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Abstract

Adaptive sampling is a useful algorithmic tool for data summarization problems in the clas-
sical centralized setting, where the entire dataset is available to the single processor performing
the computation. Adaptive sampling repeatedly selects rows of an underlying matrix A ∈ R

n×d,
where n≫ d, with probabilities proportional to their distances to the subspace of the previously
selected rows. Intuitively, adaptive sampling seems to be limited to trivial multi-pass algorithms
in the streaming model of computation due to its inherently sequential nature of assigning sam-
pling probabilities to each row only after the previous iteration is completed. Surprisingly, we
show this is not the case by giving the first one-pass algorithms for adaptive sampling on turnstile
streams and using space poly(d, k, logn), where k is the number of adaptive sampling rounds to
be performed.

Our adaptive sampling procedure has a number of applications to various data summariza-
tion problems that either improve state-of-the-art or have only been previously studied in the
more relaxed row-arrival model. We give the first relative-error algorithm for column subset
selection on turnstile streams. We show our adaptive sampling algorithm also gives the first
relative-error algorithm for subspace approximation on turnstile streams that returns k noisy
rows of A. The quality of the output can be improved to a (1+ ǫ)-approximation at the tradeoff
of a bicriteria algorithm that outputs a larger number of rows. We then give the first algorithm
for projective clustering on turnstile streams that uses space sublinear in n. In fact, we use space
poly

(
d, k, s, 1

ǫ
, logn

)
to output a (1+ ǫ)-approximation, where s is the number of k-dimensional

subspaces. Our adaptive sampling primitive also provides the first algorithm for volume max-
imization on turnstile streams. We complement our volume maximization algorithmic results
with lower bounds that are tight up to lower order terms, even for multi-pass algorithms. By
a similar construction, we also obtain lower bounds for volume maximization in the row-arrival
model, which we match with competitive upper bounds.
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1 Introduction

Data summarization is a fundamental task in data mining, machine learning, statistics, and ap-
plied mathematics. The goal is to find a set S of k rows of a matrix A ∈ R

n×d that optimizes
some predetermined function that quantifies how well S represents A. For example, row subset
selection seeks S to well-approximate A with respect to the spectral or Frobenius norm, subspace
approximation asks to minimize the sum of the distances of the rows of A from S, while volume
maximization wants to maximize the volume of the parallelepiped spanned by the rows of S. Due
to their applications in data science, data summarization problems are particularly attractive to
study for big data models.

The streaming model of computation is an increasingly popular model for describing large
datasets whose overwhelming size places restrictions on space available to algorithms. For turnstile
streams that implicitly define A, the matrix initially starts as the all zeros matrix and receives
a large number of updates to its coordinates. Once the updates are processed, they cannot be
accessed again and hence any information not stored is lost forever. The goal is then to perform
some data summarization task after the stream is completed without storing A in its entirety.

Adaptive sampling is a useful algorithmic paradigm that yields many data summarization al-
gorithms in the centralized setting [DV06, DV07, DRVW06]. The idea is that S begins as the

empty set and some row Ai of A is sampled with probability
‖Ai‖p2
‖A‖pp,2

, where p ∈ {1, 2} and

‖A‖p,q =
(∑n

i=1

(∑d
j=1 |Ai,j|q

) p
q

) 1
p

. As S is populated, the algorithm adaptively samples rows of

A, so that at each iteration, row Ai is sampled with probability proportional to the pth power of

the distance of the row from S. That is, Ai is sampled with probability
‖Ai(I−M†M)‖p

2

‖A(I−M†M)‖p
p,2

, where M

is the matrix formed by the rows in S. The procedure is repeated k times until we obtain k rows of
A, which then forms our summary of the matrix A. Unfortunately, adaptive sampling seems like
an inherently sequential procedure and thus the extent of its capabilities has not been explored in
the streaming model.

1.1 Our Contributions

In this paper, we show that although adaptive sampling seems like an iterative procedure, we do not
need multiple passes over the stream to perform adaptive sampling. This is particularly surprising
since any row Ai of A can be made irrelevant, i.e., zero probability of being sampled, in future
rounds if some row along the same direction of Ai is sampled in the present round. Yet somehow
we must still output rows of A while storing a sublinear number of rows more or less non-adaptively.
The challenge seems compounded by the turnstile model, since updates can be made to arbitrary
elements of the matrix, but somehow we need to recover the rows with the largest norms. For
example, if the last update in the stream is substantially larger than the previous updates, an
adaptive sampler must return the entire row, even though this update could be an entry in any row
of A.

To build our adaptive sampler, we first give an algorithm that performs a single round of
sampling. Namely, given a matrix A ∈ R

n×d that is defined over a turnstile stream and post-
processing query access to a matrix P ∈ R

d×d, we first give Lp,q samplers for AP.

Theorem 1.1 Let ǫ > 0, q = 2, and p ∈ {1, 2}. There exists a one-pass streaming algorithm that
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takes rows of a matrix A ∈ R
n×d as a turnstile stream and post-processing query access to matrix

P ∈ R
d×d after the stream, and with high probability, samples an index i ∈ [n] with probability

(1±O (ǫ))
‖AiP‖pq
‖AP‖pp,q

+ 1
poly(n) . The algorithm uses poly

(
d, 1ǫ , log n

)
bits of space. (See Theorem 2.7

and Theorem A.4.)

We remark that our techniques can be extended to p ∈ (0, 2] but we only require p ∈ {1, 2} for
the purposes of our applications. Now, suppose we want to perform adaptive sampling of a row
of A ∈ R

n×d with probability proportional to its distance or squared distance from some subspace
H ∈ R

i×d, where i is any integer. Then by taking P = I−H†H and either L1,2 or L2,2 sampling,
we select rows of A with probability roughly proportional to the distance or squared distance from
H. We can thus simulate k rounds of adaptive sampling in a stream, despite its seemingly inherent
sequential nature.

Theorem 1.2 Let A ∈ R
n×d be a matrix and qS be the probability of selecting a set S ⊂ [n] of

k rows of A according to k rounds of adaptive sampling with respect to either the distances to the
selected subspace in each iteration or the squared distances to the selected subspace in each iteration.
There exists an algorithm that takes inputs A through a turnstile stream and ǫ > 0, and outputs
a set S ⊂ [n] of k indices such that if pS is the probability of the algorithm outputting S, then∑

S |pS − qS | ≤ ǫ. The algorithm uses poly
(
d, k, 1ǫ , log n

)
bits of space. (See Theorem 3.4 and

Theorem A.7.)

In other words, our output distribution is close in total variation distance to the desired adaptive
sampling distribution.

Our algorithm is the first to perform adaptive sampling on a stream; existing implementations
require extended access to the matrix, such as in the centralized or distributed models, for subse-
quent rounds of sampling. Moreover, if the set S of k indices output by our algorithm is s1, . . . , sk,
then our algorithm also returns a set of rows r1, . . . , rk so that if R0 = ∅ and Ri = r1 ◦ . . . ◦ ri
for i ∈ [k], then ri = usi + vi, where usi = Asi(I −R†

iRi) is the projection of the sampled row to
the space orthogonal to the previously selected rows, and vi is some small noisy vector formed by
linear combinations of other rows in A such that ‖vi‖2 ≤ ǫ ‖usi‖2.

Thus we do not return the true rows of A corresponding to the indices in S, but we output a
small noisy perturbation to each of the rows, which we call noisy rows and suffices for a number of
applications previously unexplored in turnstile streams. Crucially, the noisy perturbation in each
of our output rows can be bounded in norm not only relative to the norm of the true row, but also
relative to the residual. In fact, our previous example of a long stream of small updates followed a
single arbitrarily large update shows that it is impossible to return the true rows of A in sublinear
space. Since the arbitrarily large update can apply to any entry of the matrix, the only way an
algorithm can return the entire row containing the entry is if the entire matrix is stored.

Column subset selection. In the row/column subset selection problem, the inputs are the
matrix A ∈ R

n×d and an integer k > 0, and the goal is to select k rows/columns of A to form a

matrix M to minimize
∥∥A−AM†M

∥∥
F
or
∥∥A−MM†A

∥∥2
F
. For the sake of presentation, we focus

on the row subset selection problem for the remainder of this section. Since the matrix M has rank
at most k, then

∥∥A−AM†M
∥∥
F
≥ ‖A−A∗

k‖F , where A∗
k is the best rank k approximation to A.

Hence, we would ideally like to obtain some guarantee for
∥∥A−AM†M

∥∥
F
relative to ‖A−A∗

k‖F .
Such relative error algorithms were given in the centralized setting [DRVW06, BMD09, GS12] and
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for row-arrival streams [CMM17, BDM+18], but no such results were previously known for turnstile
streams. Our adaptive sampling framework thus provides the first algorithm on turnstile streams
with relative error guarantees.

Theorem 1.3 Given a matrix A ∈ R
n×d that arrives in a turnstile data stream, there exists a

one-pass algorithm that outputs a set M of k (noisy) rows of A such that

Pr

[∥∥∥A−AM†M
∥∥∥
2

F
≤ 16(k + 1)! ‖A−A∗

k‖2F
]
≥ 2

3
.

The algorithm uses poly(d, k, log n) bits of space. (See Theorem 4.3.)

Subspace approximation. In the subspace approximation problem, the inputs are the matrix
A ∈ R

n×d and an integer k > 0 and the goal is to output a k-dimensional linear subspace H that

minimizes (
∑n

i=1 d(Ai,H)p)
1
p , where p ∈ {1, 2} and d(Ai,H) =

∥∥Ai(I−H†H)
∥∥
2
is the distance

from Ai to the subspace H. A number of algorithms for the subspace approximation were given for
the centralized setting [DV07, FMSW10, SV12, CW15] and more recently, [LSW18] gave the first
algorithm for subspace approximation on turnstile streams. The algorithm of [LSW18] is based on
sketching techniques and although it offers a superior (1 + ǫ)-approximation, their subspace has a
larger number of rows and the rows may not originate from A, whereas we select k noisy rows of
the matrix A to form the subspace.

Theorem 1.4 Given p ∈ {1, 2} and a matrix A ∈ R
n×d that arrives in a turnstile data stream,

there exists a one-pass algorithm that outputs a set Z of k (noisy) rows of A such that

Pr



(

n∑

i=1

d(Ai,Z)
p

) 1
p

≤ 4(k + 1)!

(
n∑

i=1

d(Ai,A
∗
k)

p

) 1
p


 ≥ 2

3
,

where A∗
k is the best rank k solution to the subspace approximation problem. The algorithm uses

poly (d, k, log n) bits of space. (See Theorem 4.5 and Theorem 4.6.)

Our adaptive sampling procedure also gives a bicriteria algorithm for a better approximation but
allows the dimension of the subspace to be larger.

Theorem 1.5 Given p ∈ {1, 2}, ǫ > 0, and a matrix A ∈ R
n×d that arrives in a turnstile data

stream, there exists a one-pass algorithm that outputs a set Z of poly
(
k, 1ǫ , log

k
ǫ

)
(noisy) rows of

A such that

Pr



(

n∑

i=1

d(Ai,Z)
p

) 1
p

≤ (1 + ǫ)

(
n∑

i=1

d(Ai,A
∗
k)

p

) 1
p


 ≥ 2

3
,

where A∗
k is the best rank k solution to the subspace approximation problem. The algorithm uses

poly(d, k, 1ǫ , log n) bits of space. (See Theorem 4.8.)

Projective clustering. Projective clustering is an important problem for bioinformatics, com-
puter vision, data mining, and unsupervised learning [Pro17]. The projective clustering problem
takes as inputs the matrix A ∈ R

n×d and integers k > 0 for the target dimension of each subspace
and s > 0 for the number of subspaces, and the goal is to output s k-dimensional linear subspaces
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H1, . . . ,Hs that minimizes (
∑n

i=1 d(Ai,H)p)
1
p , where p ∈ {1, 2}, H = H1∪. . .∪Hs, and d(Ai,H) is

the distance from Ai to union H of s subspaces H1, . . . ,Hs. A number of streaming algorithms for
projective clustering [BHI02, HM04, Che09, FMSW10] are based on the notion of core-sets, which
are small numbers of weighted representative points. These results require a stream of (possibly
high dimensional) points, which is equivalent to the row-arrival model and thus do not extend to
turnstile streams. [KR15] gives a turnstile algorithm based on random projections, but the algo-
rithm requires space linear in the number of points. Thus our adaptive sampling procedure gives
the first turnstile algorithm for projective clustering that uses space sublinear in the number of
points.

Theorem 1.6 Given p ∈ {1, 2}, ǫ > 0 and a matrix A ∈ R
n×d that arrives in a turnstile data

stream, there exists a one-pass algorithm that outputs a set S of poly
(
k, s, 1ǫ

)
rows, which includes

a union T of s k-dimensional subspaces such that

Pr



(

n∑

i=1

d(Ai,T)p

) 1
p

≤ (1 + ǫ)

(
n∑

i=1

d(Ai,H)p

) 1
p


 ≥ 2

3
,

where H is the union of s k-dimensional subspaces that is the optimal solution to the projective
clustering problem. The algorithm uses poly

(
d, k, s, 1ǫ , log n

)
bits of space. (See Theorem 4.10.)

Volume maximization. The volume maximization problem takes as inputs a matrix A ∈ R
n×d

and a parameter k for the number of selected rows, and the goal is to output k rows r1, . . . , rk of
A that maximize the volume of the parallelepiped spanned by the rows. [IMGR20, IMGR19] give
core-set constructions for volume maximization that approximate the optimal solution within a
factor of Õ (k)k/2 and O (k)k respectively, and can be implemented in the row-arrival model. Their
algorithms are based on spectral spanners and local search based on directional heights and do not
immediately extend to turnstile streams. Hence our adaptive sampling procedure gives the first
turnstile algorithm for volume maximization that uses space sublinear in the input size.

Theorem 1.7 Given a matrix A ∈ R
n×d that arrives in a turnstile data stream and an approxi-

mation factor α > 1, there exists a one-pass algorithm that outputs a set S of k noisy rows of A
such that

Pr
[
αk(k!)Vol(S) ≥ Vol(M)

]
≥ 2

3
,

where Vol(S) is the volume of the parallelepiped spanned by S and M is a set of k rows that

maximizes the volume. The algorithm uses Õ
(
ndk2

α2

)
bits of space. (See Theorem 4.13.)

We complement Theorem 4.13 with a lower bound for the volume maximization problem on turnstile
streams that is tight up to lower order terms. Additionally, we give a lower bound for volume
maximization in the random order row-arrival model, which we will also show is tight up to lower
order terms. Our lower bounds complement the thorough lower bounds for extent problems given
by [AS15].

Theorem 1.8 There exists a constant C > 1 so that any one-pass streaming algorithm that outputs
a Ck approximation to the volume maximization problem with probability at least 63

64 in the random
order row-arrival model requires Ω(n) bits of space. Moreover for any integer p > 0, any p-pass
turnstile streaming algorithm that gives an αk approximation to the volume maximization problem

requires Ω
(

n
kpα2

)
bits of space. (See Corollary 6.3 and Corollary 6.7.)
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Finally, we give a corresponding upper bound for volume maximization in the row-arrival model
competitive with our lower bound.

Theorem 1.9 Let 1 < C < (log n)/k. There exists a one-pass streaming algorithm in the row-
arrival model that computes a subset S of size k of points in R

d such that

Pr
[
O (Ck)k/2Vol(S) ≥ Vol(M)

]
≥ 2

3
,

where Vol(S) is the volume of the parallelepiped spanned by S and M is a set of k rows that
maximizes the volume. The algorithm uses O

(
nO(1/C)d

)
bits of space. (See Lemma 5.12.)

1.2 Techniques

Our first observation is that in many applications, the role played by adaptive sampling is to
sample rows of a matrix A ∈ R

n×d with probability proportional to either the distance or the
squared distance from some subspace Hj that we have already chosen by step j of the sampling
procedure. Adaptive sampling then imbues some randomness into the sampling procedure, which
would otherwise reduce to the greedy paradigm of iteratively choosing the row of A(I−H†

jHj) with

the largest squared norm. That is, we care more about the rows of A(I−H†
jHj) than the rows of

A.
Thus our first component towards our adaptive sampling algorithm is an Lp,2 sampler with p ∈

{1, 2}, which takes turnstile updates to A and post-processing query access to a matrix P ∈ R
d×d

and outputs index i ∈ [n] with probability roughly, i.e., within (1± ǫ) factor of
‖AiP‖p2
‖AP‖pp,2

. By setting

P = I−H†
jHj, the probability of sampling each row of AP then approximately follows the adaptive

sampling distribution.

Lp,2 sampler. We first describe how to sample rows of A when P is the identity matrix, so that

we output an index i ∈ [n] with probability roughly
‖Ai‖p2
‖A‖pp,2

with p ∈ {1, 2}. Our scheme generalizes

a line of work for ℓp sampling [MW10, SW11, AKO11, JST11, JW18], where the input is a vector
f of n coordinates that are updated through a turnstile stream and the goal is to sample an index
i ∈ [n] with probability roughly |fi|p

‖f‖pp
, from coordinates of a vector input to rows of a matrix input.

These prior ℓp sampling algorithms have essentially followed the same template of performing a
linear transformation on f to obtain a new vector z, using an instance of CountSketch on z to
recover a vector y, and then running a statistical test on y. If the statistical test fails, then the
algorithm aborts; otherwise the coordinate of y with the maximum magnitude is output. The
algorithm is repeated a number of times to ensure a high probability of success.

Generalizing the template of ℓp sampling, we observe that if some scaling factor ti ∈ [0, 1] is

chosen uniformly at random, then Pr

[
‖Ai‖2
t
1/p
i

≥ K1/p ‖A‖p,2
]
=

‖Ai‖p2
K‖A‖pp,2

, where K is any parameter

that we choose. Thus if Bi =
1

t
1/p
i

Ai for i ∈ [n] and we temporarily suppose that only the row x

satisfies ‖Bx‖2 ≥ T , where T = K1/p ‖A‖p,2 is the threshold, for only the index i = x, then our
task would reduce to identifying Bx in sublinear space. To this end, if B is the matrix whose rows
are B1, . . . ,Bn, then we hash the rows of B to a CountSketch data structure to recover the row
with the largest norm, which must necessarily be Bx if the error in CountSketch is small enough.

6



Namely, if the error in CountSketch data structure is too large, then our algorithm will erro-
neously identify some scaled row as exceeding the threshold T when the scaled row does not, or
vice versa. Hence our algorithm must first run a statistical test to determine whether the error
in the CountSketch data structure caused by the randomness of the data structure is sufficiently
small. If the CountSketch error is determined to be too large by the statistical test, the algorithm
aborts; otherwise the algorithm outputs the row with the largest norm if it exceeds T .

Now there can still be some error if multiple rows have norms close to or exceeding T , but
it turns out that by choosing the appropriate parameters, the probability that there exists a row
whose norm exceeds T is Ω

(
1
K

)
and the probability that the statistical test fails or that multiple

rows have norms close to or exceeding T is O
(

ǫ
K

)
, which incurs a relative (1 ± ǫ) perturbation of

the sampling probabilities. Thus a single instance of the sampler outputs an index from roughly the
desired distribution with probability Ω

(
1
K

)
and with probability 1 − Ω( 1

K ), it aborts and outputs
nothing. Hence for p ∈ {1, 2}, we obtain a constant probability of success using poly

(
1
ǫ , log n

)

space by setting K = poly
(
1
ǫ , log n

)
, repeating with O (K) instances, and taking the output of the

first successful instance.
It remains to argue that CountSketch and norm estimation generalize to Lp,2 error for matrices,

which we do through standard arguments in Section 2. In fact, the data structures maintained by
the generalized matrix CountSketch and Lp,2 norm estimation procedures are linear combinations
of the rows of A, so we can right multiply the rows that are stored in the Lp,2 sampler by P to
simulate sampling rows of AP. In other words, if we had a stream of updates to the matrix AP,
the resulting data structure on the stream would be equivalent to maintaining the data structure
on a stream of updates to the matrix A, and then multiplying each row of the data structure by
P in post-processing. Hence we can also sample rows of AP with probabilities proportional to the
residual ‖AiP‖p2, which will be crucial for our adaptive sampler.

Adaptive sampler. Recall that adaptive sampling iteratively samples rows of A ∈ R
n×d with

probability proportional to the pth power of their distances from the subspace spanned by the rows
that have already been sampled in previous rounds, for k rounds. Thus ifHj is the matrix formed by

the rows sampled by step j, then we would like to sample i ∈ [n] with probability
∥∥∥Ai(I−H†

jHj)
∥∥∥
p

2
with the largest squared norm. Given our Lp,2 sampler, a natural approach is to run k instances
of the sampler throughout the stream. Once the stream completes, we use the first instance to
sample a row of A, which forms H2 (recall that H1 = ∅ is “used” to sample in the first iteration).
Since our Lp,2 sampler supports post-processing multiplication by a matrix P, we subsequently use

the jth instance to Lp,2 sample a row of A(I−H†
jHj), which we then append to Hj to form Hj+1.

Repeating this k times, we would like to argue this simulates k steps of adaptive sampling.
The first issue with this approach is that our Lp,2 cannot return the original rows of A, but

only some noisy perturbation of the sampled row. It is easy to see that returning the noisy rows of
A is unavoidable for sublinear space by considering a stream whose final update to some random
coordinate is arbitrarily large, while the previous updates were small. Then the row containing the
coordinate of the final update should be sampled with large probability, but that row can only be
completely recovered if all entries of the matrix are stored. Fortunately we show that if we sample
the index x, then we output a row r = Ax+v, where the noisy component v is a linear combination
of rows of A that satisfies ‖v‖2 ≤ ǫ ‖Ax‖2. Thus, the norms of the sampled rows are somewhat
preserved.

On the other hand, sampling noisy rows of A rather than the original rows of A can drastically

7



(a) Troublesome distorted sam-
pling probabilities.

(b) Actual distorted sampling
probabilities.

Fig. 1: Distortion of sampling probabilities by Lp,2 sampler. Suppose we should have sampled
the blue vector but instead we obtain the red vector from the noisy output. Then the sampling
probabilities in the second round will be the norms of the green vectors, even though the probability
of sampling the blue vector in the second round should actually be zero if we had sampled the actual
blue vector. Thus the sampling probabilities are distorted. In particular, we are worried that in
Figure 1a, the blue vector might be sampled again in the second round because the projection to
the red vector has large norm. We show Figure 1a is unlikely and the actual scenario is more like
Figure 1b, where the sampling probabilities are only perturbed by a small additive amount.

alter the subspace spanned by the matrix formed by the rows. This in turn can significantly alter
the sampling probabilities in future rounds. Consider the following example, which is depicted in
Figure 1a. Let A be a matrix that has

[
0 1

]
for half of its rows and

[
M 0

]
for some large M > 0

for the other half of its rows. Then with large probability we should sample some row u =
[
M 0

]

in the first step. However, due to noise in the sampler, we will actually obtain some noisy row
v =

[
M ′ m

]
, where M ′ ≈ M and m 6= 0. In Figure 1a, we depict u with the blue vector and v

with the red vector.
Now in the second round, if we had sampled u in the first round, then the only possible output

of the adaptive sampler is a row
[
0 1

]
, since all the rows

[
M 0

]
are contained in the subspace

spanned by u. However, since we actually sampled v in the first round, then the distance from u to
the subspace spanned by v is nonzero. Furthermore, since M is large, then it actually seems likely
that we might sample a row

[
M 0

]
rather than

[
0 1

]
. Thus we might sample some row that we

should have not sampled or worse, we might repeatedly sample the same row! Pictorially, the blue
vector u in Figure 1a has no projection away from itself, but results in the rightmost green vector
when projected to the red vector v, and thus u might be sampled again with high probability.

Similarly, the noisy perturbations may cause us to completely avoid rows that we should have
sampled with nonzero probability if we had access to the original rows. In fact, this example shows
that we cannot guarantee that our adaptive sampler gives a multiplicative (1 + ǫ)-approximation
to the true sampling probabilities of each row in any round.

Our key observation is that the noisy row r output by our Lp,2 sampler not only has a noisy
component v small in norm compared to Ax, but also the component of v in the space orthogonal

to Ax must be small. That is, r can also be written as r = Ax+w, where ‖wQ‖2 ≤ ǫ ‖Ax‖2
‖AQ‖F
‖A‖F

for any projection matrix Q. This tighter bound in any orthogonal direction allows us to bound
in subsequent rounds the additive error of sampling probabilities, which are based on the vector
lengths in orthogonal directions. Thus, we show that with high probability, Figure 1a cannot
happen and our actual situation is more like that in Figure 1b.

Namely, if we write an orthonormal basis U for the actual rows of A and an orthonormal basis
W for the noisy rows that we sample, we can show that the norm of a row projected onto W has a
small additive perturbation from when it is projected onto U . Thus we require the construction of
orthonormal bases U and W from which we can easily extract the sampling probabilities of rows
both with respect to the original rows and to the noisy rows. We achieve this by designing U so
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that the first basis vectors of U are precisely the true sampled rows of A, followed by the noisy
perturbations for each sample. We then argue that if we design W so that the first basis vectors
of W are precisely the noisy rows that we sample, then the coefficients of each row represented
in terms of U and W have only a small additive difference. By summing across all rows, then we
can bound the total variation distance between sampling with the noisy rows of A and sampling
with the actual rows of A. That is, in each adaptive sampling round where we use a noisy row
obtained from our Lp,2 sampler with error parameter ǫ > 0 rather than the actual row of A, the
total variation distance in the sampling distribution increases by an additive O (ǫ). Now since
we use the first sampled noisy row for k − 1 additional rounds, the second sampled noisy row for
k − 2 additional rounds, and so forth, then by an inductive argument, the total variation distance
between k rounds of our algorithm and k rounds of adaptive sampling is O

(
k2ǫ
)
.

Applications. For many applications on turnstile streams, we show it suffices in each step to
obtain a noisy row that is orthogonal to the previously selected rows, sampled with probability
proportional to the pth power of the distance to the subspace spanned by those rows. Thus for p = 1,
our adaptive sampler allows us to perform residual based sampling in place of subspace embedding
techniques used by previous work in various applications [KR15, SW18, LSW18]. Additionally for
p = 2, our adaptive sampler allows us to simulate volume sampling, which has a wide range of
applications [DV06, DRVW06, DV07, ÇM09].

For volume maximization on turnstile streams, we use a combination of our L2,2 sampler and our
generalized CountSketch data structure to simulate an approximation to the greedy algorithm of
choosing the row with the largest residual at each step. If the largest residual found by CountSketch
exceeds a certain threshold, we use that row; otherwise any row output by our adaptive sampler will
be a good approximation to the row with the largest residual. Thus the volume of the parallelepiped
spanned by these rows is a good approximation to the optimal solution.

Volume Maximization. We provide lower bounds for volume maximization in turnstile streams
and the row-arrival model through reductions from the Gap ℓ∞ problem and the distributional set-
disjointness problem, respectively. For both cases we show that embedding the same instance across
multiple columns gives hardness of approximating within a factor with exponential dependency on
k. For our algorithmic results in the row-arrival model, we first note that the composable core-
set techniques of [IMGR20] automatically gives a streaming algorithm for volume maximization.
In fact, [IMGR20] shows the stronger guarantee that any composable core-set for the directional
height of a point set suffices to give a good approximation for volume maximization. Using this
idea, we give a dimensionality reduction algorithm for volume maximization in the row-arrival
model competitive with our lower bounds by embedding the input into a lower dimensional space.

Recall that from Johnson-Lindenstrauss, right multiplication by a random matrix whose entries
are drawn i.i.d from a Gaussian distribution suffices to preserve the directional heights of the points
in an optimal set by a constant factor, say 2, and thus the volume of the largest set of k points
is only distorted by a factor of 2k. We then prove that for every other subset of k points, their
volume does not increase by too much by showing that the eigenvalues of the matrix representation
of the points are preserved by some factor C with very high probability. Thus taking a union bound
over all subsets of k points, all volumes are preserved by a factor Ck and we obtain dimensionality
reduction of the problem by applying right multiplication of the random matrix to each of the input
rows.
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Paper Organization. We first handle L2,2 sampling in Section 2. Using the L2,2 sampler, we
build an adaptive sampler in Section 3 that samples rows with probability proportional to the
squared distances of the subpsace spanned by previously selected rows. We show the applications
of our adaptive sampler in Section 4, including projective clustering, subspace approximation, col-
umn subset selection, and volume maximization. We give lower bounds for volume maximization in
Section 6, showing that our adaptive sampler gives nearly optimal algorithms in turnstile streams.
Finally we give algorithms for volume maximization in the row-arrival model in Section 5, compet-
itive with the lower bounds in Section 6. For completeness, we detail L1,2 sampling and adaptive
sampling rows with probability proportional to the distances of the subspace spanned by previously
selected rows in Appendix A.

1.3 Preliminaries

For any positive integer n, we use the notation [n] to represent the set {1, . . . , n}. We use the
notation x = (1 ± ǫ)y to denote the containment (1 − ǫ)y ≤ x ≤ (1 + ǫ)y. We write poly(n) to
denote some fixed constant degree polynomial in n but we write 1

poly(n) to denote some arbitrary

degree polynomial in n. When an event has probability 1 − 1
poly(n) of occurring, we say the event

occurs with high probability. We use Õ (·) to omit lower order terms and similarly polylog(n) to
omit terms that are polynomial in log n.

For our purposes, a turnstile stream will implicitly define a matrix A ∈ R
n×d through a sequence

of m updates. We use Ai to denote the ith row of A and Ai,j to denote the jth entry of Ai. The
matrix A initially starts as the all zeros matrix. Each update in the stream has the form (it, jt,∆t),
where t ∈ [m], it ∈ [n], jt ∈ [d], and ∆t ∈ {−M,−M + 1, . . . ,M − 1,M} for some large positive
integer M . The update then induces the change Ait,jt ← Ait,jt +∆t in A. We assume throughout
that m,M = poly(n) and n ≫ d. We will typically only permit one pass over the stream, but for
multiple passes the order of the updates remains the same in each pass.

In the row-arrival model, the stream has length n and the ith update in the stream is precisely
row Ai. Again we restrict each entry Ai,j of A to be in the range {−M,−M + 1, . . . ,M − 1,M}
for some large positive integer M = poly(n). We assume that A can be adversarially chosen
in the row-arrival model, but for the random order row-arrival model, once the entries of A are
chosen, an arbitrary permutation of the rows of A is chosen uniformly at random, and the rows of
that permutation constitute the stream. For the problems that we consider, the optimal solution
is invariant to permutation of the rows of A, so the random order does not impact the desired
solution. Observe that algorithms for turnstile streams can be used in the row-arrival model, but
not necessarily vice versa.

We use Ik to denote the k × k identity matrix and we drop the subscript when the dimensions
are clear. We use the notation A = A1 ◦A2 ◦ . . . ◦An to denote that the matrix A is formed by
the rows A1, . . . ,An and the notation A⊤ to denote the transpose of A. For a matrix M ∈ R

k×d

with linearly independent rows, we use M† ∈ R
d×k to denote the Moore-Penrose pseudoinverse of

M, so that M† = M⊤(MM⊤)−1 and MM† = Ik.

Definition 1.10 (Vector/matrix norms) For a vector v ∈ R
n, we have the Euclidean norm

‖v‖2 =
√∑n

i=1 v
2
i and more generally, ‖v‖p = (

∑n
i=1 |vi|p)

1
p . For a matrix A ∈ R

n×d, we denote

the Frobenius norm of A by ‖A‖F =
√∑n

i=1

∑d
j=1A

2
i,j . More generally, we write the Lp,q norm of

10



A by ‖A‖p,q =
(∑n

i=1

(∑d
j=1 |Ai,j|q

) p
q

) 1
p

, so that ‖A‖F = ‖A‖2,2.

For A ∈ R
n×d, we use Atail(b) to denote A with the b rows of A with the largest Euclidean norm

set to zeros.

Definition 1.11 (Lp,q sampling) Let A ∈ R
n×d, 0 ≤ ǫ < 1, and p, q > 0. An Lp,q sampler with

ǫ-relative error is an algorithm that outputs an index i ∈ [n] such that for each j ∈ [n],

Pr [i = j] =
‖Aj‖pq
‖A‖pp,q

(1± ǫ) +O
(
n−c

)
,

for some arbitrarily large constant c ≥ 1. In each case, the sampler is allowed to output fail with
some probability δ, in which case it must output ⊥. When the underlying matrix is just a vector,
i.e., d = 1, we drop the q term and call such an algorithm an Lp sampler.

Definition 1.12 (Adaptive sampling) Let A ∈ R
n×d be a matrix from which we wish to sample

and M ∈ R
m×d be a matrix corresponding to a specific subspace. For p ∈ {1, 2}, an adaptive

sampler is an algorithm that outputs an index i ∈ [n] and the corresponding row Ai such that for
each j ∈ [n],

Pr [i = j] =
‖AjP‖p2
‖AP‖pp,2

,

where P = I−M†M.

In typical applications, we will wish to perform k rounds of adaptive sampling with subspaces
M1,M2, . . . ,Mk, where M1 is the all zeros matrix, and each Mi will consist of the rows sampled
from rounds 1 to i − 1. We will use the term adaptive sampling to refer to both a single round of
sampling and multiple rounds of sampling interchangeably when the context is clear.

Note that the adaptive sampling for input matrices A ∈ R
n×d and M ∈ R

m×d can be seen as
Lp,2 sampling on an input matrix AP with ǫ = 0 and P = I −M†M, but returning the row Ai

instead of AiP.

AMS and CountSketch. We will refer to the classical AMS and CountSketch algorithms for
intuition, but we require more generalized versions that we will present in Section 2. For the sake of
completeness, the classical AMS algorithm [AMS99] can be formulated as taking a matrixA ∈ R

n×d

through a turnstile stream and using O
(
1
ǫ2 log

2 n
)
bits of space to output a (1 + ǫ)-approximation

to ‖A‖F with high probability. For each entry Ai,j, the algorithm generates a random sign hi,j
and maintains S =

∑n
i=1

∑d
j=1 hi,jAi,j throughout the stream. At the end of the stream, the

algorithm uses S2 as its estimator for ‖A‖2F . By running O
(
1
ǫ2

)
instances of the estimator and

taking the mean, the variance of the estimator decreases. By taking the median of O (log n) means,
the estimator succeeds with high probability. By taking d = 1, the AMS algorithm can also be
used to approximate ‖v‖2 for any vector v ∈ R

n whose entries are updated in a turnstile stream.
The classical CountSketch algorithm [CCF04] can be used to find all entries Ai,j of a matrix

A ∈ R
n×d that arrives implicitly through a turnstile stream such that |Ai,j| ≥ ǫ ‖A‖F for a

constant input parameter ǫ > 0. The CountSketch data structure maintained by the algorithm is
a r × b table T . For each row k ∈ [r], a random sign hk(i, j) is generated for each Ai,j and each
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entry Ai,j is randomly hashed to a bucket gk(i, j) ∈ [b] in row k. Each bucket ℓ in row k then
maintains Tk,ℓ =

∑
(i,j):gk(i,j)=ℓAi,jhk(i, j), which is a linear combination of the entries assigned to

the bucket along with the random signs for the entries. Then for each row k, the estimator for
Ai,j is Tk,gk(i,j)hk(i, j), which is the value in the bucket of row k assigned to Ai,j, rescaled by the
random sign. Finally, the estimator for Ai,j by the CountSketch data structure is the median of
the estimators of Ai,j across all rows. It can be seen that r = O (log n) and b = O

(
1
ǫ2

)
suffices

to estimate each entry of Ai,j within an additive ǫ
4 ‖A‖F factor with high probability. Thus if

Ai,j ≥ ǫ ‖A‖F , its estimated value will exceed ǫ
2 ‖A‖F and will be output by CountSketch given an

accurate estimation of ‖A‖F , such as by AMS.

We require the following definition of total variation distance to bound the difference between
two probability distributions, such as the “ideal” sampling distributions compared to the distribu-
tions provided by our algorithms.

Definition 1.13 (Total variation distance) Let µ, ν be two probability distributions on a fi-
nite domain Ω. Then the total variation distance between µ and ν is defined as dTV(µ, ν) =
1
2

∑
x∈Ω |µ(x)− ν(x)|.

2 L2,2 Sampler

In this section, we first describe a turnstile streaming algorithm that takes a matrix A ∈ R
n×d that

arrives as a data stream and post-processing query access to a matrix P ∈ R
d×d, and outputs an

index i ∈ [n] of a row of AP sampled with probability roughly
‖AiP‖22
‖AP‖2F

.

High level idea. First suppose we only wanted to sample a row i of A ∈ R
n×d with probability

roughly
‖Ai‖22
‖A‖2F

. By multiplying each row Ai with a random scaling factor 1√
ti
, where ti ∈ [0, 1] is

chosen independently and uniformly at random, the probability that 1
ti
‖Ai‖22 ≥ ‖A‖2F is precisely

the probability that ti ≤ ‖Ai‖22
‖A‖2F

, which is the desired probability of sampling row i.

Now suppose only one row Ai satisfies
1
ti
‖Ai‖22 ≥ ‖A‖2F , so that we would like to output Ai. If

we stored all rows of A as well as all scaling factors tj, then we could identify and output this row,
but the required space would be linear in the input size. Instead, we hash all scaled rows 1

tj
‖Aj‖

to a number of buckets in a CountSketch data structure. Observe that if 1
ti
‖Ai‖22 ≥ ‖A‖2F for only

one index i, then 1√
ti
Ai must also be the scaled row with the largest norm. Moreover, it turns out

that the mass of
∑n

j=1
1
tj
‖Aj‖22 is dominated by a small number of rows. Hence with a sufficiently

large number of buckets, the scaled row i is the heavy hitter with the largest norm among all the
heavy hitters of the scaled rows and so CountSketch will ideally identify the row i.

This approach can fail due to two reasons. The first potential issue is if the accuracy of
CountSketch does not suffice to identify the row Ai due to the noise from the tail of the mass
of
∑n

j=1
1
tj
‖Aj‖22. That is, if the noise of the tail due to the selection of the scaling factors

tj prevents CountSketch from successfully identifying the heavy hitters, then this approach will
fail. We can run a statistical test to identify when the noise is too large and preemptively abort
accordingly. Moreover, if the CountSketch data structure maintains enough buckets, then the
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noise being sufficiently small happens with probability Ω(ǫ), so we can run O
(
1
ǫ

)
instances of the

algorithm in parallel and take the first instance that does not abort.
A separate issue is resolving the assumption that only one row Ai satisfies

1
ti
‖Ai‖22 ≥ ‖A‖2F . As

it turns out, many rows can exceed this threshold, but if we instead require 1
ti
‖Ai‖22 ≥ 1

ǫ ‖A‖
2
F , then

the probability that some row exceeds this threshold is Θ(ǫ). The probability that multiple rows
exceed this higher threshold is now O

(
ǫ2
)
. Our algorithm outputs the row with the largest norm

when some row exceeds the threshold, so in the case where multiple rows exceed the higher threshold
we attribute the output to possible sampling probability perturbation. Hence the probability that
multiple rows exceed the higher threshold only slightly perturbs the sampling probability of each
row by a (1±ǫ) factor. Thus we can again repeat O

(
1
ǫ

)
times until some row Ai satisfies

1
ti
‖Ai‖22 ≥

‖A‖2F . Similarly, if the error from CountSketch causes an inaccurate estimation of the row with
the largest norm, then we might think the heaviest row does not exceed the threshold when it does
in reality or vice versa. Fortunately, this only occurs when the row with the largest norm is very
close to the threshold, which we again show only causes the sampling probability of each row to
perturb by a (1± ǫ) factor.

For technical reasons, we further increase the threshold and thus run a larger number of instances
in parallel to avoid failure. We note that although CountSketch successfully identifies the row i,
it can only output a noisy perturbation of Ai. That is, it can only output some row r = Ai + v,
where the noisy component v satisfies ‖v‖2 ≤ ǫ ‖Ai‖2.

Finally, we note that these procedures are all performed through linear sketches and that each
bucket stores aggregate rows of the matrix A. Thus if we had a stream of updates to the matrix AP,
the resulting data structure would be equivalent to maintaining the data structure on a stream of
updates to the matrix A, and then multiplying each row of the data structure by P post-processing.
Hence we can also sample rows of AP with probabilities proportional to ‖AiP‖22.

2.1 Streaming Algorithms with Post-Processing

We require generalizations of the celebrated AMS [AMS99] and CountSketch [CCF04] algorithms
to handle Frobenius norm estimation of AP and to output the rows of AP whose norm exceed
a certain fraction of the total Frobenius norm, respectively. These generalizations are streaming
algorithms that perform their desired function in low space even though query access to P is only
provided after the stream ends.

Algorithm 1 Basic algorithm that estimates ‖AP‖F , where P is a post-processing matrix

Input: Matrix A ∈ R
n×d, query access to matrix P ∈ R

d×d after the stream ends, constant
parameter ǫ > 0.

Output: (1 + ǫ)-approximation of ‖AP‖F .
1: Let hi ∈ {−1,+1} be 4-wise independent for i ∈ [n].
2: Let v ∈ R

1×d be a vector of zeros.
3: Streaming Stage:
4: for each update ∆t to entry Ai,j do
5: Add ∆t · hi to vj .

6: Processing P Stage:
7: Output ‖vP‖2.
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We give in Algorithm 1 the generalization of the AMS [AMS99] algorithm that estimates ‖AP‖2F ,
where A arrives in a stream and post-processing query access to P is given after the stream ends.
Moreover, Algorithm 1 is a linear sketch, so it can also be used to estimate ‖AP−M‖2F for a
second arbitrary post-processing matrix M ∈ R

n×d.

Lemma 2.1 Given a constant ǫ > 0, there exists a one-pass streaming algorithm AMS-M that
takes updates to entries of a matrix A ∈ R

n×d, as well as query access to post-processing matrices
P ∈ R

d×d and M ∈ R
n×d that arrive after the stream, and outputs a quantity F̂ such that (1 −

ǫ) ‖AP−M‖F ≤ F̂ ≤ (1 + ǫ) ‖AP−M‖F . The algorithm uses O
(
d
ǫ2
log2 n

)
bits of space and

succeeds with high probability.

Proof : Recall that the classic AMS estimator [AMS99] takes a vector f ∈ R
n×1 that arrives as

a data stream and outputs an estimate f̂ such that (1− ǫ) ‖f‖2 ≤ f̂ ≤ (1 + ǫ) ‖f‖2. The algorithm
generates 4-wise independent signs si ∈ {−1,+1} for each i ∈ [n] and maintains

∑n
i=1 sifi in the

stream. At the end of the stream, (
∑n

i=1 sifi)
2 is a good estimator for ‖f‖22. The algorithm can

then be run O
(
1
ǫ2

)
times in parallel, taking the mean of the instances to decrease the variance

and output a (1 + ǫ)-approximation for ‖f‖2. Taking the median of O (log n) estimators further
increases the probability of success to 1− 1

poly(n) .

For a matrix A ∈ R
n×d that arrives as a data stream, the Frobenius norm of A can then be

approximated by running a classic AMS estimator for each of the d columns of A. That is, each row
of A can be given a random sign and the algorithm stores the sum of the signed rows in the stream.
The Frobenius norm estimator is then the two norm of the stored row. Since each of the classic
AMS estimator for the d columns of A succeeds with high probability, then by a union bound over
the d≪ n columns, the estimator is a (1+ ǫ)-approximation of the Frobenius norm of A with high
probability. Moreover, since an entire row is stored, the algorithm requires an additional factor of d
space. This is less efficient than using a Frobenius norm estimator by hashing each entry of A to a
separate sign and simply storing the sum of the scaled entries, but it is more flexible. In particular,
we can apply linear transformations to the stored row to simulate right multiplication on A.

Let P ∈ R
d×d be a given post-processing matrix. To show that Algorithm 1 provides a good

approximation to ‖AP‖F , it suffices to argue that running an AMS estimator for the d columns of
A and then multiplying by P afterwards is equivalent to running an AMS estimator for each of the
d columns of AP. Observe that running an AMS estimator for AP simply requires multiplying
each row of AP by a random sign and adding the resulting signed rows. This is equivalent to
multiplying each row of A by a random sign, adding the resulting signed rows of A, and then
multiplying by P, which is exactly what Algorithm 1 does. In other words, the AMS estimator is
a linear transformation that maps from A to SA for some sketching matrix S, but seeing rows of
A and then multiplying by P results in the same data structure as seeing the rows of AP, since
S(AP) = (SA)P by associativity. Finally, note that if we want to estimate ‖AP−M‖F given a
post-processing matrix M, then we can compute S(AP−M) = SAP−SM for the AMS estimator,
given SAP along with M and the sketching matrix S.

Each estimator stores a row with d entries each using O (log n) bits. The estimator is repeated
O
(
1
ǫ2
log n

)
times to give a (1+ ǫ)-approximation and to obtain high probability guarantees. Thus,

the algorithm requires O
(
d
ǫ2
log2 n

)
bits of space in total. �

We give in Algorithm 2 the generalization of the CountSketch [CCF04] algorithm that outputs
all rows i of AP such that ‖AiP‖2 ≥ ǫ ‖AP‖F , where A arrives in a stream and post-processing
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query access to P is given after the stream ends. We call a row i a heavy row if ‖AiP‖2 ≥ ǫ ‖AP‖F .

Algorithm 2 Basic algorithm that outputs heavy rows of ‖AP‖F , where P is a post-processing
matrix

Input: Matrix A ∈ R
n×d, query access to matrix P ∈ R

d×d after the stream ends, constant
parameter ǫ > 0.

Output: Slight perturbations of the rows AiP with ‖AiP‖2 ≥ ǫ ‖AP‖F .
1: r← Θ(log n) with a sufficiently large constant.
2: b← Ω

(
1
ǫ2

)
with a sufficiently large constant.

3: Let T be an r × b table of buckets, where each bucket stores an R
1×d row, initialized to zeros.

4: Let si,j ∈ {−1,+1} be 4-wise independent for i ∈ [n], j ∈ [r].
5: Let hi : [n]→ [b] be 4-wise independent for i ∈ [r].
6: Streaming Stage:
7: for each update ∆t to entry Ai,j do
8: for each k = 1 to r do
9: Add ∆t · si,k to entry j of the vector in bucket hk(i) of row k.

10: Let vk,ℓ be the vector in row k, bucket ℓ of T for k ∈ [r], ℓ ∈ [b].
11: Processing P Stage:
12: for k ∈ [r], ℓ ∈ [b] do
13: vk,ℓ ← vk,ℓP

14: On query i ∈ [n], report mediank∈[r]
∥∥vk,hk(i)

∥∥
2
.

We first show that if X = AP and the stream updates the entries of X rather than the entries
of A, then we can obtain a good approximation to the heavy rows. Equivalently, the statement
reads that if P = I is the identity matrix, then Algorithm 2 finds the heavy rows of AP. We will
ultimately show Algorithm 2 finds the heavy rows of AP for general P by using the same linear
sketching argument as in the proof of Lemma 2.1.

For a matrix X ∈ R
n×d, recall that Xtail(b) denotes X with the b rows of X with the largest

norm set to zeros. The following lemma shows that the 2
ǫ2

rows with the largest norm output by
Algorithm 2 forms a good estimate of X, even with respect to the stronger Frobenius tail error.

Lemma 2.2 For any matrix X ∈ R
n×d, Algorithm 2 outputs an estimate X̂i for each row Xi,

which together form an estimate matrix X̂. Then with high probability, for all i ∈ [n], there exists

a vector vi such that X̂i = Xi + vi and ‖vi‖2 ≤ ǫ

∥∥∥∥Xtail
(

2
ǫ2

)
∥∥∥∥
F

. Consequently,
∣∣∣‖Xi‖2 −

∥∥∥X̂i

∥∥∥
2

∣∣∣ ≤

ǫ

∥∥∥∥Xtail
(

2
ǫ2

)
∥∥∥∥
F

for all i ∈ [n]. Moreover,

∥∥∥∥Xtail
(

2
ǫ2

)
∥∥∥∥
F

≤
∥∥∥X− X̃

∥∥∥
F
≤ 2

∥∥∥∥Xtail
(

2
ǫ2

)
∥∥∥∥
F

with high

probability, where X̃ = X̂− X̂
tail

(
2
ǫ2

) denotes the top 2
ǫ2

rows of X̂ by norm.

Proof : For a fixed i ∈ [n] and row k in the CountSketch table T , let hk(i) be the bucket to
which Xi hashes. Let E1 be the event that the 2

ǫ2
rows with the highest norms excluding Xi are not

hashed to hk(i). For b = Ω
(
1
ǫ2

)
with sufficiently large constant, E1 occurs with probability at least

9
10 . Let vi be the sum of the vectors hashed to hk(i), excluding Xi, so that the vector stored in

bucket hk(i) is X̂i = Xi+vi. Conditioned on E1, the expected squared norm of the noise in bucket
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hk(i) can be bounded by E

[
‖vi‖22

]
≤ ǫ2

100

∥∥∥∥Xtail
(

2
ǫ2

)
∥∥∥∥
2

F

for sufficiently large b. Note that Jensen’s

inequality implies E [‖vi‖2] ≤ ǫ
10

∥∥∥∥Xtail
(

2
ǫ2

)
∥∥∥∥
F

and we also have Var(‖vi‖2) ≤ ǫ2

100

∥∥∥∥Xtail
(

2
ǫ2

)
∥∥∥∥
2

F

.

Thus by Chebyshev’s inequality,

Pr

[
‖vi‖2 ≥ ǫ

∥∥∥∥Xtail
(

2
ǫ2

)
∥∥∥∥
F

]
≤ 1

81
,

conditioning on E1. Hence,

Pr

[
‖vi‖2 ≥ ǫ

∥∥∥∥Xtail
(

2
ǫ2

)
∥∥∥∥
F

]
≤ 1

81
+

1

10
.

By repeating for each of the r = Θ(log n) rows and taking the median, we have from triangle

inequality that
∣∣∣‖Xi‖2 −

∥∥∥X̂i

∥∥∥
2

∣∣∣ ≤ ǫ

∥∥∥∥Xtail
(

2
ǫ2

)
∥∥∥∥
F

for all i ∈ [n] with high probability, thus proving

the first part of the claim.

For the second part of the claim, note that

∥∥∥∥Xtail
(

2
ǫ2

)
∥∥∥∥
F

≤
∥∥∥X− X̃

∥∥∥
F
trivially holds, since X̃

is a matrix with at most 2
ǫ2 nonzero rows, and X

tail
(

2
ǫ2

) has removed the 2
ǫ2 rows of X with the

largest mass from X. Moreover, X− X̃ alters at most 2
ǫ2

rows of X, each by at most ǫ

∥∥∥∥Xtail
(

2
ǫ2

)
∥∥∥∥
F

.

Thus,

∥∥∥X− X̃
∥∥∥
F
≤

√√√√
2/ǫ2∑

i=1

(
ǫ

∥∥∥∥Xtail
(

2
ǫ2

)
∥∥∥∥
F

)2

=
√
2

∥∥∥∥Xtail
(

2
ǫ2

)
∥∥∥∥
F

.

�

Taking b = Θ
(
1
ǫ2

)
in Lemma 2.2, we have the following guarantees of CountSketch-M.

Lemma 2.3 Given a constant b > 0, there exists a one-pass streaming algorithm CountSketch-M

that takes updates to entries of a matrix A ∈ R
n×d, as well as query access to a post-processing

matrix P ∈ R
d×d that arrives after the stream, and outputs all indices i such that ‖AiP‖2 ≥

1√
b
‖AP‖F . For each index i, CountSketch-M also outputs a vector r such that r = AiP + vi

and ‖vi‖2 ≤ 1√
b

∥∥(AP)tail(b)
∥∥
F
. The algorithm uses O

(
db log2 n

)
bits of space and succeeds with

high probability.

Proof : Correctness follows from Lemma 2.2 providing an accurate estimate of the norms of the
heavy rows and Lemma 2.1 providing an accurate estimate of the Frobenius norm of AP. The space
complexity results from using a table with Θ(log n) rows and b buckets in each row. Furthermore,
each bucket consists of a vector of dimension d, whose entries are each represented using O (log n)
bits. Thus, the algorithm requires O

(
db log2 n

)
bits of space. �

2.2 L2,2 Sampling Algorithm

In this section, we give an algorithm for L2,2 sampling that will ultimately be used to simulate
adaptive sampling on turnstile streams.
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2.2.1 Algorithm Description

Given subroutines that estimate ‖AP‖F and the heavy rows of AP, we implement our L2,2 sampler
in Algorithm 3. Our algorithm first takes each row Ai of matrix i and forms a row Bi =

Ai√
ti
, where

ti is a scaling factor drawn uniformly at random from [0, 1]. Note that we have the following
observation:

Observation 2.4 For any value γ > 0, Pr [‖BiP‖2 ≥ γ ‖AP‖F ] =
‖AiP‖22
γ2‖AP‖2F

.

Proof : Since Bi =
Ai√
ti

and ti is drawn uniformly at random from [0, 1], then we have

Pr [‖BiP‖2 ≥ γ ‖AP‖F ] = Pr

[
‖AiP‖22

ti
≥ γ2 ‖AP‖2F

]

= Pr

[
ti ≤

‖AiP‖22
γ2 ‖AP‖2F

]
=
‖AiP‖22

γ2 ‖AP‖2F
.

�

Intuitively, Observation 2.4 claims that by setting T ∝ ‖AP‖F , we can identify a row of BP
whose norm exceeds T to effectively L2,2 sample a row of AP. For technical reasons, we set

T =
√

C logn
ǫ ‖AP‖F . Our algorithm then uses CountSketch-M to find heavy rows of BP and

AMS-M to give an estimate F̂ of ‖AP‖F to determine whether there exists a row of BP whose
norm exceeds T .

Our algorithm also uses CountSketch-M and a separate instance of AMS-M to compute Ŝ,
which estimates the error in the tail of BP and also indicates how accurate CountSketch-M is.
If Ŝ is large, then our estimations for each row of BP from CountSketch-M may be inaccurate,
so our algorithm must abort. Otherwise, if Ŝ is sufficiently small, then our estimations for each

row of BP is somewhat accurate. Thus if the row of BP with the largest norm exceeds
√

C logn
ǫ F̂ ,

which is our estimation for T , then we output that particular row rescaled by
√
ti to recover the

(noisy) original row of AP.

2.2.2 Analysis

Conditioning on only a single row BiP satisfying ‖BiP‖2 ≥ T =
√

C logn
ǫ ‖AP‖F , we could imme-

diately identify this row if we had access to all rows of BP, as well as ‖AP‖F , but this requires
too much space. Instead, we use CountSketch-M to find the heavy rows of BP and compare
their norms to an estimate of T . However, if the error caused by CountSketch-M is high due
to the randomness of the data structure, then the estimations of the row norms may be inaccurate
and so our algorithm should abort. Our algorithm uses an estimator Ŝ to compute the tail of
BP, which bounds the error caused by CountSketch-M. We first show that the event of our
algorithm aborts because the tail estimator Ŝ is too large has small probability and is independent
of the index i and the value of ti.

Lemma 2.5 For each j ∈ [n] and value of tj ,

Pr

[
Ŝ >

√
C log n

ǫ
F̂
∣∣∣ tj
]
= O (ǫ) +

1

poly(n)
.

17



Algorithm 3 Single L2,2 Sampler

Input: Matrix A ∈ R
n×d that arrives as a stream, matrix P ∈ R

d×d that arrives after the stream,
approximation parameter ǫ > 0.

Output: Noisy row r of AP sampled roughly proportional to the squared row norms of AP.
1: Pre-processing Stage:
2: b← Ω

(
1
ǫ2

)
, r ← Θ(log n) with sufficiently large constants

3: For i ∈ [n], generate independent scaling factors ti ∈ [0, 1] uniformly at random.
4: Let B be the matrix consisting of rows Bi =

1√
ti
Ai.

5: Let AMS-M1 and AMS-M2 track the Frobenius norms of AP and BP, respectively.
6: Let CountSketch-M be an r × b table, where each entry is a vector in R

d, to find the heavy
hitters of B.

7: Streaming Stage:
8: for each row Ai do ⊲Presented in row-arrival model but also works for turnstile streams
9: Update CountSketch-M with Bi =

1√
ti
Ai.

10: Update linear sketch AMS-M1 with Ai.
11: Update linear sketch AMS-M2 with Bi =

1√
ti
Ai.

12: Processing P Stage:
13: After the stream, obtain matrix P.
14: Multiply each vector v in each entry of the CountSketch-M table by P: v← vP.
15: Multiply each vector v in AMS-M1 by P: v← vP.
16: Multiply each vector v in AMS-M2 by P: v← vP.
17: Extraction Stage:
18: Use AMS-M1 to compute F̂ with ‖AP‖F ≤ F̂ ≤ 2 ‖AP‖F .
19: Extract the 2

ǫ2
(noisy) rows of BP that are estimated by CountSketch-M to have the largest

norms.
20: Let M ∈ R

d×d be the matrix with 2
ǫ2
-nonzero rows consisting of these top (noisy) rows.

21: Use AMS-M2 to compute Ŝ with ‖BP−M‖F ≤ Ŝ ≤ 2 ‖BP−M‖F .
22: Let ri be the (noisy) row of AP in CountSketch-M with the largest norm.

23: Let C > 0 be some large constant so that the probability of failure is O
(

1
nC/2

)
.

24: if Ŝ >
√

C logn
ǫ F̂ or ‖ri‖2 <

√
C logn

ǫ F̂ then
25: return FAIL.
26: else
27: return r =

√
tiri.

Proof : Let E1 be the event that:

(1) ‖AP‖F ≤ F̂ ≤ 2 ‖AP‖F
(2) ‖BP−M‖F ≤ Ŝ ≤ 2 ‖BP−M‖F

(3)

∥∥∥∥(BP)
tail

(
2
ǫ2

)
∥∥∥∥
F

≤ ‖BP−M‖F ≤ 2

∥∥∥∥(BP)
tail

(
2
ǫ2

)
∥∥∥∥
F

Fix an index j ∈ [n] and let tj be any fixed value t ∈ [0, 1]. Since the goal of the lemma is to show
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that the probability of the failure event is independent of our choice of j and t, these variables will
actually not appear in the remainder of the proof.

Observe that E1 holds with high probability by Lemma 2.3 and Lemma 2.1. Conditioned on E1,
it suffices to bound the probability that 4

∥∥∥∥(BP)
tail

(
2
ǫ2

)
∥∥∥∥
F

>
√

C logn
ǫ ‖AP‖F .

Let U =
√
ǫ ‖AP‖F and define the indicator variable for whether row BiP is heavy. That

is, we define yi = 1 if ‖BiP‖2 > U and yi = 0 otherwise. Define zi as the scaled indicator
variable zi =

1
U2 ‖BiP‖22 (1 − yi) so that zi ∈ [0, 1] represents a scaled contribution of the small

rows. Define Y =
∑

i 6=j yi to be the total number of heavy rows, Z =
∑

i 6=j zi to be the total

scaled contribution of the small rows, and W ∈ R
n×d to be the matrix of the heavy rows, i.e.,

Wi = BiP if yi = 1 and Wi is the row of all zeros otherwise. Observe that W contains at most

Y + 1 nonzero rows and U2Z = ‖BP−W‖2F . Moreover,

∥∥∥∥(BP)
tail

(
2
ǫ2

)
∥∥∥∥
F

≤ U
√
Z unless Y ≥ 2

ǫ2
.

Hence if E2 denotes the event that Y ≥ 2
ǫ2

and E3 denotes the event that Z ≥ C logn
16U2ǫ

‖AP‖2F ,
then it suffices to bound the probability of the events E2 and E3 by O (ǫ), since ¬E2 ∧ ¬E3 implies

4

∥∥∥∥(BP)
tail

(
2
ǫ2

)
∥∥∥∥
F

≤
√

C logn
ǫ ‖AP‖F . In other words, the probability of failure due to the tail

estimator is small if the number of heavy rows is small (¬E2) and the total contribution of the
small rows is small (¬E3).

By Observation 2.4, E [yi] =
‖AiP‖22

U2 and so E [Y ] ≤ 1
ǫ by linearity of expectation since U =√

ǫ ‖AP‖F . Hence Pr [E2] = O (ǫ) by Markov’s inequality for sufficiently small ǫ.

To bound Pr [E3], observe that zi > 0 only for ‖BiP‖2 ≤ U or equivalently, ti ≥ ‖AiP‖22
ǫ‖AP‖2F

. For

sufficiently small ǫ,
‖AiP‖22
ǫ‖AP‖2F

≥ ‖AiP‖22
‖AP‖2F

. Thus,

E [zi] ≤
∫ 1

‖AiP‖22/‖AP‖2F
zi dti =

∫ 1

‖AiP‖22/‖AP‖2F

1

ti

1

U2
‖AiP‖22 dti.

Let E4 be the event that ti ≥ 1
nC/2 for all i ∈ [n], so that Pr [E4] ≥ 1− 1

nC/2−1 . Conditioned on E4,
we have

E [zi | E4] ≤
1

1− 1
nC/2

∫ 1

1

nC/2

1

ti

1

U2
‖AiP‖22 dti ≤

C log n

U2
‖AiP‖22.

Hence, we have E [Z | E4] ≤ C logn
ǫ and so the probability that Z > C logn

16U2ǫ
‖AP‖2F = C logn

16ǫ2
for

sufficiently small ǫ is bounded by O (ǫ) by Markov’s inequality. Since the events ¬E1, E2, E3, E4 each
occur with probability at most O (ǫ) + 1

poly(n) , then the claim follows. �

The probability of sampling each row i ∈ [n] will still be slightly distorted due to the noise from
CountSketch-M, since we do not have exact values for the norm of each row. Similarly, if
multiple rows exceed the threshold, we will output the row with the largest norm, which also alters
the sampling probability of each row. We now show that these events only slightly perturb the
probability of sampling each index i and moreover, the output row is a small noisy perturbation of
the original row.

Lemma 2.6 Conditioned on a fixed value of F̂ , the probability that Algorithm 3 outputs (noisy)

row i is (1±O (ǫ)) ǫ
C logn

‖AiP‖22
F̂ 2

+ 1
poly(n) .
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Proof : We first define the following set of events.

• Let E denote the event that ti <
ǫ

C logn
‖AiP‖22

F̂ 2
so that the algorithm should ideally output

index i and observe that Pr [E ] = ǫ
C logn

‖AiP‖22
F̂ 2

since ti ∈ [0, 1] is selected uniformly at random.

• Let E1 denote the event that one of the data structures CountSketch-M, AMS-M1, or
AMS-M2 fails. Note that E1 occurs with probability 1

poly(n) by Lemma 2.3 and Lemma 2.1.

• Let E2 denote the event that Ŝ >
√

C logn
ǫ F̂ . Conditioned on E , the probability of E2 is O (ǫ)

by Lemma 2.5.

• Let E3 denote the event that some other row BjP also either exceeds the threshold or is close
enough to the threshold, thus possibly preventing BiP from being reported. Specifically,

E3 can only occur if some other row j satisfies ‖BjP‖2 ≥
√

C logn
ǫ F̂ − √Cǫ log nF̂ . Since

BjP = 1√
tj
AjP and tj is chosen uniformly at random from [0, 1], then row j exceeds this

threshold with probability at most O
(

ǫ
C logn

‖AjP‖22
F̂ 2

)
by Observation 2.4. Taking a union

bound over all n rows, the probability of E3 is O
(

ǫ
logn

)
.

• Let E4 denote the event that ‖BiP‖ exceeds the threshold but is not reported due to noise in

the CountSketch data structure, i.e., ‖ri‖2 <
√

C logn
ǫ F̂ . We now analyze the probability of E4.

Conditioning on ¬E2, we have Ŝ ≤
√

C logn
ǫ F̂ . Conditioning on ¬E1, then ‖BP−M‖F ≤ Ŝ.

Thus by Lemma 2.2 (or Lemma 2.3),

∣∣∣‖BiP‖2 −
∥∥∥B̂iP

∥∥∥
2

∣∣∣ ≤ ǫ

∥∥∥∥(BP)
tail

(
2
ǫ2

)
∥∥∥∥
F

≤ ǫ ‖BP−M‖F ≤ ǫŜ ≤
√

Cǫ log nF̂ .

Hence, E4 can only occur for
√

C log n

ǫ
F̂ ≤ ‖BiP‖2 ≤

√
C log n

ǫ
F̂ +

√
Cǫ log nF̂ ,

which occurs with probability at most O
(

ǫ2

C logn
‖AiP‖22

F̂ 2

)
over the choice of ti.

Conditioning on E , the sampler should return AiP but may fail to do so because of any of the
events E1, E2, E3, or E4. Putting things together, E1 occurs with probability 1

poly(n) . Conditioning

on E , E2 and E3 each occur with probability O (ǫ), so the probability of E and at least one of E2 or

E3 occurring is O
(

ǫ2

C logn
‖AiP‖22

F̂ 2

)
, which is also the probability of E4. Thus the sampling probability

of each AiP follows.
Finally, we emphasize that for the index i selected, it holds by Lemma 2.2 that

∣∣∣‖BiP‖2 −
∥∥∥B̂iP

∥∥∥
2

∣∣∣ ≤
√
Cǫ log nF̂

and
∥∥∥B̂iP

∥∥∥
2
≥
√

C logn
ǫ F̂ . Thus,

∥∥∥B̂iP
∥∥∥
2
is a (1 + ǫ) approximation to ‖BiP‖2 and similarly,

√
ti

∥∥∥B̂iP
∥∥∥
2
has norm (1 + ǫ) within that of ‖AiP‖2. �
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Since each row is sampled with roughly the desired probability, we now analyze the space
complexity of the resulting L2,2 sampler.

Theorem 2.7 Given ǫ > 0, there exists a one-pass streaming algorithm that takes rows of a matrix
A ∈ R

n×d as a turnstile stream and a matrix P ∈ R
d×d after the stream, and outputs (noisy) row i

of AP with probability (1±O (ǫ))
‖AiP‖22
‖AP‖2F

+ 1
poly(n) . The algorithm uses O

(
d
ǫ3
log3 n log 1

δ

)
space to

succeed with probability 1− δ.

Proof : By Lemma 2.6 and the fact that ‖AP‖F ≤ F̂ ≤ 2 ‖AP‖F with high probability by

Lemma 2.1, each row AiP is output with probability (1 + ǫ)
‖AiP‖22
‖AP‖2F

+ 1
poly(n) , conditioned on the

sampler outputting some index rather than aborting. Recall that the sampler outputs index if the
tail estimator Ŝ is small and the estimated norm of some row exceeds the threshold. Lemma 2.5
shows that the tail estimator is small only with probability O (ǫ) while a straightforward compu-
tation shows that the probability that the estimated norm of some row exceeding the threshold is

Θ
(

ǫ
logn

)
. Thus the sampler can be repeated O

(
1
ǫ log n log 1

δ

)
times to obtain probability of success

at least 1 − δ. By Lemma 2.1, each instance of AMS-M uses O
(
d
ǫ2
log2 n

)
space. Moreover, each

sampler uses a O
(
1
ǫ2

)
× O (log n) table, and each entry in the table is a vector of d integers, the

total space complexity is O
(
d
ǫ3
log3 n log 1

δ

)
. �

Generation of Uniform Random Variables. First observe that with high probability, each
of the uniform random variables ti are least 1

poly(ndmM) = 1
poly(n) precision, where m = poly(n) is

the length of the stream and M = poly(n) is the largest change an update can induce in the matrix
A ∈ R

n×d. Then we claim it suffices to generate the uniform random variables ti up to O (log n) bits
of precision, for a sufficiently large constant. Indeed note that the truncation perturbs the values

of the uniform random variables by an additive 1
poly(n) value, which induces a O

(
1

poly(n)

)
additive

error for each CountSketch bucket. Therefore, we can incorporate the additive error induced by

truncating the uniform random variables at O (log n) bits of precision into the O
(

1
poly(n)

)
additive

error of the L2,2 sampler.
We say a family H = {h : [n] → [m]} is δ-approximate if for all r ≤ n, possible inputs

i1, . . . , ir ∈ [n] and possible outputs o1, . . . , o1 ∈ [m],

Pr
h∈H

[h(i1) = o1 ∧ . . . ∧ h(ir) = or] =
1

mr
+ δ.

If δ = 0 for all r ≤ k, the function is k-wise independent.
We observe that O (1)-wise independent random variables ti would suffice for justifying the

low-probability failure events in Lemma 2.5 through Chebyshev’s inequality. Recall that k-wise
independent random variables can be generated from a polynomial of degree k over a field of size
O (poly(n)) [WC81], which can be stored using O (k log n) space [WC81]. Thus for the purposes
of our L2,2 sampler, using O (1)-wise independent random variables ti instead of fully independent
random variables gives the exact guarantees as Theorem 2.7.

However, Section 3 requires Chernoff bounds to analyze the size of specific sets, which will not
näıvely work with O (1)-wise independent random variables. Instead, we can apply the limited
independence Chernoff-Hoeffding bounds in [SSS95] using O (log n)-wise independent random vari-

ables, thus limiting the probability of the failure events by O
(

1
poly(n)

)
. Moreover, δ-approximate
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k-wise hash functions can be generated using O
(
k + log n+ log 1

δ

)
bits, e.g., by composing the

generators of [ABI86] and [NN93]. Thus for δ = 1
poly(n) , the error can again be absorbed into the

O
(

1
poly(n)

)
additive error of the L2,2 sampler, while the family of hash functions requires O (log n)

bits to store.

3 Noisy Adaptive Squared Distance Sampling

Given a matrix A ∈ R
n×d that arrives in a data stream, either turnstile or row-arrival, we want

to simulate k rounds of adaptive sampling. That is, in the first round we want to sample some
row r1 of A, such that each row Ai is selected with probability proportional to its squared row
norm ‖Ai‖22. Once rows r1, . . . , rj−1 are selected, then the jth round of adaptive sampling samples
each row Ai with probability proportional to the squared row norm of the orthogonal component

to Rj−1,
∥∥∥Ai(I−R†

j−1Rj−1)
∥∥∥
2

2
, where for each j ≤ k, Rj = r1 ◦ . . . ◦ rj.

Observe that if only a single round of adaptive sampling were required, the problem would
reduce to L2,2 sampling, which we can perform in a stream through Algorithm 3. In fact, the post-
processing stage of Algorithm 3 would not be necessary since the post-processing matrix would
be P = I, which is the identity matrix. Moreover, the sketch of A of Algorithm 3 is oblivious to
the choice of the post-processing matrix P, so we would like to repeat this k times by creating
k separate instances of the L2,2 sampler of Algorithm 3 and for the jth instance, multiply by the

post-processing matrix Pj = I−R†
j−1Rj−1. Unfortunately, if f(j) is the index of the row of APj

that is selected in the jth round, the row rj that the L2,2 sampler outputs is not Af(j)Pj but rather
a noisy perturbation of it, which means in future rounds we are not sampling with respect to a
subspace containing Af(j)Pj but rather a subspace containing rj . This is particularly a problem
if rj is parallel to another row Ai that is not contained in the subspace of Af(j)Pj , then in future
rounds the probability of sampling Ai is zero, when it should in fact be nonzero. Although the
above example shows that the noisy perturbation does not preserve relative sampling probabilities
for each row, we show that the perturbations give a good additive approximation to the sampling
probabilities. That is, we bound the total variation distance between sampling with respect to the
true rows of A and sampling with respect to the noisy rows of A. We give our algorithm in full in
Algorithm 4.

For the purpose of the analysis, we first show that if the L2,2 sampler outputs row r1 that is a
noisy perturbation of row Af(1)P, then not only can we bound

∥∥Af(1)P− r1
∥∥
2
as in Lemma 2.2,

but also we can bound the norm of the component of r1 orthogonal to Af(1)P. This is significant
because future rounds of sampling will focus on the norms of the orthogonal components for the
sampling probabilities.

Lemma 3.1 Given a matrix A ∈ R
n×d and a matrix P ∈ R

d×d, as defined in Line 8 and round
i ≤ k, of Algorithm 4, suppose index j ∈ [n] is sampled (in round i). Then with high probability,
the sampled (noisy) row ri satisfies ri = AjP+ ve with

‖veQ‖2 ≤
ǫ
√
ǫ ‖APQ‖F√

C log n ‖AP‖F
‖AjP‖2 ,

for any projection matrix Q ∈ R
d×d. Hence, ve is orthogonal to each noisy row ry, where y ∈ [i−1].
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Algorithm 4 Noisy Adaptive Sampler

Input: Matrix A ∈ R
n×d that arrives as a stream A1, . . . ,An ∈ R

d, parameter k for number of
rows to be sampled, constant parameter ǫ > 0.

Output: k Noisy and projected rows of A.
1: Create instances A1, . . . ,Ak of the L2,2 sampler of Algorithm 3 where the number of buckets

b = Θ
(
log2 n
ǫ2

)
is sufficiently large.

2: Let M be empty 0× d matrix.
3: Streaming Stage:
4: for each row Ai do
5: Update each sketch A1, . . . ,Ak

6: Post-processing Stage:
7: for j = 1 to j = k do
8: Post-processing matrix P← I−M†M.
9: Update Aj with post-processing matrix P.

10: Let rj be the noisy row output by Aj.
11: Append rj to M: M←M ◦ rj .
12: return M.

Proof : Let Q ∈ R
d×d be a projection matrix. For each x ∈ [n], let Bx = Ax√

tx
be the rescaled

row of Ax. Let E be the noise in the bucket corresponding to the selected row j, so that the output
vector is Aj +

√
tjE and the noise is ve =

√
tjE. Note that E is a linear combination of rows of

AP and thus E is orthogonal to all previous noisy rows ry with y ∈ [i − 1]. Let B ∈ R
n×d be

the rescaled matrix of A so that row x of B is Bx for x ∈ [n]. Recall that tx ∈ [0, 1] is selected
uniformly at random for each x ∈ [n], so that for each integer c ≥ 0,

Pr

[
‖AxPQ‖22

tx
≥ ‖APQ‖2F

2c

]
≤ 2c ‖AxPQ‖22
‖APQ‖2F

,

e.g., by Observation 2.4. Since Bx = Ax√
tx
, then by linearity of expectation over x ∈ [n], we can

bound the expected size of each of the disjoint level sets Sc :=
{
x ∈ [n] :

‖APQ‖2F
2c−1 > ‖BxPQ‖22 ≥

‖APQ‖2F
2c

}

by E [|Sc|] ≤ min(2c, n) for each c. From the independence of the scaling factors tx, then the Cher-
noff bound implies that

Pr
[
|Sc| ≤ min(2c+β log n, n)

]
≥ 1− 1

poly(n)
,

for sufficiently large constant β. Thus the Frobenius norm of BPQ can be roughly upper bounded
by the Frobenius norm of APQ by a union bound over level sets Sc for c ≤ log n and upper

bounding the norms of each of the rows in level sets Sc with c > log n by
‖APQ‖2F

n and thus the

total mass of the level sets Sc with c > log n by ‖APQ‖2F . That is,

Pr
[
‖BPQ‖2F ≥ 2β log2 n ‖APQ‖2F

]
≥ 1− 1

poly(n)
.

Hence the total mass ‖BPQ‖2F distributed across the CountSketch table is O
(
log2 n ‖APQ‖2F

)

with high probability.
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By Lemma 2.3 and hashing rows of BPQ to a CountSketch table with b = Θ
(
log2 n
ǫ2

)
buckets

with sufficiently large constant, the bucket corresponding to Aj has mass at most ǫ ‖APQ‖F
when projected onto Q. That is, ‖EQ‖2 ≤ ǫ ‖APQ‖F . This can also be seen from the fact that
CountSketch-M is a linear sketch and considering the error in a certain subspace Q is equivalent
to right multiplication by Q.

Since row j was selected, it must have been true that ‖BjP‖2 ≥
√

C logn
ǫ ‖AP‖F . Because

Bj =
Aj√
tj
, then

√
tj ≤

√
ǫ‖AjP‖2√

C logn‖AP‖F
. Therefore,

∥∥√tjEQ
∥∥
2
≤ ǫ

√
ǫ ‖APQ‖F√

C log n ‖AP‖F
‖AjP‖2 .

In particular, since veQ =
√
tjEQ, the above expression also bounds the Euclidean norm of veQ.

Intuitively, not only is the overall noise of AP well-partitioned among the buckets of CountSketch,
but the noise in each direction APQ must also be well-partitioned among the buckets of CountS-
ketch with high probability. �

Recall that our sampler only returns noisy rows ri, rather than the true rows of APi, where Pi

is any post-processing matrix. This is problematic for multiple rounds of sampling, since ri is then
used to form the next post-processing matrix Pi+1, rather than the true row. We next show that
the total variation distance has not been drastically altered by sampling with respect to the noisy
rows rather than the true rows.

The main idea is that because the noise in each direction is proportional to the total mass in
the subspace by Lemma 3.1, we can bound the total perturbation in the squared norms of each
row of APi. We first argue that if we obtain a noisy row in the first sampling iteration but then
we obtain the true rows in the subsequent iterations, then the total variation distance between the
resulting probability distribution of sampling each row is close to the ideal probability distribution
of sampling each row if we had obtained the true rows over all iterations. It then follows from
triangle inequality that the actual sampling distribution induced by obtaining noisy rows in each
round is close to the ideal sampling distribution if we had obtained the true rows.

To bound the perturbation in the sampling probability of each row, we require a change of basis
matrix from a representation of vectors in terms of the true rows of A to a representation of vectors
in terms of the noisy rows of A. This change of basis matrix crucially must be close to the identity
matrix, in order to preserve the perturbation in the squared norms.

Lemma 3.2 Let f(1) be the index of a noisy row r1 sampled in the first iteration of Algorithm 4.
Let P1 be a process that projects away from Af(1) and iteratively selects k − 1 additional rows of
A through adaptive sampling (with p = 2). Let P2 be a process that projects away from r1 and
iteratively selects k − 1 additional rows of A through adaptive sampling (with p = 2). Then for
ǫ < 1

d , the total variation distance between the distributions of k indices output by P1 and P2 is
O (kǫ).

Proof : Suppose P1 sequentially samples rows Af(1), . . . ,Af(k). For each t ∈ [k], let Tt =

Af(1) ◦ . . . ◦Af(t) and Zt = I−T†
tTt and Rt = r1 ◦Af(2) . . . ◦Af(t) and Yt = I−R†

tRt. We assume
for the sake of presentation that A is a full-rank matrix, i.e. rank(A) = d and prove the claim by
induction.

24



Base case. For t = 2, we first must show that the sampling distributions induced by r1 and
Af(1) are similar. Let U = {u1, . . . ,ud} be the orthonormal basis for the row span of A so

that u1 =
Af(1)

‖Af(1)‖2
points in the direction of Af(1). Similarly, let W = {w1, . . . ,wd} be an

orthonormal basis for the row span of A obtained by applying the Gram-Schmidt process to the
set {w1,u2, . . . ,ud}, where w1 =

r1
‖r1‖2

. We argue that the change of basis matrix B from U to W

must be close to the identity matrix.

First, observe that from Lemma 3.1, we have r1 =
∥∥Af(1)

∥∥
2

(
u1 +

∑d
i=1(±τi)ui

)
, where τi ≤

ǫ
√
ǫ√

C logn

‖APi‖F
‖A‖F

with high probability and Pi = u†
iui is the projection matrix onto ui. Thus by

setting τ2 =
∑d

i=1 τ
2
i , we can write the first row b1 of B so that the first entry is at least 1− τ and

entry i is at most τi in magnitude.

Claim 3.3 The first entry in row j > 1 is at most 2τj in magnitude, entry j in row j is at least
1 − 3τj in magnitude, and entry i in row j is at most 5τiτj in magnitude for i < j with i 6= 1 and
at most 2τiτj in magnitude for i > j.

Proof : We first consider the base case j = 2 and determine b2 through the Gram-Schmidt
process. For the elementary vector e2 ∈ R

d, note that |〈e2,b1〉| ‖b1‖2 ≤ τ2. Thus we have that

entry i in b2 for i 6= 2 is at most |〈ei,b1〉|τ2
1−τ2

in magnitude. Specifically for i = 1, the first entry in b2

is bounded by 2τ2 in magnitude, while for i > 2, entry i in b2 is bounded by 2τ2τi in magnitude.
It follows that the second entry in b2 is at least 1− 2τ2.

We use similar reasoning to bound the entries in row j of B. Note that for sufficiently small
ǫ < 1

d , we have
j−1∑

i=1

|〈ej ,bi〉| ‖bi‖2 ≤ τj +

j−1∑

i=2

5τjτi ≤ 2τj.

Thus from the Gram-Schmidt process, entry i in bj for i 6= j is at most 1
1−2τj

∣∣∣
∑j−1

ℓ=1〈ei,bℓ〉 · 〈ej ,bℓ〉
∣∣∣,

which is at most

1

1− 2τj

(
τj +

j−1∑

ℓ=2

4τjτ
2
ℓ

)
≤ 2τj

in magnitude for i = 1 for sufficiently small ǫ < 1
d and at most

1

1− 2τj


τiτj + 2τiτj +

j−1∑

ℓ=2,ℓ 6=i

10τjτiτ
2
ℓ


 ≤ 5τiτj

in magnitude for i < j with i 6= 1 and at most

1

1− 2τj

(
τiτj +

j−1∑

ℓ=2

4τjτiτ
2
ℓ

)
≤ 2τiτj

in magnitude for i > j. Thus it follows that entry j in row j of B is at least 1−3τj, which completes
the induction. �
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Therefore by Claim 3.3, we have

B =




1−O (τ) ±O (τ2) ±O (τ3) ±O (τ4) . . . ±O (τd)
±O (τ2) 1−O (τ2) ±O (τ2τ3) ±O (τ2τ4) . . . ±O (τ2τd)
±O (τ3) ±O (τ3τ2) 1−O (τ3) ±O (τ3τ4) . . . ±O (τ3τd)
±O (τ4) ±O (τ4τ2) ±O (τ4τ3) 1−O (τ4) . . . ±O (τ4τd)

...
...

...
...

. . .
...

±O (τd) ±O (τdτ2) ±O (τdτ3) ±O (τdτ4) . . . 1−O (τd)



. (⋆)

for ǫ < 1
d , where the O (·) notation in (⋆) hides a constant that is at most 5.

We can write each row As in terms of basis U as As =
∑d

i=1 λs,iui and in terms of basis W

as As =
∑d

i=1 ζs,iwi. Then since we project away from Af(1), we should have sampled As with

probability
‖AsZt−1‖22
‖AZt−1‖2F

=
∑d

i=2 λ
2
s,i∑n

j=1

∑d
i=2 λ

2
j,i

in the second round but instead we sample it with probability

‖AsYt−1‖22
‖AYt−1‖2F

=
∑d

i=2 ζ
2
s,i∑n

j=1

∑d
i=2 ζ

2
j,i

. From the change of basis matrix B, we can also write

ζs,i = (1−O (τi))λs,i ±O (τi)λs,1 ±
∑

j /∈{i,1}
O (τiτj)λs,j,

for i ≥ 2. Therefore we can bound the difference

|ζ2s,i − λ2
s,i| ≤ 25

(
τiλ

2
s,i + τ2i λ

2
s,1 + τiλs,1λs,i +

∑

j,ℓ 6={i,1}
τ2i τjτℓλs,jλs,ℓ

+
∑

j 6={i,1}
τiτjλs,iλs,j +

∑

j 6={i,1}
τ2i τjλs,1λs,j

)

≤ 25


τiλ

2
s,i + dτ2i λ

2
s,1 + τiλs,1λs,i + 4

d∑

j=2

dτ2j λ
2
s,j


 ,

where the last inequality follows from AM-GM and that all values of τi, τj ≤ ǫ3/2 and thus τ < 1

for ǫ < 1
d . We also have τiλs,1λs,i ≤ ǫλ2

s,i +
τ2i
ǫ λ

2
s,1. Thus,

∣∣∣∣∣
d∑

i=2

ζ2s,i −
d∑

i=2

λ2
s,i

∣∣∣∣∣ ≤ 25

d∑

i=2

[
2
(
ǫ+ 4d2τ2i

)
λ2
s,i +

2τ2i
ǫ

λ2
s,1

]

≤ 25
d∑

i=2

(
6ǫλ2

s,i +
2τ2i
ǫ

λ2
s,1

)
,

since τ2i < ǫ3, and ǫ < 1
d . Moreover, τ2i ≤ ǫ3

C logn

∑n
a=1 λ

2
a,i∑n

a=1

∑d
b=1 λ

2
a,b

, thus we have
∑n

s=1
τ2i
ǫ λ

2
s,1 ≤

ǫ2

C logn

∑n
s=1 λ

2
s,i. Therefore, we have

∣∣∣
∑n

j=1

∑d
i=2 ζ

2
j,i −

∑n
j=1

∑d
i=2 λ

2
j,i

∣∣∣ ≤ 200ǫ
∑n

j=1

∑d
i=2 λ

2
j,i. In

other words, ‖AY1‖2F is within a (1 + 200ǫ) factor of ‖AZ1‖2F . Moreover,
‖AsY1‖22
‖AY1‖2F

and
‖AsZ1‖22
‖AZ1‖2F

are probability distributions that each sum to 1 across all s. Thus we have the distortion in the
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sampling probability of As is

∣∣∣∣∣

∑d
i=2 λ

2
s,i∑n

j=1

∑d
i=2 λ

2
j,i

−
∑d

i=2 ζ
2
s,i∑n

j=1

∑d
i=2 ζ

2
j,i

∣∣∣∣∣ ≤
2(1 + 200ǫ)25
∑n

j=1

∑d
i=2 λ

2
j,i

d∑

i=2

(
6ǫλ2

s,i + 2
τ2i
ǫ
λ2
s,1

)
.

Taking the sum over all rows As and noting τ2i ≤ ǫ3

C logn

∑n
a=1 λ

2
a,i∑n

a=1

∑d
b=1 λ

2
a,b

, we have that

n∑

i=1

∣∣∣∣∣
‖AiY1‖22
‖AY1‖2F

− ‖AiZ1‖22
‖AZ1‖2F

∣∣∣∣∣ ≤ 799ǫ,

for sufficiently small ǫ. Thus including the 1
poly(n) event of failure from Lemma 3.1, the total

variation distance is at most 800ǫ, which completes our base case.

Inductive step. Suppose that the total variation distance between the distributions of the first
t − 1 indices sampled by P1 and P2 is at most 800(t − 1)ǫ. We consider the difference in the
probability distribution induced by linearly independent vectors Af(1), . . . ,Af(t−1) and the prob-
ability distribution induced by linearly independent vectors r1,Af(2), . . . ,Af(t−1). We can define
U = {u1, . . . ,ud} to be an orthonormal basis for the row span of A such that {u1, . . . ,us} is a basis
for the row span of {Af(1), . . . ,Af(s)} for each 2 ≤ s ≤ t− 1. Similarly, let W = {w1, . . . ,wd} be
an orthonormal basis for the row span of A such that {w1, . . . ,ws} is an orthonormal basis that ex-
tends the row span of {r1,Af(2), . . . ,Af(s)} for each 2 ≤ s ≤ t− 1. We again have from Lemma 3.1

that with high probability, r1 =
∥∥Af(1)

∥∥
2

(
u1 +

∑d
i=1(±O (τi))ui

)
and τi =

ǫ
√
ǫ√

C logn

‖APi‖F
‖A‖F

with

constant at most 5 hidden in the O (·) notation and Pi = u†
iui is the projection matrix onto ui. We

condition on this relationship between r1 and the basis U and incorporate the 1
poly(n) probability

of failure into our variation distance at the end of the inductive step. Thus, we can apply the
Gram-Schmidt process to obtain the change of basis matrix B from U to W whose entries are
again bounded as in (⋆). We emphasize that the same bounds apply in the matrix B since we still
receive a noisy row in the first iteration of the sampling procedure and we receive the true rows in
the subsequent iterations, just as in the base case. Thus, Lemma 3.1 is only invoked in determining
the bounds of the first row b1 and the subsequent bounds are determined using the Gram-Schmidt
process, exactly as in Claim 3.3.

We again write each row As in terms of basis U as As =
∑d

i=1 λs,iui and in terms of basis W

as As =
∑d

i=1 ζs,iwi. Then since we project away from Af(1), . . . ,Af(t−1), we should have sampled

As with probability
‖AsZt−1‖22
‖AZt−1‖2F

=
∑d

i=t λ
2
s,i∑n

j=1

∑d
i=t λ

2
j,i

in round t but instead we sample it with probability

‖AsYt−1‖22
‖AYt−1‖2F

=
∑d

i=t ζ
2
s,i∑n

j=1

∑d
i=t ζ

2
j,i

. From the change of basis matrix B, we again have that for i ≥ 2:

|ζ2s,i − λ2
s,i| ≤ 25

(
τiλ

2
s,i + τ2i λ

2
s,1 + τiλs,1λs,i +

∑

j,ℓ 6={i,1}
τ2i τjτℓλs,jλs,ℓ

+
∑

j 6={i,1}
τiτjλs,iλs,j +

∑

j 6={i,1}
τ2i τjλs,1λs,j

)
. (⊞)
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From AM-GM, we have:

τiλs,1λs,i ≤ ǫλ2
s,i +

τ2i
ǫ
λ2
s,1

τ2i τjτℓλs,jλs,ℓ ≤ τ2i τ
2
j λ

2
s,j + τ2i τ

2
ℓ λ

2
s,ℓ,

τiτjλs,iλs,j ≤ ǫ2λ2
s,i +

τ2i τ
2
j

ǫ2
λ2
s,j,

τ2i τjλs,1λs,j ≤ τ2i λ
2
s,1 + τ2i τ

2
j λ

2
s,j.

Thus for ǫ < 1
d , |ζ2s,i − λ2

s,i| ≤ 25

(
2ǫλ2

s,i +
2τ2i
ǫ λ2

s,1 + 4
∑d

j=2

τ2i τ
2
j

ǫ2
λ2
s,j

)
. Then

∣∣∣∣∣
d∑

i=t

ζ2s,i −
d∑

i=t

λ2
s,i

∣∣∣∣∣ ≤ 25

d∑

i=t


2ǫλ2

s,i +
2τ2i
ǫ

λ2
s,1 + 4

d∑

j=2

τ2i τ
2
j

ǫ2
λ2
s,j


 .

Now recall that τ2i = ǫ3

C logn
‖APi‖2F
‖A‖2F

= ǫ3

C logn

∑n
a=1 λ

2
a,i∑n

a=1

∑d
b=1 λ

2
a,b

. Therefore we get that,

n∑

s=1

d∑

i=t

d∑

j=2

(
τ2i
ǫ2

)
λ2
s,j =

d∑

i=t

(
τ2i
ǫ2

) n∑

s=1

d∑

j=2

λ2
s,j ≤

d∑

i=t

ǫ

C log n

n∑

s=1

λ2
s,i.

Similarly, we get that,

n∑

s=1

d∑

i=t

(
τ2i
ǫ

)
λ2
s,1 =

d∑

i=t

(
τ2i
ǫ

) n∑

s=1

λ2
s,1 ≤

d∑

i=t

ǫ2

C log n

n∑

s=1

λ2
s,i.

Therefore, we can bound

n∑

s=1

∣∣∣∣∣
d∑

i=t

ζ2s,i −
d∑

i=t

λ2
s,i

∣∣∣∣∣ ≤ 200ǫ

n∑

s=1

d∑

i=t

λ2
s,i

so that ‖AYt−1‖2F is once again within a (1 + 200ǫ) factor of ‖AZt−1‖2F . Moreover,

n∑

s=1

∣∣∣∣∣

∑d
i=t ζ

2
s,i∑n

j=1

∑d
i=t λ

2
j,i

−
∑d

i=t λ
2
s,i∑n

j=1

∑d
i=t λ

2
j,i

∣∣∣∣∣ ≤ 200ǫ.

Since we consider the total variation distance across the probability distribution, then the sampling
probabilities each sum to 1 and we have

n∑

i=1

∣∣∣∣∣
‖AiYt−1‖22
‖AYt−1‖2F

− ‖AiZt−1‖22
‖AZt−1‖2F

∣∣∣∣∣ =
n∑

s=1

∣∣∣∣∣

∑d
i=t ζ

2
s,i∑n

j=1

∑d
i=t ζ

2
j,i

−
∑d

i=t λ
2
s,i∑n

j=1

∑d
i=t λ

2
j,i

∣∣∣∣∣ ≤ 2(1+200ǫ)200ǫ ≤ 799ǫ,

for sufficiently small ǫ. Thus including the 1
poly(n) probability of failure from Lemma 3.1, the total

variation distance between the probability distributions of the index of the sample output by P1
and P2 in round t is at most 800ǫ.
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From the inductive hypothesis, the total variation distance between the probability distributions
of t − 1 indices corresponding to samples output by P1 and P2 across t − 1 rounds is at most
800(t− 1)ǫ. Now for any sequence of rows S = {Af(2), . . . ,Af(t−1)}, let ES,1 be the event that the
rows of S are sequentially sampled, given that the first sampled row is Af(1) and let ES,2 be the
event that rows of S are sequentially sampled, given that the first sampled row is r1. Let BAD be
the sets S such that at least one of Af(1) ∪ S or r1 ∪ S is not linearly independent. Observe that
PBAD :=

∑
S∈BAD |Pr [ES,1]−Pr [ES,2]| ≤ 800(t − 1)ǫ, since sampling a row Af(i) that is linearly

dependent with Af(1), . . . ,Af(i−1) occurs with probability zero so then sampling a row Af(i) that
is linearly dependent with r1, . . . ,Af(i−1) must be realized in the total variation distance in the
first t− 1 rounds.

Otherwise, we have that the total variation distance between the probability distributions of the
index corresponding to the sample output by P1 and P2 in round t is at most 800ǫ. Let pj be the
event that Aj is sampled in round t. Then we have that the probability that S ∪Aj is sequentially
sampled, given that the first sampled row is Af(1), is Pr

[
ES∪Aj ,1

]
= Pr [ES,1]Pr [pj |ES,1] and

the probability that S ∪ Aj is sequentially sampled, given that the first sampled row is r1, is
Pr
[
ES∪Aj ,2

]
= Pr [ES,2]Pr [pj|ES,2]. We have

∑
S /∈BAD |Pr [ES,1]−Pr [ES,2]| ≤ 800(t− 1)ǫ− PBAD.

Moreover for S /∈ BAD, we have
∑

j∈[n] |Pr [pj |ES,1]−Pr [pj|ES,2]| ≤ 800ǫ. Thus we have

∑

S /∈BAD

∑

j∈[n]

∣∣Pr
[
ES∪Aj ,1

]
−Pr

[
ES∪Aj ,2

]∣∣ ≤ 800(t − 1)ǫ− PBAD + 800ǫ.

Since
∑

S∈BAD
∑

j∈[n]
∣∣Pr

[
ES∪Aj ,1

]
−Pr

[
ES∪Aj ,2

]∣∣ ≤ PBAD, then we have that the total vari-
ation distance is at most 800tǫ, which completes the induction. Thus the total variation distance
between the probability distributions of k indices output by P1 and P2 across k rounds is at most
800kǫ. �

Since the total variation distance induced by a single noisy row is small, we obtain that the
total variation distance between offline adaptive sampling and our adaptive sampler is small by
rescaling the error parameter. Thus we now provide the full guarantees for our adaptive sampler.

Theorem 3.4 Given a matrix A ∈ R
n×d that arrives in a turnstile stream, there exists a one-pass

algorithm AdaptiveStream that outputs a set of k indices such that the probability distribution
for each set of k indices has total variation distance ǫ of the probability distribution induced by
adaptive sampling with respect to squared distances to the selected subspace in each iteration. The

algorithm uses O
(
d3k6

ǫ3
log6 n

)
bits of space.

Proof : Consider a set of k + 1 processes P1,P2, . . . ,Pk+1, where for each i ∈ [k + 1], Pi is a
process that samples noisy rows from the L2,2 sampler for the first i − 1 rounds and actual rows
from A beginning with round i, through adaptive sampling with p = 2. Observe that P1 is the
actual adaptive sampling process and Pk+1 is the noisy process of Algorithm 4. Then Lemma 3.2
argues that the total variation distance between the output distributions of the k indices sampled
by P1 and P2 is at most O (kǫ). In fact, the proof of Lemma 3.2 also shows that the total variation
distance between the output distributions of the indices sampled by Pi and Pi+1 is at most O (kǫ)
for any i ∈ [k]. This is because the sampling distributions of Pi and Pi+1 is identical in the first
i rounds, so we can use the same argument starting at round i using the input matrix AQ rather
than A, where Q is the projection matrix away from the noisy rows sampled in the first i rounds.
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Let µi be the probability distribution of the k indices output by Pi. Thus from a triangle inequality
argument, we have that

dTV(P1,Pk+1) ≤
k∑

i=1

dTV(Pi,Pi+1) =
k∑

i=1

O (kǫ) = O
(
k2ǫ
)
.

In other words, the total variation distance between the probability distribution of the k indices
output by Algorithm 4 and the probability distribution of the k indices output by adaptive sampling
is at most O

(
k2ǫ
)
. Then we obtain total variation distance ǫ by the appropriate rescaling factor.

Lemma 3.2 requires the error parameter to be less than 1
d . To analyze the space complexity,

observe that with the error parameter O
(

ǫ
dk2

)
, then Lemma 3.2 suggests that O

(
d2k4 log2 n

ǫ2

)
buckets

are necessary in each CountSketch structure in the L2,2 sampler. Thus each CountSketch structure

is a O
(
d2k4 log2 n

ǫ2

)
× O (log n) table. Each entry in the table is a vector of d integers that use

O (d log n) bits of space for each vector, and the sampler can be repeated O
(
k
ǫ log

2 n
)
times to

obtain probability of success at least 1 − 1
poly(n) . This forms one L2,2 sampler, but we need k

iterations of the L2,2 sampler to simulate k rounds of adaptive sampling. Therefore, the total space

complexity is O
(
d3k6

ǫ3 log6 n
)
. �

Note that the proof of Lemma 3.2 also showed that ‖AYt‖2F is within a (1+O (ǫ)) factor of ‖AZt‖2F .
In Theorem 3.4, we have now sampled k noisy rows rather than a single noisy row followed by k−1
true rows, but we also rescale the error parameter down to O

(
ǫ

dk2

)
.

Corollary 3.5 Suppose Algorithm 4 samples noisy rows r1, . . . , rk rather than the actual rows
Af(1), . . . ,Af(k). Let Tk = Af(1)◦. . .◦Af(k), Zk = I−T†

kTk, Rk = r1◦. . .◦rk and Yk = I−R†
kRk.

Then (1− ǫ) ‖AYk‖2F ≤ ‖AZk‖2F ≤ (1 + ǫ) ‖AYk‖2F with probability at least 1− ǫ.

At first glance, it might seem strange that Corollary 3.5 obtains increased accuracy with higher
probability, but recall that Algorithm 4 has a space dependency on poly

(
1
ǫ

)
.

4 Applications

In this section, we give a number of data summarization applications for our adaptive sampler. In
each application, the goal is to find a set S of k rows of an underlying matrix A ∈ R

n×d defined
on a turnstile stream that optimizes a given predetermined function, which quantifies how well
S represents A. In particular among other things, we must show that for the purposes of each
application, (1) it suffices to return a noisy perturbation of the orthogonal component at each
sampling iteration, rather than the original row of the underlying matrix and (2) the algorithm
still succeeds with an additive perturbation to sampling probabilities, rather than an ideal (1 ± ǫ)
multiplicative perturbation.

4.1 Column/Row Subset Selection

We first show that our adaptive sampling procedure can be used to give turnstile streaming algo-
rithms for column/row subset selection. Recall that in the row (respectively column) subset selec-
tion problem, the inputs are an approximation parameter ǫ > 0, a parameter k for the number of

30



selected rows or columns, and a matrixA ∈ R
n×d that arrives as a data stream and the goal is to out-

put a set M of k rows (respectively columns) of A such that
∥∥A−AM†M

∥∥2
F
≤ (1+ ǫ) ‖A−A∗

k‖2F
(respectively

∥∥A−MM†A
∥∥2
F
≤ (1 + ǫ) ‖A−A∗

k‖2F ), where A∗
k is the best rank k approximation

to A. For the remainder of the section, we focus on row subset selection with the assumption that
n≫ d as continuation of the adaptive sampling scheme in previous sections, but we note that our
results extend naturally to column subset selection.

Recall that volume sampling induces a probability distribution on subsets of rows rather than
individual rows of A. For a subset T of k rows of A, let ∆(T) be the simplex defined by these
rows and the origin and Vol(T) be the volume of ∆(T). Then the volume sampling probability
distribution samples each subset T of k rows of A with probability

pT =
Vol(T)2∑

S:|S|=k Vol(S)
2
,

where S is taken across all subsets of k rows of A.
[DRVW06] gives the following relationship between volume sampling and row subset selection.

Theorem 4.1 [DRVW06] Given a matrix A ∈ R
n×d, let T be a subset of k rows of A generated

from the volume sampling probability distribution. Then

ET

[∥∥∥A−AT†T
∥∥∥
2

F

]
≤ (k + 1) ‖A−A∗

k‖2F ,

where A∗
k is the best rank k approximation to A.

For the remainder of Section 4.1, we consider the adaptive sampling scheme in Algorithm 5 to
obtain a subset of k rows of A, proportional to the squared row norms of the orthogonal projection
at each step.

Algorithm 5 Offline Adaptive Sampling by Squared Row Norms of Orthogonal Projection

Input: Matrix A ∈ R
n×d, integer k > 0

Output: Subset of k rows of A
1: M← ∅
2: for i = 1 to i = k do

3: Choose r to be Aj , with probability
‖Aj(I−M†M)‖2

2

‖A(I−M†M)‖2
F

, for j ∈ [n].

4: M←M ◦ r
5: return M

[DV06] shows that the adaptive sampling probabilities can be bounded by a multiple of the
volume sampling probabilities.

Lemma 4.2 [DV06] Given a matrix A ∈ R
n×d, let pT be the probability of sampling a set T of k

rows from the volume sampling probability distribution and let qT be the probability of sampling T
from the adaptive sampling probability distribution, as in Algorithm 5. Then qT ≤ k!pT.

Thus our adaptive sampling procedure immediately gives a one-pass turnstile streaming algo-
rithm for column/row subset selection.
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Theorem 4.3 Given a matrix A ∈ R
n×d that arrives in a turnstile data stream, there exists a

one-pass algorithm that outputs a set R of k (noisy) rows of A such that

Pr

[∥∥∥A−AR†R
∥∥∥
2

F
≤ 16(k + 1)! ‖A−A∗

k‖2F
]
≥ 2

3
.

The algorithm uses poly (d, k, log n) bits of space.

Proof : Theorem 3.4 states that the indices of the rows sampled by AdaptiveStream have
probability distribution roughly equivalent to the probability distribution of the indices of the rows
sampled by adaptive sampling, as in Algorithm 5. We would thus like to apply Lemma 4.2 and
Theorem 4.1, but we need to avoid specific failure events in our analysis. First, it may be the case

thatAdaptiveStream samples a setR so that
∥∥A−AR†R

∥∥2
F
is very large, but the corresponding

set T has very little probability of being sampled by the adaptive sampling probability distribution.
We absorb this failure event into the total variation distance. Second, we must analyze the difference

between
∥∥A−AR†R

∥∥2
F
for the set R noisy rows compared to

∥∥A−AT†T
∥∥2
F
for the actual rows.

This is handled by Corollary 3.5, which bounds the difference. We formalize these notions below.
Let E be the event that algorithm AdaptiveStream of Theorem 3.4 with error parameter

ǫ = 1
12 sequentially samples an ordered set R of k noisy rows corresponding to an arbitrary ordered

subset T of k rows of A and
∥∥A−AR†R

∥∥2
F
≤
(
1 + 1

12

) ∥∥A−AT†T
∥∥2
F
and note that Pr [E ] ≥ 11

12
by Corollary 3.5. Let ET be the event that algorithm AdaptiveStream of Theorem 3.4 with error
parameter ǫ = 1

12 samples a set R of k noisy rows corresponding to the specific subset T of k rows

of A and
∥∥A−AR†R

∥∥2
F
≤
(
1 + 1

12

) ∥∥A−AT†T
∥∥2
F
.

Let q̂T be the probability that the indices corresponding toT are sampled byAdaptiveStream

of Theorem 3.4. Let qT be the probability of sampling T from the adaptive sampling probability
distribution, as in Algorithm 5. Let S be the collection of k-sets of indices of rows T such that
q̂T > 2qT and note that

∑
T∈S qT ≤ 1

12 since {qT}T and {q̂T}T have total variation distance at
most 1

12 using AdaptiveStream with error parameter ǫ = 1
12 by Theorem 3.4. When the event E

occurs, we abuse notation by saying R /∈ S if the indices corresponding to the set of sampled rows
does not belong in S. Observe that algorithmically, we do not know the indices corresponding to
the set R of k noisy rows, but analytically each row of R must correspond to a certain row of T,
based on the scaling of the uniform random variables at each round of AdaptiveStream. Then

E
R/∈S

[∥∥∥A−AR†R
∥∥∥
2

F

∣∣∣ E
]
=
∑

T/∈S
q̂T · E

[∥∥∥A−AR†R
∥∥∥
2

F

∣∣∣ ET
]

≤ 1

Pr [ET]
∑

T/∈S
q̂T

(
1 +

1

12

)∥∥∥A−AT†T
∥∥∥
2

F

≤ 12

11

∑

T/∈S
2qT

(
1 +

1

12

)∥∥∥A−AT†T
∥∥∥
2

F

≤ 13

11

∑

T/∈S
2qT

∥∥∥A−AT†T
∥∥∥
2

F
,

where the penultimate inequality follows from T /∈ S implying that q̂T ≤ 2qT. By Lemma 4.2 and
Theorem 4.1, it follows that

E
R/∈S

[∥∥∥A−AR†R
∥∥∥
2

F

∣∣∣ E
]
≤ 26

11

∑

T:|T|=k

pTk!
∥∥∥A−AT†T

∥∥∥
2

F
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≤ 26

11
(k + 1)! ‖A−A∗

k‖2F ,

where pT is the probability of sampling a set T of k rows from the volume sampling probability
distribution. Therefore by Markov’s inequality, the correctness of the claim follows by additionally
taking a union bound over Pr [¬E ] ≤ 1

12 and
∑

T∈S qT ≤ 1
12 . The space of the algorithm follows

from taking ǫ = O (1) in Theorem 3.4. �

4.2 Subspace Approximation

We next show that our adaptive sampling procedure can be used to give turnstile streaming algo-
rithms for the subspace approximation. Recall that in the subspace approximation problem, the
inputs are a parameter p ≥ 1, a matrix A ∈ R

n×d that arrives as a data stream, and a parameter k
for the target dimension of the subspace, and the goal is to output a k-dimensional linear subspace

H that minimizes (
∑n

i=1 d(Ai,H)p)
1
p , where d(Ai,H) =

∥∥Ai(I−H†H)
∥∥
2
is the distance from Ai

to the subspace H.
We consider a generalized version of the adaptive sampling scheme that appears in Algorithm 5

to obtain a subset of k rows of A, where rows are sampled with probabilities proportional to pth

power of the distance to the subspace formed by the span of the sampled rows. The generalized
version, which appears in Algorithm 6, corresponds to Algorithm 5 when p = 2.

Algorithm 6 Offline Adaptive Sampling by pth Power of Distance to Subspace

Input: Matrix A ∈ R
n×d, integers k > 0, p ≥ 1

Output: Subset of k rows of A
1: M← ∅
2: for i = 1 to i = k do
3: Choose r to be Aj , with probability

d(Aj ,M)p∑n
ℓ=1 d(Aℓ,M)p , for j ∈ [n].

4: M←M ◦ r
5: return M

[DV07] shows that adaptive sampling based on the pth powers of the subspace distances can be
used to give a good approximation to the subspace approximation problem.

Theorem 4.4 [DV07] Given a matrix A ∈ R
n×d, let T be a subset of k rows of A generated from

the adaptive sampling probability distribution, as in Algorithm 6. Then

ET

[
n∑

i=1

d(Ai,T)p

]
≤ ((k + 1)!)p

n∑

i=1

d(Ai,A
∗
k)

p,

where A∗
k is the best rank k solution to the subspace approximation problem.

Thus our adaptive sampling procedure immediately gives a one-pass turnstile streaming algo-
rithm for the subspace approximation problem with p = 2, by a similar argument to Theorem 4.3.

Theorem 4.5 Given a matrix A ∈ R
n×d that arrives in a turnstile data stream, there exists a

one-pass algorithm that outputs a set R of k (noisy) rows of A such that

Pr



(

n∑

i=1

d(Ai,R)2

)1
2

≤ 4(k + 1)!

(
n∑

i=1

d(Ai,A
∗
k)

2

) 1
2


 ≥ 2

3
,
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where A∗
k is the best rank k solution to the subspace approximation problem. The algorithm uses

poly (d, k, log n) bits of space.

Proof : As in the proof of Theorem 4.3, let E be the event that algorithm AdaptiveStream

of Theorem 3.4 with error parameter ǫ = 1
12 samples a set R of k noisy rows corresponding to an

arbitrary subset T of rows of A and
∑n

i=1 d(Ai,R)2 ≤
(
1 + 1

12

)∑n
i=1 d(Ai,T)2, so that Pr [E ] ≥ 11

12
by Corollary 3.5. For a set T of rows of A, let ET be the event that algorithm AdaptiveStream

of Theorem 3.4 with error parameter ǫ = 1
12 samples a set R of k noisy rows corresponding to T

and
∑n

i=1 d(Ai,R)2 ≤
(
1 + 1

12

)∑n
i=1 d(Ai,T)2.

Let q̂T be the probability that the indices corresponding toT are sampled byAdaptiveStream

of Theorem 3.4 and qT be the probability of sampling T from the adaptive sampling probability
distribution, as in Algorithm 6 with p = 2. Let S be the set of rows T such that q̂T > 2qT and
note that

∑
T∈S qT ≤ 1

12 since {qT}T and {q̂T}T have total variation distance at most 1
12 using

AdaptiveStream with error parameter ǫ = 1
12 by Theorem 3.4. We again abuse notation by

saying R /∈ S when the event E occurs if the indices corresponding to the set of sampled rows R
does not belong in S. Then

E
R/∈S

[
n∑

i=1

d(Ai,R)2
∣∣∣ E
]
=
∑

T/∈S
q̂T · E

[
n∑

i=1

d(Ai,R)2
∣∣∣ ET

]

≤ 1

Pr [ET]
∑

T/∈S
q̂T ·

(
1 +

1

12

) n∑

i=1

d(Ai,T)2

≤ 12

11

∑

T/∈S
2qT

(
1 +

1

12

) n∑

i=1

d(Ai,T)2

≤ 13

11

∑

T/∈S
2qT

n∑

i=1

d(Ai,T)2,

where the penultimate inequality follows from T /∈ S implying that q̂T ≤ 2qT. By Theorem 4.4,

E
R/∈S

[
n∑

i=1

d(Ai,R)2
∣∣∣ E
]
≤ 26

11
((k + 1)!)2

n∑

i=1

d(Ai,A
∗
k)

2.

Therefore by Markov’s inequality and taking a union bound over Pr [¬E ] ≤ 1
12 and

∑
T∈S qT ≤ 1

12 ,
we have that

Pr

[
n∑

i=1

d(Ai,R)2 ≤ 16((k + 1)!)2
n∑

i=1

d(Ai,A
∗
k)

2

]
≥ 2

3
,

as desired. The space of the algorithm follows from taking ǫ = O (1) in Theorem 3.4. �

To simulate Algorithm 6 for p = 1, we need to sample a row AiP with probability proportional
to ‖AiP‖2 rather than ‖AiP‖22. We show how to do this in Algorithm 11 in Section A.2. By
applying Theorem A.7 and using the same argument as Theorem 4.5, we also obtain a one-pass
turnstile streaming algorithm for the subspace approximation problem for p = 1.
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Theorem 4.6 Given a matrix A ∈ R
n×d that arrives in a turnstile data stream, there exists a

one-pass algorithm that outputs a set T of k (noisy) rows of A such that

Pr

[
n∑

i=1

d(Ai,T) ≤ 4(k + 1)!

(
n∑

i=1

d(Ai,A
∗
k)

)]
≥ 2

3
,

where A∗
k is the best rank k solution to the subspace approximation problem. The algorithm uses

poly (d, k, log n) bits of space.

Proof : Let E be the event that Theorem A.7 with ǫ = 1
12 samples a set R of k noisy rows corre-

sponding to an arbitrary subset T of rows of A and
∑n

i=1 d(Ai,R) ≤
(
1 + 1

12

)∑n
i=1 d(Ai,T),

so that Pr [E ] ≥ 11
12 by Corollary A.8. For a set T of rows of A, let ET be the event that

Theorem A.7 with ǫ = 1
12 samples a set R of k noisy rows corresponding to T and

∑n
i=1 d(Ai,R) ≤(

1 + 1
12

)∑n
i=1 d(Ai,T).

Let q̂T be the probability that the indices corresponding to T are sampled by Theorem A.7
and qT be the probability of sampling T from the adaptive sampling probability distribution, as in
Algorithm 6 with p = 1. Let S be the set of rows T such that q̂T > 2qT and note that

∑
T∈S qT ≤ 1

12
since {qT}T and {q̂T}T have total variation distance at most 1

12 by Theorem A.7. Then

E
R/∈S

[
n∑

i=1

d(Ai,R)
∣∣∣ E
]
=
∑

T/∈S
q̂T · E

[
n∑

i=1

d(Ai,R)
∣∣∣ ET

]

≤ 1

Pr [ET]
∑

T/∈S
q̂T

(
1 +

1

12

) n∑

i=1

d(Ai,T)

≤ 13

11

∑

T/∈S
2qT

n∑

i=1

d(Ai,T),

where the last inequality follows from the fact that Pr [E ] ≥ 11
12 and from T /∈ S implying that

q̂T ≤ 2qT. By Theorem 4.4,

E
R/∈S

[
n∑

i=1

d(Ai,R)2
∣∣∣ E
]
≤ 26

11
(k + 1)!

n∑

i=1

d(Ai,A
∗
k).

By Markov’s inequality and a union bound over Pr [¬E ] ≤ 1
12 and

∑
T∈S qT ≤ 1

12 , we have that

Pr

[
n∑

i=1

d(Ai,R) ≤ 16(k + 1)!
n∑

i=1

d(Ai,A
∗
k)

]
≥ 2

3
,

as desired. The space of the algorithm follows from taking ǫ = O (1) in Theorem A.7. �

[DV07] also shows that adaptive sampling can be used to give a bicriteria approximation to
the subspace approximation problem. We use the notation Õ (·) in the remainder of Section 4.2 to
omit polylog

(
k, 1ǫ

)
factors, with degrees depending on p.

Theorem 4.7 [DV07] Given a matrix A ∈ R
n×d and a parameter ǫ > 0, let m = O (k) and

let T1, . . . ,Tm each be a subset of Õ
(
k2 ·

(
k
ǫ

)p+1
)

rows generated from the adaptive sampling
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Algorithm 7 Repeated Offline Adaptive Oversampling by pth Power of Distance to Subspace

Input: Matrix A ∈ R
n×d, integers k > 0, p ≥ 1

Output: Subset of Õ
(
k2 ·

(
k
ǫ

)p+1
)
rows of A

1: Let S0 be a set of k rows obtained through Algorithm 5.
2: δ ← ǫ

log k , S← S0, t← O (k log k)
3: for j = 1 to j = t do
4: for i = 1 to i = k do
5: Sample a subset of rows Si to be O

((
2k
δ

)p k
δ log

k
δ

)
rows of A, where each Aℓ is selected

with probability d(Aℓ,Si−1)p∑n
ℓ=1 d(Aℓ,Si−1)p

, for ℓ ∈ [n].

6: S← S ◦ Si

7: S1 = . . . = Sk = ∅
8: return S

probability distribution with respect to repeated oversampling, as in Algorithm 7. Then for T =
T1 ∪ . . . ∪Tm,

Pr



(

n∑

i=1

d(Ai,T)p

) 1
p

≤ (1 + ǫ)

(
n∑

i=1

d(Ai,A
∗
k)

p

) 1
p


 ≥ 3

4
,

where A∗
k is the best rank k solution to the subspace approximation problem.

By a similar argument to Theorem 4.3 and Theorem 4.5, our adaptive sampling procedure gives
a one-pass turnstile streaming algorithm that produces a bicriteria approximation to the subspace
approximation problem with p = 2.

Theorem 4.8 Given a matrix A ∈ R
n×d that arrives in a turnstile data stream, there exists a

one-pass algorithm that outputs a set T of Õ
(
k3 ·

(
k
ǫ

)p+1
)
(noisy) rows of A such that

Pr



(

n∑

i=1

d(Ai,T)p

) 1
p

≤ (1 + ǫ)

(
n∑

i=1

d(Ai,A
∗
k)

p

) 1
p


 ≥ 2

3

for p ∈ {1, 2}, where A∗
k is the best rank k solution to the subspace approximation problem. The

algorithm uses poly(d, k, 1ǫ , log n, log
k
ǫ ) bits of space.

Proof : The proof follows the same template as Theorem 4.3 that analyzes both the total
variation distance between the ideal distribution and the actual distribution, as well as the quality
of the approximation by the noisy rows to the actual rows. We first consider the case p = 2 and

observe that Theorem 4.7 requires Algorithm 7 to sample r := Õ
(
k3 ·

(
k
ǫ

)p+1
)
rows in total. We

cannot quite run Algorithm 4 as stated, since it uses k instances of the L2,2 sampler in Algorithm 3
to sequentially sample k rows.

On the other hand, by creating poly(r, log n) instances of the L2,2 sampler Algorithm 3 with
sufficiently small error parameter, we can simulate each round of Algorithm 7 used to generate
T1, . . . ,Tm in the statement of Theorem 4.7. We require poly(r, log n) instances of the L2,2 sampler
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to produce r samples, since recall that each sampler has some probability of outputting FAIL. To
sample a set Rj corresponding to Tj, we first use Algorithm 4 to sample a set Y0 of k (noisy)
rows of A with total variation distance O

(
ǫ
r

)
from the distribution of S0 in Algorithm 7. Now for

δ = ǫ
log k , each time we should have sampled a set Si of O

((
2k
δ

)p k
δ log

k
δ

)
rows of A after projecting

away from Si−1, we instead use instances of the L2,2 sampler Algorithm 3 to sample a set Yi of

O
((

2k
δ

)p k
δ log

k
δ

)
noisy rows of A by projecting away from Yi−1.

Since we perform r rounds of sampling in total, then using the same argument as Theorem 3.4,
we can bound the total variation distance between our output distribution and the distribution of
Theorem 4.7 by O (ǫ). Let S be the set of r indices corresponding to sets R of rows sampled by

repeated iterations of Algorithm 7 so that (
∑n

i=1 d(Ai,R)p)
1
p ≤ (1 + ǫ) (

∑n
i=1 d(Ai,A

∗
k)

p)
1
p . Let E

be the event that the set R of rows sampled by repeated iterations of Algorithm 7 correspond to a
set of r indices from S. Thus the probability that the indices of the r samples T produced by the
L2,2 samplers correspond to indices of S is at least Pr [E ]− ǫ.

Moreover for the noisy rows T that we sample, (
∑n

i=1 d(Ai,T)p)
1
p ≤ (1 + ǫ) (

∑n
i=1 d(Ai,R)p)

1
p

with probability at least 1 − ǫ by Corollary 3.5. By Theorem 4.7, Pr [E ] ≥ 3
4 . Thus for suf-

ficiently small ǫ and by a rescaling argument, the probability that (
∑n

i=1 d(Ai,T)p)
1
p ≤ (1 +

ǫ) (
∑n

i=1 d(Ai,A
∗
k)

p)
1
p is at least 2

3 . Then the correctness of the claim holds and the total space re-

quired is poly(d, k, 1ǫ , log n, log
k
ǫ ) by argument in Theorem 3.4. For p = 1, we use the L1,2 sampler

Algorithm 10 in place of the L2,2 sampler Algorithm 3 to sample rows Yi for i > 0 with probability
proportional to their distances from the current subspace at each iteration, rather than the squared
distances. Correctness then follows from the same argument, using Theorem A.7 and Corollary A.8
for the L1,2 samplers. �

4.3 Projective Clustering

We now show that our adaptive sampling procedure can also be used to give turnstile streaming
algorithms for projective clustering, where the inputs are a parameter p ≥ 1, a matrix A ∈ R

n×d

that arrives as a data stream and parameters k for the target dimension of each subspace and s for
the number of subspaces, and the goal is to output s k-dimensional linear subspaces H1, . . . ,Hs

that minimizes: (
n∑

i=1

d(Ai,H)p

) 1
p

,

whereH = H1∪. . .∪Hs and d(Ai,H) is the distance from Ai to unionH of s subspaces H1, . . . ,Hs.
Again we use Õ (·) to omit polylog

(
k, s, 1ǫ

)
factors, with degrees depending on p.

[DV07] also shows that adaptive sampling can be used to perform dimensionality reduction for
projective clustering.

Theorem 4.9 [DV07] Let V be a subspace of dimension at least k such that

(
n∑

i=1

d(Ai,V)p

) 1
p

≤ 2

(
n∑

i=1

d(Ai,H)p

) 1
p

,
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Algorithm 8 Dimensionality Reduction for Projective Clustering

Input: Matrix A ∈ R
n×d, integers k > 0, s > 0, p ≥ 1, and a subspace V of dimension at least k.

Output: Subset of Õ
((

k2

ǫ

)p
k4s
ǫ2

)
rows of A

1: S← ∅
2: for t = 1 to t = Õ

((
k2

ǫ

)p
k4s
ǫ2

)
do

3: Sample a row r of A, where each row Ai is selected with probability d(Ai,S∪V)∑n
j=1 d(Aj ,S∪V)

.

4: S← S ◦ r
5: return S

where H is the union of s k-dimensional subspaces that is the optimal solution to the projective
clustering problem. Then with probability at least 3

4 , Algorithm 8 outputs a set S such that V ∪ S
contains a union T of s k-dimensional subspaces such that

(
n∑

i=1

d(Ai,T)p

) 1
p

≤ (1 + ǫ)

(
n∑

i=1

d(Ai,H)p

) 1
p

.

Since the optimal solution to the projective clustering problem is certainly no better than the opti-
mal ks-dimensional subspace, we use the bicriteria subspace approximation algorithm of Theorem 4.8
with input dimension ks. Thus, we obtain a one-pass turnstile streaming algorithm for the projec-
tive clustering problem.

Theorem 4.10 Given a matrix A ∈ R
n×d that arrives in a turnstile data stream, there exists

a one-pass algorithm that outputs a set S of Õ
(
(ks)p+4 + k4s

ǫ2

(
k2

ǫ

)p)
(noisy) rows of A, which

includes a union T of s k-dimensional subspaces such that

Pr



(

n∑

i=1

d(Ai,T)p

) 1
p

≤ (1 + ǫ)

(
n∑

i=1

d(Ai,H)p

) 1
p


 ≥ 2

3

for p = {1, 2}, where H is the union of s k-dimensional subspaces that is the optimal solution to
the projective clustering problem. The algorithm uses poly

(
d, k, s, 1ǫ , log n

)
bits of space.

Proof : Note that the optimal solution H of s k-dimensional subspaces is no better than the
solution A∗

ks of the ks subspace approximation problem:

(
n∑

i=1

d(Ai,A
∗
ks)

p

) 1
p

≤
(

n∑

i=1

d(Ai,H)p

) 1
p

,

By setting ǫ = O (1) in Theorem 4.8, we can first obtain a set V of Õ
(
(ks)3 · (ks)p+1

)
rows of A

such that (
n∑

i=1

d(Ai,V)p

) 1
p

≤ 2

(
n∑

i=1

d(Ai,A
∗
ks)

p

) 1
p

≤ 2

(
n∑

i=1

d(Ai,H)p

) 1
p

,

which satisfies the conditions of Theorem 4.9. This can be done with arbitrarily high constant
probability by taking V to be a number of independent instances of the algorithm in Theorem 4.8.
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We now simulate Algorithm 8 by iteratively sampling r := Õ
((

k2

ǫ

)p
k4s
ǫ2

)
rows projected away

from V. The rest of the proof uses the same template as Theorem 4.8. We first describe the case
where p = 2. By using poly(r, log n) independent copies of Algorithm 3 with sufficiently small
error parameter, we can iteratively sample rows with probability proportional to their squared
distance away from the span of the previous rows and V. By Theorem 3.4, it follows that the
total variation distance of the sampled rows S using the L2,2 samplers is some small constant
O (ǫ) from the output distribution of Theorem 4.9. By Corollary 3.5, the objective on the sampled
output is within (1 + O (ǫ)) of the offline adaptive sampler. Hence, the existence of a union T
of s k-dimensional subspaces that is a good approximation of the optimal solution follows from
Theorem 4.9. Since the probability of failure of Theorem 4.9 is at most 1

4 , then for sufficiently

small ǫ, it holds that (
∑n

i=1 d(Ai,T)p)
1
p ≤ (1 + ǫ) (

∑n
i=1 d(Ai,H)p)

1
p with probability at least 2

3 .
By Theorem 4.8, we can obtain V using poly

(
d, k, s, 1ǫ , log n

)
bits of space. By Theorem 3.4, we

need poly(d, k, 1ǫ , log n, log
k
ǫ ) bits of space to sample the r rows of A, so the space complexity

follows.
For p = 1, we instead use poly(r, log n) independent copies of the L1,2 sampler Algorithm 10.

The same argument then follows using Theorem A.7 to bound the total variation distance from
the output distribution of Theorem 4.9 by O (ǫ) and Corollary A.8 to bound the objective on the
sampled output compared to that of the offline adaptive sampler. �

4.4 Volume Maximization

We now show that our sampling procedure can also be used to give turnstile streaming algorithms
for volume maximization, where the inputs are a matrix A ∈ R

n×d that arrives as a data stream
and a parameter k for the number of selected rows, and the goal is to output k rows r1, . . . , rk of A
that maximize Vol(R), where R = r1 ◦ . . . ◦ rk. A possible approach to the volume maximization
problem in an offline model is the greedy algorithm, which repeatedly chooses the row with the
largest distance from the subspace spanned by the rows that have already been selected, for k
steps. [ÇM09] shows that this offline greedy algorithm gives a k!-approximation to the volume
maximization problem. In fact, their analysis also implies that an offline approximate greedy
algorithm gives a good approximation to the volume maximization problem.

Theorem 4.11 [ÇM09] Given a matrix A ∈ R
n×d and an integer k > 0, let G be a set of k rows

chosen by the approximate greedy algorithm that repeatedly chooses a (noisy) row whose distance
from the subspace spanned by the rows that have already been chosen is within a multiplicative α
factor of the largest distance of a row to the subspace. Let V be a set of k rows of A with the
maximum volume. Then Vol(V) ≤ (αk)k! · Vol(G).

Lemma 4.12 Let A ∈ R
n×d and α > 1 be an approximation factor. Let rj be the row selected by

Algorithm 9 in round j and let Rj = r1 ◦ . . . ◦ rj for each j ∈ [k] and R0 be the all zeros matrix.

For each j ∈ [k], let mj be the row the maximizes
∥∥∥Ai(I−R†

j−1Rj−1)
∥∥∥
2
. Then ‖rj‖2 ≥ 1

2α ‖mj‖2
with probability at least 1− 1

4k − 1
poly(n) .

Proof : Let Yj = I−R†
jRj for each j ∈ [k]. Suppose ‖mj‖22 ≥ α2

4nk ‖AYj−1‖2F so that mj is
α

2
√
nk

-

heavy with respect to AYj−1. Each CountSketch-M data structure in Algorithm 9 maintains
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Algorithm 9 Volume Maximization

Input: Matrix A ∈ R
n×d that arrives as a stream A1, . . . ,An ∈ R

d, parameter k for number of
rows, approximation factor α > 1.

Output: k Noisy and projected rows of A.
1: Create instances A1, . . . ,Ak, where each Aj for j ∈ [k] is O (log n log k) copies of the L2,2

sampler of Algorithm 3 with error parameter ǫ = 1
4 .

2: Create instances CountSketch-M1, . . . ,CountSketch-Mk with Θ
(
nk
α2

)
buckets.

3: Create instances AMS-M1, . . . ,AMS-Mk with error parameter O (1).
4: Let M be empty 0× d matrix.
5: Streaming Stage:
6: for each row Ai do
7: Update each sketch A1, . . . ,Ak.
8: Update each sketch AMS-M1, . . . ,AMS-Mk.
9: Update each sketch CountSketch-M1, . . . ,CountSketch-Mk.

10: Post-processing Stage:
11: for j = 1 to j = k do
12: Post-processing matrix P← I−M†M.
13: Update Aj,AMS-Mj ,CountSketch-Mj with post-processing matrix P.

14: if AMS-Mj and CountSketch-Mj find a (noisy) row r of AP with ‖r‖22 ≥ α2

4nk ‖AP‖2F
then

15: Append the (noisy) row rj with the largest norm to M: M←M ◦ rj .
16: else
17: Let rj be the (noisy) row of AP sampled by Aj.
18: Append rj to M: M←M ◦ rj .
19: return M.

Θ
(
nk
α2

)
buckets and mj is a heavy row for AYj−1, so Algorithm 9 will output some noisy row rj

with ‖rj‖22 ≥ 1
2 ‖mj‖22 for sufficiently small O (1) error parameter by each AMS-M data structure.

On the other hand, suppose ‖mj‖22 < α2

4nk ‖AYj−1‖2F . Since AYj−1 contains n rows and ǫ = 1
4 ,

the L2,2 sampler will select an index s ∈ [n] such that ‖AsYj−1‖22 ≥ 1
8nk ‖AYj−1‖2F and output a

row rj such that ‖rj‖2 ≥ 1√
2
‖AsYj−1‖2, with probability at least 1− 1

4k − 1
poly(n) Therefore,

‖rj‖22 ≥
1

16nk
‖AYj−1‖2F >

1

4α2
‖mj‖22 ,

which suffices to imply ‖rj‖2 ≥ 1
2α ‖mj‖2. �

Theorem 4.13 Given a matrix A ∈ R
n×d that arrives in a turnstile data stream and an approxi-

mation factor α > 0, there exists a one-pass streaming algorithm that outputs a set of k noisy rows
of A that is an αk(k!)-approximation to volume maximization with probability at least 2

3 , using

Õ
(
ndk2

α2

)
bits of space.

Proof : Recall that a single instance of the L2,2 sampler of Algorithm 3 succeeds with probability
1

logn for error parameter ǫ = O (1). Thus by using O (log n log k) copies of the L2,2 sampler of

40



Algorithm 3, the probability that Algorithm 9 successfully acquires a sample in each round is at
least 1 − O

(
1
k

)
. Thus by Lemma 4.12 and a union bound, Algorithm 9 repeatedly chooses rows

r1, . . . , rk whose distance from the subspace spanned by the previously chosen rows is within a
multiplicative factor of 2α of the largest distance, with probability at least 2

3 . Let R be the
parallelepiped spanned by r1, . . . , rk. Thus by Lemma 4.11, (2α)k(k!)Vol(R) ≥ Vol(V), where V
is a set of k rows of A with the maximum volume. The result then follows from rescaling α.

Each CountSketch-M data structure maintains Θ
(
nk
α2

)
buckets of vectors with d entries, each

with O (log n) bits. Each AMS-M data structure uses O
(
d log2 n

)
bits of space. Each L2,2 sampler

uses O (log n) buckets of vectors with d entries, each with O (log n) bits. Since Algorithm 9 requires
k instances of each data structure, then the total space complexity follows. �

5 Volume Maximization in the Row-Arrival Model

In this section, we consider the volume maximization problem on row-arrival streams. As before,
we are given the rows of the matrix A ∈ R

n×d and a parameter k, and the goal is to output k rows
of the matrix whose volume is maximized. Throughout the section, we will use the equivalent view
that the stream consists of n points from R

d.

5.1 Volume Maximization via Composable Core-sets.

We first observe that we can get an approximation algorithm for volume maximization in the
row-arrival model by using algorithms of [IMGR20, IMGR19] for composable core-sets for volume
maximization. We recall the definition of composable core-sets, such as given in [IMMM14].

Definition 5.1 (α-composable core-set) Let V ⊂ R
d be an input set. Then a function c : V →

W , where W ⊂ V , is an α-composable core-set for an optimization problem with a maximization
objective with respect to a function f : 2R

d → R if for any collection of set V1, . . . , Vm ⊂ R
d,

f(c(V1) ∪ . . . ∪ c(Vm)) ≥ 1

α
f(V1 ∪ . . . ∪ Vm).

[IMGR20] gives composable core-sets for volume maximization.

Theorem 5.2 [IMGR20] There exists a polynomial time algorithm for computing an Õ (k)k/2-
composable core-set of size Õ (k) for the volume maximization problem.

We can partition the stream into consecutive blocks and apply a core-set for each block to get a
streaming algorithm for volume maximization.

Corollary 5.3 There exists a one pass streaming algorithm in the row-arrival model that computes
a Õ (k)k/(2ǫ)-approximation to the volume maximization problem, using Õ

(
1
ǫn

ǫdk
)
space.

Proof : Consider a b-ary tree over the stream with n leaves that correspond to the elements of
the stream in the order they arrive. Let b = nǫ so that the height of the tree is logn

log b = 1
ǫ . For each

node in the tree, as soon as all the elements corresponding to its subtree arrive in the stream, we
build a core-set of size Õ (k) for the points using the algorithm of [IMGR20] in Theorem 5.2, and
pass the core-set to the parent node. More precisely, when the node receives a composable core-set
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from each of its b children, it computes a composable core-set over the union of the core-sets of its
children and passes the new core-set on to its parent.

Then the k points reported by the root gives an
(
Õ (k)k/2

)1/ǫ
= Õ (k)k/(2ǫ) approximation to

the volume maximization problem. Moreover, at each time step during the stream arrival, there is
only one path of active nodes (nodes whose corresponding leaf nodes have arrived but not finished)
in the tree from the root to the leaves. Each of the nodes on this active path might need to store a
composable core-set of size Õ (k) for each of its b children. Since each point has dimension d, then
the total memory usage of the algorithm is thus at most

(
1
ǫ

)
· b · Õ (dk) = Õ

(
1
ǫn

ǫdk
)
. �

5.2 Exponential Dependence on d

In this section, we give a streaming algorithm whose space complexity depends exponentially on
the dimension d. Our main tool is the ǫ-kernels of [AHPV05] improved by [Cha06] for directional
width of a point set. We first define the concept of the directional width.

Definition 5.4 (Directional width [AHPV05]) Given a point set P ⊂ R
d and a unit direction

vector x ∈ R, the directional width of P with respect to x is defined to be ω(x, P ) = maxp∈P 〈x,p〉−
minp∈P 〈x,p〉.

The following lemma shows the existence of core-sets with size exponential in the directional
width of a point set but independent of the number of points.

Lemma 5.5 [Cha06] For any 0 < ǫ < 1, there exists a one pass streaming algorithm that computes
an ǫ-core-set Q ⊆ P , such that for any unit direction vector x ∈ R

d, we have ω(x, Q) ≥ (1 −
ǫ)ω(x, P ). Moreover the algorithm uses space O

((
1
ǫ log

1
ǫ

)d−1
)

and the core-set has size |Q| ≤
O
(

1
ǫd−1

)
.

Now let us define the the directional height (which was implicitly defined in [IMGR19]), and its
relation to directional width.

Definition 5.6 (Directional height) Given a point set P ⊂ R
d and a unit direction vector x ∈

R, the directional height of P with respect to x is defined to be h(x, P ) = maxp∈P |〈x,p〉|.

Lemma 5.7 For a point set P ⊂ R
d, an ǫ-core-set Q for directional width is a (2ǫ)-core-set for

directional height.

Proof : Let x be a unit direction vector in R
d. Let p1 = argmaxp∈P 〈x,p〉 and p2 =

argminp∈P 〈x,p〉, and let q1 = argmaxp∈Q〈x,p〉 and q2 = argminp∈Q〈x,p〉. Now consider two
cases.

• First suppose that 〈x,p2〉 ≥ 0. In this case, we have that h(x, P ) = 〈x,p1〉. Since Q
is an ǫ-core-set for directional width, then 〈x,p1〉 − 〈x,p2〉 ≤ (1 + ǫ) (〈x,q1〉 − 〈x,q2〉) ≤
(1+ ǫ) (〈x,q1〉 − 〈x,p2〉). Therefore, 〈x,q1〉 ≥ (1− ǫ)〈x,p1〉 so that h(x, Q) ≥ (1− ǫ)h(x, P ).

The case of 〈x,p1〉 ≤ 0 can be handled similarly.
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• On the other hand, suppose 〈x,p1〉 > 0 and 〈x,p2〉 < 0. Assume without loss of generality
that |〈x,p1〉| ≥ |〈x,p2〉|. Then h(x, P ) = 〈x,p1〉. As Q is an ǫ-core-set for the width, then
we also have 〈x,q1〉 ≥ (1− 2ǫ)〈x,p1〉 = (1− 2ǫ)h(x, P ). Therefore, h(x, Q) ≥ (1− 2ǫ)h(x, P ).

�

Finally we define k-directional height and observe that a core-set for directional height leads to
a core-set for k-directional height.

Definition 5.8 (k-directional height [IMGR19]) Given a point set P ⊂ R
d and a (k − 1)-

dimensional subspace H, x ∈ R
d, the k-directional height of P with respect to H is defined to be

hk(H, P ) = maxx∈H⊥ h(x, P ), where H⊥ is the orthogonal complement of H.

Observation 5.9 For a point set P ⊂ R
d, an ǫ-core-set Q for directional height is an ǫ-core-set

for k-directional height.

In fact, a core-set for directional height is stronger than a core-set for k-directional height since it
preserves the height in all directions x ∈ H⊥; thus their maximum is preserved too.

Lemma 5.10 ([IMGR19]) For a point set P ⊂ R
d, let Q be its ǫ-core-set for k-directional height.

Then the solution of the k-volume maximization on Q is within a factor of 1/(1− ǫ)k of the solution
of k-volume maximization over P .

Lemma 5.11 There exists a one pass streaming algorithm that outputs a 2k-approximation to
volume maximization, using O

(
8d
)
space.

Proof : We use the streaming algorithm of Lemma 5.5 on the the set of rows of A with ǫ = 1
4 ,

which gives a 1
4 -core-set Q ∈ R

4d×d for the directional width using space O
(
8d
)
. Using Lemma 5.7

and Observation 5.9, this will be a 1
2 -core-set for the k-directional height of the rows of A. Finally,

using Lemma 5.10, the optimal solution of Q approximates the maximum volume over rows of A
within a factor of 2k. �

5.3 Dimensionality Reduction

In this section, we show how to reduce the dimension of each point to d = O (k). Using the result
of the previous section, this will give a trade-off algorithm, improving over Corollary 5.3 in terms
of the dependence on the parameter 1

ǫ . We prove the following lemma.

Lemma 5.12 Let C be a trade-off parameter such that 1 < C < (log n)/k. There exists a random-
ized streaming algorithm that uses O

(
nO(1/C)d

)
space to computes a subset of size d whose volume

maximization solution is a O (Ck)k/2 approximation to the optimal solution.

Note that this result improves the algorithm of Corollary 5.3 for k
logn < ǫ: setting C = 1/ǫ,

this provides an algorithm with memory usage of O (nǫ), with approximation factor of O (k/ǫ)k/2,
improving the dependence of the approximation factor on 1

ǫ by an exponential factor.

We now continue with the proof of Lemma 5.12. Consider a random matrix G ∈ R
d×r, for

r = logn
C , where each of its entries is an independent and identically distributed (i.i.d.) random

43



variable drawn from the Gaussian distribution N (0, 1/r). Consider the matrix AG and observe
that its rows exist in an r dimensional space. Therefore, we can use the streaming algorithm of
Lemma 5.11 to find a subset of k rows of AG that serves as a good estimator for the maximum
volume. This approach requires O

(
23r
)
= O (1)O((logn)/C) = nO(1/C) memory space.

Lemma 5.13 Let G ∈ R
d×r, for r = Ω

(
logn
C

)
, have each of its entries is drawn i.i.d from the

Gaussian distribution N (0, 1/r). With high probability, the maximum volume of the optimal k-
subset of the rows of AG is within 2k of the maximum volume of the optimal k-subset of the rows
of A.

Proof : Let P = {p1, · · · ,pk} be the subset of k points among the rows of A that maximizes the
volume. Moreover, let R = {r2, · · · , rk} where ri is the projection of pi onto the subspace spanned
by the points in {p1, · · · ,pi−1} for each i ∈ [k]. Using the Johnson-Lindenstrauss Lemma with
ǫ = 1

2 on the set of 2k points P ∪R, the lengths of each row of A is only distorted by a factor of at
most two compared to the length of the corresponding row in AG as long as r = Ω(log k), which
is always the case for C < (log n)/k. Hence, the maximum volume k-subset of rows of A does not
decrease by more than a factor of 2k with high probability. �

We now show that for every other subset S of k points from the rows of A, their volume
does not increase by much with very high probability, so that we can union bound over all such
subsets. The following lemma may seem counterintuitive at first, since the parameter C appears in
the approximation factor but not the probability. However, recall that the algorithm pays for the
parameter C in the space of the algorithm.

Lemma 5.14 Let S be a subset of size k from the rows of A. Then after applying G, its volume
does not increase by more than a factor of (

√
2Ck+2)k = O (Ck)k/2 with probability at least 1−n−k.

Proof : Let R be the k×d submatrix corresponding to the rows of A that are in S. The volume
of R after the embedding is equivalent to

√
det(RGG⊤R⊤). Now consider the singular value

decomposition of R = UΣV⊤ where U and Σ are k × k (as otherwise the original volume would
have been 0), and V is d × k. Then we can rewrite this volume as

√
det(UΣV⊤GG⊤VΣU⊤) =√

det(ΣHH⊤Σ), where H = V⊤G is a k × r matrix with entries drawn i.i.d. from the Gaussian
distribution N (0, 1/r), due to the rotational invariance of G. Then

√
det(ΣHH⊤Σ) is just the

product of the singular values of H⊤Σ.

Claim 5.15 [Stc] The ith singular value of H⊤Σ is at most ‖H‖2Σi,i.

Proof : We include the proof for completeness. Observe that for any vector x ∈ R
k,

〈ΣHH⊤Σx,x〉
〈x,x〉 =

x⊤ΣHH⊤Σx
〈x,x〉 =

∥∥H⊤Σx
∥∥2

〈x,x〉 ≤
∥∥H⊤∥∥2

2
x⊤Σ2x

〈x,x〉 =
∥∥∥H⊤

∥∥∥
2

2

〈Σx,x〉
〈x,x〉 .

Note that the ith singular value of H⊤Σ is the square root of the ith eigenvalue of ΣHH⊤Σ. Thus
the min-max theorem for the characterization of the eigenvalues of ΣHH⊤Σ shows that for any i,
the ith singular value of H⊤Σ can be bounded by ‖H‖2 times the ith singular value of Σ, which is
Σi,i. �

Thus, it follows that the volume of RG is at most ‖H‖k2 Vol(R), where Vol(R) =
∏k

i=1Σi,i is the
original volume of R. In other words, right multiplication by G increases the volume of R by at
most ‖H‖k2 in the embedding. We now bound ‖H‖k2 using the following.
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Lemma 5.16 (Corollary 35 of [Ver10]) Let H be a matrix of size k× r whose entries are inde-
pendent standard normal random variables. Then for every t ≥ 0, it follows that σmax ≤

√
k+
√
r+t

with probability at least 1− 2 exp(−t2/2), where σmax is the largest singular value of H.

By Lemma 5.16 and the fact that entries of H have variance 1
r , we have that ‖H‖2 ≤ 1 +√

k/r + t/
√
r ≤ 2 + t/

√
r with probability at least 1 − 2e−t2/2. Equivalently, ‖H‖2 ≤ 2 + s with

probability at least 1 − 2−s2r/2. Setting s =
√
2Ck and using r = (log n)/C, we have that the

volume of R increases by at most a (
√
2Ck + 2)k factor after the embedding, with probability at

least 1− 2−2Ck(log n)/(2C) = 1− n−k. �

Thus we can union bound over all subsets of size k of the n rows of A, to argue that with high
probability, none of them will have a volume increase by more than a (

√
4Ck + 2)k factor. This

completes the proof of Lemma 5.12.

6 Volume Maximization Lower Bounds

In this section, we complement our adaptive sampling based volume maximization algorithms, i.e.,
Theorem 4.13, with lower bounds on turnstile streams that are tight up to lower order terms. Our
lower bounds hold even for multiple passes through the turnstile stream. Additionally, we give a
lower bound for volume maximization in the random order row-arrival model that is competitive
with the algorithms in Section 5.

6.1 Turnstile Streams

We first consider lower bounds for turnstile streams. In the Gap ℓ∞ problem, Alice and Bob are
given vectors x and y respectively with x, y ∈ [0,m]n for some m > 0 and the promise that either
|xi − yi| ≤ 1 for all i ∈ [n] or there exists some i ∈ [n] such that |xi − yi| = m. The goal is for
Alice and Bob to perform some communication protocol to decide whether there exists an index
i ∈ [n] such that |xi − yi| = m, possibly over multiple rounds of communication. To succeed with
probability 8

9 , Alice and Bob must use at least Ω
(

n
m2

)
bits of total communication, even if they

can communicate over multiple rounds.

Theorem 6.1 [BJKS04] Any protocol that solves the Gap ℓ∞ problem with probability at least 8
9

requires Ω
(

n
m2

)
total bits of communication.

We first reduce an instance of the Gap ℓ∞ problem to giving an α-approximation to the volume
maximization problem when k = d = 1.

Theorem 6.2 Any p-pass turnstile streaming algorithm that gives an α-approximation to the vol-

ume maximization problem requires Ω
(

n
pα2

)
bits of space.

Proof : Let A be a turnstile streaming algorithm that provides an α-approximation to the
volume maximization problem. Let d = 1 and k = 1 in the volume maximization problem and
M ∈ R

n×1 be the underlying matrix. Given an instance of the Gap ℓ∞ problem with m = α + 1,
suppose Alice has vector x and Bob has vector y. Alice creates a stream with the coordinates of x
so that M = x at the end of the stream. Alice then passes the state of the algorithm to Bob, who
updates the stream with the coordinates of y so that M = x − y at the end of the stream. Note
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that if |xi − yi| ≤ 1 for all i ∈ [n], then the maximum possible volume is 1 (in this case the volume
is just the norm as k = 1), whereas if |xi − yi| = m = α + 1 for some i ∈ [n], then the maximum
volume is equal to α + 1. Since A is an α-approximation, A can differentiate between these two
cases and solve the Gap ℓ∞ problem. Thus by Theorem 6.1, A uses Ω

(
n
α2

)
bits of space over the

p passes and hence at least Ω
(

n
pα2

)
bits of space. �

Corollary 6.3 Any p-pass turnstile streaming algorithm that gives an αk-approximation to the

volume maximization problem requires Ω
(

n
kpα2

)
bits of space.

Proof : We generalize the above construction to the case of k = d > 1 for any value of k > 1.
Consider the same instance M ∈ R

n/k×1 as the above lemma but with Gap ℓ∞ problem of size
n
k instead of n. Now we construct a new instance M′ ∈ R

n×k as follows. For each row i ∈ [n/k]
and j ∈ [k], let M′

(i−1)k+j,j = Mi,1 and let all the other entries be equal to 0. In words, Alice and
Bob embed the problem k times across the d columns for k = d. Thus in one case the maximum
possible volume is 1, while in the other case the maximum volume is equal to (α+ 1)k. �

6.2 Row-Arrival Model

We now present streaming lower bounds for the row-arrival model. We consider a version of the
distributional set-disjointness communication problem DISJn,d in which Alice is given the set of
vectors U = {u1, . . . , un} and Bob is given the set of vectors V = {v1, . . . , vn}. With probability 1

4 ,
U and V are chosen uniformly at random among all instances with the following properties:

• Any vector in U ∪ V is in {0, 1}d and moreover its weight is exactly d
2 ,

• U ∩ V is non-empty.

This forms the NO case. Otherwise with probability 3
4 , U and V are chosen uniformly at random

among all instances with the following properties:

• Any vector in U ∪ V is in {0, 1}d and moreover its weight is exactly d
2 ,

• U ∩ V = ∅.

This forms the YES case. The goal is for Alice and Bob to perform some communication protocol
to decide whether the instance is a YES or a NO instance, i.e., whether U ∩ V = ∅, possibly over
multiple rounds of communication.

The following result, originally due to Razborov [Raz92] and generalized by others [KS92, WZ12],
lower bounds the communication complexity of any randomized protocol that solves DISJn,d with
probability at least 7

8 , even given multiple rounds of communication.

Theorem 6.4 [Raz92, KS92, WZ12] Any protocol for DISJn,d that fails with probability at most 1
6

requires Ω(n) bits of total communication.

We first reduce an instance of the distributional set-disjointness problem to giving a Ck approxima-
tion to the volume maximization problem in the row-arrival model when the order of the stream
can be adversarial.
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Theorem 6.5 For constant p and C = 16
15 , any p-pass streaming algorithm that outputs a Ck

approximation to the (2k)-volume maximization problem in the row-arrival model with probability
at least 8

9 requires Ω(n) bits of space.

Proof : Suppose Alice and Bob have an instance of DISJn/2k,d/k, so that Alice has a set

U = {u1, . . . , un/2k} of vectors of {0, 1}d/k ⊂ R
d/k and Bob has a set V = {v1, . . . , vn/2k} of vectors

of {0, 1}d/k ⊂ R
d/k. Alice creates the matrix A ∈ R

n
2k

× d
k by setting row r ∈

[
n
2k

]
of A to be precisely

ur. Alice then creates a n
2 × d block diagonal matrix MA to be the direct sum A ⊕A ⊕ . . . ⊕A,

where there are k terms in the direct sum.
For each r ∈

[
n
2k

]
, Bob takes vector vr and creates a new vector wr by setting wr to be the

complement of vr, so that wr is the unique binary vector with weight k
2 , but 〈wr, vr〉 = 0. Bob then

creates the matrix B ∈ R
n
2k

× d
k by setting row r ∈

[
n
2k

]
of B to be precisely wr. Bob also creates a

n
2 × d block diagonal matrix MB to be the direct sum B ⊕B ⊕ . . . ⊕ B, where there are k terms
in the sum. Finally, define M ∈ R

n×d to be the matrix MA stacked on top of MB so that

MA =




A 0 . . . 0
0 A . . . 0
...

...
. . .

...
0 0 . . . A


 , MB =




B 0 . . . 0
0 B . . . 0
...

...
. . .

...
0 0 . . . B


 , M =

[
MA

MB

]
.

Let C = 16
15 and suppose there exists a p-pass streaming algorithm A that computes a Ck-

approximation to the 2k-volume maximization problem with probability at least 1− 1
9 while using

o
(
n
p

)
space. Let E1 denote the event that A correctly computes a Ck approximation to the 2k-

volume maximization problem, which by the statement of the theorem holds with probability 8/9.
We claim that if E1 occurs, then Alice and Bob can use A to construct a p round communica-
tion protocol that solves DISJn/2k,d/k with high probability using o(n) total communication, which
contradicts the Ω (n) communication complexity of solving DISJn/2k,d/k for constant k.

Alice can create a stream S by inserting the rows of MA into the stream, since Alice has
knowledge of the rows {ur}r∈[n/2k]. Alice can run A on this stream S and then pass the state of the
algorithm to Bob, who appends the rows of MB onto the stream S and runs A on this portion of
the stream, starting with the state passed from Alice. Bob then passes the state of the algorithm
back to Alice, completing both a single communication round as well as a single pass of A through
S. Alice and Bob can repeatedly pass the state of the algorithm between each other, to emulate
passes over the stream. Thus after p rounds of communication, A will have completed p passes
over S and output an approximation D̂ to the 2k-volume maximization problem.

We first claim that in a NO instance of DISJn/2k,d/k, then with high probability, the optimal
solution D to the 2k-volume maximization problem contains two orthogonal rows a and b whose
nonzero entries are between columns (i−1)d

k + 1 and id
k for each i ∈ [k]. In a NO instance, when

Alice embeds vector v into a row a, Bob embeds the complement of v into a row b. Hence, there
are 2k orthogonal vectors in the NO case, so the volume of the parallelpiped spanned by 2k vectors

is maximized with the choice of the 2k orthogonal vectors, in which case the determinant is
(

d
2k

)2k
.

To analyze the YES instance, we first let E2 denote the event that there exist two orthogonal
rows a and b in M whose nonzero entries are between columns (i−1)d

k + 1 and id
k for some i ∈ [k]

and either both a ∈ MA and b ∈ MB or a ∈ MB and b ∈ MA. In other words, rows a and b
were inserted by different people. For a fixed i ∈ [k], the probability that rows a and b were both
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inserted by Alice is the probability that two vectors among n
2k vectors of R

d
k with weight d

2k are
orthogonal. By symmetric reasoning with Bob inserting both vectors and removing the instances
where Alice and Bob have “random” orthogonal vectors, we note that

Pr [¬E2] ≥ 1− 2

(
n/2k

2

)
1

( d/k
d/2k

)
− n
≥ 1− n2

4k2
1

2d/2k − n
.

Note that since MA and MB are each direct sums of k instances of A and B, we do not need to
take a union bound over all indices i ∈ [k], though even such a union bound would still cause E2 to
hold with low probability.

Moreover, by symmetry the volume of the spanning parallelpiped is maximized when the 2k
rows are k direct sums of two rows1. Let E3 be the event all the rows u and v among the rows in
both A and B intersect by more than d

8k coordinates. We claim that E3 holds with high probability
in a YES instance. If that were true, then the maximum volume in the YES case is less than

((
d

2k

)2

−
(

d

8k

)2
)k

=

(
15d2

64k2

)k

,

which would show a separation between the YES and NO instances, since the volume in the NO

case is
(

d2

4k2

)k
. Thus for C = 16

15 and conditioning on E1, ¬E2 and E3, Alice and Bob can use

any Ck approximation algorithm to the volume maximization problem differentiate between a YES
instance and a NO instance of DISJn/2k,d/k.

It remains to prove the claim that E3 holds with high probability in a YES instance.

Claim 6.6 In a YES instance, all the rows given to Alice and Bob intersect by more than d
8k

coordinates with probability at least 1− n2

k2

√
γ2d
k

8d/3k

93d/8k
, for some fixed constant γ. That is,

Pr [E3] ≥ 1− n2

k2

√
γ2d

k

8d/3k

93d/8k
.

Proof : For a fixed pair of vectors a and b, the probability that a and b intersect in at most d
8k

coordinates without Alice and Bob having “random” orthogonal vectors is at most

d

8k

(d/2k
d/8k

)( d/2k
3d/8k

)
( d/k
d/2k

)
− n

>
d

16k

(d/2k
d/8k

)( d/2k
3d/8k

)
( d/k
d/2k

) , (1)

for sufficiently large d/k. By Stirling’s approximation, there exists a fixed constant γ such that
Equation 1 is at most

d

k

√
γk

d

(d/2k)d/2k(d/2k)d/2k(d/2k)d/2k(d/2k)d/2k

(d/k)d/k(d/8k)d/8k(3d/8k)3d/8k(3d/8k)3d/8k(d/8k)d/8k
=

√
γ2d

k

8d/3k

93d/8k
.

Taking a union bound over at most n2

k2
pairs of vectors, the probability that there exist two rows

that intersect by at most d
8k coordinates is at most n2

k2

√
γ2d
k

8d/3k

93d/8k
. �

1Even in the NO case, the maximizer of the determinant is the direct sum of k terms with two rows.
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For n > d and d = Θ(k log γn) with a sufficiently large constant, then Pr [E1] ≥ 8
9 , Pr [¬E2] ≥

1 − 1
poly(n) , and Pr [E3] ≥ 1 − 1

poly(n) . Thus Alice and Bob can use A to decide DISJn/2k,d/k with
probability at least

Pr [E1 ∩ ¬E2 ∩ E3] > 1− 1

8
.

Thus if A uses o
(
n
p

)
space per pass over p passes, then the total communication between Alice

and Bob is o(n), which contradicts Theorem 6.4. It follows that any Ck approximation algorithm
to the volume maximization problem that succeeds with probability at least 1 − 1

9 requires Ω(n)
space for constant k. �

Recall that for problems that are invariant to the permutation of the rows of the input matrix A,
once the entries of A are chosen, an arbitrary permutation of the rows of A is chosen uniformly at
random, and the rows of that permutation constitute the stream in the random order row-arrival
model.

Corollary 6.7 For C = 16
15 , any one-pass streaming algorithm that outputs a Ck approximation

to the 2k-volume maximization problem in the random order row-arrival model with probability at
least 63

64 requires Ω(n) bits of space.

Proof : First, observe that Alice and Bob construct matrix MA and MB from rows drawn
uniformly at random. Thus in the NO case, the distribution of the matrix MA and MB follows the
same distribution as when the rows of M arrive uniformly at random. In the YES case in the above
model, the two orthogonal vectors must be in separate halves of the matrix M. Namely, one vector
is in MA and one vector is in MB . In the random order model, the two orthogonal vectors are in
separate halves with probability at least 1

2 . Since the YES case occurs with probability 1
4 , the total

variation distance between the distribution of the rows in the random order model and the above
distribution is 1

8 . Hence for a 7
8 fraction of the inputs, Alice and Bob has the same distribution as

that of Theorem 6.5.
In that case, any one-pass streaming algorithm A that outputs a Ck approximation to the

2k-volume maximization problem with probability at least 63
64 can decide between a YES instance

and a NO instance of DISJn/2k,d/k for sufficiently large n and d with probability at least 31
32 by the

same argument as Theorem 6.5. Hence, the total probability of failure of the protocol is at most
1
8 +

1
32 ≤ 1

6 and so by Theorem 6.4, A requires Ω(n) space. �
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A Noisy Distance Sampling

A.1 L1,2 Sampler

Recall that for a matrix A ∈ R
n×d, we define the Lp,q norm of A by

‖A‖p,q =




n∑

i=1




d∑

j=1

|Ai,j|q



p
q




1
p

.

In this section, we describe an algorithm for sampling rows of a matrix AP with probability
proportional to ‖AP‖2, which we call L1,2 sampling. By comparison, in Section 2 we sampled rows
of AP with probability proportional to ‖AP‖22, which can be seen as L2,2 sampling.

Before describing our general L1,2 sampler, we need a subroutine similar to AMS-M for esti-
mating ‖AP‖1,2, when the data stream updates entries of A and query access to P is only given in
post-processing. We first describe a turnstile streaming algorithm of [ABIW09] that can be used
to compute a constant factor approximation to ‖A‖1,2 and then we show that it can be modified
to approximate ‖AP‖1,2 due its nature of being a linear sketch. For each j, define the level sets Sj

by
{
i ∈ [n] :

‖A‖1,2
2j+1 < ‖Ai‖2 ≤

‖A‖1,2
2j

}
. The algorithm of [ABIW09] approximates the number of

rows in each level set Sj by first implicitly subsampling rows at different rates. The rows that are
sampled at each rate then form a level and the rows in a particular level are then aggregated across
a number of buckets. The norms of the aggregates across each bucket are then computed and by
rescaling the number of aggregates that are in each level set, we obtain an accurate estimate of the
sizes of the level sets. The sizes of the level sets are then used to output a good approximation to
‖A‖1,2.

Crucially, the aggregates of the rows in the algorithm of [ABIW09] is a linear combination of
the rows. Hence by taking the aggregates and multiplying by P after the stream ends, we obtain
aggregates of the rows of AP, which can then be used to estimate the sizes of the level sets of
‖AP‖1,2. The algorithm of [ABIW09] uses d polylog(n) space by storing aggregates of entire rows
for each bucket across multiple levels. Thus, we have the following:

Lemma A.1 [ABIW09] There exist a fixed constant ξ > 1 and a one-pass turnstile streaming
algorithm Estimator-M that takes updates to entries of a matrix A ∈ R

n×d, as well as query
access to post-processing matrices P ∈ R

d×d and M ∈ R
n×d that arrive after the stream, and outputs

a quantity F̂ such that ‖AP−M‖1,2 ≤ F̂ ≤ ξ ‖AP−M‖1,2. The algorithm uses d polylog(n) bits
of space and succeeds with high probability.

Using the L1,2 estimator, we can develop a L1,2 sampler similar to our ℓ2 sampler.

We first show the probability that the tail is too large, i.e., Ŝ > C logn
ǫ F̂ , is independent of the

index i and the value of ti. The proof is almost verbatim to Lemma 2.5, but the thresholds now
depend on ‖AP‖1,2 rather than ‖AP‖F .
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Algorithm 10 Single L1,2 Sampler

Input: Matrix A ∈ R
n×d that arrives as a stream A1, . . . ,An ∈ R

d, matrix P ∈ R
d×d that arrives

after the stream, constant parameter ǫ > 0.
Output: Noisy row r of AP sampled roughly proportional to the row norms of AP.
1: Pre-processing Stage:
2: b← Ω

(
1
ǫ2

)
, r ← Θ(log n) with sufficiently large constants

3: For i ∈ [n], generate independent scaling factors ti ∈ [0, 1] uniformly at random.
4: Let B be the matrix consisting of rows Bi =

1
ti
Ai.

5: Let Estimator-M and AMS-M track the L1,2 norm of AP and Frobenius norm of BP,
respectively.

6: Let CountSketch-M be an r × b table, where each entry is a vector Rd.
7: Streaming Stage:
8: for each row Ai do
9: Update CountSketch-M with Bi =

1
ti
Ai.

10: Update linear sketch Estimator-M with Ai.
11: Update linear sketch AMS-M with Bi =

1
ti
Ai.

12: Processing P Stage:
13: After the stream, obtain matrix P.
14: Multiply each vector v in each entry of the CountSketch-M table by P: v← vP.
15: Multiply each vector v in AMS-M by P: v← vP.
16: Multiply each vector v in Estimator-M by P: v← vP.
17: Extraction Stage:
18: Use Estimator-M to compute F̂ with ‖AP‖1,2 ≤ F̂ ≤ ξ ‖AP‖1,2. ⊲Lemma A.1

19: Extract the 2
ǫ2

(noisy) rows of BP with the largest estimated norms by CountSketch-M.
20: Let M be the 2

ǫ2
-sparse matrix consisting of these top (noisy) rows.

21: Use AMS-M to compute Ŝ with ‖BP−M‖F ≤ Ŝ ≤ 2 ‖BP−M‖F .
22: Let ri be the (noisy) row in CountSketch-M with the largest norm.

23: Let C > 0 be some large constant so that the probability of failure is O
(

1
nC/2

)
.

24: if Ŝ > C logn
ǫ F̂ or ‖ri‖2 < C logn

ǫ2
F̂ then

25: return FAIL.
26: else
27: return r = tiri.

Lemma A.2 For each j ∈ [n] and value of tj,

Pr

[
Ŝ >

C log n

ǫ
F̂

]
= O (ǫ) +

1

poly(n)
.

Proof : Let ξ be defined as in Lemma A.1. We first define the event E1 as when the following
three inequalities hold:

(1) ‖AP‖1,2 ≤ F̂ ≤ ξ ‖AP‖1,2

(2) ‖BP−M‖F ≤ Ŝ ≤ 2 ‖BP−M‖F
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(3)

∥∥∥∥(BP)
tail

(
2
ǫ2

)
∥∥∥∥
F

≤ ‖BP−M‖F ≤ 2

∥∥∥∥(BP)
tail

(
2
ǫ2

)
∥∥∥∥
F

Let j ∈ [n] be a fixed index and tj = t be a fixed uniform random scaling variable. E1 holds with high

probability by Lemma 2.3 and Lemma A.1. We bound the probability that 2ξ

∥∥∥∥(BP)
tail

(
2
ǫ2

)
∥∥∥∥
F

>

C logn
ǫ ‖AP‖1,2, which must hold if Ŝ > C logn

ǫ F̂ .
Let U = ‖AP‖1,2 and for each i ∈ [n], define the indicator variable yi = 1 if ‖BiP‖2 > U and

yi = 0 otherwise. For each i ∈ [n], define the scaled indicator variable zi = 1
U ‖BiP‖2 (1 − yi).

Observe that zi ∈ [0, 1] represents a scaled contribution of the rows that are not heavy. Let
Y =

∑
i 6=j yi and Z =

∑
i 6=j zi. Define the matrix W ∈ R

n×d so that for each i ∈ [n], its row i
satisfies Wi = BiP if yi = 1 and otherwise if yi = 0, then Wi is the row of all zeros. Hence, W
has at most Y + 1 nonzero rows and UZ = ‖BP−W‖1,2.

If there are not too many heavy rows in W, i.e., Y < 2
ǫ2 , then

∥∥∥∥(BP)
tail

(
2
ǫ2

)
∥∥∥∥
F

≤ UZ since the

rows of W that are all zeros contain the tail of BP and the Frobenius norm is at most the L1,2 norm.

Let E2 denote the event that Y ≥ 2
ǫ2

and E3 denote the event that Z ≥ C logn
2ξUǫ ‖AP‖1,2 = C logn

2ξǫ . If we

bound the probability of the events E2 and E3 by O (ǫ), then 2ξ

∥∥∥∥(BP)
tail

(
2
ǫ2

)
∥∥∥∥
F

≤ C logn
ǫ ‖AP‖1,2

with probability at least 1−O (ǫ), conditioned on E1.
To bound E2, observe that E [yi] =

‖AiP‖2
U so that E [Y ] ≤ 1 since U = ‖AP‖1,2. Thus for

sufficiently large n, Pr [E2] = O (ǫ), by Markov’s inequality.
To bound Pr [E3], observe that zi = 1

U ‖BiP‖2 (1 − yi) implies zi > 0 only if yi = 0, i.e.,

‖BiP‖2 ≤ U . Since BiP = AiP
ti

, then zi > 0 only for ti ≥ ‖AiP‖2
‖AP‖1,2

. Therefore,

E [zi] ≤
∫ 1

‖AiP‖2/‖AP‖1,2
zi dti =

∫ 1

‖AiP‖2/‖AP‖1,2

1

ti

1

U
‖AiP‖2 dti ≤ C log n

‖AiP‖2
‖AP‖1,2

,

conditioned on ti ≥ 1
poly(n) . Hence E [Z] ≤ C log n so Pr [E3] = Pr

[
Z > C logn

2ξǫ

]
= O (ǫ) by

Markov’s inequality. Therefore, the failure events ¬E1∨E2∨E3 occur with probability O (ǫ)+ 1
poly(n) ,

and the claim follows. �

Lemma A.3 Conditioned on a fixed value of F̂ , the probability that Algorithm 10 outputs (noisy)

row i is (1±O (ǫ))
‖AiP‖2

F̂
+ 1

poly(n) .

Proof : We first define E to be the event that ti <
ǫ2‖AiP‖2
(C logn)F̂

. Note that Pr [E ] = ǫ2‖AiP‖2
(C logn)F̂

. Next,

we define E1 to be the event that CountSketch-M, AMS-M, or Estimator-M fails and note
that Pr [E1] = 1

poly(n) by Lemma 2.3, Lemma 2.1, and Lemma A.1. We then define E2 to be the

event that Ŝ > C logn
ǫ F̂ and note that Pr [E2] = O (ǫ) by Lemma A.2. Finally, we let E3 be the

event that the CountSketch data structure observes multiple rows BjP exceeding the threshold
and E4 be the event that ‖BiP‖2 exceeds the threshold but is not reported due to noise in the
CountSketch data structure.
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Observe that a row j is close enough to the threshold if ‖BjP‖2 ≥
C logn

ǫ2
F̂ − (C log n)F̂ , which

occurs with probability at most O
(
ǫ‖AjP‖2

F̂

)
. Taking a union bound over all n rows, we have

Pr [E3] = O (ǫ).
To analyze the probability of E4, we first condition on ¬E1 and ¬E2, so that we have ‖BP−M‖F ≤

Ŝ and Ŝ ≤ C logn
ǫ F̂ . Thus by Lemma 2.3,

∣∣∣‖BiP‖2 −
∥∥∥B̂iP

∥∥∥
2

∣∣∣ ≤ ǫ

∥∥∥∥BP
tail

(
2
ǫ2

)
∥∥∥∥
F

≤ ǫ ‖BP−M‖F ≤ ǫŜ ≤ (C log n)F̂ .

Hence, E4 can only occur for

C log n

ǫ2
F̂ ≤ ‖BiP‖2 ≤

C log n

ǫ2
F̂ + (C log n)F̂ ,

which occurs with probability at most
ǫ4‖AiP‖2
(C logn)F̂

.

In summary if E occurs, then the sampler should output (noisy) row AiP but may fail to do so

because of any of the events E1, E2, E3, or E4. We have Pr [E2 ∨ E3 | E ] = O (ǫ) andPr [E4] = ǫ4‖AiP‖2
(C logn)F̂

so that Pr [E4 | E ] = O
(
ǫ2
)
. Since Pr [E1] = 1

poly(n) , then each AiP is output with probability

(1 +O (ǫ))
‖AiP‖2

F̂
.

Moreover by Lemma 2.2, we have that
∣∣∣‖BiP‖2 −

∥∥∥B̂iP
∥∥∥
2

∣∣∣ ≤ (C log n)F̂ and
∥∥∥B̂iP

∥∥∥
2
≥

C logn
ǫ2

F̂ . Thus,
∥∥∥B̂iP

∥∥∥
2
is a (1 + O (ǫ)) approximation to ‖BiP‖2 and similarly, ti

∥∥∥B̂iP
∥∥∥
2
is

within (1 +O (ǫ)) of ‖AiP‖2. �

We now provide the full guarantees of the L1,2 sampler.

Theorem A.4 Given ǫ > 0, there exists a one-pass streaming algorithm that takes rows of a matrix
A ∈ R

n×d as a data stream and a matrix P ∈ R
d×d after the stream, and outputs (noisy) row i of

AP with probability (1±O (ǫ))
‖AiP‖2
‖AP‖1,2

+ 1
poly(n) . The algorithm uses O

(
d poly

(
1
ǫ , log n

))
bits of

space and succeeds with high probability.

Proof : From Lemma A.3 and the fact that ‖AP‖1,2 ≤ F̂ ≤ ξ ‖AP‖1,2 with high probability by

Lemma A.1, then it follows that each row AiP is sampled with probability (1 + ǫ)
‖AiP‖2
‖AP‖1,2

+ 1
poly(n) ,

conditioned on the sampler succeeding. The probability of the sampler succeeds is Θ
(

ǫ2

C logn

)
, then

the sampler can be repeated poly
(
1
ǫ , log n

)
times to obtain probability of success at least 1− 1

poly(n) .

Since each instance of AMS-M, Estimator-M, and CountSketch-M uses O
(
d poly

(
1
ǫ , log n

))

bits of space, then the total space complexity follows. �

A.2 Noisy Adaptive Distance Sampling

Our algorithm for noisy adaptive distance sampling, given in Algorithm 11, is similar to Section 3,
except it uses the L1,2 sampling primitive of Theorem A.4 instead of the L2,2 sampler.

We first bound the norm of the perturbation of the sampled row at each instance.
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Algorithm 11 Noisy Adaptive Sampler

Input: Matrix A ∈ R
n×d that arrives as a stream A1, . . . ,An ∈ R

d, parameter k for number of
sampled rows, constant parameter ǫ > 0.

Output: k Noisy and projected rows of A.
1: Create instances A1, . . . ,Ak of the L1,2 sampler of Algorithm 10 where the number of buckets

b = Θ
(
log4 n
ǫ2

)
is sufficiently large.

2: Let M be empty 0× d matrix.
3: Streaming Stage:
4: for each row Ai do
5: Update each sketch A1, . . . ,Ak

6: Post-processing Stage:
7: for j = 1 to j = k do
8: Post-processing matrix P← I−M†M.
9: Update Aj with post-processing matrix P.

10: Let rj be the noisy row output by Aj.
11: Append rj to M: M←M ◦ rj .
12: return M.

Lemma A.5 Given a matrix A ∈ R
n×d and a matrix P ∈ R

d×d, as defined in Line 8 and round
i ≤ k, of Algorithm 10, suppose index j ∈ [n] is sampled (in round i). Then with high probability,
the sampled (noisy) row ri satisfies ri = AjP+ ve with

‖veQ‖2 ≤
ǫ3

C log n

‖APQ‖1,2
‖AP‖1,2

‖AjP‖2 ,

for any projection matrix Q ∈ R
d×d. Hence, ve is orthogonal to each noisy row ry, where y ∈ [i−1].

Proof : Let Q ∈ R
d×d be a projection matrix, Bx = Ax

tx
be the rescaled row of Ax for each

x ∈ [n], and B ∈ R
n×d be the rescaled matrix of A so that row x of B is Bx for x ∈ [n]. Let E be

the noise in the bucket corresponding to the selected row j, so that the output vector is Aj + tjE.
Since tx ∈ [0, 1] is selected uniformly at random for each x ∈ [n], then for each integer c ≥ 0,

Pr

[‖AxPQ‖2
tx

≥
‖APQ‖1,2

2c

]
≤ 2c ‖AxPQ‖2
‖APQ‖1,2

.

Because Bx = Ax
tx

, then by linearity of expectation over x ∈ [n], we can bound the expected size of

each of the level sets Sc :=
{
x ∈ [n] :

‖APQ‖1,2
2c−1 > ‖BxPQ‖2 ≥

‖APQ‖1,2
2c

}
by E [|Sc|] ≤ min(2c, n).

Thus Pr
[
|Sc| ≤ min(2c+C log n, n)

]
≥ 1 − 1

poly(n) by standard Chernoff bounds for appropriate
constant C.

We can now roughly bound the L1,2 norm of BPQ by the norm of APQ using a union bound
over level sets Sc for 0 ≤ c ≤ log n and upper bounding the norms of all the rows in level sets Sc

with c > log n by
‖APQ‖1,2

n . That is,

Pr
[
‖BPQ‖1,2 ≥ 2C · 4 log2 n ‖APQ‖1,2

]
≤ 1

poly(n)
.
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Hence with high probability, the total mass ‖BPQ‖1,2 distributed across the CountSketch table is

O
(
log2 n ‖APQ‖1,2

)
.

Using a CountSketch table with b = Θ
(
log4 n
ǫ2

)
buckets with sufficiently large constant to hash

the rows of BPQ, then Lemma 2.3 implies that the bucket corresponding to Aj has mass at most
ǫ ‖APQ‖F ≤ ǫ ‖APQ‖1,2 in the subspace to which Q projects, i.e., ‖EQ‖2 ≤ ǫ ‖APQ‖1,2. Since

row j was sampled by Algorithm 10, then ‖BjP‖2 ≥
C logn

ǫ2
‖AP‖1,2. Thus tj ≤ ǫ2

C logn

‖AjP‖2
‖AP‖1,2

since

Bj =
AjP

tj
, and moreover with high probability,

‖tjEQ‖2 ≤
ǫ3

C log n

‖APQ‖1,2
‖AP‖1,2

‖AjP‖2 .

Since veQ = tjEQ, then the claim follows. �

We now bound the total variation distance between the distribution of sampled rows and the
distribution of adaptive sampling with respect to distances to selected subspace. The proof is almost
verbatim to Lemma 3.2, except we now consider the probabilities with respect to the distances to
the previous subspace, rather than the squared distances. We can still use the change of basis

matrix in (⋆) to denote the perturbation in each round, where we set τi =
ǫ3

∑n
a=1 λa,i

∑n
a=1

√∑d
b=1 λ

2
a,b

though

Lemma A.5 implies we could actually even set the scaling factor to ǫ3

C logn rather than just ǫ2. We

can then bound
∣∣∣
√∑d

i=2 ζ
2
s,i −

√∑d
i=2 λ

2
s,i

∣∣∣ from a bound on
∣∣∣
∑d

i=2 ζ
2
s,i −

∑d
i=2 λ

2
s,i

∣∣∣.

Lemma A.6 Let f(1) be the index of a noisy row r1 sampled in the first iteration of Algorithm 11.
Let P1 be a process that projects away from Af(1) and iteratively selects k − 1 additional rows of
A through adaptive sampling (with p = 1). Let P2 be a process that projects away from r1 and
iteratively selects k − 1 additional rows of A through adaptive sampling (with p = 1). Then for
ǫ < 1

d , the total variation distance between the distributions of the k indices output by P1 and P2 is
O (kǫ).

Proof : As in the proof of Lemma 3.2, we consider the probability distributions induced by lin-
early independent vectorsAf(1), . . . ,Af(t−1) and by linearly independent vectors r1,Af(2), . . . ,Af(t−1).
Let U = {u1, . . . ,ud} be an orthonormal basis for the row span of A such that {u1, . . . ,us} is a
basis for the row span of {Af(1), . . . ,Af(s)} for each 2 ≤ s ≤ t − 1 and let W = {w1, . . . ,wd} be
an orthonormal basis for the row span of A such that {w1, . . . ,ws} is an orthonormal basis that
extends the row span of {r1,Af(2), . . . ,Af(s)} for each 2 ≤ s ≤ t− 1.

Lemma A.5 then implies that r1 =
∥∥Af(1)

∥∥
2

(
u1 +

∑d
i=1(±O (τi))ui

)
, where τi =

ǫ3‖APi‖1,2
‖A‖1,2

(in

fact we could set τi to
ǫ3

C logn

‖APi‖1,2
‖A‖1,2

but we do not need this smaller value) with high probability,

and Pi = u†
iui is the projection matrix onto ui. From the Gram-Schmidt process, the change of

basis matrix B from U to W has the form (⋆).
We can write each row As in terms of basis U as As =

∑d
i=1 λs,iui and in terms of basis

W as As =
∑d

i=1 ζs,iwi. Since we project away from Af(1), we should have sampled As with

probability
‖AsZt−1‖2
‖AZt−1‖1,2

=

√∑d
i=2 λ

2
s,i

∑n
j=1

√∑d
i=2 λ

2
j,i

in round t but instead we sample it with probability
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‖AsYt−1‖2
‖AYt−1‖1,2

=

√∑d
i=2 ζ

2
s,i

∑n
j=1

√∑d
i=2 ζ

2
j,i

. From the change of basis matrix B, ζs,i = (1−O (τi))λs,i±O (τi)λs,1±
∑

j /∈{i,1}O (τiτj)λs,j, for i ≥ 2. Note that ζs,i has exactly the same form as the proof of Lemma 3.2,
since ζs,i is derived from the same change of basis matrix B, albeit with different values of τi. It
then follows by the same reasoning as (⊞) in the proof of Lemma 3.2 that for

|ζ2s,i − λ2
s,i| ≤ 25

(
τiλ

2
s,i + τ2i λ

2
s,1 + τiλs,1λs,i +

∑

j,ℓ 6={i,1}
τ2i τjτℓλs,jλs,ℓ

+
∑

j 6={i,1}
τiτjλs,iλs,j +

∑

j 6={i,1}
τ2i τjλs,1λs,j

)
.

Thus from AM-GM, we have

τiλs,1λs,i ≤ ǫ2λ2
s,i +

τ2i
ǫ2

λ2
s,1

τ2i τjτℓλs,jλs,ℓ ≤ τ2i τ
2
j λ

2
s,j + τ2i τ

2
ℓ λ

2
s,ℓ,

τiτjλs,iλs,j ≤ ǫ2λ2
s,i +

τ2i τ
2
j

ǫ2
λ2
s,j,

τ2i τjλs,1λs,j ≤ τ2i λ
2
s,1 + τ2i τ

2
j λ

2
s,j

so that for ǫ < 1
d , we have |ζ2s,i − λ2

s,i| ≤ 25

(
2ǫ2λ2

s,i +
2τ2i
ǫ2

λ2
s,1 + 4

∑d
j=2

τ2i τ
2
j

ǫ2
λ2
s,j

)
. Note that in

comparison to Lemma 3.2, we compare the τiλs,1λs,i term with ǫ2λ2
s,i rather than ǫλ2

s,i. Therefore,

∣∣∣∣∣∣

√√√√
d∑

i=t

ζ2s,i −

√√√√
d∑

i=t

λ2
s,i

∣∣∣∣∣∣
≤

√√√√
∣∣∣∣∣

d∑

i=t

ζ2s,i −
d∑

i=t

λ2
s,i

∣∣∣∣∣

≤

√√√√√25

d∑

i=t


2ǫ2λ2

s,i +
2τ2i
ǫ2

λ2
s,1 + 4

d∑

j=2

τ2i τ
2
j

ǫ2
λ2
s,j




≤ 5

√√√√
d∑

i=t

2ǫ2λ2
s,i + 5

√√√√
d∑

i=t

2τ2i
ǫ2

λ2
s,1 + 5

√√√√4

d∑

i=t

d∑

j=2

τ2i τ
2
j

ǫ2
λ2
s,j.

Since τi =
ǫ3‖APi‖1,2

‖A‖1,2
=

ǫ3
∑n

a=1 λa,i
∑n

a=1

√∑d
b=1 λ

2
a,b

and ǫ < 1
d , then we have

n∑

s=1

√√√√
d∑

i=t

τ2i
ǫ2

λ2
s,1 ≤

(
n∑

s=1

λs,1

)√√√√
d∑

i=t

τ2i
ǫ2
≤ ǫ2

(
n∑

s=1

λs,1

) ∑d
i=t

∑n
a=1 λa,i

∑n
a=1

√∑d
b=1 λ

2
a,b

≤ ǫ2
n∑

s=1

d∑

i=t

λs,i ≤ ǫ
n∑

s=1

√√√√
d∑

i=t

λ2
s,i.
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Similarly, since τj <
1
d for each integer j ∈ [2, d], we have

n∑

s=1

√√√√
d∑

i=t

d∑

j=2

τ2i τ
2
j

ǫ2
λ2
s,j ≤

n∑

s=1

max
j∈[2,d]

√√√√
d∑

i=t

τ2i
ǫ2

λ2
s,j

≤ ǫ2

(
n∑

s=1

max
j∈[2,d]

λs,j

) ∑d
i=t

∑n
a=1 λa,i

∑n
a=1

√∑d
b=1 λ

2
a,b

≤ ǫ2
n∑

s=1

d∑

i=t

λs,i ≤ ǫ
n∑

s=1

√√√√
d∑

i=t

λ2
s,i.

Hence, we have

n∑

s=1

∣∣∣∣∣∣

√√√√
d∑

i=t

ζ2s,i −

√√√√
d∑

i=t

λ2
s,i

∣∣∣∣∣∣
≤ 200ǫ

n∑

s=1

√√√√
d∑

i=t

λ2
s,i,

so that ‖AYt−1‖1,2 is once again within a (1 + 200ǫ) factor of ‖AZt−1‖1,2, from which we can

bound the total variation distance by 800ǫ, including the 1
poly(n) event of failure from Lemma A.5.

It follows from induction that the total variation distance across k rounds is at most 800kǫ. �

Thus we can also approximately simulate adaptive sampling in a stream with respect to the distances
to the subspace spanned by the previously sampled rows.

Theorem A.7 Given a matrix A ∈ R
n×d that arrives in a turnstile data stream, there exists a

one-pass streaming algorithm AdaptDistStream that outputs a set of k indices such that the
probability distribution for each set of k indices has total variation distance ǫ of the probability
distribution induced by adaptive sampling with respect to the distances to the subspace in each
iteration. The algorithm uses poly

(
d, k, 1ǫ , log n

)
bits of space.

Proof : Like the proof of Theorem 3.4, we again consider a set of processes P1,P2, . . . ,Pk+1,
where for each i ∈ [k+1], Pi is a process that samples noisy rows from the L1,2 sampler for the first
i−1 rounds and actual rows from A beginning with round i, through adaptive sampling with p = 1.
Then P1 is the actual adaptive sampling process, while Pk+1 is the noisy process of Algorithm 11.
Then Lemma A.6 argues that the total variation distance between the output distributions of the
k indices sampled by P1 and P2 is at most O (kǫ). Moreover, the total variation distance between
the output distributions of the indices sampled by Pi and Pi+1 is at most O (kǫ) for any i ∈ [k]
since the sampling distributions of Pi and Pi+1 is identical in the first i rounds, so we can use
the same argument starting at round i using the input matrix AQ rather than A, where Q is
the projection matrix away from the noisy rows sampled in the first i rounds. Now by a triangle
inequality argument over the k+1 processes P1, . . . ,Pk+1, the total variation distance between the
probability distribution of the k indices output by Algorithm 11 and the probability distribution of
the k indices output by adaptive sampling is at most O

(
k2ǫ
)
. Hence the total variation distance

is at most ǫ after the appropriate rescaling factor.
For the space complexity, observe that we run k instances of Algorithm 10, each using b =

poly
(
k, 1ǫ , log n

)
buckets due to the error parameter ǫ

dk2
. Algorithm 10 uses poly

(
k, 1ǫ , log n

)

CountSketch data structures that each use poly
(
d, k, 1ǫ , log n

)
bits of space. Moreover by Lemma A.1,

60



each instance of Estimator-M uses d polylog(n) bits of space. Hence, the total space complexity
is poly

(
d, k, 1ǫ , log n

)
. �

Finally, by the same argument as Corollary 3.5, we have the following:

Corollary A.8 Suppose Algorithm 11 samples noisy rows r1, . . . , rk rather than the actual rows
Af(1), . . . ,Af(k). Let Tk = Af(1)◦. . .◦Af(k), Zk = I−T†

kTk, Rk = r1◦. . .◦rk and Yk = I−R†
kRk.

Then (1− ǫ) ‖AYk‖1,2 ≤ ‖AZk‖1,2 ≤ (1 + ǫ) ‖AYk‖1,2 with probability at least 1− ǫ.
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