
Journal of Computational Physics 411 (2020) 109409
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Weak adversarial networks for high-dimensional partial
differential equations

Yaohua Zang a,∗, Gang Bao a, Xiaojing Ye b, Haomin Zhou c

a School of Mathematical Sciences, Zhejiang University, Hangzhou, Zhejiang 310007, China
b Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303, USA
c School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 16 August 2019
Received in revised form 20 January 2020
Accepted 15 March 2020
Available online 20 March 2020

Keywords:
High dimensional PDE
Deep neural network
Adversarial network
Weak solution

Solving general high-dimensional partial differential equations (PDE) is a long-standing
challenge in numerical mathematics. In this paper, we propose a novel approach to solve
high-dimensional linear and nonlinear PDEs defined on arbitrary domains by leveraging
their weak formulations. We convert the problem of finding the weak solution of PDEs
into an operator norm minimization problem induced from the weak formulation. The
weak solution and the test function in the weak formulation are then parameterized
as the primal and adversarial networks respectively, which are alternately updated to
approximate the optimal network parameter setting. Our approach, termed as the weak
adversarial network (WAN), is fast, stable, and completely mesh-free, which is particularly
suitable for high-dimensional PDEs defined on irregular domains where the classical
numerical methods based on finite differences and finite elements suffer the issues of slow
computation, instability and the curse of dimensionality. We apply our method to a variety
of test problems with high-dimensional PDEs to demonstrate its promising performance.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Solving general high-dimensional partial differential equations (PDEs) has been a long-standing challenge in numerical
analysis and computation [1–12]. In this paper, we present a novel method that leverages the form of weak solutions and
adversarial networks to compute solutions of PDEs, especially to tackle problems posed in high dimensions. To instantiate
the derivation of the proposed method, we first consider the following second-order elliptic PDE with either Dirichlet’s or
Neumann’s boundary conditions on arbitrary domain � ⊂ Rd ,{

−∑d
i=1 ∂i(

∑d
j=1 aij∂ ju) + ∑d

i=1 bi∂iu + cu − f = 0, in �

u(x) − g(x) = 0 (Dirichlet) or (∂u/∂�n)(x) − g(x) = 0 (Neumann), on ∂�
(1)

where aij, bi, c : � → R for i, j ∈ [d] � {1, . . . , d}, f : � → R and g : ∂� → R are all given, and (∂u/∂�n)(x) denotes the
directional derivative of u along the outer normal direction �n at the boundary point x ∈ ∂�. In addition, we assume that
the elliptic operator has a strong ellipticity, meaning there exists a constant θ > 0 such that ξ�A(x)ξ ≥ θ |ξ |2 for any

* Corresponding author.
E-mail addresses: 11535015@zju.edu.cn (Y. Zang), baog@zju.edu.cn (G. Bao), xye@gsu.edu (X. Ye), hmzhou@math.gatech.edu (H. Zhou).
https://doi.org/10.1016/j.jcp.2020.109409
0021-9991/© 2020 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2020.109409
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2020.109409&domain=pdf
mailto:11535015@zju.edu.cn
mailto:baog@zju.edu.cn
mailto:xye@gsu.edu
mailto:hmzhou@math.gatech.edu
https://doi.org/10.1016/j.jcp.2020.109409

2 Y. Zang et al. / Journal of Computational Physics 411 (2020) 109409
ξ = (ξ1, . . . , ξd) ∈ Rd with |ξ |2 = ∑d
i=1 |ξi |2 and x ∈ � a.e., where aij = a ji for all i, j ∈ [d] and A(x) � [aij(x)] ∈ Rd×d , i.e.,

A(x) is symmetric positive definite with all eigenvalues no smaller than θ almost everywhere in �. We also consider solving
PDEs involving time, such as the linear second-order parabolic PDE (of finite time horizon):⎧⎪⎪⎨

⎪⎪⎩
ut − ∑d

i=1 ∂i(
∑d

j=1 aij∂ ju) + ∑d
i=1 bi∂iu + cu − f = 0, in � × [0, T]

u(x, t) − g(x, t) = 0 (Dirichlet) or (∂u/∂�n)(x, t) − g(x, t) = 0 (Neumann), on ∂� × [0, T]
u(x,0) − h(x) = 0, on �

(2)

where aij, bi, c : � ×[0, T] →R for i, j ∈ [d] as before, f : � ×[0, T] →R and g : ∂� ×[0, T] → R and h : � →R are given.
In either case, we will see that the method developed in this paper can be directly applied to general high-dimensional PDEs,
including both linear and nonlinear ones.

PDEs are prevalent and have extensive applications in science, engineering, economics, and finance [13,14]. The most
popular standard approaches to calculate numerical solutions of PDEs include finite difference and finite element methods
(FEM) [15]. These methods discretize the time interval [0, T] and the domain � using mesh grids or triangulations, create
simple basis functions on the mesh, convert a continuous PDE into its discrete counterpart, and finally solve the resulting
system of basis coefficients to obtain numerical approximations of the true solution. Although these methods have been
significantly advanced in the past decades and are able to handle rather complicated and highly oscillating problems, they
suffer the so-called “curse of dimensionality” since the number of mesh points increases exponentially fast with respect to
the problem dimension d. Hence they quickly become computationally intractable for high dimensional problem in practice.
As a consequence, these numerical methods are rarely useful for general high-dimensional PDEs, e.g. d ≥ 4, especially when
a sufficiently high-resolution solution is needed and/or the domain � is irregular.

Facing the challenge, our goal is to provide a computational feasible alternative approach to solve general high-
dimensional PDEs defined on arbitrarily shaped domains. More specifically, using the weak formulation of PDEs, we pa-
rameterize the weak solution and the test function as the primal and adversarial neural networks respectively, and train
them in an unsupervised form where only the evaluations of these networks (and their gradients) on some sampled collo-
cation points in the interior and boundary of the domain are needed. Our approach retains the continuum nature of PDEs
for which partial derivatives can be carried out directly without any spatial discretization, and is fast and stable in solv-
ing general high-dimensional PDEs. Moreover, our method is completely mesh-free and can be applied to PDEs defined on
arbitrarily shaped domains, without suffering the issue of the curse of dimensionality.

In the remainder of this paper, we first provide an overview of related work on solving PDEs using machine learning
approaches in Section 2. In Section 3, we introduce the weak formulation of stationary PDEs, reformulate the PDE as a
saddle-point problem based on the operator norm induced from the weak formulation, and present our proposed algorithm
with necessary training details. Then we extend the method to solve PDEs involving time. In Section 4, we provide a number
of numerical results to show that our method can solve high-dimensional PDEs efficiently and accurately. Our examples also
demonstrate some numerical understandings about selections of neural networks structures including the numbers of layers
and nodes in the computations. Section 5 concludes this paper.

2. Related work

Deep learning techniques have been used to solve PDEs in the past few years. As an emergent research direction, great
potentials have been demonstrated by many promising results, even though many fundamental questions remain to be
answered. Based on the strategies, these works can be roughly classified into two categories.

In the first category, deep neural networks (DNN) are employed to assist the classical numerical methods. In [16], parallel
neural networks are used to improve the efficiency of the finite difference method. In [17], neural network is used to
accelerate the numerical methods for matrix algebra problems. Neural network is also applied to improve the accuracy of
finite difference method in [18], which can be extended to solve two-dimensional PDEs [19]. In [20,21], the solution of
ordinary differential equations (ODE) is approximated by the combination of splines, where the combination parameters
are determined by training a neural network with piecewise linear activation functions. A constrained integration method
called GINT is proposed to solving initial boundary value PDEs in [1], where neural networks are combined with the classical
Galerkin method. In [22], convolutional neural networks (CNN) is used to solve the large linear system derived from the
discretization of incompressible Euler equations. In [23], a neural network-based discretization scheme is developed for the
nonlinear differential equation using regression analysis technique. Despite of the improvement over classical numerical
methods, these methods still suffer the exponentially increasing problem size and are not tractable for high-dimensional
PDEs.

In the second category, the deep neural networks are employed to directly approximate the solution of PDE, which may
be more advantageous in dealing with high dimensional problems. In [2], the solution of the PDE is decomposed into two
parts, where the first part is explicitly defined to satisfy the initial boundary conditions and the other part is a product of
a mapping parameterized as a neural network and an explicitly defined function that vanishes on the boundary. Then the
neural network is trained by minimizing the squared residuals over specified collocation points. An improvement of this
method by parameterizing both parts using neural networks in [24]. The singular canonical correlation analysis (SVCCA)

Y. Zang et al. / Journal of Computational Physics 411 (2020) 109409 3
is introduced to further improve this method in [25]. In contrast to decomposing the solution into two parts, the idea of
approximating the solution of PDEs by a single neural network is considered in [26], which is not capable of dealing with
high-dimensional problems. In [3,4], physics-informed neural networks (PINN) are proposed to approximate the solution of
PDEs by incorporating observed data points and initial boundary conditions into the loss function for training. A similar
model is present in [12] for high dimensional free boundary parabolic PDEs. A different approach that represents a class of
nonlinear PDEs by forward-backward stochastic differential equations is proposed and studied In [5–8].

Another appealing approach that exploits the variational form of PDEs is considered in [9–11]. In [9], a committer
function is parameterized by a neural network whose weights are obtained by optimizing the variational formulation of
the corresponding PDE. In [10], deep learning technique is employed to solve low-dimensional random PDEs based on
both strong form and variational form. In [11], a deep Ritz method (DRM) is proposed to solve the class of PDEs that can
be reformulated as equivalent energy minimization problems. The constraint due to boundary condition is added to the
energy as a penalty term in [11]. More recently, an adaptive collocation strategy is presented for a method in [27]. In [28],
an adversarial inference procedure is used for quantifying and propagating uncertainty in systems governed by non-linear
differential equations, where the discriminator distinguishes the real observation and the approximation provided by the
generative network through the given physical laws expressed by PDEs and the generator tries to fool the discriminator. To
the best of our knowledge, none of the existing methods models the solution and test function in the weak solution form
of the PDE as primal and adversarial networks as proposed in the present work. We will show in the experiment section
that the use of weak form is more advantageous especially when the PDEs have singularities where classical solutions do
not exist.

3. Proposed method

To demonstrate the main idea, we first focus on the boundary value problems (BVP) (1). We consider the weak formu-
lation of the PDE, and pose the weak solution as an operator norm minimization. The weak solution and the test function
are both parameterized as deep neural networks, where the parameters are learned by an adversarial training governed by
the weak formulation. Important implementation details are also provided. Finally, we extend the proposed method to the
IBVP (2), where the PDEs are time-dependent.

3.1. PDE and weak formulation

In general, a solution u ∈ C2(�) of a BVP (1) requires sufficient regularity of the problem and may not exist in the
classical sense. Instead, we consider the weak formulation of (1) by multiplying both sides by a test function ϕ ∈ H1

0(�; R)

and integrating by parts:⎧⎨
⎩〈A[u],ϕ〉 � ∫

�

(∑d
j=1

∑d
i=1 aij∂ ju∂iϕ + ∑d

i=1 biϕ∂iu + cuϕ − f ϕ
)
dx = 0

B[u] = 0, on ∂�
(3)

where H1
0(�; R) denotes the Sobolev space, a Hilbert space of functions who themselves and their weak partial derivatives

are L2 integrable on � with vanishing trace on the boundary ∂�. Note that the boundary terms of (3) after integration by
parts disappears due to ϕ = 0 on ∂�. If u ∈ H1(�; R) with possibly nonzero trace satisfies (3) for all ϕ ∈ H1

0, we say that u
is a weak solution (or general solution) of (1). In general, the weak solution to (1) may exist while a classical one may not. In
this paper, we therefore seek for the weak solution characterized in (3) so that we can provide an answer to a BVP (1) to
the best extent even if it does not admit a solution in the classical sense.

3.2. Induced operator norm minimization

A novel point of view for the weak solution u can be interpreted as follows. We can consider A[u] : H1
0(�) → R as a

linear functional (operator) such that A[u](ϕ) � 〈A[u], ϕ〉 as defined in (3). Then the operator norm of A[u] induced from
L2 norm is defined by

‖A[u]‖op �max{〈A[u],ϕ〉/‖ϕ‖2 | ϕ ∈ H1
0,ϕ �= 0}, (4)

where ‖ϕ‖2 = (
∫
�

|ϕ(x)|2 dx)1/2. Therefore, u is a weak solution of (1) if and only if ‖A[u]‖op = 0 and the boundary con-
dition B[u] = 0 is satisfied on ∂�. As ‖A[u]‖op ≥ 0, we know that a weak solution u to (1) thus solves the following two
equivalent problems in observation of (4):

min
u∈H1

‖A[u]‖2op ⇐⇒ min
u∈H1

max
ϕ∈H1

0

|〈A[u],ϕ〉|2/‖ϕ‖22. (5)

This result is summarized in the following theorem.

4 Y. Zang et al. / Journal of Computational Physics 411 (2020) 109409
Theorem 1. Suppose u∗ satisfies the boundary condition B[u∗] = 0, then u∗ is a weak solution of the BVP (1) if and only if u∗ solves
the problems in (5) and ‖A[u∗]‖op = 0.

Proof. For any fixed u ∈ H1(�), we can see that the maximum of 〈A[u], ϕ〉 is achievable over Y � {ϕ ∈ H1
0(�) | ‖ϕ‖2 = 1}

since 〈A[u], ·〉 is continuous and Y is closed in H1
0(�). Denote h(u) as the maximum of 〈A[u], ϕ〉 over Y , then h(u) =

‖A[u]‖op in (4). On the other hand, the space of functions u ∈ H1(�) satisfying the boundary condition B[u] = 0, denoted
by X , is also closed in H1(�). Therefore, the minimum of h(u) over X is also achievable. Hence the minimax problem (5)
is well-defined.

Now we show that u∗ is the solution of the minimax problem (5) if and only if it is the weak solution of the problem
(1). Suppose u∗ , satisfying the boundary condition B[u∗] = 0, is the weak solution of the problem (1), namely u∗ satisfies
(3) for all ϕ ∈ Y , then 〈A[u∗], ϕ〉 ≡ 0 for all ϕ ∈ Y . Therefore, ‖A[u∗]‖op = 0, and u∗ is the solution of the minimax problem
(5). On the other hand, suppose a weak solution û of (1) exists. Assume that u∗ is the minimizer of the problem (5),
i.e., u∗ = argminu∈X h(u), but not a weak solution of the problem (1), then there exists ϕ∗ ∈ Y such that 〈Au∗, ϕ∗〉 > 0.
Therefore h(u∗) = maxϕ∈Y |〈A[u∗], ϕ〉| > 0. However, as we showed above, h(û) = 0 since û is a weak solution of (1), which
contradicts to the assumption that u∗ is the minimizer of h(u) over X . Hence u∗ must also be a weak solution of (1). �

Theorem 1 implies that, to find the weak solution of (1), we can instead seek for the optimal solution u that mini-
mizes (5).

3.3. Weak adversarial network for solving PDE

The formulation (5) inspires an adversarial approach to find the weak solution of (1). More specifically, we seek for the
function uθ : Rd → R, realized as a deep neural network with parameter θ to be learned, such that A[uθ] minimizes the
operator norm (5). On the other hand, the test function ϕ , is a deep adversarial network with parameter η, also to be
learned, challenges uθ by maximizing 〈A[uθ], ϕη〉 modulus its own norm ‖ϕη‖2 for every given uθ in (5).

To train the deep neural network uθ and the adversarial network ϕη such that they solve (5), we first need to formulate
the objective functions of uθ and ϕη . Since logarithm function is monotone and strictly increasing, we can for convenience
reformulate (5) and obtain the objective of uθ and ϕη in the interior of � as follows,

Lint(θ,η) � log |〈A[uθ],ϕη〉|2 − log‖ϕη‖22. (6)

In addition, the weak solution uθ also need to satisfy the boundary condition B[u] = 0 on ∂� as in (1). Let {x(j)
b }Nb

j=1 be a
set of Nb collocation points on the boundary ∂�, then the squared error of uθ for Dirichlet boundary condition u = g on
∂� is given by

Lbdry(θ) � (1/Nb) · ∑Nb
j=1 |uθ (x

(j)
b) − g(x(j)

b)|2. (7)

If the Neumann boundary condition in (1) is imposed in the BVP (1), then one can form the loss function Lbdry(θ) =
(1/Nb) · ∑Nb

j=1 | ∑d
i=1 ni(x

(j)
b) ∂iuθ (x

(j)
b) − g(x(j)

b)|2 instead, where �n(x) = (n1(x), . . . , nd(x)) is the outer normal direction at
x ∈ ∂�. The total objective function is the weighted sum of the two objectives (6) and (7), for which we seek for a saddle
point that solves the minimax problem:

min
θ

max
η

L(θ,η), where L(θ,η) � Lint(θ,η) + αLbdry(θ), (8)

where α > 0 is user-chosen balancing parameter. In theory, the weak solution attains zero for both Lint and Lbdry, so any
choice of α would work. However, different α values impact the performance of the training and we will give examples in
Section 4.

3.4. Training algorithm for the weak adversarial network

Given the objective function (8), the key ingredients in the network training are the gradients of L(θ, η) with respect to
the network parameters θ and η. Then θ and η can be optimized by alternating gradient descent and ascent of L(θ, η) in
(8) respectively.

To obtain the gradients of Lint in (8), we first denote the integrand of 〈A[uθ], ϕη〉 in (3) as I(x; θ, η) for every given θ
and η. For instance, for the second-order elliptic PDE (1), I(x; θ, η), ∇θ I(x; θ, η), ∇η I(x; θ, η) are given below in light of the
weak formulation (3):

Y. Zang et al. / Journal of Computational Physics 411 (2020) 109409 5
Algorithm 1 Weak Adversarial Network (WAN) for Solving High-dimensional static PDEs.
Input: Nr/Nb : number of region/boundary collocation points; Ku/Kϕ : number of solution/adversarial network parameter updates per iteration.
Initialize: Network architectures uθ , ϕη : � →R and parameters θ, η.
while not converged do

Sample collocation points {x(j)
r ∈ � : j ∈ [Nr]} and {x(j)

b ∈ ∂� : j ∈ [Nb]}
update weak solution network parameter
for k = 1, . . . , Ku do

Update θ ← θ − τθ∇θ L where ∇θ L is approximated using {x(j)
r } and {x(j)

b }.
end for
update test function network parameter
for k = 1, . . . , Kϕ do

Update η ← η + τη∇η L where ∇ηL is approximated using {x(j)
r }.

end for
end while
Output: Weak solution uθ (·) of (1).

I(x; θ,η) = ∑d
j=1

∑d
i=1 aij(x)∂ juθ (x)∂iϕη(x) + ∑d

i=1 bi(x)ϕη(x)∂iuθ (x)

+ c(x)uθ (x)ϕη(x) − f (x)ϕη(x)

∇θ I(x; θ,η) = ∑d
j=1

∑d
i=1 aij(x)∂ j∇θuθ (x)∂iϕη(x) + ∑d

i=1 bi(x)ϕη(x)∂i∇θuθ (x)

+ c(x)∇θuθ (x)ϕη(x) − f (x)ϕη(x)

∇η I(x; θ,η) = ∑d
j=1

∑d
i=1 aij(x)∂ juθ (x)∂i∇ηϕη(x) + ∑d

i=1 bi(x)∇ηϕη(x)∂iuθ (x)

+ c(x)uθ (x)∇ηϕη(x) − f (x)∇ηϕη(x)

(9)

where ∇θuθ and ∇ηϕη are the standard gradients of the networks uθ and ϕη with respect to their network param-
eters θ and η. Furthermore, the algorithm and numerical experiments conducted in this paper are implemented in
the TensorFlow [29] framework. In this situation, we take advantage of TensorFlow to calculate those derivatives au-
tomatically within the framework. To be more specific, due to the definition of Lint in (6) and the integrands in
(9), we can obtain that ∇θ Lint(θ, η) = 2(

∫
�
I(x; θ, η) dx)−1(

∫
�

∇θ I(x; θ, η) dx). Then we randomly sample Nr collocation
points {x(j)

r ∈ � | j ∈ [Nr]} uniformly in the interior of the region �, and approximate the gradient ∇θ Lint(θ, η) ≈
2 · (∑Nr

j=1 I(x(j)
r ; θ, η))−1(

∑Nr
j=1 ∇θ I(x

(j)
r ; θ, η)). The gradients ∇ηLint, ∇θ Lbdry can be approximated similarly, and hence we

omit the details here. With the gradients of ∇θ L and ∇ηL, we can apply alternating updates to optimize the parameters θ
and η. The resulting algorithm, termed as the weak adversarial network (WAN), is summarized in Algorithm 1.

3.5. Efficiency and stability improvements of WAN

During our experiments, we observed that several small modifications can further improve the efficiency and/or stability
of Algorithm 1 in practice. One of these modifications is that, to enforce ϕη = 0 on �, we can factorize ϕη = w · vη , where
w vanishes on ∂� and vη is allowed to take any value on ∂�. To obtain w for the domain � in a given BVP (1), we can
set it to the signed distance function of �, i.e., w(x) = dist(x, ∂�) � inf{|x − y| : y ∈ ∂�} if x ∈ � and −dist(x, ∂�) if x /∈ �.
This signed distance function can be obtained by the fast marching method. Alternatively, one can pre-train w as a neural
network such that w(x) > 0 for x ∈ � and w(x) = 0 for x ∈ ∂�. To this end, one can parameterize wξ : � → R as a neural
network and optimize its parameter ξ by minimizing the loss function

∑Nb
j=1 |wξ (x

(j)
b)| − ε

∑Nr
j=1 logwξ (x

(j)
r). In either way,

we pre-compute such w and fix it throughout Algorithm 1 WAN, then the updates of parameters are performed for uθ and
vη only. In this case, ϕη = w · vη always vanishes on ∂� so we do not need to worry about the boundary constraint of ϕη

during the training.
In addition, our experiments show that in the training process for the weak solution neural network uθ , applying gradient

descent directly to |〈A[uθ], ϕη〉|2/‖ϕ‖22 instead of the logarithm term appears to improve efficiency. Finally, formulating the
loss function for the boundary condition with absolute error rather than squared error appears empirically to be more
efficient in some cases. The computer code that implements these modifications for all test problems in Section 4 will be
released upon request.

3.6. Weak adversarial network for PDEs involving time

In this subsection, we consider extending the proposed weak adversarial network method to solve IBVPs with time-
dependent PDEs. We provide two approaches for such case: one is to employ semi-discretization in time and iteratively
solve u(x, tn) from a time-independent PDE for each tn , where Algorithm 1 directly serves as a subroutine; the other one
is to treat x and t jointly and consider the weak solution and test functions in the whole region � × [0, T] without any
discretization.

6 Y. Zang et al. / Journal of Computational Physics 411 (2020) 109409
Algorithm 2 Solving parabolic PDE (2) with semi-discretization in time and Algorithm 1 as subroutine.
Input: Nr , Nb, Ku , Kϕ as in Algorithm 1. N: number of time points; h = T /N .
Initialize: Network architectures uθ , ϕη : � →R and parameters θ, η for each tn . Set u(x, t0) = u(x, 0) = h(x).
for n = 0, · · · , N − 1 do

Solve for u(x, tn+1) = uθn+1 (x) from the elliptical equation (10) using Algorithm 1
end for
Output: Weak solution uθ (·, tn) of (2) for n = 1, . . . , N .

3.6.1. Semi-discretization in time
The weak adversarial network approach can be easily applied to time-dependent PDEs, such as the parabolic equation

(2), by discretizing the time and solving an elliptical-type static PDE for each time point. To this end, we partition [0, T] into
N uniform segments using time points 0 = t0 < t1 < · · · < tN = T , and apply the Crank-Nicolson scheme [30] in classical
finite difference method for (2) at each time tn for n = 0, . . . , N − 1 to obtain

u(x, tn+1) − u(x, tn) = h

2

(
L(x, tn+1;u(x, tn+1)) + f (x, tn+1) +L(x, tn;u(x, tn)) + f (x, tn)

)
(10)

where h = T /N is the time step size in discretization, tn = nh, and

L(x, t;u) �
∑d

i=1 ∂i

(∑d
j=1 aij(x, t)∂ ju(x, t)

)
− ∑d

i=1 bi(x, t)∂iu(x, t) − c(x, t)u(x, t). (11)

More precisely, we start with u(x, t0) = u(x, 0) = h(x), and solve for u(x, t1) from (10) for n = 1. Since (10) is an elliptical-
type PDE in u(x, t1) with boundary value u(x, t1) = g(x, t1) on ∂�, we can apply Algorithm 1 directly and obtain u(x, t1)
as the parameterized neural network uθ1 (x) with parameter θ1 output by Algorithm 1. Following this procedure, we can
solve (10) for u(x, tn) = uθn (x) for n = 2, 3, . . . , N in order. This process is summarized in Algorithm 2. Other types of time
discretization can be employed and the IBVP can be solved with similar idea.

3.6.2. Solving PDE with space and time variables jointly
The proposed weak adversarial network approach can also be generalized to solve the IBVP (2) with space and time

variables jointly. In this case, the weak formulation of (2) can be obtained by multiplying both sides of (2) by a test function
ϕ(·, t) ∈ H1

0(�) a.e. in [0, T] and integrating by parts:

0 = 〈A[u],ϕ〉 � ∫
�

(
u(x, T)ϕ(x, T) − h(x)ϕ(x,0)

)
dx− ∫ T

0

∫
�
u∂tϕ dxdt

+ ∫ T
0

∫
�

(∑d
j=1

∑d
i=1 aij∂ ju∂iϕ + ∑d

i=1 biϕ∂iu + cuϕ − f ϕ
)
dxdt

(12)

Following the same idea presented in Section 3.2–3.3, we parameterize the weak solution u and test function ϕ as deep
neural networks uθ , ϕη : � × [0, T] → R with parameters θ and η respectively. Then we form the objective function in the
saddle-point problem of θ and η as

L(θ,η) � Lint(θ,η) + γ Linit(θ) + αLbdry(θ), (13)

where α, γ > 0 are user-chosen balancing parameters. In (13), the loss function Lint of the interior of � × [0, T] has the
same form as (6) but with 〈A[uθ], ϕη〉 defined in (12) and ‖ϕη‖22 �

∫ T
0

∫
�

|ϕ(x, t)|2 dx dt; Linit of the initial value condition
in � and Lbdry of the boundary value condition on ∂� × [0, T] are given by

Linit(θ) � (1/Na) · ∑Na
j=1 |uθ (x

(j)
a ,0) − h(x(j)

a)|2 (14)

Lbdry(θ) � (1/Nb) · ∑Nb
j=1 |uθ (x

(j)
b , t(j)b) − g(x(j)

b , t(j)b)|2 (15)

where {x(j)
a : j ∈ [Na]} ⊂ � are Na collocation points for the initial condition and {(x(j)

b , t(j)b) : j ∈ [Nb]} ⊂ ∂� × [0, T] are Nb
collocation points for the boundary condition.

Similar as in Section 3.5, we factorize ϕη = w · vη where w : �T → R is set to a function which vanishes on ∂� in
advance. The training process is similar as above, which is summarized in Algorithm 3.

4. Numerical experiments

4.1. Experiment setup

In this section, we conduct a series of numerical experiments of the proposed algorithms (Algorithms 1–3) on BVP and
IBVP with high-dimensional linear and nonlinear PDEs defined on regular and irregular domains. To quantitatively evaluate
the accuracy of a solution uθ , we use the L2 relative error ‖uθ − u∗‖2/‖u∗‖2, where u∗ is the exact solution of the problem

Y. Zang et al. / Journal of Computational Physics 411 (2020) 109409 7
Algorithm 3 Weak Adversarial Network (WAN) for Solving high-dimensional PDEs in whole space � × [0, T].
Input: Nr/Nb/Na : number of region/boundary/initial collocation points; Ku/Kϕ . �T �� × [0, T].
Initialize: Network architectures uθ , ϕη : �T → R and parameters θ, η.
while not converged do

Sample points {(x(j)
r , t(j)r) : j ∈ [Nr]} ⊂ �T , {(x(j)

b , t(j)b) : j ∈ [Nb]} ⊂ ∂� × [0, T], {x(j)
a : j ∈ [Na]} ⊂ �

update weak solution network parameter
for k = 1, . . . , Ku do

Update θ ← θ − τθ∇θ L where ∇θ L in (13) is approximated using {(x(j)
r , t(j)r)} and {(x(j)

b , t(j)b)} and {x(j)
a }.

end for
update test function network parameter
for k = 1, . . . , Kϕ do

Update η ← η + τη∇η L where ∇ηL in (13) is approximated using {(x(j)
r , t(j)r)}.

end for
end while
Output: Weak solution uθ (x, t) in �T .

Table 1
List of model and algorithm parameters.

Notation Stands for ...

d Dimension of � ⊂Rd

Kϕ Inner iteration to update test function ϕη

Ku Inner iteration to update weak solution uθ

τη Learning rate for network parameter η of test function ϕη

τθ Learning rate for network parameter θ of weak solution uθ

Nr Number of sampled collocation points in the region �

Nb Number of sampled collocation points on the boundary ∂� or ∂� × [0, T]
Na Number of sampled collocation points in � = � × {0} at initial time
α Weight parameter of Lbdry(θ) on the boundary ∂�

γ Weight parameter of Linit(θ) for the initial value condition

and ‖u‖22 = ∫
�

|u|2 dx. To compute this error in high dimensional domain �, we use a regular mesh grid of size 100 × 100
for (x1, x2), and sampled one point x for each of these grid points (i.e., for each grid point (x1, x2), randomly draw values of
(x3, . . . , xd) of x within the domain �). These points are sampled in advance and then used for all comparison algorithms
to compute their errors. They are different from those sampled during training processes. In all experiments, we set both of
the primal network (weak solution uθ) and the adversarial network (test function ϕη) in the proposed algorithms as fully-
connected feed-forward networks. Unless otherwise noted, uθ network is set to have 6 hidden layers, with 40 neurons per
hidden layer. The activation functions of uθ are set to tanh for layers 1, 2, 4 and 6, and elu for the problem in Section 4.2.1
and softplus for all other problems for layers 3 and 5. We do not apply activation function in the last, output layer. For
the network ϕη , it consists of 8 hidden layers with 50 neurons per hidden layer. The activation functions are set to tanh
for layers 1 and 2, softplus for layers 3, 5, and 8, sinc for layers 2, 5, and 7, and again no activation in the last layer. The
parameters θ and η of the two networks are updated alternately based on (8) for BVP and (13) for IBVP using AdaGrad
algorithm [31]. Notations of all model and algorithm parameters are summarized in Table 1 for quick reference. The values
of these parameters are given in the description of each experiment below.

4.2. Experimental results

4.2.1. Weak form versus strong form
In the first test, we show that Algorithm 1 based on the weak formulation of PDEs can be advantageous for problems

with singularities. Consider the following Poisson equation with Dirichlet boundary condition:

{
−�u = f , in �

u = g, on ∂�
(16)

where � = (0, 1)2 ⊂ R2, f ≡ −2 in �, and g(x1, 0) = g(x1, 1) = x21 for 0 ≤ x1 ≤ 1
2 , g(x1, 0) = g(x1, 1) = (x1 − 1)2 for 1

2 ≤
x1 ≤ 1, and g(0, x2) = g(1, x2) = 0 for 0 ≤ x2 ≤ 1 on ∂�. This problem does not admit a strong (classical) solution, but only
a unique weak solution u∗(x) = u∗(x1, x2) = x21 when 0 ≤ x1 ≤ 1

2 and u∗(x) = (x1 − 1)2 when 12 ≤ x1 ≤ 1, which is shown in
Fig. 1(a).

We apply the proposed Algorithm 1 to (16) with Kϕ = 1, Ku = 2, τη = 0.04, τθ = 0.015, Nr = 104, Nb = 4 × 100 (100
collocation points on each side of �), and α = 10, 000 × Nb for 100,000 iterations, after which we obtain an approximation
uWAN shown in Fig. 1(d). For comparison, we also apply two state-of-the-art deep learning based methods, the physics-

8 Y. Zang et al. / Journal of Computational Physics 411 (2020) 109409
Fig. 1. Results of (16). (a) The true solution u∗; (b) uPINN obtained by PINN [3] based on the strong form; (c) uDRM obtained by DRM [11]; (d) uWAN obtained
by the proposed Algorithm 1 WAN based on the weak form; (e) | − �uPINN − f | by PINN; (f), (g), (h) Pointwise absolute error |u − u∗| by PINN, DRM,
and WAN respectively; (i) Relative error versus computation time (in seconds) of PINN, DRM, and WAN; (j), (k), (l) the objective function versus iteration
number of PINN, DRM, and WAN respectively.

informed neural networks (PINN) [3]1 and the deep Ritz method (DRM) [11],2 to the same problem (16). PINN [3] is based
on the strong form of (16) where the loss function sums the squared errors in the PDE and the boundary condition at
sampled points inside � and on ∂�, respectively. DRM [11] is designed to solve a class of PDEs that can be reformulated
as equivalent energy minimization problems. The constraint due to the boundary condition is formed as a penalty term
and added to the energy in DRM [11]. We parameterize the solution u using the default fully connected network activation
function tanh for PINN and the residual network (ResNet) structure with activation function max(x3, 0) for DRM. The weight
of the boundary term in the loss function is set to 1 for PINN and 500 for DRM, which seem to yield optimal solution quality
for these methods. Same as WAN, the network u has 6 hidden layers and 40 neurons per hidden layer in both PINN and
DRM. The numbers Nr and Nb of sample points in � and on ∂� respectively are also the same as WAN. We use Adam
optimizer with step size 0.001 as suggested in PINN and DRM. The results after 100,000 iterations of these two comparison
methods, denoted by uPINN and uDRM, are shown in Figs. 1(b) and 1(c), respectively. The comparison of relative error versus
time is shown in Fig. 1(i), and the change process of objective functions over the number of iterations by PINN, DRM, and
WAN are shown in Figs. 1(j), 1(k), and 1(l), respectively. (We plot these figures separately since the objective functions are
defined differently in these methods). We also plot the absolute value of residual |�uPINN − f | for PINN in Fig. 1(e), which
shows that the solution of PINN based on strong form satisfies the PDE in � closely. However, the pointwise absolute errors
|u − u∗| with u obtained by PINN, DRM, and WAN shown in Figs. 1(f), 1(g) and 1(h) (note the significantly lower scale in
color bar in Fig. 1(h)) imply that WAN can better capture the singularity of solution due to its use of weak form of the
PDE. We tested a variety of network parameters and activation functions for PINN and DRM, but they all yield solutions
with similar patterns as shown in Figs. 1(b) and 1(c). For example, we used larger weight on the boundary term to enforce

1 PINN implementation obtained from https://github .com /maziarraissi /PINNs.
2 DRM implementation obtained from https://github .com /ZeyuJia /DeepRitzMethod.

https://github.com/maziarraissi/PINNs
https://github.com/ZeyuJia/DeepRitzMethod

Y. Zang et al. / Journal of Computational Physics 411 (2020) 109409 9
Fig. 2. Comparison of the solutions to (17) based on the PINN, DRM, and WAN. (a) The pointwise absolute error of |u − u∗| with u obtained by PINN (left),
DRM (middle), and the proposed WAN (right). (b) The change process of relative error versus time in seconds. (c) The change process of the objective
function versus iteration number by PINN (left), DRM (middle), and the proposed WAN (right).

better alignment of uPINN with g on ∂�, but this resulted in even worse matching of �uPINN and f in �, and vice versa.
We believe it is because the solution uPINN based on the strong form tends to enforce smoothness in � and aligns with
the boundary value g on ∂� by violating both the PDE and the boundary condition slightly, but this results in a smooth
solution severely biased from u∗ as shown in Fig. 1(b). DRM also suffers the issue of problem singularity due to the heavy
penalty term

∫
�

|∇u|2 dx on the gradient ∇u in the objective function. On the other hand, the solution uWAN obtained
by Algorithm 1 can capture the singularities at the center line and faithfully recover the solution u∗ as shown in Fig. 1(d).
Furthermore, we also tested the algorithm reported in [32], which is also based on the strong form of PDEs, on this problem
and obtained similar results as PINN.

4.2.2. High dimensional smooth problem
We also check how competitive the proposed Algorithm 1 WAN is on a simple smooth problem that admits strong

solution. We again consider a Poisson equation with Dirichlet boundary condition:

{
−�u = π2

4

∑d
i=1 sin(π

2 xi), in � = (0,1)d

u = ∑d
i=1 sin(π

2 xi), on ∂�
(17)

with problem dimension d = 5. Problem (17) has a strong (classical) solution u∗(x) = ∑d
i=1 sin(π

2 xi) in �̄. For comparison,
we also apply the state-of-the-art methods PINN [3] and DRM [11] which are particularly suitable for such problems. For
sake of fair comparison, in WAN, we set Kϕ = 1, Ku = 1, τη = 0.015, τθ = 0.001, Nr = 104, Nb = 2d ×30 (30 points uniformly
sampled on each of the 2d sides of �), and α = 10, 000. We use Adam optimizer for updating θ and AdaGrad optimizer for
η. For the PINN and the DRM, we follow the same parameter settings as in Section 4.2.1, and use the same Nb and Nr as
WAN here. We run all methods for 20, 000 iterations, and show the pointwise absolute error |u − u∗| in Fig. 2(a). We also
show their change process of relative error versus time (s) in Fig. 2(b) and the objective functions versus iteration number
in Fig. 2(c). The objective functions are computed in the same way as above. From Fig. 2(c), we can see that all methods
have almost reached their limit after 20,000 iterations as the objective functions do not have substantial improvements.
This can also be seen from Fig. 2(b), where the relative errors of all methods are lower than 1% which means their results
are very close to the true solution u∗ . Moreover, we can see that PINN obtains the highest accuracy after 20,000 iterations,
closely followed by WAN. DRM also obtains a satisfactory accuracy level with the fastest convergence. It is worth noting
that PINN requires computation of �u (i.e., second-order partial derivatives of the deep network u with respect to its input
x) which is a bit more expensive than that of first-order gradient ∇u.

10 Y. Zang et al. / Journal of Computational Physics 411 (2020) 109409
Fig. 3. Result for the BVP (18) with nonlinear elliptical PDE and Dirichlet boundary condition. (a) True solution u∗ and the approximation uθ obtained
by Algorithm 1 after 20,000 iterations for d = 20; (b) The absolute difference |uθ − u∗| for d = 20; (c) Relative errors versus iteration numbers for d =
5, 10, 15, 20, 25 cases. For display purpose, images (a) and (b) only show the slices of x3 = · · · = xd = 0.

Fig. 4. Result for the BVP (19) with Neumann boundary condition. (a) True solution u∗ and the approximation uθ obtained by Algorithm 1 after 20,000
iterations for d = 10; (b) The absolute difference |uθ − u∗| for d = 10; (c) Relative errors versus iteration numbers for d = 5, 10 cases. For display purpose,
images (a) and (b) only show the slices of x3 = · · · = xd = 0.

4.2.3. High-dimensional nonlinear elliptic PDEs with Dirichlet boundary condition
In this example, we apply Algorithm 1 to a nonlinear elliptic PDEs with Dirichlet boundary condition. We test the problem

with different dimensions d = 5, 10, 15, 20, 25 as follows,{
−∇ · (a(x)∇u) + 1

2 |∇u|2 = f (x) in � � (−1,1)d,

u(x) = g(x) on ∂�
(18)

where a(x) = 1 + |x|2 in �, f (x) = 4ρ2
1 (1 + |x|2) sinρ2

0 − 4ρ2
0 cos (ρ2

0) − (π + 1)(1 + |x|2) cos (ρ2
0) + 2ρ2

1 cos2(ρ2
0) in �̄, and

g(x) = sin(π
2 x

2
1 + 1

2 x
2
2) on ∂�, with ρ2

0 � π
2 x

2
1 + 1

2 x
2
2, ρ

2
1 � π2

4 x21 + 1
4 x

2
2. The exact solution of (18) is u∗(x) = sin(π

2 x
2
1 + 1

2 x
2
2)

in �, the cross section (x1, x2) of which is shown in the left panel of Fig. 3(a). In this test, we set Kϕ = 1, Ku = 2, τη = 0.04,
τθ = 0.015, Nr = 4, 000d, Nb = 40d2, and α = 10, 000 × Nb for d = 5, 10, and 20, 000 × Nb for d = 15, 20, and 25, 000 × Nb
for d = 25. The solution uθ after 20,000 iterations for d = 20 case is shown in the right panel of Fig. 3(a), and the absolute
pointwise error |uθ −u∗| is shown in Fig. 3(b). We show the progresses of the relative error versus iteration in Fig. 3(c). After
20,000 iterations, the relative error reaches 0.44%, 0.62%, 0.52%, 0.66%, 0.69% for d = 5, 10, 15, 20, 25 cases, respectively. As
we can see, the Algorithm 1 can solve high-dimensional nonlinear PDEs accurately.

4.2.4. High-dimensional elliptic PDEs with Neumann boundary condition
In this experiment, we show that the proposed Algorithm 1 can be applied to high-dimensional PDEs with Neumann

boundary condition. Consider the following boundary value problem:{
−�u + 2u = f in � � (0,1)d,

∂u/∂�n = g on ∂�
(19)

where �n(x) ∈ Rd is the outer normal at x ∈ ∂�. We set f (x) = (π2

2 + 2) sin (π
2 x1) cos (π

2 x2) in � and

g(x) =
[

π
2 cos

(
π
2 x1

)
cos

(
π
2 x2

)
, −π

2 sin
(

π
2 x1

)
sin

(
π
2 x2

)
, 0, · · · ,0

]
· �n on ∂�. The exact solution of (19) in this case is

u∗(x) = sin (x1
2 x1) cos (π

2 x2) in � as shown in the left panel of Fig. 4(a). In this test, we set Kϕ = 2, Ku = 5, τη = 0.05,
τθ = 0.02, Nr = 8 × 104, Nb = 2d × 400, and α = 1000 × Nb . After 20,000 iterations, the relative error of uθ to u∗ is 2.03%
and 1.31% for d = 5 and 10 respectively. The solution is shown in the right panel of Fig. 4(a), whose pointwise absolute
error is shown in Fig. 4(b). The progresses of relative error versus iteration number for d = 5, 10 are shown in Fig. 4(c). This
test shows that the proposed algorithm can also work effectively for BVPs with Neumann boundary conditions.

Y. Zang et al. / Journal of Computational Physics 411 (2020) 109409 11
Fig. 5. Result for the BVP (20) with Poisson equation and Dirichlet boundary condition on nonconvex domain. (a) True solution u∗ and the approximation
uθ obtained by Algorithm 1 after 20,000 iterations for d = 10; (b) The absolute difference |uθ − u∗| for d = 10; (c) Relative errors versus iteration numbers
for d = 5, 10 cases. For display purpose, images (a) and (b) only show the slices of x3 = · · · = xd = 0.

Fig. 6. (a) Exact solution u∗(x, T) (left) and the approximation uθ (x, T) (right) obtained by Algorithm 2 at final time T = 1 for the IBVP (21) with problem
dimension d = 5. (b) Pointwise absolute error |u(x, T) − u∗(x, T)|. All images only show the 2D slice of x3 = x4 = x5 = 0 for display purpose.

4.2.5. Poisson equation on irregular nonconvex domain
We now consider a BVP with Poisson equation and Dirichlet boundary condition on irregular nonconvex domain for

problem dimension d = 5, 10 as follows:{
−∇ · (a(x)∇u) = f (x) in � � (−1,1)d \ [0,1)d
u(x) = g(x) on ∂�

(20)

where a(x) = 1 + |x|2 and f (x) = π2

2 · (1 + |x|2) sin(x̃1) cos(x̃2) + πx2 sin(x̃1) sin(x̃2) − πx1 cos(x̃1) cos(x̃2) in � and g(x) =
sin(x̃1) cos(x̃2) on ∂�, with x̃i � (π/2) · xi for i = 1, 2. The true solution is u∗ = sin(x̃1) cos(x̃2) in � as shown in the left
panel of Fig. 5(a). In this test, Kϕ, Ku, τη, τθ , Nr, Nb are set the same as those in problem (18), and α = 10, 000 × Nb and
20, 000 × Nb for d = 5, 10 respectively. The solution uθ after 20,000 iterations for d = 10 case is shown in the right panel
of Fig. 5(a), and the absolute pointwise error |uθ − u∗| is shown in Fig. 5(b). Again, for both values of problem dimension d,
we show the progresses of the relative error versus iteration in Fig. 5(c). After 20,000 iterations, the relative error reaches
0.86% and 0.80% for d = 5, 10 cases, respectively. As we can see, the proposed Algorithm 1 can easily handle PDEs defined
on irregular domains.

4.2.6. Solving high dimensional parabolic equation involving time
Next, we consider solving the following nonlinear diffusion-reaction equation involving time:⎧⎪⎪⎨

⎪⎪⎩
ut − �u − u2 = f (x, t), in � × [0, T]
u(x, t) = g(x, t), on ∂� × [0, T]
u(x,0) = h(x), in �

(21)

where � = (−1, 1)d ⊂ Rd . We first give an example of solving the IBVP (21) in dimension d = 5 using Algorithm 2 which
discretizes time and uses the Crank-Nicolson scheme (10). In this test, we set f (x, t) = (π2 − 2) sin (π

2 x1) cos(
π
2 x2)e

−t −
4 sin2 (π

2 x1) cos(
π
2 x2)e

−2t in � × [0, T], g(x, t) = 2 sin(π
2 x1) cos(

π
2 x2)e

−t on ∂� × [0, T] and h(x) = 2 sin(π
2 x1) cos(

π
2 x2)

in �. In this case, the exact solution of the IBVP (21) is u(x, t) = 2 sin(π
2 x1) cos(

π
2 x2)e

−t . We take T = 1 and discretize
the time interval [0, 1] into N = 10 equal segments, and then solve the IBVP using Algorithm 2 with the setup of
Kϕ, Ku, τη, τθ , Nr, Nb, α at each time step are the same as those in Section 4.2.3. Fig. 6(a) shows the exact solution u∗
(left) and the solution uθ (right) obtained by Algorithm 2 at final time T . Fig. 6(b) shows the point-wise absolute er-
ror |uθ (x, T) − u∗(x, T)|. The relative error reaches 2.8% after 10, 000 iterations. The small error implies that the solution
obtained by Algorithm 2 is a close approximation to the true solution u∗ .

12 Y. Zang et al. / Journal of Computational Physics 411 (2020) 109409
Fig. 7. Result for the IBVP (21) with a nonlinear diffusion-reaction equation. (a) True solution u∗ and the approximation uθ obtained by Algorithm 3 after
20,000 iterations for d = 5; (b) The absolute difference |uθ − u∗| for d = 5; (c) Relative errors versus iteration numbers for d = 5, 10 cases. For display
purpose, images (a) and (b) show the slices of x2 = · · · = xd = 0 for d ≥ 2.

Fig. 8. Effects of the numbers of sampled region collocation points Nr and boundary collocation points Nb on the nonlinear elliptical PDE (18) with d = 5.
The progresses of relative error versus running time are shown with varying Nb for (a) Nr = 500 and (b) Nr = 16, 000, and with varying Nr for (c)
Nb = 2d × 5 and (d) Nb = 2d × 20.

We also considered solving the diffusion-reaction equation (21) for space dimension d = 5, 10 using Algorithm 3 by deal-
ing with (x, t) jointly without discretization. In this experiment, we set f (x, t) = (π2

2 −2) sin (π
2 x1)e

−t −4 sin2
(

π
2 x1

)
e−2t in

� × [0, T], g(x, t) = 2 sin(π
2 x1)e

−t on ∂� × [0, T], and h(x) = 2 sin(π
2 x1) in �. The exact solution is u∗(x, t) = 2 sin(π

2 x1)e
−t

in � ×[0, T]. In this test, we set Kϕ, Ku, τη, τθ , Nr, Nb, α the same as in Section 4.2.3, and Na = Nb and γ = α. The solution
uθ after 20,000 iterations for d = 10 case is shown in the right panel of Fig. 7(a), and the absolute pointwise error |uθ − u∗|
is shown in Fig. 7(b). As has done before, we show the progresses of the relative error versus iteration in Fig. 7(c). After
20,000 iterations, the relative error reaches 0.78% and 0.66% for d = 5, 10 cases, respectively. Clearly, the Algorithm 3 can
solve high-dimensional nonlinear PDEs involving time accurately.

4.2.7. Stability and scalability
In this last set of tests, we evaluate the performance of Algorithm 1 with different parameter settings and problem

dimensionalities. First, we test the effects of different numbers of collocation points Nr and Nb on the problem (18) with
d = 5. We set Kϕ = 1, Ku = 2, τη = 0.04 and τθ = 0.015 for this test, and then use different numbers of Nr in the region
� and Nb on the boundary ∂� (each time with one fixed and the other one varying). In particular, we run Algorithm 1
and show the relative error versus running time (the iteration stops when the L2 relative error reaches 1%) for varying
Nb with fixed Nr = 500 (Fig. 8(a)) and Nr = 16, 000 (Fig. 8(b)), and then for varying Nr with fixed Nb = 5 (Fig. 8(c)) and
Nb = 10 (Fig. 8(d)). As we can see, in all cases, Algorithm 1 stably makes progresses towards the weak solution. Note
that more sampled points (larger Nr or Nb) do not always yield improvement as shown in Fig. 8. We suspect that it is
due to the severe non-convexity of the problem (from the PDE formulation, the boundary condition, and the deep neural
network parameterization) which contains many local minima. In this case, more sampling points would generally lower
the stochastic error of our gradient evaluations, but also reduce the chance for the iterates to escape from local minima.
In terms of real-world performance, more sampled points may improve convergence rate in terms of iterations, but also
increase per-iteration computational cost due to more computations of backpropagations.

We also test the effect of network architectures of uθ . We try a number of different combinations of layer and neuron
numbers for uθ . With fixed layer numbers 3 and 9, we show the progresses of training with different number of per-layer
neurons in Figs. 9(a) and 9(b) respectively. Similarly, with fixed per-layer neuron numbers 10 and 20, we show the same
training process with varying numbers of layers in Figs. 9(c) and 9(d) respectively. In all of these tests, we can see the
relative error of uθ gradually decays towards 0 except the case when the number of neuron is 5, which indicates sufficient
neurons are required to accurately approximate the solution. In most cases, more layers and/or neurons yield faster decay
of relative error, but this is not always the case. We know that more layers and/or neurons increase representation capacity

Y. Zang et al. / Journal of Computational Physics 411 (2020) 109409 13
Fig. 9. Effects of the numbers of layers and neurons, as well as the dimensionality, on the nonlinear elliptical PDE problem (18). The progresses of relative
error versus running time are shown with varying number of neurons per layer for a total of (a) 3 layers and (b) 9 layers, and with number of layers for
the same number of (c) 10 and (d) 20 neurons per layer; (e) The computation time (in seconds) versus problem dimension d = 5, 10, 15, 20, 25.

of the neural network uθ , but they can introduce much more parameters to train, yield longer training time, and may result
in overfitting of the representation. We plan to investigate this problem in more depth in our future work.

To show the scalability of our method, we plotted the total computation time (in seconds) of Algorithm 1 applied to BVP
(18) for d = 5, 10, 15, 20, 25 in Fig. 9(e). This figures shows the times when uθ first hits 1% relative error to u∗ for these
problem dimensions. It appears that, with the parameter setting we selected, the computation time increases approximately
linearly in problem dimension d. This shows that Algorithm 1 has great potential in scalability for high dimensional PDEs
empirically.

5. Concluding remarks

In this paper, we developed a novel approach, called weak adversarial network or WAN, to solve general high-dimensional
linear and nonlinear PDEs defined on arbitrary domains. Inspired by the weak formulation of PDEs, we rewrite the problem
of finding the weak solution of the PDE as a saddle-point problem, where the weak solution and the test function are
parameterized as the primal and adversarial networks, respectively. The objective function is completely determined by the
PDE, the initial and boundary conditions, of the IBVP; and the parameters of these two networks are alternately updated
during the training to reach optimum. The training only requires evaluations of the networks on randomly sampled collo-
cations points in the interior and boundary of the domain, and hence can be completed quickly on desktop-level machines
with standard deep learning configuration. We demonstrated the promising performance of WAN on a variety of PDEs with
high dimension, nonlinearity, and nonconvex domain which are challenging issues in classical numerical PDE methods. In
all tests, WAN exhibits high efficiency and strong stability without suffering these issues.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgement

YZ would like to acknowledge funding from the China Scholarship Council under grant No. 201806320325. The work
of GB was supported in part by a NSFC Innovative Group Fund under grant No. 11621101. The work of XY was supported
in part by the National Science Foundation under grants DMS-1620342, CMMI-1745382, DMS-1818886, and DMS-1925263.
The work of HZ was supported in part by National Science Foundation under grants DMS-1620345 and DMS-1830225, and
the Office of Naval Research under grant N00014-18-1-2852.

References

[1] K. Rudd, S. Ferrari, A constrained integration (cint) approach to solving partial differential equations using artificial neural networks, Neurocomputing
155 (2015) 277–285.

[2] I.E. Lagaris, A. Likas, D.I. Fotiadis, Artificial neural networks for solving ordinary and partial differential equations, IEEE Trans. Neural Netw. 9 (5) (1998)
987–1000.

[3] M. Raissi, P. Perdikaris, G. Karniadakis, Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involv-
ing nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686–707.

[4] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics informed deep learning (part I): data-driven solutions of nonlinear partial differential equations, arXiv
preprint arXiv:1711.10561, 2017.

[5] C. Beck, W. E, A. Jentzen, Machine learning approximation algorithms for high-dimensional fully nonlinear partial differential equations and second-
order backward stochastic differential equations, J. Nonlinear Sci. (2017) 1–57.

[6] M. Fujii, A. Takahashi, M. Takahashi, Asymptotic expansion as prior knowledge in deep learning method for high dimensional BSDEs, Asia-Pac. Financ.
Mark. (2017) 1–18.

[7] J. Han, A. Jentzen, W. E, Overcoming the curse of dimensionality: solving high-dimensional partial differential equations using deep learning, arXiv
preprint arXiv:1707.02568, 2017, pp. 1–13.

http://refhub.elsevier.com/S0021-9991(20)30183-2/bib4DE8794C951D4240E950A19FB647A37Ds1
http://refhub.elsevier.com/S0021-9991(20)30183-2/bib4DE8794C951D4240E950A19FB647A37Ds1
http://refhub.elsevier.com/S0021-9991(20)30183-2/bib3BAB71061A41AAFC901D883266809035s1
http://refhub.elsevier.com/S0021-9991(20)30183-2/bib3BAB71061A41AAFC901D883266809035s1
http://refhub.elsevier.com/S0021-9991(20)30183-2/bib53EF7BEEFFBCC434AC4215FA1276D943s1
http://refhub.elsevier.com/S0021-9991(20)30183-2/bib53EF7BEEFFBCC434AC4215FA1276D943s1
http://refhub.elsevier.com/S0021-9991(20)30183-2/bib622B96F911A6F17FDFC4125DEE49FD2As1
http://refhub.elsevier.com/S0021-9991(20)30183-2/bib622B96F911A6F17FDFC4125DEE49FD2As1
http://refhub.elsevier.com/S0021-9991(20)30183-2/bibEAAF3EA13033FA6510F31FB929694E7As1
http://refhub.elsevier.com/S0021-9991(20)30183-2/bibEAAF3EA13033FA6510F31FB929694E7As1
http://refhub.elsevier.com/S0021-9991(20)30183-2/bib479594C142846EBFAB0EF3D4286B88F1s1
http://refhub.elsevier.com/S0021-9991(20)30183-2/bib479594C142846EBFAB0EF3D4286B88F1s1
http://refhub.elsevier.com/S0021-9991(20)30183-2/bib92D64278DF6176BD9E568A4BFF6BD6FEs1
http://refhub.elsevier.com/S0021-9991(20)30183-2/bib92D64278DF6176BD9E568A4BFF6BD6FEs1

14 Y. Zang et al. / Journal of Computational Physics 411 (2020) 109409
[8] W. E, J. Han, A. Jentzen, Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic
differential equations, Commun. Math. Stat. 5 (4) (2017) 349–380.

[9] Y. Khoo, J. Lu, L. Ying, Solving for high-dimensional committor functions using artificial neural networks, Res. Math. Sci. 6 (1) (2019) 1.
[10] M.A. Nabian, H. Meidani, A deep neural network surrogate for high-dimensional random partial differential equations, arXiv preprint arXiv:1806 .02957,

2018.
[11] W. E, B. Yu, The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems, Commun. Math. Stat. 6 (1) (2018)

1–12.
[12] J. Sirignano, K. Spiliopoulos, Dgm: a deep learning algorithm for solving partial differential equations, J. Comput. Phys. 375 (2018) 1339–1364.
[13] A. Quarteroni, A. Valli, Numerical Approximation of Partial Differential Equations, vol. 23, Springer Science & Business Media, 2008.
[14] J.W. Thomas, Numerical Partial Differential Equations: Finite Difference Methods, vol. 22, Springer Science & Business Media, 2013.
[15] T.J. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Courier Corporation, 2012.
[16] H. Lee, I.S. Kang, Neural algorithm for solving differential equations, J. Comput. Phys. 91 (1) (1990) 110–131.
[17] L. Wang, J. Mendel, Structured trainable networks for matrix algebra, in: 1990 IJCNN International Joint Conference on Neural Networks, IEEE, 1990,

pp. 125–132.
[18] D. Gobovic, M.E. Zaghloul, Analog cellular neural network with application to partial differential equations with variable mesh-size, in: Proceedings of

IEEE International Symposium on Circuits and Systems-ISCAS’94, vol. 6, IEEE, 1994, pp. 359–362.
[19] R. Yentis, M. Zaghloul, Vlsi implementation of locally connected neural network for solving partial differential equations, IEEE Trans. Circuits Syst. I,

Fundam. Theory Appl. 43 (8) (1996) 687–690.
[20] A.J. Meade Jr, A.A. Fernandez, The numerical solution of linear ordinary differential equations by feedforward neural networks, Math. Comput. Model.

19 (12) (1994) 1–25.
[21] A.J. Meade Jr, A.A. Fernandez, Solution of nonlinear ordinary differential equations by feedforward neural networks, Math. Comput. Model. 20 (9)

(1994) 19–44.
[22] J. Tompson, K. Schlachter, P. Sprechmann, K. Perlin, Accelerating Eulerian fluid simulation with convolutional networks, in: Proceedings of the 34th

International Conference on Machine Learning-Volume 70, JMLR. org, 2017, pp. 3424–3433.
[23] Y. Suzuki, Neural network-based discretization of nonlinear differential equations, Neural Comput. Appl. (2017) 1–16.
[24] J. Berg, K. Nyström, A unified deep artificial neural network approach to partial differential equations in complex geometries, Neurocomputing 317

(2018) 28–41.
[25] M. Magill, F. Qureshi, H. de Haan, Neural networks trained to solve differential equations learn general representations, in: Advances in Neural Infor-

mation Processing Systems, 2018, pp. 4071–4081.
[26] M. Dissanayake, N. Phan-Thien, Neural-network-based approximations for solving partial differential equations, Commun. Numer. Methods Eng. 10 (3)

(1994) 195–201.
[27] C. Anitescu, E. Atroshchenko, N. Alajlan, T. Rabczuk, Artificial neural network methods for the solution of second order boundary value problems,

Comput. Mater. Continua 59 (1) (2019) 345–359.
[28] Y. Yang, P. Perdikaris, Adversarial uncertainty quantification in physics-informed neural networks, J. Comput. Phys. 394 (2019) 136–152.
[29] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, et al., Tensorflow: a system for large-scale machine

learning, in: 12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16), 2016, pp. 265–283.
[30] J. Crank, P. Nicolson, A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type, Adv. Comput.

Math. 6 (1) (1996) 207–226.
[31] J. Duchi, E. Hazan, Y. Singer, Adaptive subgradient methods for online learning and stochastic optimization, J. Mach. Learn. Res. 12 (Jul. 2011)

2121–2159.
[32] K. Xu, B. Shi, S. Yin, Deep learning for partial differential equations, 2018.

http://refhub.elsevier.com/S0021-9991(20)30183-2/bibEB5A0314748CDC048DFDF99E350977D9s1
http://refhub.elsevier.com/S0021-9991(20)30183-2/bibEB5A0314748CDC048DFDF99E350977D9s1
http://refhub.elsevier.com/S0021-9991(20)30183-2/bib070ECC91B05CEA615CBE482A2B0DA495s1
http://refhub.elsevier.com/S0021-9991(20)30183-2/bib6AF17A54F7E97938987A70BD150281B6s1
http://refhub.elsevier.com/S0021-9991(20)30183-2/bib6AF17A54F7E97938987A70BD150281B6s1
http://refhub.elsevier.com/S0021-9991(20)30183-2/bib67F4470D38CD48C122E6F9FB6BD2BE2Bs1
http://refhub.elsevier.com/S0021-9991(20)30183-2/bib67F4470D38CD48C122E6F9FB6BD2BE2Bs1
http://refhub.elsevier.com/S0021-9991(20)30183-2/bib8B90E81BB28AC40F01D08933FA24746Es1
http://refhub.elsevier.com/S0021-9991(20)30183-2/bib97B6629317487C8F865355737E7D378Cs1
http://refhub.elsevier.com/S0021-9991(20)30183-2/bibF775B0F24A6D28F8D6E86CE44A6BB2F8s1
http://refhub.elsevier.com/S0021-9991(20)30183-2/bib39450FC5F9BF6B7AF0A43D51CE56099As1
http://refhub.elsevier.com/S0021-9991(20)30183-2/bibF2E15054BE3F739F185121C58C07305Es1
http://refhub.elsevier.com/S0021-9991(20)30183-2/bib958248644D0EC514FBF8819218B48160s1
http://refhub.elsevier.com/S0021-9991(20)30183-2/bib958248644D0EC514FBF8819218B48160s1
http://refhub.elsevier.com/S0021-9991(20)30183-2/bib342066CE528DCBE603072CDDCE8F721Es1
http://refhub.elsevier.com/S0021-9991(20)30183-2/bib342066CE528DCBE603072CDDCE8F721Es1
http://refhub.elsevier.com/S0021-9991(20)30183-2/bibD42FDF7605466DD405A590948E09E87Ds1
http://refhub.elsevier.com/S0021-9991(20)30183-2/bibD42FDF7605466DD405A590948E09E87Ds1
http://refhub.elsevier.com/S0021-9991(20)30183-2/bib870ACA31DA4E967AEEF9FEEB0D4A4CE2s1
http://refhub.elsevier.com/S0021-9991(20)30183-2/bib870ACA31DA4E967AEEF9FEEB0D4A4CE2s1
http://refhub.elsevier.com/S0021-9991(20)30183-2/bib98CF4892687A20D70E79F56C4A26EA9As1
http://refhub.elsevier.com/S0021-9991(20)30183-2/bib98CF4892687A20D70E79F56C4A26EA9As1
http://refhub.elsevier.com/S0021-9991(20)30183-2/bib01EB9A9D708D60CAD917FBAB351606DBs1
http://refhub.elsevier.com/S0021-9991(20)30183-2/bib01EB9A9D708D60CAD917FBAB351606DBs1
http://refhub.elsevier.com/S0021-9991(20)30183-2/bibCA1347D577D50710CD2EADF32A791ED1s1
http://refhub.elsevier.com/S0021-9991(20)30183-2/bibB81B07E1ABB63F522FD16E14210BE6B7s1
http://refhub.elsevier.com/S0021-9991(20)30183-2/bibB81B07E1ABB63F522FD16E14210BE6B7s1
http://refhub.elsevier.com/S0021-9991(20)30183-2/bib5189AA26ACB7732649C5448E0223C30Cs1
http://refhub.elsevier.com/S0021-9991(20)30183-2/bib5189AA26ACB7732649C5448E0223C30Cs1
http://refhub.elsevier.com/S0021-9991(20)30183-2/bib6F61703F07A2466167D962A6FB23EBEBs1
http://refhub.elsevier.com/S0021-9991(20)30183-2/bib6F61703F07A2466167D962A6FB23EBEBs1
http://refhub.elsevier.com/S0021-9991(20)30183-2/bib1D27A6054B0DE47F3E704EEB8BDF1DCEs1
http://refhub.elsevier.com/S0021-9991(20)30183-2/bib1D27A6054B0DE47F3E704EEB8BDF1DCEs1
http://refhub.elsevier.com/S0021-9991(20)30183-2/bib2BAC8AAECE53DDD9A1A96B3389B6EDB5s1
http://refhub.elsevier.com/S0021-9991(20)30183-2/bib94AA557B3ED64B441F37A3CC8AA9D13Fs1
http://refhub.elsevier.com/S0021-9991(20)30183-2/bib94AA557B3ED64B441F37A3CC8AA9D13Fs1
http://refhub.elsevier.com/S0021-9991(20)30183-2/bib2E645A9CD895A29D442B689E9B9A783Cs1
http://refhub.elsevier.com/S0021-9991(20)30183-2/bib2E645A9CD895A29D442B689E9B9A783Cs1
http://refhub.elsevier.com/S0021-9991(20)30183-2/bibEBB06589CCF65E8A268F59FFC834F0B5s1
http://refhub.elsevier.com/S0021-9991(20)30183-2/bibEBB06589CCF65E8A268F59FFC834F0B5s1
http://refhub.elsevier.com/S0021-9991(20)30183-2/bib385067769CEA85701255A1F8BFAA4F3Es1

	Weak adversarial networks for high-dimensional partial differential equations
	1 Introduction
	2 Related work
	3 Proposed method
	3.1 PDE and weak formulation
	3.2 Induced operator norm minimization
	3.3 Weak adversarial network for solving PDE
	3.4 Training algorithm for the weak adversarial network
	3.5 Efficiency and stability improvements of WAN
	3.6 Weak adversarial network for PDEs involving time
	3.6.1 Semi-discretization in time
	3.6.2 Solving PDE with space and time variables jointly

	4 Numerical experiments
	4.1 Experiment setup
	4.2 Experimental results
	4.2.1 Weak form versus strong form
	4.2.2 High dimensional smooth problem
	4.2.3 High-dimensional nonlinear elliptic PDEs with Dirichlet boundary condition
	4.2.4 High-dimensional elliptic PDEs with Neumann boundary condition
	4.2.5 Poisson equation on irregular nonconvex domain
	4.2.6 Solving high dimensional parabolic equation involving time
	4.2.7 Stability and scalability

	5 Concluding remarks
	Acknowledgement
	References

