, 2]. However, the motivation of these
works is slightly different, and their setting not fully adversarial. Finally, in [31], adversarial
robustness of sketching in a distributed, multi-player model is considered, which is incomparable
to the centralized streaming problem considered in this work.

2 Preliminaries

For p > 0, the L, norm* of a vector f € R" is given by ||fll, = >, I£i[P)P. The p-th
moment, denoted by F), is given by F, = L5, or F, = >_.|f;|P. For p = 0, we define Fy to be
the number of non-zero coordinates in f, namely Fy = ||f|lo = [{i : fi # 0}|. Notice that this
coincides with defining 0° = 0 in the prior definition of F,. The Fy moment is also known as the
number of distinct elements. For reals a,b € R and € > 0, we write a = (1 £ )b to denote the
containment a € [(1—¢)b, (1+¢€)b]. Throughout, we will often assume that our error parameter
€ > 0 is smaller than some absolute constant €y which does not depend on any of the other
parameters of the problem.
A stream of length m over a domain [n] is a sequence of updates (a1, Aq), (a2, A2) ..., (am, Am)

where a; € [n] an A; € Z. The frequency vector f € R™ of the stream is the vector with it
coordinate f; = th:i A;. Let f® be the frequency vector restricted to the first j updates,

namely fi(j ) = Ztg jias—i Dt It is assumed at all intermediate points t € [m] in the stream that

1£®|lso < M, and log(mM) = O(logn). Notice in particular that this bounds |A;| < 2M for
each t.

4Note that this is only truly a norm for p > 1.



The general model as defined above is known as the turnstile model of streaming. Another
commonly studied model of streaming is the insertion-only model, where it is assumed that A; >
0 foreach t = 1,...,m. The insertion-only model is often presented with the following equivalent
and simplified definition: an insertion only stream is given by a sequence aj,as,...,an, € [n],
and the frequency vector f € R" is given by the coordinates and f; = [{j € [m] : a; = i}|. Since
we will sometimes consider data streams with deletions (negative updates), in this work will
use the former definition, where updates are pairs (a;, A¢) € [n] x Z. In this paper, the space
of a streaming algorithm is measured in bits, and the update time of a streaming algorithm is
measured in the RAM model, where arithmetic operations on O(log n)-bit integers can be done
in O(1) time.

The random-oracle model of streaming is the model where the streaming algorithm is allowed
random (read-only) access to an arbitrarily long string of random bits. In other words, the space
complexity of the algorithm is not charged for storing random bits. We remark that while nearly
all lower bounds for streaming algorithms hold even in the random oracle model, most of our
results (except for one of our results for entropy estimation and part of our cryptographic
results) do not require a random oracle.

Finally, given a vector x € R", the empirical Shannon Entropy H(x) is defined via H(z) =
— > lxil/||lx]l1 log (Jas| /||x]|1). For & > 0, the a-Renyi Entropy Hu(x) of x is given by the value

Ho(z) = log(|l«]la/ll[7)/ (1 — ).

2.1 Tracking Algorithms

The robust streaming algorithms we design in this paper satisfy the tracking guarantee. Namely,
they must output a response to a query at every step in time ¢ € [m]. For the case of estimation
queries, this tracking guarantee is known as strong tracking.

Definition 2.1 (Strong tracking). Let f@ @ fm) be the frequency vectors of a stream
(a1,A1),...,(am,An), and let g : R™ — R be a function on frequency vectors. A randomized
algorithm A is said to provide (e, d)-strong g-tracking if at each time step t € [m] it outputs an
estimate R; such that

Ry = g(f*)] < elg(£)]
for all ¢ € [m| with probability at least 1 — 4.

In contrast, weak tracking replaces the error term e|g(f®))| by maxy iy, £+9(f ())]. However,
for the purposes of this paper, we will not need to consider weak tracking. We now state two
results for strong tracking of F,, moments for p € [0,2]. Both results are for the static setting,
i.e., for a stream fixed in advance (and not for the adaptive adversarial setting that we consider).

Lemma 2.2 ([7]). For 0 < p <2, there is an insertion only streaming algorithm which provides
(e,0)-strong Fy-tracking using O(loﬁ(log et +logd~! +loglogn)) bits of space.

52
Lemma 2.3 ([6]). There is an insertion-only streaming algorithm which provides (g, 6)-strong

loglogn+logd—!
22

Fy-tracking using O( + logn) bits of space.

2.2 Roadmap

In Section 3, we introduce our two general techniques for transforming static streaming algo-
rithms into adversarially robust algorithms. In Section 4, we give our results on estimation of
F,, moments, and in Section 5 we give our algorithms for adversarially robust distinct elements
estimation. Next, in Section 6, we introduce our robust Ls heavy hitters algorithm, and in
Section 7 we give our entropy estimation algorithm. In Section 8, we provide our algorithms
for F}, moment estimation in the bounded deletion model. In Section 9, we give our adversarial
attack on the AMS sketch. Finally, in Section 10, we give our algorithm for optimal space
distinct elements estimation under cryptographic assumptions.



3 Tools for Robustness

In this section we establish two methods, sketch switching and computation paths, allowing one
to convert an approximation algorithm for any sufficiently well-behaved streaming problem to
an adversarially robust one for the same problem. At the core of these methods is a rounding
technique that allows us to leak only a small amount of information to the adversary. The
relevant definitions, of rounding and flip number, are given first, and afterward we use them to
develop our robustification methods.

For any = € R and € > 0, define the real number [z]. as follows. If x > 0, then [z]. is the
number y > 0 of the form y = (1 + )¢ for £ € Z which minimizes max{y/z,z/y}. In other
words, [z]. is the power of (1 + ¢) closest (in multiplicative terms) to z. If x < 0, set [z].
as —[—x];; and finally, set [0]. = 0. Note that [z]. is in all cases a (1 + £/2)-multiplicative
approximation of z. Furthermore, in this paper the values of x that we consider are generally
in the range [—n¢ —1/nc]U {0} U [1/n° n°]. The number of possible values of [z]. for z in this
range is O(¢~ ! logn) and thus no more than O(loglogn +log 1/¢) bits are required to store [x]..

Definition 3.1 (e-rounding). Let y1, 42, ..., ym € R be a sequence of non-negative real numbers.
An e-rounding of y1,...,ym is a sequence yi, ..., y,, constructed in the following way. We set
Y1 = [y1le. Given y;, we construct yi , by setting y;,; = v; if (1 —¢)yip1 <y < (1+€)yig1,
otherwise we set ;| = [Yiy1]e.

The notion of e-rounding is useful as it allows a streaming algorithm to leak less information,
without a significant loss in accuracy; specifically, this can be done by outputting the e-rounding
of the output of the algorithm, instead of the raw output.

Typical streaming problems ask one to (1 + ¢)-approximate the value of some function
g : R™ — R of the frequency vector. For example, in the count-distinct problem, g(f (i)) is the
number of distinct elements among (a1, A1),...,(a;,A;). As it turns out, for many classical
problems in the insertion-only model (including count-distinct), the number of distinct values
among the e-rounding of the sequence g(f™M), g(f@®),...,g(f™) is small. The next definition,
of a flip number, captures a closely related quantity.

Definition 3.2 ((g,m)-flip number). Let ¢ > 0 and m € N, and let yo,y1,...,ym be any
sequence of real numbers. The (e, m)-flip number of yo,y1,...,Ym is the maximum k € N
for which there exist 0 < 4y < ... < ix < m so that y;;_, ¢ [(1 —€)yi;, (1 + €)y;,] for every
j=23,... k.

Given a function g: R” — R, the (e, m)-flip number A, ,,(g) of g is the maximum, over all
sequences (a1, A1),..., (am,Ap,) of possible stream updates, of the (e, m)-flip number of the
sequence yg, Y1, - - -, Ym defined by y; = g(f(i)) for any 0 < i < m, where as usual f@ is the
frequency vector after stream updates (a1, A1), ..., (a;, A;) (and f© is the n-dimensional zeros
vector).

Note that flip number is clearly monotone in e: namely A: p(9) < Ao m(g) if € < e. For
our purposes, we will need a robust variant of this property, requiring that any sequence that
approximates the elements of (g(f (i)))i"il to within an error of, say, £/10, will have its e-rounding
not change often.

Lemma 3.3. Let g: R" — R, 0 < € < ¢ where ¢ is a small positive absolute constant, and
m € N. Suppose that zg, 21, ..., zm 18 a sequence of real numbers satisfying the following: there
exists a stream of updates (a1,A1),...,(am,Am) on which the output of g is Yo,Y1s-- -, Ym,
where (1 —e/10)y; < z; < (1 +¢/10)y;. Let z{,2,,..., 2., be the e-rounding of 29, 21,..., Zm.
Then the number of indices i € [m] for which z; # z_, is at most A j10.m(9)-

Proof. Consider the collection of all indices i € [m] for which 2z # z/_,. Write these indices as
1 <y <idp <...<ip <m. We wish to show that [y;, —vi;_,| > €ly;;|/10 for any 2 < j < K,
which will immediately imply by definition that A./10,,(g) > k-
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Indeed, observe that all of the following hold for any 2 < j < k.
e By definition of e-rounding, we know that Zz/‘j_l ¢ (1 —e)ziy, (1 +¢)z,]

e Again by definition of rounding, zéjil is the power of 1+ ¢ closest to 2;;_,, and so Zz{j,l =
zi._,(1+¢e/2).

e By the assumption in the statement of the lemma, z; = y;(1£¢/10) for both i = i;_; and
i=1.

It follows that the difference |y;, —y;,_, | is at least of the form® (32/10 — O(?))y;,| > elys,|/10,
where the inequality holds provided that ¢ < ¢ for some absolute constant ¢ > 0. |

Note that the flip number of a function critically depends on the model in which we work, as
the maximum is taken over all sequences of possible stream updates; for insertion-only streams,
the set of all such sequences is more limited than in the general turnstile model, and correspond-
ingly many streaming problems have much smaller flip number when restricted to the insertion
only model. We now give an example of a class of functions with bounded flip number.

Proposition 3.4. Let g : R* — R be any monotone function, meam’ng that g(z) > g(y) if
xi = yi for each i € [n]. Assume further that g(0) = 0, g(z) = T for all x > 0, and

g(M - 1) < T, where M is the bound on the entries of the frequency vector and 1 is the all 1’s
vector. Then the flip number of g in the insertion only streaming model is Az y,(g) = O(€ logT).

Proof. To see this, note that g(f©) =0, g(f®) > T, and g(f™) < g(I- M) < T. Since the
stream has only positive updates, g(f(?)) < (f(l)) << g(f'™). Let y1,...,y € [m] be any
set of points such that g(f¥)) < (1+¢)g (f(yl+1 ) for each i. Since there are at most O(2log T
powers of (14¢) between T~! and T, by the pigeonhole principle if & > % log(T) for a sufficiently
large constant C, then at least two values must satisfy (14+¢)7 < g(f®)) < g(f¥+)) < (14¢)7+?
for some j, which is a contradiction. |

Note that a special case of the above are the F,, moments of a data stream. Recall here
lzllo = [{7 : ; # 0}] is the number of non-zero elements in a vector z.

Corollary 3.5. Let p > 0. Then the (e, m)-flip number of ||z||5 in the insertion only streaming
model is e (|| - [|5) = O(Llogm) for p <2, and Ac (|| ||5) = O(Elogm) for p > 2. Forp=0,
we also have A (|| - |lo) = O(L logm)

Proof. We have ||0][5 = 0, ||z||5 > 1 for any non-zero z € Z, and || f™ ||} < MPn < n for some
constant ¢, where the second to last inequality holds because || f|lcoc < M for some M = poly(n)
is assumed at all points in the streaming model. Moreover, for p = 0 we have || f(™)||o < n. The
result then follows from applying Proposition 3.4 with T = ncmax{p.1}, |

Another special case of Proposition 3.4 concerns the Cascaded Norms of insertion-only data
streams [24]. Here, the frequency vector f is replaced with a matrix A € Z"*¢, which receives
coordinate-wise updates in the same fashion, and the (p, k) cascaded norm of A is given by
1Al pry) = (2225 |A; ;|F)P/R)/P . Tn other words, | Allp,x) is the result of first taking the Ly
norm of the rows of A, and then taking the L, norm of the result. Proposition 3.4 similarly
holds with 7' = poly(n) in the insertion only model, and therefore the black-box reduction
techniques introduced in the following sections are also applicable to these norms (using e.g.,
the cascaded algorithms of [24]).

Having a small flip number is very useful for robustness, as our next two robustification
techniques demonstrate.

SHere we think of € > 0 as a small parameter.
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3.1 The Sketch Switching Technique

Our first technique is called sketch switching, and is described in Algorithm 1. The technique
maintains multiple instances of a static strong tracking algorithm, where each time step only
one of the instances is “active”. The idea is to change the current output of the algorithm very
rarely. Specifically, as long as the current output is a good enough multiplicative approximation
of the estimate of the active instance, the estimate we give to the adversary does not change, and
the current instance remains active. As soon as this approximation guarantee is not satisfied,
we update the output given to the adversary, deactivate our current instance, and activate the
next one in line. By carefully exposing the randomness of our multiple instances, we show that
the strong tracking guarantee (which a priori holds only in the static setting) can be carried
into the robust setting. The number of instances required is controlled by the flip number of
the problem.

Algorithm 1: Adversarially Robust g-estimation by Sketch Switching

A4 )‘5/20,m(9)
Initialize independent instances A, ..., Ay of a (¢/20,6/)\)-strong g-tracking algorithm.
p+—1
g+ g(0)
while new stream update (ax, A) do
Insert update (ag, Ag) into each algorithm Aq,..., Aj.
y < current output of A,.
if g¢ (1£5)y then
g [Ap(k)]a/Q
10 p+—p+1.
11 Output estimate g.

W N =

© w9 o w;

12 end

Lemma 3.6 (Sketch Switching). Fiz any function g : R™ — R and let A be a streaming
algorithm that for any €,6 > 0 uses space L(g,0), and satisfies the (g,0)-strong g-tracking
property on the frequency vectors fO, ... f") of any particular fized stream. Then Algorithm
1 is an adversarially robust algorithm for (1 + €)-approzimating g(f®)) at every step t € [m]
with success probability 1 — §, whose space is O (L(gg,00) - Aey,m(9)), where g9 = ©O(e),d0 =
©(0/Xeg,m(9))-

Proof. Note that for a fixed randomized algorithm A, we can assume the adversary against
A is deterministic without loss of generality. This is because given a randomized adversary
and algorithm, if the adversary succeeds with probability greater than ¢ in fooling the algo-
rithm, then by a simple averaging argument there must exist a fixing of the random bits of
the adversary which fools A with probability greater than § over the coin flips of A. Note also
here that conditioned on a fixing of the randomness for both the algorithm and adversary, the
entire stream and behavior of both parties is fixed. We thus start by fixing such a string of
randomness for the adversary, which makes it deterministic. As a result, suppose that y; is the
output of the streaming algorithm on step 7. Then given y1, o, ...,yr and the stream updates
(a1,Aq),...,(ag, Ag) so far, the next stream update (ag41, Ak11) is deterministically fixed. We
stress that the randomness of the algorithm is not fixed at this point; we will gradually reveal
it along the proof.

We may assume that € > 0 is small enough, in particular smaller than the positive absolute
constant dictated by Lemma 3.3. Now let g = £/20 and X = A, ,,, and fix a set of A indepen-
dent instances Ay, Ag, ..., Ay of the streaming algorithm A with the (g¢, dp)-strong g-tracking
property. Since 6y = O(d/A), later on we will be able to union bound over the assumption
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that for all p € [\], A; satisfies strong tracking on some fixed stream (to be revealed along the
proof); the stream corresponding to A, will generally be different than that corresponding to
p' for p# p'.
First, let us fix the randomness of the first instance, A;. Let ul,ul,... ul be the updates
1

u; = (aj,A;) that the adversary would make if A were to output yo = g(0) at every time

step, and let f®! be the stream vector after updates ui,...,uf. Let Aj(t) be the output of
algorithm A; at time t of the stream ui,ud,... uj. Let t; € [m] be the first time step such
that [A1(t1) — yo| > €|A1(t1)]/2, if it (if not we can set, say, 4 = m + 1). At this point, we
change our output to y1 = [A1(t1)]./2. Assuming that A; satisfies strong tracking for g with

approximation parameter gy with respect to the fixed stream of updates ul,...,ul , we know

» U s
that Ay(t) = (1 £ &0)g(f®) for each t < t; and that yo = (1 & /2)|A;(t1)], from which we
conclude that yo = (1 £¢)g(f®) for any ¢ < t,. Similarly, since y; = [A1(t1)]e/2 we know that
y1 = (14 /e/2)A1(t1) and so y; = (1 + £)g(f*)) holds as well, that is, the new output of our
algorithm 1 is still a valid approximation at time ¢ = ¢1.

At this point, the algorithm “switches” to the instance As, and presents y; as its output
as long as As(t) = (1 £¢/2)y;. Recall that randomness of the adversary is already fixed, and
consider the sequence of updates obtained by concatenating ul, ... ,utll as defined above (these
are the updates already sent by the adversary) with the sequence u%l FEPR ,u2, to be sent by
the adversary if the output from time ¢t = t; onwards would always be y;. We condition on the
gg-strong g-tracking guarantee on As holding for this fixed sequence of updates, noting that this
is the point where the randomness of Aj is revealed. Set t = t2 as the first value of ¢ (if exists)
for which As(t) = (14¢/2)y; does not hold. We now have, similarly to above, y; = (1=£¢)g(f®)
for any t; <t < ty, and yo = (14 &)g(f*2)).

The same reasoning can be applied inductively for A,, for any p € [A;; m], to get that the
output of our algorithm y, is within a (1 & €)-multiplicative factor for any of the time steps
t=t,,t,+1,...,min{t,1—1,m}. It remains to verify that this strategy will succeed in handling
all m elements of the stream (and will not exhaust its pool of algorithm instances before then).
Indeed, this follows immediately from Lemma 3.3, applied with the parameters g,e/2, m; since
our instances of the algorithm employ (¢/20)-strong tracking for g, and our actual output is an
(e/2)-rounding of these instances, the conditions of Lemma 3.3 hold as required. |

3.2 The Bounded Computation Paths Technique

With our sketch switching technique, we showed that maintaining multiple instances of a non-
robust algorithm to estimate a function g, and switching between them when the rounded
output changes, is a recipe for a robust algorithm to estimate g. We next provide another
recipe, which keeps only one instance, whose success probability for any fixed stream is very
high; it relies on the fact that if the flip number is small, then the total number of fixed streams
that we should need to handle is also relatively small, and we will be able to union bound over
all of them. Specifically, we show that any non-robust algorithm for a function with bounded
flip number can be modified into an adversarially robust one by setting the failure probability
0 small enough.

Definition 3.7 (e-rounding for algorithms). The e-rounding of a (possibly randomized) stream-
ing algorithm A is an algorithm A’ which simulates an instance of A and runs as follows: after
the first received element, A’ return zj = [z1]c, where z; is the output of A. When the i-th
stream element is received, for ¢ > 2, the algorithm A’ feeds this element to its instance of A
and receives an output z. if (1 —¢e)z; < z/_; < (1 + €)% then the algorithm sets 2z} = 2]_;.
Otherwise, it sets z, = [#].. In both cases, the output of A’ is 2.

Note that for any fixed stream of updates (ai,A1),..., (am,An), the output sequence

/

2yy..., 2, of the e-rounding algorithm A’ is simply the e-rounding for the output sequence

Z1,...,%m of its internally maintained A-instance.
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Lemma 3.8 (Computation Paths). Fiz g: R™ — R and suppose that the output of g over any
possible stream of updates is in the range [-T,—1/T) U {0} U [1/T,T] for some T > 1. Let
A be a streaming algorithm that for any €,0 > 0 satisfies the (g,0)-strong g-tracking property
on the frequency vectors f, ..., f™) of any particular fized stream. Then the eo-rounding
algorithm A’ for A, where A is instantiated with approzimation parameter e = ©(e) and failure

probability 5o = &/ (( m(g)) . (@(6_1 log T))Ago’m(g)), is an adversarially robust algorithm for

Aso,m

(1 + &)-approzimating g(f*) in all steps t € [m], with success probability 1 — 4.

Proof. As in the proof of Lemma 3.6, we may assume the adversary to be deterministic. This
means, in particular, that the output sequence we provide to the adversary fully determines
its stream of updates (a1, Ay),...,(am,An). Take g = /20 and take A = A, m(g). Now
consider all sequences sg, s1,...,S;, where each s; is either zero, or a power of 1 + £ between
1/T(1 4+ ¢) and T(1 + €), or the negation of such a number; and moreover, the number of
i € [m] for which s; # s;_1 is at most \. By a standard counting argument, the number of such
sequences is (AEO’";(Q)) . (O(e_1 log T))Ago’m(g). Each such output sequence uniquely determines
a corresponding stream of updates for the deterministic adversary; let S be the collection of all
such streams.

Pick 69 = ¢/|S|. Taking a union bound, we conclude that with probability 1—4, A (instanti-
ated with parameters £y and dy) provides an gy-strong g-tracking guarantee for all streams in S.
We now fix the randomness of A, and assume the last event holds. For any stream of updates
((a1,A1), ..., (am,Am)) € S this fixes a corresponding output sequence (zp, ..., zn) of the al-
gorithm A. Let O be the collection of all such output sequences. Each such sequence satisfies

the conditions of Lemma 3.3, and so its €/2-rounding is a sequence (), ..., z,, where 2} # z/_;

rm
for at most A values of i € [m]. Thus, if the above event holds, then the output provided to the
adversary has at most \ distinct values (which are powers of 1+ ¢ in the relevant range). Thus,
conditioning on this event, the stream of updates which the adversary creates upon observing

the rounded outputs (z(, ..., z,,) of the algorithm A’ must by definition be in S. It follows by

the eo-strong tracking guarantee given by this event that the e/2-rounding z(,..., 2], of the
output of A is a (1 + ¢)-approximation for g on all possible adversarial streams in this setting,
i.e., all streams in S. |

4 F, Estimation

In this section, we introduce our adversarially robust Fj,, moment estimation algorithms. Recall
that F), is given by ||f|[5 = >, |fil? for p > 0. For p = 0, the Fy moment, or the number of
distinct elements, is the number of non-zero coordinates in f, that is, || f|lo = [{¢ € [n] : fi # 0}
Recall that in Corollary 3.5, we bounded the flip number of the F,, moment in insertion only
streams for any fixed p > 0 by O(pe~!logn). By using our sketch switching argument, the
strong F, tracking guarantees of [7] as stated in Lemma 2.2, we obtain our first result for
0<p<2

Theorem 4.1 (F), estimation by sketch switching). Fiz any 0 <e,6 <1 and 0 < p < 2. There
is a streaming algorithm for the insertion-only adversarial model which, with probability 1 — &,
successfully outputs at each step t € [m] a value R* such that R = (14 ¢)||f®||,. The space
used by the algorithm is

1
O (—3 lognloge ! (loge™ +log 6~ + loglog n))
5

Proof. By an application of Lemma 3.6 along with the flip number bound of Corollary 3.5 and
the strong tracking algorithm of Lemma 2.2, we immediately obtain a space complexity of

1
(@) <6—3 log? n(loge™t +log 6~ + log log n)>
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We now describe how the factor of %log n, coming from running A; ,, = @(% logn) independent
sketches in Lemma 3.6, can be improved to %log gL,

To see this, we change Algorithm 1 in the following way. Instead of @(% logn) independent
sketches, we use A\ + @(% loge™!) independent sketches, and change line 10 to state p < p+ 1
(mod A). Each time we change p to p + 1 and begin using the new sketch A, 1, we completely
restart the algorithm A, with new randomness, and run it on the remainder of the stream. The
proof of correctness in Lemma 3.6 is completely unchanged, except for the fact that now A, is
run only on a suffiz a;,aj1,..., of the stream, if j is the time step where A, is reinitialized.
Specifically, at each time step t > j, A, will produce a (1 & €) estimate of |f® — f(j_1)||p
instead of || f*)||,. However, since the sketch will not be used again until a time step # where
1f Oy > (1) fD |, = 229 £, it follows that only an € fraction of the £, mass was missed
by A,. In particular, ||f*) — fU=D|, = (1 £ £/100)||f*)]|,, and thus by giving a (1 £ £/10)
approximation of ||f*) — fU _1)Hp, the algorithm A, gives the desired (1 +¢) approximation of
the underlying ¢, norm, which is the desired result after a constant factor rescaling of €. Note
that this argument could be used for the Ly norm, or any p norm for p > 0, using a F}, strong
tracking algorithm for the relevant p. |

While for most values of §, the above theorem has better space complexity than the compu-
tation paths reduction, for the regime of very small failure probability it is actually preferable
to use the latter, as we now state. The proof is a direct application of Lemma 3.8, along
with the flip number bound of Corollary 3.5, and the O(e 2lognlog §—!) static F}, estimation
algorithm of [27]. We remark that the below complexity is optimal up to a logn term for inser-
tion only streams. The reason is that the O(1/2lognlog1/d) lower bound of [25] degrades to
O(1/€%10og 1/6) when deletions are not allowed. ©

Theorem 4.2 (F), estimation for small 6). Fiz any 0 <e <1,0<p <2, and § < n=C:logn
for a sufficiently large constant C' > 1. There is a streaming algorithm for the insertion-only

adversarial model which, with probability 1 — 0, successfully outputs at each step t € [m| a value
R! such that Rt = (1+¢)|f®|,. The required space is O (6% lognlogd1) bits.

Next, we show that for turnstile streams with F}, flip number A, we can estimate F,, with
error probability 6 = n~*. The space requirement of the algorithm is optimal for algorithms
with such failure probability §, which follows by an Q(¢~2lognlogé~!) lower bound for turnstile
algorithms [25], where the hard instance in question has small F}, flip number. 7

Theorem 4.3 (F, Estimation for A-flip number turnstile streams). Let Sy be the set of all
turnstile streams with F, flip number at most A > e (|| - ||5) for any 0 < p < 2. Then there
is an adversarially robust streaming algorithm for the class Sy of streams that, with probability
1-n= for any constant C > 0, outputs at each time step a value R such that Rt = (1+¢)| f|b.
The space used by the algorithm is O(e~2\log?n).

Proof. The proof follows by simply applying Lemma 3.8, along with the O(¢~2?lognlogé~!) bit
turnstile algorithm of [27]. [ |

In addition, we show that the F},, moment can also be robustly estimated for p > 2. In this
case, it is preferable to use our computation paths reduction, because the upper bounds for F,
moment estimation for large p yield efficiency gains when setting § to be small.

Theorem 4.4 (F), estimation, p > 2, by Computation Paths). Fiz any €,6 > 0, and any
constant p > 2. Then there is a streaming algorithm for the insertion-only adversarial model

fSpecifically, one may not apply the augmented indexing step in the reduction of [25] to delete off coordinates
in logn levels, which loses this factor in the lower bound.

"The hard instance in [25] is a stream where O(n) updates are first inserted and then deleted, thus the flip
number is at most twice the F}, flip number of an insertion only stream.
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which, with probability 1 — n~(¢198™)/e for any constant ¢ > 1, successfully outputs at every

step t € [m] a value R* such that Rt = (1 £ ¢&)|f®|,. The space used by the algorithm is
O(n'=2/P(¢=310g? n + e~%/P(log? n)?/P log n)).

Proof. We use the insertion only F, estimation algorithm of [14], which achieves
(nl_Q/p (5_2 log 6! 4+ e 4P log?? 57 log n>>

bits of space in the turnstile (and therefore insertion only) model. We can set 6 = §/m to union
bound over all steps, making it a strong Fj, tracking algorithm with

0] <n1_2/p (8_2 log(né_l) +e P IOgZ/p(ms_l) log n))

bits of space. Then by Lemma 3.8 along with the flip number bound of Corollary 3.5, the
claimed space complexity follows. |

5 Distinct Elements Estimation

We now demonstrate how our sketch switching technique can be used to estimate the number
of distinct elements, also known as Fy estimation, in an adversarial stream. In this case, since
there exist static Fy strong tracking algorithms [6] which are more efficient than repeating the
sketch log d~1 times, it will be preferable to use our sketch switching technique.

Theorem 5.1 (Robust Distinct Elements by Sketch Switching). There is an algorithm which,
when run on an adversarial insertion only stream, produces at each step t € [m] an estimate R'
such that Rt = (14 ¢)||f® o with probability at least 1 — 5. The space used by the algorithm is

loge—! sloge 14logd 1 +logl .
O( Ogj (=8 +°g€2 +log 8% + logn)) bits.

Proof. We use the insertion only distinct elements strong tracking algorithm of [6]. Specifically,

-1
(w +logn), and with probability 1—dy, successfully

the algorithm of [6] uses space O
returns an estimate R? for every step t € [m] such that Rt = (1=£¢)||f®]|o in the non-adversarial
setting. Then by application of Lemma 3.6, along with the flip number bound of O(logn/¢)

. . . logn . :
from Corollary 3.5, we obtain the space complexity with a factor of == blow-up after setting

by = @(61();”). This gives a complexity of O(lo%(1°g5_1+10g§2_1+10g10gn + logn)). To reduce

the extra log n-factor to a loge™! factor, we just apply the same argument used in the proof
of Theorem 4.1, which shows that by restarting sketches it suffices to keep only O(s~!loge™1!)
copies. |

5.1 Fast Distinct Elements Estimation

As noted earlier, there are many reasons why one may prefer one of the reductions from Section
3 to the other. In this section, we will see such a motivation. Specifically, we show that
adversarially robust Lg estimation can be accomplished with extremely fast update time using
the computation paths reduction of Lemma 3.8.

First note that the standard approach to obtaining failure probability ¢ is to repeat the
estimation algorithm logd~! times independently, and take the median output. However, this
blows up the update time by a factor of log . Thus black-box applying Lemma 3.8 by setting
0 to be small can result in a larger update time. To improve upon this, we will introduce
an insertion only distinct elements estimation algorithm, with the property that the runtime
dependency on §! is extremely small (roughly log?loglog6~!). Thus applying Lemma 3.8 on
this algorithm results in a very fast robust streaming algorithm.
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Lemma 5.2. There is a streaming algorithm which, with probability 1 — §, returns a (1 £ €)
multiplicative estimate of the number of distinct elements in an insertion only data stream. The
space required is O(l log n(loglogn+logd=1)),® and the worst case running time per update is

0 ( (log log k’g") <log log log k’g”) > )

Before stating our proof of Lemma 5.2, We will begin with the following proposition which
will allow for the fast evaluation of d-wise independent hash functions.

Proposition 5.3 ([36], Ch. 10). Let R be a ring, and let p € R[z]| be a degree d univariate
polynomial over R. Then given distinct x1,xa,...,xq € R, all the values p(xz1),p(x2),...,p(xq)
can be computed using O(dlog2 dloglogd) operations over R.

Proof of Lemma 5.2. We describe the algorithm here, as stated in Algorithm 2.

Algorithm 2: Fast non-adversarial distinct elements estimation.
Initialize Lists Lo, L1, ..., Ly < ), for t = ©(logn)
B+ 0(e2logé '), d<+ O(loglogn +logdé!)
Initialize d-wise independent hash function H : [n] — [2] such that n? < 2¢ < n3.
while Receive update (as, A¢) € [n] x Z do

Let j be such that 26771 < H(a,) < 2¢77

if L; has not been deleted then

‘ Add a; to the list L; if it is not already present.
end
If |[L;] > B for any j, delete the list L;, and never add any items to it again.

© 0w N O A W

end
Let i be the largest index such that |L;| > £ B.
Return 271 L;| as the estimate of || f||o

-
N = O

We initialize lists Lo, L1,..., Ly + (), for t = ©(logn), and hash functions H : [n] — [2¢],
where £ is set so that n? < 2¢ < n3. The lists L; will store a set of identities L; C [n] which
have occurred in the stream. We also set B < @( (loglogn +log 6—1)). For now, assume that
H is fully independent.

At each step when we see an update a; € [n] (corresponding to an update which increments
the value of f; by one), we compute j such that 2=7=! < H(a;) < 2/77. Note that this event
occurs with probability 20+, Then we add the O(log n)-bit identity a; to the list L; if
|L;| < B. Once |Ly| = B for any k € [t], we delete the entire list Ly, and never add an item to
L;, again. We call such a list Ly saturated. At the end of the stream, we find the largest value
i such that 1B < |L;|, and output 2/~}|L;| as our estimate of || f|o.

We now analyze the above algorithm. Let iy be the smallest index such that E[|L;,|] <
|| £llo2~ ot < 5(1+6)B Note here that E[|Lg|] = 2=**V| f|jo for any k € [t]. By Chernoff
bounds, with probability 1 — exp(—B) < 1 — §2/log(n) we have that |L;,| < $B. We can then
union bound over all such indices 7 > ig. This means that we will not output the estimate used
from any index i > 4p. Similarly, by a Chernoff we have that |Liy—1| = (L £ e)[|f[jo27" < 2B
and |L;,_2| = (1 £ ¢)||fllo27%"!, and moreover we have 5(1+ B < | fllo2~ %0+ < 4B meaning
that the output of our algorithm will be either |L;, 1|22 or |L;,_2|2%73, each of which yields
a (1+e) estimate. Now note that we cannot store a fully independent hash function H, but since
we only needed all events to hold with probability 1 — ©(62/log(n)), it suffices to choose H to

8We remark that it is possible to optimize the logn factor to O(logd~! + loge™" + loglogn by hashing the
identities stored in the lists of the algorithm to a domain of size poly(6~*, ™', logn). However, in our application
we will be setting 6 < 1/n, and so the resulting adversarially robust algorithm would actually be less space
efficient.

17



be a d-wise independent hash function for d = O(loglogn+1log 6~ 1), which yields Chernoff-style
tail inequalities with a decay rate of exp(—Q(d)) (see e.g. Theorem 5 of [35]).

Now to analyze the space bound. Trivially, we store at most O(logn) lists L;, each of
which stores at most B identities which require O(logn) bits each to store, yielding a total
complexity of O(EL2 log? n(loglogn + log d~1)). We now show however that at any given step,
there are at most O(B loglogn) many identities stored in all of the active lists. To see this, let
ip < i1 < -+ < is be the time steps such that || f(4)||g = 2/+1 . B, and note that s < log(n) + 1.
Note that before time iy, at most B identities are stored in the union of the lists. First, on
time step 4; for any j € [s], the expected size of |L;_s| is at least 2|B| (had we never deleted
saturated lists), and, with probability 1 — (§/logn)!? after a union bound, it holds that |L;|
is saturated for all 7/ < j — 2. Moreover, note that the expected number of identities written
to lists Lj» with j/ > j — 1 is 1 £8)]j0 3,5, 277F1+ < 2B, and is at most 4B with probability
at least 1 — (§/logn)!? (using the d-wise independence of H). We conclude that on time step
t;, the total space being used is O(Blogn) with probability at least 1 — (§/logn)'’, so we can
union bound over all such steps i; for j € [s].

Next, we must analyze the space usage at steps 7 for i; < 7 < 4;41. Note that the number
of new distinct items which occur over all such time steps 7 is at most 2771 . B by definition.
Since we already conditioned on the fat that |Lj| is saturated for all j* < j — 2, it follows
that each new item is written into a list with probability at most 277. Thus the expected
number of items which are written into lists within times 7 satisfying i; < 7 < 4j41 is 27 -
B -277 = B in expectation, and at most 4B with probability 1 — (§/logn)'? (again using the
d-wise Independence of H). Conditioned on this, the total space used in these steps is at most
O(Blogn) = O(gl2 log n(loglogn + logd)) in this interval, and we then can union bound over
all such O(logn) intervals, which yields the desired space.

Update Time: Finally, for the update time, note that at each stream update a; € [n] the
first step of the algorithm. Naively, computing a d-wise independent hash function requires O(d)
arithmetic operations (in the standard RAM model), because H in this case is just a polynomial
of degree d over Z. On the other hand, we can batch sequences of d = O(loglogn + log 1)
computations together, which require an additive O(dlogn) = O(log n(loglogn +log §—1)) bits
of space at any given time step to store (which is dominated by the prior space complexity). Then
by Proposition 5.3, all d hash function evaluations can be carried out in O(dlog2 dloglogd) =
O(dlog?(log 10%)bg logloglog %) time. The work can then be evenly distributed over the
following d steps, giving a worst case update time of O(log?(log lo%)log logloglog %). Note
that this delays the reporting of the algorithm for the contribution of updates by a total of d
steps, causing an additive d error. However, this is only an issue if d > ¢|| f||o, which occurs only
when || f|lo > 2d. Thus for the first D = O(¢~*d) distinct items, we can store the non-zero items
exactly (and deterministically), and use the output of this deterministic algorithm. The space
required for this is O(e~!log(n)(loglogn + log 1), which is dominated by the space usage of
the algorithm overall. After D distinct items have been seen, we switch over to using the output
of the randomized algorithm described here. Finally, the only other operation involves adding
an identities to at most one list per update, which is O(1) time, which completes the proof. W

We can use the prior result of Lemma 5.2, along with our argument for union bounding
over adversarial computation paths of Lemma 3.8 and the flip number bound of Corollary 3.5,
which results in an adversarially robust streaming algorithm for distinct elements estimation
with extremely fast update time.

Theorem 5.4. There is a streaming algorithm which, with probability 1 — n=(C/2)108n for any

constant C' > 1, when run on an adversarial chosen insertion-only data stream, returns a (1+¢)

multiplicative estimate of the number of distinct elements at every step in the stream. The space
required is O(EL3 log® n), and the worst case running time is O (<log2 log 10%) . <10g log log 10%))

per update.
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6 Heavy Hitters

In this section, we study the popular heavy-hitters problem in data streams. The heavy hitters
problem tasks the algorithm with recovering the largest items in a data-set. Stated simply, the
goal is to report a list S of items f; that appear least T times, meaning f; > 7, for a given
threshold 7. Generally, 7 is parameterized in terms of the L, norm of the frequency vector f,
so that 7 = €||f|l,. For p > 2, this problem is known to take polynomial space [29]. Thus,
the strongest such guarantee that can be given in sub-polynomial space is known as the Lo
guarantee:

Definition 6.1. A streaming algorithm is said to solve the (g,d)-heavy hitters problem with
the Ly guarantee if the algorithm, when run on a stream with frequency vector f € R™, outputs
a set S C [n] such that with probability 1—¢ the following holds: for every i € [n] if | f;| > || f]]2
then i € S, and if | f;| < (¢/2)]|f]|2 then i ¢ S.

We will also introduce the related task of e-point queries.

Definition 6.2. A streaming algorithm is said to solve the (g,d) point query problem with the
Lo guarantee if with probability 1 — §, at every time step ¢ € [m], for each coordinate i € [n]

it can output an estimate j/’;t such that |j/’;t - fi(t)| < e||f®||o. Equivalently, it outputs a vector
Ft € R™ such that || f® — ft|o < ]| f®]]2.2

Notice that for any algorithm that solves the (e,d)-point query problem, if it also has
estimates R* = (1+¢/10)||f®||2 at each time step ¢ € [m], then it immediately gives a solution
to the (¢,0) heavy hitters problem by just outputting all i € [n] with f! > (3/4)eR!. Thus
solving (g, 0)-point queries, together with Fj tracking, is a stronger property. In the following,
we say that f! is e-correct at time ¢ if |f®) — f?||oo < e[| f@]f2.

In this section, we demonstrate how this fundamental task of point query estimation can
be accomplished robustly in the adversarial setting. Note that we have already shown how Fy
tracking can be accomplished in the adversarial model, so our focus will be on point queries.
Our algorithm relies on a similar sketch switching technique as used in Lemma 3.6, which
systematically hides randomness from the adversary by only publishing a new estimate .]/& when
absolutely necessary. To define what is meant by “absolutely necessary”, we will first need the
following Proposition.

Proposition 6.3. Suppose that ft € R" is e-correct at time t on an insertion only stream, and
let t; >t be any time step such that ||f¢) — fO|y < ¢||f®||loo. Then ft is 2e-correct at time
t1.

Proof. ||f* = f™lec < IF' = fOllo + 1) = fOlloe < el f Ol + [ fOl2 < 26| f®)]o. ™

To prove the main theorem of Section 6, we will need the classic count-sketch algorithm for
finding Lo heavy hitters [10], which solves the more general point query problem in the static
setting with high probability.

Lemma 6.4 ([10]). There is a streaming algorithm in the non-adversarial insertion only model
which solves the (,0) point query problem, using O(EL2 lognlog %) bits of space.

We are now ready to prove the main theorem of this section.

Theorem 6.5. Fix any ¢,0 > 0. There is a streaming algorithm in the adversarial insertion

only model which solves the (e,n~C) point query problem, and also the O(e,n~)-heavy hitters

problem, for any constant C' > 1. The algorithm uses O(loge—‘f,,_1 log? n) bits of space.

9We note that a stronger form of error is possible, called the tail guarantee, which does not count the con-
tribution of the top 1/&? largest coordinates to the error e/ f||2. We restrict to the simpler version of the Lo
guarantee.
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Proof. Since we already know how to obtain estimates Rt = (1 4 ¢/100)||f®]» at each time
step t € [m] in the adversarial insertion only model within the required space, it will suffice to
show that we can obtain estimates ft which are e-correct at each time step ¢ (i.e., it will suffice
to solve the point query problem). Let 1 = tl,tz, coostp =m for T = O(e logn) be any set

of time steps such that || f(e+1) — fla)]||, < €Hf at)||y for each i € [T — 1]. Then by Proposition
6.3, we know that if we output a estimate fl on time t; which is e-correct for time t,, then fZ
will still be 2e correct at time ¢;5.1. Thus our approach will be to output vectors f*, £l f s f ,

such that we output the estimate fl € R™ at all times 7 such that ¢; < 7; < ¢;41, and such that
f is e-correct for time ;.

First, to find the time steps t;, we run the adversarially robust F5 estimator of Theorem
4.1, which gives an estimate R* = (14 ¢/100)||f® ]|, at each time step ¢ € [m] with probability
1—n~¢ for any constant C' > 1, and uses space O (¢ ™3 log? nlog £~1). Notice that this also gives
the required estimates R’ as stated above. By using an €/2-rounding (Definition 3.7) of the
output of this F5 estimation algorithm, we obtain our desired points ¢;. Notice that this also
gives T = O(e!logn) as needed, by the flip number bound of Corollary 3.5. Next, to obtain
the desired € point query estimators at each time step t;, we run T independent copies of the
point query estimation algorithm of Lemma 6.4. At time t;, we use the output vector of the
i-th copy as our estimate ]/C\Z, which will also be used without any modification on all times 7
with t; < 7 < t;41. Since each copy of the algorithm only reveals any of its randomness at time
t;, at which point it is never used again, by the same argument as Lemma 3.6 it follows that
each ﬁ will be e-correct for time ;. Namely, since the set of stream updates on times 1,2, ... t;
are independent of the randomness used in the i-th copy of point-estimation algorithm, we can
deterministically fix the updates on these time steps, and condition on the i-th copy of the
non-adversarial streaming algorithm being correct on these updates. Therefore this algorithm
correctly solves the 2e point query problem on an adversarial stream. The total space used is

O (8_3 log? nloge™! + Te 2log? n)

We now note that we can improve the space by instead running only 77 = O(e !loge™!)
independent copies of the algorithm of Lemma 6.4. Each time we use one of the copies to
output the desired estimate fl we completely restart that algorithm on the remaining suffix of
the stream, and we loop modularly through all 7" copies of the algorithm, at each step using
the copy that was least recently restarted to output an estimate vector. More formally, we
keep copies Aj, ..., Ay of the of the algorithm of Lemma 6.4. Each time we arrive at a new
step ¢; and must produce a new estimate .]/C\Z, we query the algorithm A; that was least recently
restarted, and use the estimate obtained by that algorithm, along with the estimates R'.

The same correctness argument will hold as given above, except now each algorithm, when
used after being restarted at least once, will only be e-correct for the frequency vector defined
by a suffiz of the stream. However, by the same argument used in Theorem 4.1, we can safely
disregard the prefix that was missed by this copy of the algorithm, because it contains only an
£/100-fraction of the total L, mass of the current frequency vector when it is applied again.
Formally, if an algorithm is used again at time ¢;, and it was last restarted at time 7, then by the

correctness of our estimates R!, the Ly norm must have gone up. by a factor of (1+¢)7 T — 100 , SO
Hf () |2 < 5 / 100]| f (t:) |l2. Moreover, we have that the estimate fl produced by this copy samsﬁes
||f2 ( f(T Moo <5||f(t')— T)||2 But then
IF = £ oo < IF = (£ = 7)o + 177

< el £ = £l + 117

<& (I + 1 Dll2) + /100 £ (1)

< e f9)l2(1 + ) + /100[1£ 15

< 2| F 2
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Thus f’ is still 2e-correct at time t; for the full stream vector f*). So by the same argument
as above using Proposition 6.3, it follows that the output of the overall algorithm is always
4e-correct for all time steps 7 € [m], and we can then resale ¢ by a factor of 1/4. Substituting
the new number T” of copies used into the above equation, we obtain the desired complexity. W

7 Entropy Estimation

We now show how our general techniques developed in Section 3 can be used to approximate
the empirical Shannon entropy H(f) of an adversarial stream. Recall that for a non-zero vector

f, we have that H(f) = — Zi7fﬁé0 p; log(p;), where p; = ”‘J{ﬁ‘l. Also recall that for o > 0, the

a-Renyi Entropy H,(z) of x is given by H,(x) = log (Hi”%) /(1 —a).
1
We begin with the following observation, which will allow us to consider multiplicative
approximation of 2/(*) Then, by carefully bounding the flip number of the Renyi entropy Hy,

for « close to 1, we will be able to bound the flip number of H.

Remark. Note that any algorithm that gives an e-additive approximation of the Shannon
Entropy H(z) : R* — R gives a (1 + &) multiplicative approximation of g(z) = 2#(*) and
vice-versa.

Proposition 7.1 (Theorem 3.1 of [21]). Let x € R™ be a probability distribution whose smallest
non-zero value is at least %, where m > mn. Let 0 < e < 1 be arbitrary. Define u = ¢/(4logm)
and v =c¢/(4lognlogm), a =14 p/(16log(1/u)) and 5 =1+ v/(16log(1/v)). Then

H
1§f§1+6 and 0 < H —Hg<e¢
Proposition 7.2. Let g : RN — R be g(z) = 21, j.e., the exponential of the Shannon

entropy. Then the (e, m)-flip number of g for the insertion only streaming model is Aem(g) =
O(ai3 log®m).

The proof of the above proposition is given later in this section. We now state the main
result on adversarially robust entropy estimation.

Theorem 7.3 (Robust Additive Entropy Estimation). There is an algorithm for e-additive
approzimation of entropy in the insertion-only adversarial streaming model using O(EL5 log* n)-
bits of space in the random oracle model, and O(al5 log® n)-bits of space in the general insertion-
only model.

To obtain our entropy estimation algorithm of Theorem 7.3, we will first need to state the
results for the state of the art non-adversarial streaming algorithms for additive entropy estima-
tion. The first algorithm is a O(e~2 log? n)-bit streaming algorithm for additive approximation
of the entropy of a turnstile stream, which in particular holds for insertion only streams. The
second result is a O(l /%) upper bound for entropy estimation in the insertion only model when
a random oracle is given. Recall that the random oracle model of streaming means that the
algorithm is given random (read-only) access to an arbitrarily large string of random bits.

Lemma 7.4 ([11]). There is an algorithm in the strict turnstile model that gives a e-additive
approximation to the Shannon Entropy H(f) of the stream. The failure probability is §, and the
space required is O(ai2 log®nlog6~1) bits.

Lemma 7.5 ([23]). There is an algorithm in the insertion-only random oracle model that gives
a e-additive approximation to the Shannon Entropy H(f) of the stream. The failure probability
is 0, and the space required is O(E%(log 61 +loglogn + loge™1))
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We now give the proof of Proposition 7.2, and then the main Theorem 7.3.

Proof of Proposition 7.2. By Proposition 7.1, it suffices to get a bound on the flip number of Hg
for the parameters 8 = 1+ v/(161log(1/v)) and v = ¢/(4log nlogm). Recall g(x) = 21s() =
(H:c||g/||x\|f)1/(1_ﬁ). Now to increase g(z) by a factor of (1+¢), one must increase HCEHg/Hfo by
a factor of (1+0©(e(1—p3)). For this to happen, ||z||s must increase by a factor of (1+0(e(1—2)).
Since ||z]|s < ||z|l1 < n'" Y8 z|l1 = (1 + O(e/logn))||z||1, and thus ||z|; must also increase by
a factor of (1+O(g)(1 — p)).

Similarly, for g(x) to decrease by a factor of (1+¢), this requires ||z||; to increase by a factor
of (14 O(g(1 - f)). In summary, for g(z) to change by a factor of (1 +¢), ||z||; must increase
by a factor of (1 + ©((1 — f)) = (1 + 7), where 7 = ©(2/1log?n). ||f™]|1 < Mn and | - |1
is monotone for insertion only streams, it follows that this can occur at most O(IOEQ") times,
which completes the proof since logn = O(logm). |

Proof of Theorem 7.3. The proof follows directly from an application of Lemma 3.6, using the
non-adversarial algorithms of Lemmas 7.4 and 7.5, as well as the flip number bound of Lemma
7.2. Note that to turn the algorithms of Lemmas 7.4 and 7.5 into tracking algorithms, one must
set & < 1/m, which yields the stated complexity. |

8 Bounded Deletion Streams

In this section, we show how our results can be used to obtain adversarially robust streaming
algorithms for the bounded-deletion model, introduced in [22]. The bounded deletion model
serves as an intermediate model between the turnstile and insertion only model. Motivated by
common lower bounds for turnstile streams, which utilize seemingly unrealistic hard instances
that insert a large number of items before deleting nearly all of them, bounded deletion streams
are possibly a more representative model for real world data-streams. Intuitively, a bounded
deletion stream is one where the F,, moment of the stream is a é fraction of what the F}, moment
would have been had all updates been replaced with their absolute values, meaning that the
stream does not delete off an arbitrary amount of the F), weight that it adds over the course of

the stream. Formally, the model is as follows.

Definition 8.1. Fix any p > 1 and a > 1. A data stream ug, ..., Uy, where u; = (a;, A;) €
[n] x {1, —1} are the updates to the frequency vector f, is said to be an F}, a-bounded deletion
stream if at every time step t € [m] we have || f®|} > 1 Z?ﬂ(zt,q:at,:i |Ay])P.

Specifically, the a-bounded deletion property says that the Fj, moment || f®)||,, of the stream
is at least éHh(t)Hp, where h is the frequency vector of the stream with updates u; = (a;, Af)
where A} = |A;| (i.e., the absolute value stream). Note here that the model assumes unit
updates, i.e., we have |A;| = 1 for each i € [m], which can be accomplished without loss of
generality with respect to the space complexity of algorithms, by simply duplicating integral
updates into unit updates.

In [22], the authors show that for a-bounded deletion streams, a factor of logn in the space
complexity of turnstile algorithms can be replaced with a factor of log « for many important
streaming problems. In this section, we show another useful property of bounded-deletion
streams: norms in such streams have bounded flip number. We use this fact to design adver-
sarially robust streaming algorithms for data streams with bounded deletions.

Lemma 8.2. Fiz any p > 1. The A. (|| - ||lp) flip number of the L, norm of a a-bounded
deletion stream is at most O(pZ; logn)

Proof. Let h be the frequency vector of the stream with updates u; = (a;, A}) where Al = |A;].
Note that h is then the frequency vector of an insertion only stream. Now let 0 < t1 < to <
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-+ < 1}, < m be any set of time steps such that || f*)]|, ¢ (14 ¢)||f*+1)]|, for each i € [k — 1].
Since by definition of the a-bounded deletion property, we have || f® ||, > all —[|h®|, for each
t > T, it follows that

, . , , ) € ) eP ,
£ — |, > | ), —  FE ] > el fEe) ), > m\lh(t””\lp > mllh(t”\lp (2)

Where in the last inequality we used the fact that A is an insertion only stream. Now since
the updates to h are the absolute value of the updates to f, we also have that ||a{ti+1) —pta)||b >
| 7s) = FOE > Z[RCO]E. Thus

. . . . . . _ eP .
R = 3D 4 (1) = BODY 7 > )7 4+ o) — B > (1 4+ YA (3)

Where in the second inequality, we used the fact that | X +Y||b > || X||p?+||Y||} for non-negative
integral vectors X,Y when p > 1. Thus [|A(+1)||5 must increase by a factor of (1 + &P /a) from
|hE) B whenever ||f®)], ¢ (14 ¢)|f%+1)],. Since ||O||5 =0, and ||R™) |} < MPn < ncF for
some constant ¢ > 0, it follows that this can occur at most O(p;ip logn) many times. Thus
k = O(pZ logn), which completes the proof. |

We now use our computation paths technique of Lemma 3.8, along with the space opti-
mal turnstile F), estimation algorithm of [27], to obtain adversarially robust algorithms for
a-bounded deletion streams. Specifically, we show that we can estimate the F,, moment of a
bounded deletion stream robustly. We remark that once F» moment estimation can be done,
one can similarly solve the heavy hitters problem in the robust model using a similar argument
as in Section 6, except without the optimization used within the proof of Theorem 6.5 which
restarts sketches on a suffix of the stream. The result the space would be precisely a < logn
factor larger than the space stated in Theorem 6.5.

Theorem 8.3. Fix p € [1,2] and any constant C > 1. Then there is an adversarially robust
F, estimation algorithm which, with probability 1 — n=C, returns at each time step t € [m] an
estimate Rt such that Rt = (14¢)||f®||b. The space used by the algorithm is O(ae™*P) log3 n).

Proof of Theorem 8.3. We use the turnstile algorithm of [27], which gives a estimate R! = (1 &
IfD|b at a single point t € [m] with probability 1— 4, using O(¢~2lognlog §~1) bits of space.
We can set § = 1/poly(m), and union bound over all steps, to obtain that R = (1+¢)||f®|5 at
all time steps ¢ € [m] with probability 1 —n~¢. Thus this gives a strong F), tracking algorithm
using O(e 2 lognlog(n/d)) bits of space. The theorem then follows from applying Lemma 3.8,
along with the flip number bound of Lemma 8.2. |

9 Adversarial Attack Against the AMS Sketch

It was shown by Hardt and Woodruff [20] that linear sketches can in some cases be vulnerable
to adaptive adversarial attacks (see Subsection 1.2). In this section, we show another instance
of this phenomenon, demonstrating that the classic Alon-Matias-Szegedy (AMS) sketch [3] for
estimating the Lo norm of a data stream is inherently non-robust. To this end, we describe an
attack fooling the AMS sketch into outputting a value which is not a good approximation of
the norm ||f||3 of the frequency vector. Our attack provides an even stronger guarantee: for
any r > 1 and an AMS sketch with 7/? rows, our adversary needs to only create O(r) adaptive
stream updates before it can fool the AMS sketch into outputting an incorrect result.

We first recall the AMS sketch for estimating the Ly norm. The AMS sketch generates (im-
plicitly) a random matrix A € R™™ such that the entries 4; ; ~ {—1,1} are i.i.d. Rademacher.!?

107 fact, the AMS sketch works even if the entries within a row of A are only 4-wise independent. Here, we
show an attack against the AMS sketch if it is allowed to store a fully independent sketch A.
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The algorithm stores the sketch Af\) at each time step j, and since the sketch is linear it can
be updated throughout the stream: AfU+D = Af0U) 4+ 4. €i;1 Ajy1 where (ij41,Aj41) is the
j + 1-st update. The estimate of the sketch at time j is %||Af(j)||%, which is guaranteed to be
with good probability a (1 =+ ¢) estimate of || £9)|| in non-adversarial streams if t = ©(s~2).

We now describe our attack. Let S be a t x n Alon-Matias-Szegedy sketch. Equivalently,
S; ; is i.i.d. uniformly distributed in {—¢=1/2,¢71/2} and the estimate of AMS is || S\ |3 at the
j-th step. The protocol for the adversary is as follows. In the following, we let e; € R™ denote
the standard basis vector which is zero everywhere except the i-th coordinate, where it has the
value 1.

Algorithm 3: Adversary for AMS sketch

1w« C-t-e

2 for 1=2,...,mdo

3 old « ||Sw||3

4 W 4— W+ €;

5 new < ||Sw||3

6 if new— old < 1 then

7 ‘ w < w + Se;

8 end

9 else if new— old =1 then
10 ‘ with probability 1/2, set w < w + Se;
11 end

12 end

Note that the vector w in the above algorithm is always equal to the current frequency
vector of the stream, namely w = f) after the j-th update. Note that the above algorithm can
be implemented by an adversary who only is giving the estimate ||Swl||3 = ||Sf")||3 of the AMS
sketch after every step j in the stream. To see this, note that the algorithm begins by inserting
the first item (i1, A1) = (1,C - /1) for a sufficiently large constant C. Next, for i = 2,...,n, it
inserts the item ¢ € [n] once if doing so increases the estimate of AMS by more than 1. If the
estimate of AMS is increased by less than 1, it inserts the item ¢ twice (i.e., it inserts an update
(7,2) € [n] x Z). Lastly, if inserting the item ¢ € [n] increases the estimate of AMS by ezactly
1, the adversary chooses to insert ¢ € [n] once with probability 1/2, otherwise it inserts i € [n]
twice.

We now claim that at the end of a stream of m = O(t) updates, with good probability
|w|i3 = [|SF™|3 ¢ (14¢)||f™|3. In fact, we show that regardless of the number of rows ¢ in
the AMS sketch, we force the AMS to give a solution that is not even a 2-approximation.

Theorem 9.1. Let S € R™™ be an AMS sketch (i.i.d. Rademacher matriz scaled by t=1/2),
where 1 < t < n/c for some constant c. Suppose further that the adversary performs the
adaptive updates as described in Algorithm 8. Then with probability 9/10, by the m-th stream
update for some m = O(t), the AMS estimate ||Sf" |3 of the norm ||f™ |3 of the frequency
vector f defined by the stream fails to be a (14 1/2) approzimation of the true norm || f™||3.
Specifically, we will have ||SfT™ |3 < || £33

Proof. For j = 2,3... we say that the j-th step of Algorithm 3 is the step in the for loop
where the parameter ¢ is equal to j, and we define the first step to just be the state of the
stream after line 1 of Algorithm 3. Let w’ be the state of the frequency vector at the end of
the i-th step of the for loop in Algorithm 3, let y* = Sw’ be the AMS sketch at this step, and
let s; = ||Sw||3 be the estimate of AMS at the same point. Note that we have w! = C -/t e
for a sufficiently large constant C, and thus s; = C?t. That is, already on the first step of the

24



algorithm we have ||w!||3 = C?t, and moreover since the stream is insertion only, we always
have ||w'||3 > C?t. Thus, it suffices to show that with good probability, at some time step i > 2
we will have s; < C?t/2.

First, note that at any step i = 2,3,. .., if we add Se;,1 once, we have 5,11 = ||y*+Se; 1|3 =
23:1((@/;)2 +2y5Sji + 1/t) = s+ 14 222»:1 yiSjiv1. If we add Se;ip twice, we have
siv1 = ||yt +2Sei11]3 =5 +4+ 42?21 y;Sj7i+1. By definition of the algorithm, we choose to
insert Se; 1 twice if ||y + Se;11]|3 —s; = 1 +2 22:1 y}SMH < 1, or more compactly whenever
22‘:1 y}SLHl < 0. If 22:1 y§5j7i+1 > 0, we insert Se;;1 only once. Finally, if 22‘:1 yéSLHl
= 0, we flip an unbiased coin, and choose to insert Se;y; either once or twice with equal
probability 1/2. Now observe that the random variable 22:1 yi»Sj,iJrl is symmetric, since for

‘ J
any fixed y* the S;j;11’s are symmetric and independent. Thus, we have that

t t
EH Z y§5j7i+1‘] = E[Z y;Sj7i+1 | Se;11 inserted once]
j=1 J=1

t
= —E[ZyﬁSMH | Se;11 inserted twice]
j=1

Now recall that the vector Si ;41 given by the (i 4+ 1)-st column of S is just an ii.d.
Rademacher vector scaled by 1/v/t. Thus by the classic Khintchine inequality [19], we have
that E[| 23»:1 y§5j7i+1|] = % - ||ytll2 = ay/5:/V/t for some absolute constant o > 0 (in fact,

o > 1/4/2 suffices by Theorem 1.1 of [19]). Putting these pieces together, the expectation of
the estimate of AMS is then as follows:

Elsiy1] = %(si +1 —1—204%) + %(Si +4_4a\\/[§)

=5, +5/2 —ay/si/t (5)
< s +5/2—\/s:/2

Where again the last line holds using the fact that o > 1/v/2. Thus E[s;11] = E[s;] + 5/2 —
E[y/si/2t]. First, suppose there exists some i < C?t 4 2 such that E[,/5;] < C/t/200. This
implies by definition that /7 - Pr[s; = j] < C'/t/200, thus

VC2/2 - Prls; > CPtj2 < Y \/j - Pr[si = j] < 1/C?t/200 (6)

7>C?%t/2

Which implies that Pr[s; > C?t/2] < 1/10. Thus, on that step i, we have Pr[s; < C%t/2] >
9/10, and thus by time step i we have fooled the AMS sketch with probability at least 9/10.
Thus, we can assume that for all i = 2,3,...,(C%t + 2) we have E[,/s5;] > C4/t/200. Setting
C > 200, we have that E[s;11] < E[s;] — 1 for all steps i = 2,3,...,(C%* + 2) However,
since s; = C?t, this implies that E[sc2, 19] < —1, which is impossible since s; is always the
value of a norm. This is a contradiction, which implies that such an i with i < C%t + 2 and
Pr[s; > C?t/2] < 1/10 must exist, demonstrating that we fool the AMS sketch by this step
with probability 9/10, which completes the proof. |

10 Optimal Distinct Elements via Cryptographic Assumptions

Estimating the number of distinct elements (Fp-estimation) in a data stream is a fundamental
problem in databases, network traffic monitoring, query optimization, data mining, and more.
After a long line of work, [37, 28] settled space (and time) complexities of Fy-estimation by
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giving an algorithm using O(e¢~2 + logn) bits of space (with constant worst-case update time).
The tracking version of this algorithm (where it outputs a correct estimate at each time step)
takes memory O(c~2(loge™! + loglogn) + log n) bits and is also optimal [6].

However, these results only hold in the (standard) static setting. We show that using
cryptographic tools (pseudorandom functions), we can transform this algorithm, using the same
amount of memory to be robust in the adversarial setting as well, where the adversary is assumed
to be computationally bounded (as opposed to our other results which have no assumptions on
the adversary whatsoever).

The transformation actually works for a large class of streaming algorithms. Namely, any
algorithm such that when given an element that appeared before, does not change its state at all
(with probability 1). Since the Fy tracking algorithm of [6] has this property, we can black-box
apply our results to this algorithm.

First, we show how this transformation works assuming the existence of a truly random
function, where the streaming algorithm has access to the function without needing to store
it explicitly (the memory is free). Recall that this is known as the random oracle model of
streaming, as such a function can be represented by a sufficiently long string of random bits.
The model is appealing since we have different heuristic functions (such as the SHA-X family)
that behave, as far as we can tell in practice, like random functions. Moreover, there is no
memory cost when using them. Nevertheless, we discuss how to implement such a function
with cryptographic tools (pseudorandom functions) and storing only a small secret key in the
memory.

Theorem 10.1 (Robust Distinct Elements by Cryptographic Assumptions). In the random
oracle model, there is an Fy-estimation (tracking) streaming algorithm in the adversarial setting,
that for an approzimation parameter ¢ uses O(e~2(log 1/ + loglogn) + logn) bits of memory,
and succeeds with probability 3/4.

Moreover, under a suitable cryptographic assumption, assuming the adversary has bounded
running time of n¢, where m is the stream length and c is fized, the random oracle can be
replaced with a concrete function and the total memory is O(¢~2(log1/e + loglogn) + clogn).

Proof. For simplicity, in the following proof we assume that we have a random permutation.
We note that the proof with a random function is exactly the same conditioned on not having
any collisions. If the random function maps the universe to a large enough domain (say of size
at least m?) then there will be no collisions with high probability. Thus, it suffices to consider
permutations.

The solution is inspired by the work of [34] (which had a similar adaptive issue in the context
of Bloom filters). Let II be a truly random permutation, and let S be a tracking steaming
algorithm with parameter . Let L(e,n) be the memory consumption of the algorithm. We
construct an algorithm S’ that works in the adversarial setting as follows. Upon receiving an
element x the algorithm S’ computes 2/ = II(z) and feeds it to S. The output of S’ is exactly
the output of S. Notice that applying II to the stream does not change the number of distinct
elements.

We sketch the proof. Assume towards a contradiction that there is adaptive adversary A’ for

S’. Consider the adversary A’ at some point in time ¢, where the stream is currently z1, ..., ;.
It has two options: (i) it can choose an element x;, where ¢ € [t] that appeared before, or (ii)
it could choose a new element z* ¢ {x1,...,x;}. Since the state of S’ does not change when

receiving duplicate items, and also does not change the number of distinct elements, option (i)
has no effect on the success probability of A’. Thus, in order to gain a chance of winning A’
must submit a new query. Thus, we can assume without loss of generality that A’ submits only
distinct elements.

For such an adversary A’ let D; be the distribution over states of S’ at time ¢. Let D; be the
distribution over states of S’ for the fixed sequence 1,2, ...,t. We claim that D; = D; (identical
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distributions) for every t € [m]. We show this by induction. The first query is non-adaptive,
denote it by x1. Then, since IT is a random permutation, we get that II(1) = II(x;) which is
what is fed to S. Thus, the two distribution are identical. Assume it holds for ¢ — 1. Consider
the next query of the adversary (recall that we assumed that this is a new query). Then, for any
x¢ (that has not been previously queried by IT) the distribution of II(x;) = II(¢), and therefore
we get that D, = Dj.

Given the claim above, we get that A’ is equivalent to a static adversary A that outputs
1,2,...,k for some k € [m]. However, the choice of k£ might be adaptive. We need to show that
S’ works for all k simultaneously. Here we use the fact that S was a tracking algorithm (and
thus also S’), which means that S’ succeeds on every timestep. Thus, for the stream 1,2,...,m
the algorithm S’ succeeds at timestamp k which consists of k& distinct elements. Thus, if there
exists an adaptive choice of k that would make S’ fail, then there would exist a point in time,
k, such that S’ fails at 1,..., k. Since S is tracking, such a point does not exist (w.h.p. ).

For the second part of the theorem, we note that we can implement the random function
using an exponentially secure pseudorandom function (see [17] for the precise definition and
discussion). For a key K of size A, the pesudorandom function Fg(-) looks random to an
adversary that has oracle access to Fi(-) and runs in time at most 27* for some constant v > 0.
Let A be an adversary that runs in time at most n¢. Then, we set O(A = 1/v - ¢-logn) and
get that A cannot distinguish between Fi(-) and the truly random function except when a
negligible probability event occurs (i.e., the affect on ¢ is negligible and hidden in constants).
Indeed, if A would be able to succeed against S’ when using the oracle Fi(-), but, as we saw,
it does not succeed when using a truly random function, then A’ could be used to break the
security of the pseudorandom function.

There are many different ways to concretely implement such a pseudorandom function with
exponential security. First, one could use heuristic (and extremely fast) functions such as AES
or SHA256 (see also [34] for a discussion on fast implementations of AES in the context of hash
functions). Next, one can assume that the discrete logarithm problem (see [30] for the precise
definition) over a group of size g is exponentially hard. Indeed, the best known algorithm for
the problem runs in time O(,/q). Setting ¢ > 2) gets us the desired property for v = 1/2.

To complete the proof, we note that the only property of A we needed was that when given
an element in the stream that has appeared before, A does not change its state at all. This
property holds for many Fjy estimation algorithms, such as the one-shot F{y algorithm of [28],
and the Fj tracking algorithm of [6]. Thus we can simply use the Fj tracking algorithm of [6],
which results in the space complexity as stated in the theorem. |
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