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a b s t r a c t 
The movement of blood flow in arteries can be modeled by a system of conservation laws and has a 
range of applications in medical contexts. In this paper, we present efficient well-balanced discontinu- 
ous Galerkin methods for the one-dimensional blood flow model, which preserve the man-at-eternal- 
rest (zero velocity) and more general living-man (non-zero velocity) equilibria. Recovery of well-balanced 
states, decomposition of the numerical solutions into the equilibrium and fluctuation parts, and appropri- 
ate source term and numerical flux approximations are the key ideas in designing well-balanced meth- 
ods. Numerical examples are presented to verify the well-balanced property, high order accuracy, good 
resolution for both smooth and discontinuous solutions, and the ability to capture nearly equilibrium so- 
lutions well. We also test the proposed methods on nearly equilibrium flows with various Shapiro num- 
bers. Man-at-eternal-rest well-balanced methods work well for problems with low Shapiro number, but 
generate spurious flows when Shapiro number gets larger, while the living-man well-balanced methods 
perform well for all ranges of Shapiro number. 

© 2020 Elsevier Ltd. All rights reserved. 
1. Introduction 

Blood flow models have been extensively used to mathemati- 
cally understand and numerically simulate the human cardiovascu- 
lar system. In 1775, Euler [9] derived a one-dimensional model of 
the human arterial system from the conservation of mass and mo- 
mentum of the flow. Without the understanding of the wave-like 
nature of the flow, he noticed that the problem was too difficult to 
solve. Young [40] was the first to identify blood flow with wave- 
like behavior by finding analogous behavior between arterial blood 
flow wave speed and Newton’s sound speed in air theories. Blood 
movement in arteries have flow with periodic variations known 
as pulsatile flow, which has been understood and explained by 
Lighthill [18] and Pedley [24] . Nowadays, three-dimensional math- 
ematical models for the blood flow in arteries already exist, but 
the simpler one-dimensional models with averaged quantities are 
still of great importance [12,29,30] . The low computational cost of 
one-dimensional models as compared to higher dimensional mod- 
els allows for one to study the wave effects within isolated seg- 
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ments of an artery or within the systemic arterial system (i.e. in 
the aorta and systemic arteries) [23,25,26,28] . Another usage of 
one-dimensional models is the ability to study the effects of ar- 
terial modifications, such as placements of stents and prostheses, 
on pulse waves [5,12] . Lastly, one-dimensional models can also 
be easily coupled with lumped parameter models [27] and three- 
dimensional fluid-structure models [10,11] . A systematic compar- 
ison of computational hemodynamics in arteries between one- 
dimensional and three-dimensional models with deformable vessel 
walls was carried out in [32] , where they observed good agreement 
between the two models, especially during the diastolic phase of 
the cycle. 

The one-dimensional partial differential equation (PDE) model 
for the blood flow through arteries [12,20,28] takes the form, 
⎧ 
⎨ 
⎩ 
A t + Q x = 0 , 
Q t + (α

Q 2 
A 

)

x + A 
ρ
p x = 0 , (1.1) 

where A (x, t) = πR 2 (x, t) is the cross-sectional area with R ( x, 
t ) > 0 being the radius. The variable Q(x, t) = A (x, t) u (x, t) is the 
discharge, u ( x, t ) denotes the flow velocity, and the constant ρ is 
the blood density. The parameter α is the momentum-flux correc- 
tion coefficient that depends on the assumed velocity profile, and 
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Fig. 1. Diagram of the one-dimensional blood flow model with the cross-sectional 
radius at rest ( R 0 ), cross-sectional radius ( R ), and velocity ( u ). 
in this paper, we take α = 1 , which means a blunt velocity profile. 
The source terms representing the viscous resistance of the flow 
and gravitational effect could be added to the system. We refer to 
[13] for the full description of this model. 

To close the system, one needs an additional equation to link 
the pressure with the displacement of the vessel. A simple law de- 
scribing the elastic behavior of the arterial wall is given by 
p = p ext + K(R − R 0 ) , or equivalently, 
p = p ext + K √ 

π

(√ 
A − √ 

A 0 ), (1.2) 
where p ext stands for the external pressure (assumed to be con- 
stant), the constant K represents arterial stiffness, and A 0 (x ) = 
πR 2 0 (x ) is the cross-section at rest (when u = 0 ) with R 0 ( x ) be- 
ing its radius. Other complex nonlinear relationship could be in- 
troduced as well. With the simple elastic law (1.2) , the one- 
dimensional model (1.1) for the blood flow through arteries can be 
rewritten in the form of hyperbolic balance laws 
⎧ 
⎪ ⎨ 
⎪ ⎩ 
A t + Q x = 0 , 
Q t + (Q 2 

A + K 
3 ρ√ 

π
A 3 2 )

x = KA 
2 ρ√ 

π
√ 
A 0 (A 0 ) x , 

(1.3) 
which will be studied in this paper. A stent or other physical varia- 
tions may cause a non-constant cross-sectional at rest A 0 ( x ), intro- 
ducing a non-zero source term. A diagram of the one-dimensional 
blood flow model with the cross-sectional radius at rest ( R 0 ), cross- 
sectional radius ( R ), and velocity ( u ) is presented in Fig. 1 . For sim- 
plicity, we denote β = K 

ρ
√ 

π
in the rest of the paper. 

The PDE model (1.3) for the blood flow through arteries can be 
written in the convenient hyperbolic balance laws notation 
∂ t U + ∂ x f (U) = S(U, A 0 ) , 
where 
U = (A 

Q 
)
, f (U) = ( Q 

Q 2 
A + β3 A 3 2 

)
, S(U, A 0 ) = 

( 
0 

βA 
2 √ 

A 0 (A 0 ) x 
) 
, 

are the conservative variables, the flux, and the source term, re- 
spectively. The Jacobian matrix J (U) is given by 
J ( U ) = 

⎡ 
⎣ 0 1 
c 2 − (

Q 
A 

)2 2 Q 
A 

⎤ 
⎦ , 

with c = √ 
β

√ 
A 

2 . The eigenvalues of the Jacobian matrix are Q A ± c, 
which are real-valued and distinct [19] . This implies that the sys- 
tem is hyperbolic. 

The system (1.3) representing the blood flow through arteries is 
similar to the shallow water equations (SWEs) model. This model 
is widely used for modeling rivers, river networks, lake flows, tides, 
and tsunamis. The SWEs model and the blood flow model both 
have two equations representing mass and momentum conserva- 
tion. They belong to the family of hyperbolic balance laws, and 

such equations often admit non-trivial steady state solutions. These 
equilibria involve the perfect cancellation of the source term and 
the flux gradients in the PDE level, which may not be satisfied nu- 
merically due to different numerical approximations to these two 
terms. As a result, standard numerical methods may not be able to 
maintain the steady state nor capture the nearly equilibrium flow 
(small perturbation of the equilibrium state) well, unless a much 
refined mesh is used in the simulation. To resolve this issue, well- 
balanced methods [2] are introduced to exactly preserve the steady 
state solutions at the discrete level. They are often found to be effi- 
cient in capturing nearly equilibrium flow on a coarse mesh. There 
have been extensive studies on designing well-balanced methods 
for the SWEs over non-flat bottom topography [1,15,38] and Euler 
equations under gravitational fields [7,37] . 

The one-dimensional blood model through arteries (1.3) admits 
non-trivial steady state solutions. By definition, the steady state 
solutions appear when the conservative variables ( A, Q ) do not 
change over time, or equivalently, A t = 0 and Q t = 0 which leads to 
⎧ 
⎪ ⎨ 
⎪ ⎩ 
Q x = 0 , 
(
Q 2 
A + β

3 A 3 2 
)

x = βA 
2 √ 

A 0 (A 0 ) x . 
(1.4) 

A simple steady state occurs when the velocity becomes 0, known 
as the (non-zero pressure) man-at-eternal-rest steady state or 
dead-man equilibrium in the literature 
(
u, √ 

A − √ 
A 0 ) = (0 , constant) . (1.5) 

A special case of this steady state appears when the pressure in 
(1.2) is zero. This implies that A reduces to A 0 , that is, 
(u, A ) = (0 , A 0 ) . (1.6) 
We will refer to this steady state as the zero pressure man-at- 
eternal-rest steady state. The more general case occurs when the 
velocity u does not vanish. By some simple algebra, the general 
equilibrium state, denoted as the living-man equilibrium, can be 
derived as 
(
Q , Q 2 

2 A 2 + β(√ 
A − √ 

A 0 ))
= constant. (1.7) 

One case in which this steady state might occur is in small 
arteries that are extremely constricted by stenosis. In this case, 
there is so much flow resistance that the flow loses pulsatility and 
approaches a steady state with non-zero velocity [14] . 

Various numerical methods have been designed for the one- 
dimensional blood flow model. A recent study [3] provides a sys- 
tematic comparison of six commonly used numerical schemes for 
one-dimensional blood flow modelling. The numerical results are 
compared with theoretical results, as well as three-dimensional 
numerical data in compatible domains, and good agreement was 
observed. Recently, well-balanced methods for the blood flow 
through arteries which are efficient in capturing nearly equilib- 
rium flows have gained more attention. In [8] , Delestre and La- 
gree developed well-balanced first-order and second-order finite 
volume schemes for the blood flow system in elastic tubes with 
the man-at-eternal-rest equilibrium. They also showed the appear- 
ance of spurious flows when a simple, non-well-balanced, numeri- 
cal method is used. Müller et al. [21] constructed high order well- 
balanced Weighted Essentially Non-Oscillatory (WENO) scheme for 
blood flow in elastic vessels with varying mechanical and geo- 
metrical properties. A modified version of the Dumbser–Osher–
Toro Riemann solver was introduced to treat the nonconservative 
term, and they show the resulting methods preserves the man-at- 
eternal-rest equilibrium exactly. The numerical methods are then 
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extended to networks of elastic vessels with satisfying perfor- 
mance. An upwind discretization for the source term to create a 
energy-balanced numerical solver was introduced by Murillo et al. 
[19] . Wang et al. [31] derived high order well-balanced finite dif- 
ference WENO schemes that possess sharp shock transition. The 
main idea was to split the source term into two parts and approx- 
imate them with compatible WENO operators. In [16] , the authors 
extended the hydrostatic construction idea (commonly used in the 
design of well-balanced methods for the SWEs) to develop high or- 
der discontinuous Galerkin (DG) and finite volume WENO scheme 
for the blood flow. Most of these well-balanced methods are de- 
signed to preserve the stationary man-at-eternal-rest steady state. 
As explained in [14] , such steady states may not be that relevant 
for blood flow as they only occur in “dead men”. For the more gen- 
eral living-man equilibrium state (1.7) , well-balanced methods are 
first studied in [20] , where a generalized hydrostatic reconstruction 
technique was used to construct the well-balanced numerical flux. 
In [14] , Ghigo et al. presented a simple second order well-balanced 
method for the one-dimensional blood flow in large arteries, with 
two well-balanced hydrostatic reconstruction techniques designed 
to preserve the general steady state solutions. Numerically, the 
proposed methods outperform the well-balanced methods for the 
man-at-eternal-rest steady states based on the original hydrostatic 
reconstruction technique. 

The work in this paper aims to develop high order well- 
balanced discontinuous Galerkin methods for both the man-at- 
eternal-rest (1.5), (1.6) and living-man (1.7) steady states of the 
one-dimensional blood flow model. High order accurate numeri- 
cal methods are developed to provide accurate simulation on a 
relatively coarse mesh. DG methods, which combine the flexibil- 
ity of the finite element method and stability of the finite volume 
method, have gained increased attention recently. Another reason 
we choose DG methods in this study is due to their flexibility to 
treat the junctions for network problems, as pointed out in [4,6] , 
which would be important in the simulation of the human car- 
diovascular system. Specific advantages of the DG scheme include 
straightforward implementation of junction coupling conditions 
due to compactness and preservation of high order accuracy. Other 
high order methods may require stencils (wide or one-sided) that 
negatively impact the accuracy and stability of the scheme [6] . We 
start by presenting two simple approaches to design well-balanced 
methods for the man-at-eternal-rest steady state solution. The first 
approach is based on the decomposition of the numerical solution 
and the hydrostatic reconstruction technique, while the second one 
is based on the well-balanced technique in [34] to split the source 
term (as done in [31] ). We will show the link of these two ap- 
proaches, although they are derived based on different motivations. 
The main component of this paper is on how to design efficient 
well-balanced DG methods for the general living-man steady state. 
Special attention is paid to the projection operator to define the 
numerical initial condition (piecewise polynomials) of finite ele- 
ment methods. With a carefully chosen projection, one can recover 
the nonlinear living-man equilibrium states from these numerical 
initial conditions. Next, the numerical solutions are decomposed 
into two parts, one corresponding to the equilibrium component, 
and the other corresponding to the fluctuation. We can show that, 
if the living-man equilibrium is reached, this decomposition is ex- 
act in the sense that the fluctuation part becomes zero. Note that 
the equilibrium component is computed from the numerical solu- 
tion at the current time step, and is not given a priori. With this 
decomposition, the modified solution values at the cell interface 
can be defined, which can recover the exact equilibrium solutions 
when the equilibrium state is reached. The general hydrostatic re- 
construction idea is then adopted to provide the well-balanced nu- 
merical flux. Together with a careful choice of the source term ap- 

proximation, well-balanced DG methods for the general living-man 
equilibrium can be designed. 

The paper is organized as follows. In Section 2 , the nec- 
essary notations are introduced and well-balanced DG methods 
to preserve the man-at-eternal-rest steady state are discussed. 
Section 3 presents the numerical performance of the DG meth- 
ods in Section 2 . The well-balanced DG methods that maintain the 
more general living-man equilibrium state of the blood flow model 
are discussed in Section 4 . In Section 5 , numerical examples are 
given to demonstrate the high-order accuracy, well-balanced prop- 
erty, and good resolution for smooth and discontinuous solution of 
the methods described in Section 4 . Concluding remarks are found 
in Section 6 . 
2. Man-at-eternal-rest well-balanced DG schemes 

We start by presenting well-balanced DG scheme for the sim- 
pler man-at-eternal-rest steady states (1.5), (1.6) . The proposed 
methods will be extended to the general living-man equilibrium 
(1.7) in Section 4 . 
2.1. Notations and discontinuous Galerkin methods 

The computational domain, denoted by I , will be discretized 
into J cells. The point x j , for j = 1 , . . . , J, is the center of the 
cell I j = [ x 

j− 1 
2 , x j+ 1 2 ] . The size of the j th cell is denoted by 

&x j = x 
j+ 1 2 − x 

j− 1 
2 . Furthermore, we let h = max j &x j . We seek an 

approximation U h of the solution U , which belongs to the finite 
dimensional space 
V k h = { v : v | I j ∈ P k (I j ) , j = 1 , . . . , J} , (2.1) 
where P k ( I ) is the space of polynomials in I of degree up to k . The 
cross-sectional area at rest, A 0 , will also be projected into V k 

h , and 
we denote it by ( A 0 ) h . The value of U h may not be continuous at 
the cell interface x 

j+ 1 2 , thus we denote U + 
h, j+ 1 2 = ( 

A + 
h, j+ 1 

2 
Q + 
h, j+ 1 

2 
) 

as the 
limit from the right cell I j+1 and U −

h, j+ 1 2 = ( 
A −
h, j+ 1 

2 
Q −
h, j+ 1 

2 
) 

as the limit 
from the left cell I j . 

The traditional DG scheme, which may not be well-balanced, 
can be written as ∫ 
I j ∂ t U h v dx − ∫ 

I j f (U h ) ∂ x v dx + ˆ f j+ 1 2 v −j+ 1 2 
− ˆ f j− 1 

2 v + j− 1 
2 = ∫ 

I j S(U h , (A 0 ) h ) v dx, (2.2) 
where v ( x ) is a test function from the test space V k 

h , and 
ˆ f j+ 1 2 = F (U −

h, j+ 1 2 , U + 
h, j+ 1 2 

)
. 

Here the function F ( a, b ) is the numerical flux, which takes infor- 
mation from both the left and right side of the cell interface. We 
implement the simple Lax–Friedrichs flux 
F (a, b) = 1 

2 ( f (a ) + f (b) − α(b − a ) ) , (2.3) 
where α = max U h ( Q h A h + √ 

β
√ 

A h 
2 ) is derived from determining the 

eigenvalues of the Jacobian matrix of f ( U ). The maximum in the 
calculation of α can be taken either over the entire computational 
domain or locally. 

The scheme (2.2) is a semi-discrete method. For the tempo- 
ral discretization, the high order total variation diminishing (TVD) 
Runge-Kutta time discretization can be used. Throughout this pa- 
per the third order TVD Runge-Kutta method, 
U (1) 
h = U n h + &tF(U n h ) , 
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U (2) 
h = 3 

4 U n h + 1 
4 (U (1) 

h + &tF (U (1) 
h ))

, 
U n +1 
h = 1 

3 U n h + 2 
3 (U (2) 

h + &tF (U (2) 
h ))

. (2.4) 
with spatial operator F defined as the terms in (2.2) except the 
one containing the time derivative, is used. This completes the de- 
scription of a fully discrete high order Runge-Kutta discontinuous 
Galerkin (RKDG) method. 

Our goal is to design well-balanced DG methods which can pre- 
serve the man-at-eternal-rest steady states (1.5) and (1.6) . Many 
different approaches to design well-balanced methods have been 
studied in the literature, mostly for the shallow water equations 
with non-flat bottom topography. The key idea of well-balanced 
methods in this paper is to decompose the numerical solution at 
each time step into the equilibrium part and the fluctuation part, 
which has also been studied in [33] . We carefully choose the de- 
composition so that, if the steady state is reached, the equilibrium 
part recovers the steady state perfectly. Then by approximating the 
contribution of the equilibrium part and the fluctuation part in 
the source term in a different way, one can achieve well-balanced 
property. The details are given below. We would like to comment 
that this approach is somehow similar to that of solving the new 
PDE with the unknown being the perturbation to the equilibrium 
state. The main difference is that our approach does not assume 
the explicit knowledge of the equilibrium state a priori, and we re- 
cover that equilibrium part (more specifically, the constant values 
in (1.7) ) numerically. 

In the framework of DG methods, all of the numerical solutions 
(including U h and ( A 0 ) h ) are discontinuous at the cell interfaces, 
even at the steady state. To address this, we follow the idea of hy- 
drostatic reconstruction, and present our well-balanced numerical 
scheme in the form of ∫ 
I j ∂ t U n h v dx − ∫ 

I j f (U n h ) ∂ x v dx + ˆ f j+ 1 2 v −j+ 1 2 − ˆ f j− 1 
2 v + j− 1 

2 
= ∫ 

I j S(U n h , (A 0 ) h ) v dx + ( ̂  f j+ 1 2 − ˆ f l 
j+ 1 2 ) v −j+ 1 2 − ( ̂  f j− 1 

2 − ˆ f r 
j− 1 

2 ) v + j− 1 
2 , 

(2.5) 
where ˆ f 

j+ 1 2 − ˆ f l 
j+ 1 2 and ˆ f 

j− 1 
2 − ˆ f r 

j− 1 
2 are high order correction 

terms at the level of O (&x k +1 ) when A 0 is smooth, regardless of 
the smoothness of the solution U h . The design of ˆ f l j+ 1 2 and ˆ f r j− 1 

2 , 
known as the left and right fluxes, are central to this scheme and 
will be discussed in the following subsection. The scheme (2.5) is 
a spatially (k + 1) -th order conservative scheme and is equivalent 
to the more compact formulation 
∫ 
I j ∂ t U n h v dx − ∫ 

I j f (U n h ) ∂ x v dx + ˆ f l 
j+ 1 2 v −j+ 1 2 

− ˆ f r 
j− 1 

2 v + j− 1 
2 = ∫ 

I j S(U n h , (A 0 ) h ) v dx. (2.6) 
A similar form has been described to obtain well-balanced meth- 
ods for the shallow water equations [39] and for the blood flow 
model [16] . 

The focus of the following subsections will be on defining the 
left and right fluxes as well as presenting how the source term is 
evaluated. To illustrate the approaches, we will start with the sim- 
pler zero pressure man-at-eternal-rest case (1.6) in Section 2.2 . The 
non-zero pressure man-at-eternal-rest case (1.5) will be discussed 
in Section 2.3 . 
2.2. The zero pressure man-at-eternal-rest well-balanced scheme 
2.2.1. Well-balanced numerical fluxes 

First, at each time step, we decompose the conservative un- 
known variables U h into the sum of a reference equilibrium state 

U e 
h and a fluctuation part U f 

h . Taking the zero pressure man-at- 
eternal-rest steady state (1.6) in consideration, we can define the 
equilibrium part of the conservative variables in I j by 
U e h, j (x ) = 

( 
A e 
h, j (x ) 

Q e 
h, j (x ) 

) 
= ((A 0 ) h, j (x ) 

0 
)
, (2.7) 

since the equilibrium state is explicitly given. The fluctuation part 
U f 
h can be determined by the decomposition of the summation 

U h = U e h + U f 
h , (2.8) 

which leads to 
U f 
h, j (x ) = 

( 
A f 
h, j (x ) 

Q f 
h, j (x ) 

) 
= (A h, j (x ) − (A 0 ) h, j (x ) 

Q h, j (x ) 
)
. (2.9) 

When the solution is at a steady state, one can observe that the 
equilibrium parts U e 

h are equivalent to U h , hence U f 
h = 0 . The nota- 

tions of U e 
h and U f 

h are introduced here to be consistent with those 
in the living-man well-balanced methods in Section 4 , and are not 
necessary for this simpler man-at-eternal-rest steady state prob- 
lem. 

The idea of hydrostatic reconstruction is used for computing the 
numerical fluxes. It was first introduced by Audusse in [1] . At time 
step t n , the cell interface values U ±

h, j+ 1 2 are computed first. We con- 
struct the cell interface value of A 0 as 
(A 0 ) ∗h, j+ 1 2 = max ((A 0 ) + h, j+ 1 2 , (A 0 ) −h, j+ 1 2 

)
, (2.10) 

and use it to evaluate the modified cell interface values of A h 
A ∗, −
h, j+ 1 2 = max ((A 0 ) ∗h, j+ 1 2 + A f, −

h, j+ 1 2 , 0 
)

= max (A −
h, j+ 1 2 − (A 0 ) −h, j+ 1 2 + (A 0 ) ∗h, j+ 1 2 , 0 

)
, 

A ∗, + 
h, j+ 1 2 = max ((A 0 ) ∗h, j+ 1 2 + A f, + 

h, j+ 1 2 , 0 
)

= max (A + 
h, j+ 1 2 − (A 0 ) + h, j+ 1 2 + (A 0 ) ∗h, j+ 1 2 , 0 

)
. (2.11) 

The new cell boundary values for U are then defined as 
U ∗, ±
h, j+ 1 2 = 

( 
A ∗, ±
h, j+ 1 2 

Q ±
h, j+ 1 2 

) 
. (2.12) 

Lastly, the left and right fluxes are determined in the following 
manner 
ˆ f l 
j+ 1 2 = F (U ∗, −

h, j+ 1 2 , U ∗, + 
h, j+ 1 2 

)
+ ( 0 

β
3 (A −h, j+ 1 2 ) 3 2 − β

3 (A ∗, −h, j+ 1 2 ) 3 2 
)
, 

ˆ f r 
j− 1 

2 = F (U ∗, −
h, j− 1 

2 , U ∗, + 
h, j− 1 

2 
)
+ ( 0 

β
3 (A + h, j− 1 

2 ) 3 2 − β
3 (A ∗, + h, j− 1 

2 ) 3 2 
)
. (2.13) 

The choice of U ∗, ±
h, j+ 1 2 was defined in the way such that they are 

the same at the cell interfaces when steady state is reached, which 
is desirable for achieving the well-balanced property. Notice that 
at the steady state, the left and right fluxes simplify to ˆ f l 

j+ 1 2 = 
f (U −

h, j+ 1 2 ) and ˆ f r 
j− 1 

2 = f (U + 
h, j− 1 

2 ) as a result of the numerical flux 
F being consistent. 
2.2.2. Source term approximation 

In an effort to balance the source term with the numerical 
fluxes, an approximation of the source term will be discussed in 
this section. The source term S(U, A 0 ) = βA 

2 √ 
A 0 (A 0 ) x = βA ( √ 

A 0 ) x is 
linear with respect to the variable A . As a result of this linearity 
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and the decomposition of U h in (2.8) , the source term can be de- 
composed as 
∫ 

S ( U h , ( A 0 ) h ) v dx = ∫ S (U e h , ( A 0 ) h )v dx + ∫ S (U f 
h , ( A 0 ) h )v dx. 

(2.14) 
The second term on the right hand side can be directly computed 
by a quadrature rule. On the other hand, since the function U e 

h (x ) 
is the equilibrium state, we recall the following relation 
∫ 
I j S 

(
U e h , ( A 0 ) h )v dx = − ∫ 

I j f 
(
U e h )v x dx + f (U e, −

h, j+ 1 2 
)
v −
j+ 1 2 

− f (U e, + 
h, j− 1 

2 
)
v + 
j− 1 

2 , (2.15) 
holds. When a quadrature rule is used for numerical integra- 
tion, this equality holds approximately, up to the accuracy of the 
quadrature rule. For the purpose of well-balancedness, we cannot 
use (2.14) with a quadrature rule to approximate the source term, 
instead, the approximation for the source term will be evaluated 
by 
∫ 
I j S ( U h , ( A 0 ) h ) v dx = − ∫ 

I j f 
(
U e h )v x dx + f (U e, −

h, j+ 1 2 
)
v −
j+ 1 2 

− f (U e, + 
h, j− 1 

2 
)
v + 
j− 1 

2 + ∫ 
I j S 

(
U f 
h , (A 0 ) h )v dx. 

(2.16) 
Taking the choice of U e 

h in (2.7) , the decomposition of the 
source term (2.14) becomes 
∫ 

βA h ( √ 
(A 0 ) h ) x v dx = ∫ βA 0 ( √ 

(A 0 ) h ) x v dx 
+ ∫ β(A h − (A 0 ) h )( √ 

(A 0 ) h ) x v dx, 
(2.17) 

and the approximation for the source term in (2.16) reduces to 
∫ 
I j βA h ( √ 

A 0 ) x v dx = − ∫ 
I j β3 ( (A 0 ) h ) 3 2 v x dx + β

3 
(
(A 0 ) −h, j+ 1 2 

) 3 
2 
v −
j+ 1 2 

−β
3 

(
(A 0 ) + h, j− 1 

2 
) 3 

2 
v + 
j− 1 

2 
+ ∫ 

I j (A h − (A 0 ) h )( √ 
(A 0 ) h ) x v dx. (2.18) 

Remark 2.1. The source term used in this paper is due to only the 
cross-sectional area at rest. The decomposition (2.14) will not hold 
if the source term also included a friction term or another term 
that is not linear with respect to the conservative variables. How- 
ever, one could consider a similar decomposition for the source 
term as follows ∫ 

S ( U h , ( A 0 ) h ) v dx = ∫ S (U e h , ( A 0 ) h )v dx 
+ ∫ (

S ( U h , ( A 0 ) h ) − S (U e h , ( A 0 ) h ))v dx. 
(2.19) 

The first term on the right hand side, ∫ S (U e 
h , ( A 0 ) h )v dx, can be 

approximated by (2.15) . The second term on the right hand side 
can be computed using numerical integration with an appropri- 
ate quadrature scheme. It is interesting to note that S ( U h , ( A 0 ) h ) −
S (U e 

h , ( A 0 ) h ) = S (U h −U e 
h , ( A 0 ) h ) = S (U f 

h , ( A 0 ) h ) when the source 
term is linear, and this leads to the original source decomposition 
formulation. 
Remark 2.2. In the well-balanced methods designed for the SWEs 
in [35] , a straightforward numerical integration of the source term 

by a quadrature rule accurate for polynomial of degree 3 k − 1 is 
sufficient. This is due to the fact that the Eq. (2.15) holds exactly 
with sufficiently accurate quadrature, therefore, Eqs. (2.14) and 
(2.16) are equivalent. For the blood flow with a source term of 
the form S(U h , (A 0 ) h ) = βA h 

2 √ 
(A 0 ) h ( (A 0 ) h ) x , a direct numerical inte- 

gral with quadrature rules does not yield a well-balanced method, 
because √ 

(A 0 ) h is no longer a polynomial, hence any numerical 
integration may not be exact. For the steady state problem, the nu- 
merical error would be dominated by the integration error, which 
becomes non-negligible, especially on a coarse mesh. 

We conclude this subsection by showing the scheme indeed 
satisfies the well-balanced property. 
Proposition 1. The DG scheme (2.6) for the blood flow system 
(1.3) with the zero pressure man-at-eternal-rest steady state (1.6) is 
well-balanced when paired with the numerical fluxes (2.13) and the 
source term decomposition (2.16) . 
Proof. At the steady state, we have U f 

h = 0 and U e 
h = U h . The ap- 

proximation (2.16) to the source term becomes 
∫ 
I j S ( U h , ( A 0 ) h ) v dx 
= − ∫ 

I j f 
(
U e h )v x dx + f (U e, −

h, j+ 1 2 
)
v −
j+ 1 2 − f (U e, + 

h, j− 1 
2 
)
v + 
j− 1 

2 
= − ∫ 

I j f ( U h ) v x dx + f (U −
h, j+ 1 2 

)
v −
j+ 1 2 − f (U + 

h, j− 1 
2 
)
v + 
j− 1 

2 . (2.20) 
Additionally, the left and right fluxes (2.13) simplify to ˆ f l 

j+ 1 2 = 
f (U −

h, j+ 1 2 
)
and ˆ f r 

j− 1 
2 = f (U + 

h, j− 1 
2 
)
at the steady state. Therefore, we 

have shown the fluxes and source term balance, which implies the 
scheme is indeed well-balanced. !

2.2.3. An alternative zero pressure man-at-eternal-rest well-balanced 
DG scheme 

In this subsection, we present an alternative well-balanced DG 
method for the zero pressure man-at-eternal-rest steady state (1.6) . 
This follows the idea of decomposing the source term, proposed 
first in [34] for the shallow water equation, and later in [17,36] for 
a general class of hyperbolic balance laws. The same idea has been 
studied in [31] to develop well-balanced finite difference WENO 
scheme for the blood flow model. 

The key idea is to introduce the following source term decom- 
position, 
βA 

2 √ 
A 0 (A 0 ) x = β(A − A 0 ) (√ 

A 0 )x + (β
3 A 3 2 0 

)
x , (2.21) 

and we refer to [36] for the motivation of such decomposition. 
Note that this coincides with the source term approximation (2.18) , 
although they arise from different approaches. We can then move 
the term (β

3 A 3 2 0 )x to the left side and combine it with the flux to 
achieve the updated equation of the form 
⎧ 
⎨ 
⎩ 
A t + Q x = 0 , 
Q t + (Q 2 

A + β
3 A 3 2 − β

3 A 3 2 0 
)

x = β(A − A 0 ) (√ 
A 0 )

x , (2.22) 
It is clear that at the zero pressure man-at-eternal-rest steady state 
(Q, A ) = (0 , A 0 ) , the system of PDEs (2.22) has both zero flux and 
source term, hence the traditional DG scheme (2.2) is automatically 
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well-balanced when the Lax–Friedrichs fluxes defined in (2.3) is 
updated to be 
F (U −

h , U + 
h ) 

= 1 
2 
(
f (U −

h ) + f (U + 
h ) − α

((
A + 
h − (A 0 ) + h 

Q + 
h 

)
−

(
A −
h − (A 0 ) −h 

Q −
h 

)))
, 

(2.23) 
so that the added numerical diffusion term disappears at the 
steady state. Note that f in (2.23) now corresponds to the flux in 
the updated form (2.22) . The proof of the well-balanced property 
is rather straightforward and is not included here. 

This is a simple approach to achieve well-balanced property, 
and there is no need to introduce the hydrostatic reconstruction 
idea when constructing the numerical fluxes. However, this cannot 
be extended to the more complicated living-man equilibrium case. 
2.3. The non-zero pressure man-at-eternal-rest well-balanced scheme 

In this section, we present well-balanced DG methods for the 
man-at-eternal-rest steady state with non-zero pressure (1.5) . 

We start with the description of well-balanced numerical 
fluxes. For the non-zero pressure man-at-eternal-rest steady state 
(1.5) , the choice of the decomposition into U e 

h and U f 
h , as well as 

the definition of A ∗, ±
h, j+ 1 2 must be modified from those presented in 

the previous subsection. The decomposed variables will be com- 
puted based on the steady state solution (1.5) , therefore we denote 
V = ( Q 

E ) = ( Q √ 
A −√ 

A 0 ) to be the equilibrium variables. The reference 
equilibrium values ˆ V in each cell I j are defined by the following, 
ˆ V j = ( ˆ Q j 

ˆ E j 
)

= 
⎛ 
⎜ ⎝ Q h (x −j+ 1 2 

)

(√ 
A h, j − √ 

( A 0 ) h, j )(x −j+ 1 2 
)

⎞ 
⎟ ⎠ , (2.24) 

which will be constant for all j if the system is at a steady state. It 
follows that the equilibrium part U e 

h, j can be defined using ˆ V j and 
the true value of A 0 ( x ), 
U e h, j (x ) = (A e 

h, j (x ) 
Q e 
h, j (x ) 

)
= 

⎛ 
⎝ P 

((
ˆ E j + √ 

A 0 (x ) )2 )
ˆ Q j 

⎞ 
⎠ , (2.25) 

where the operator P can be taken as any projection into the 
piecewise polynomial space V k 

h as long as it is the same projec- 
tion that was used to evaluate the numerical initial condition. The 
fluctuation part, U f 

h, j , is again defined as in (2.8) . With this, the cell 
interface value of A 0 takes the form of 
(A 0 ) ∗h, j+ 1 2 = max ((A 0 ) + h, j+ 1 2 , (A 0 ) −h, j+ 1 2 

)
, (2.26) 

and the modified cell interface values of A h become 
A ∗, −
h, j+ 1 2 = max 

( (
ˆ E j + √ 

(A 0 ) ∗h, j+ 1 2 
)2 

+ A f, −
h, j+ 1 2 , 0 

) 
, 

A ∗, + 
h, j+ 1 2 = max 

( (
ˆ E j+1 + √ 

(A 0 ) ∗h, j+ 1 2 
)2 

+ A f, + 
h, j+ 1 2 , 0 

) 
. (2.27) 

The definition of U ∗, ±
h, j+ 1 2 , as well as the left and right fluxes ˆ f l 

j+ 1 2 , 
ˆ f r 
j− 1 

2 , are defined in the same way, as in (2.13) . These well- 
balanced numerical fluxes are consistent with those for the living- 
man equilibrium which will be presented in Section 4 . 

Alternatively, one may also follow the approach in [16] by let- 
ting 
√ 
(A 0 ) ∗h, j+ 1 2 = max (√ 

(A 0 ) + h, j+ 1 2 , √ 
(A 0 ) −h, j+ 1 2 

)
, (2.28) 

and then redefining A h at the cell interfaces as 
√ 
A ∗, −
h, j+ 1 2 = max (√ 

A −
h, j+ 1 2 − √ 

(A 0 ) −h, j+ 1 2 + √ 
(A 0 ) ∗h, j+ 1 2 , 0 

)
, 

√ 
A ∗, + 
h, j+ 1 2 = max (√ 

A + 
h, j+ 1 2 − √ 

(A 0 ) + h, j+ 1 2 + √ 
(A 0 ) ∗h, j+ 1 2 , 0 

)
, 
(2.29) 

without involving U e 
h and U f 

h in the definition of the numerical 
fluxes. 

As for the source term approximation, we note that the source 
term decomposition (2.16) still holds. While U e and U f are de- 
fined differently in this subsection, the decomposition approach 
presented in Subsection 2.2.2 can still be applied. Note that the 
direct numerical integration may not give well-balanced meth- 
ods, as explained in Remark 2.2 . This completes our description of 
well-balanced methods for the non-zero pressure man-at-eternal- 
rest steady state (1.5) . One can show that the living-man well- 
balanced method in Section 4 can reduce to this man-at-eternal- 
rest well-balanced method. Furthermore, one can show (2.29) and 
(2.27) each simplify to (2.11) when A = A 0 . 
Proposition 2. The DG scheme (2.6) for the blood flow system 
(1.3) with the non-zero pressure man-at-eternal-rest steady state 
(1.5) is well-balanced when paired with (2.29) or (2.27) , the numeri- 
cal fluxes (2.13) , and the source term decomposition (2.16) . 

The proof is similar to the zero-pressure case and is thus omit- 
ted here. 
Remark 2.3. When the cross-sectional area at rest, A 0 , is con- 
stant, the traditional DG scheme is recovered, i.e., the numerical 
fluxes reduce to standard flux and the source term approxima- 
tion is simply zero. First, it is easy to observe that the source 
term approximation (2.18) reduces to exactly 0, since ( A 0 ) h is 
constant. Second, we will show that the left and right numeri- 
cal fluxes reduce to the original DG fluxes. When A 0 is constant, 
then (A 0 ) ∗h, j+ 1 2 = (A 0 ) + h, j+ 1 2 = (A 0 ) −h, j+ 1 2 , so the calculation of A ∗, ±h 
by definitions (2.11), (2.29) or (2.27) reduces to 
A ∗, ±
h, j+ 1 2 = max (A ±

h, j+ 1 2 , 0 
)
= A ±

h, j+ 1 2 . (2.30) 
More generally, we have that U ∗, ±

h, j+ 1 2 = U ±
h, j+ 1 2 . Therefore, by def- 

inition of the left and right fluxes, we obtain ˆ f l 
j+ 1 2 = ˆ f 

j+ 1 2 and 
ˆ f r 
j− 1 

2 = ˆ f 
j− 1 

2 . 
3. Numerical tests for the man-at-eternal-rest well-balanced 
method 

In this section, we present some numerical examples by testing 
the well-balanced DG scheme designed for the man-at-eternal-rest 
steady state in Section 2 . The third order TVD Runge-Kutta time 
discretization (2.4) is used in conjunction with piecewise quadratic 
polynomials (k = 2) in space, unless otherwise stated. The CFL 
number is taken to be 0.15. 
3.1. Accuracy test 

Our first numerical example tests the accuracy of our man-at- 
eternal-rest well-balanced scheme on a problem with smooth so- 
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Table 1 
L 1 errors and convergence orders of the accuracy test in Section 3.1 , using P 0 , P 1 and P 2 piece- 
wise polynomials and the man-at-eternal-rest well-balanced method. In each case, k + 1 order of 
accuracy is achieved. 

k = 0 k = 1 k = 2 
Variable J L 1 Error Order L 1 Error Order L 1 Error Order 
A 25 6.1718e-01 4.0986e-02 1.7291e-03 

50 4.0692e-01 0.6009 1.0077e-02 2.0241 2.2503e-04 2.9418 
100 2.4564e-01 0.7282 2.5017e-03 2.0093 2.8740e-05 2.9690 
200 1.3642e-01 0.8485 6.2420e-04 2.0028 3.6297e-06 2.9851 
400 7.2062e-02 0.9207 1.5614e-04 1.9992 4.5768e-07 2.9874 

Q 25 2.5275e02 6.2128e00 3.4189e-01 
50 1.4833e02 0.7689 1.5283e00 2.0233 4.1757e-02 3.0334 
100 8.0719e01 0.8779 3.8083e-01 2.0047 5.1194e-03 3.0280 
200 4.2203e01 0.9356 9.5287e-02 1.9989 6.3175e-04 3.0185 
400 2.1582e01 0.9676 2.3935e-02 1.9931 7.8696e-05 3.0050 

Table 2 
Parameters in the initial condition (3.2) for the zero pressure man-at-eternal-rest well-balanced tests. 

˜ R &R K ρ x 1 x 2 x 3 x 4 L 
4 × 10 −3 m 10 −3 m 10 8 Pa 

m 1060 kg 
m 3 10 −2 m 3 . 05 × 10 −2 m 4 . 95 × 10 −2 m 7 × 10 −2 m 0.14 m 

lutions. The initial conditions for x ∈ [0, 10] are 
A (x, 0) = sin (π

5 x 
)
+ 10 , Q(x, 0) = e cos ( π5 x ) , (3.1) 

with the cross-sectional area at rest 
A 0 (x ) = 1 

2 cos 2 
(
π
5 x 

)
+ 5 , 

and K = 10 8 Pa 
m , ρ = 1060 kg 

m 3 . Periodic boundary conditions are 
employed. We compute until time t = 0 . 01 when the solution is 
still smooth. Since there is no explicitly known solution in this 
case, the errors are computed by iteratively comparing results from 
meshes of uniform cell widths h and h /2. Table 1 contains the L 1 
errors and orders of accuracy for P 0 , P 1 and P 2 polynomials. For 
each polynomial degree k , we see that (k + 1) th order accuracy is 
achieved. 
3.2. Tests for the well-balanced property 
3.2.1. A zero pressure man-at-eternal-rest steady state 

In this section, we demonstrate that the proposed DG scheme 
aptly preserves the zero pressure man-at-eternal-rest steady state 
(1.6) with a non-constant cross-sectional area at rest. We consider 
the case of a dead man with an aneurysm, which implies there is 
no blood flow occurring in a section of an artery that has a non- 
constant radius. An aneurysm occurs when the arterial wall weak- 
ens and balloons outwards. The initial conditions for the radius, R , 

are given by 
R (x, 0) = R 0 (x ) 

= 
⎧ 
⎪ ⎪ ⎨ 
⎪ ⎪ ⎩ 

˜ R , if x ∈ [0 , x 1 ] ∪ [ x 4 , L ] , 
˜ R + &R 

2 [sin ( x −x 1 
x 2 −x 1 π − π

2 )+ 1 ], if x ∈ [ x 1 , x 2 ] , 
˜ R + &R, if x ∈ [ x 2 , x 3 ] , 
˜ R + &R 

2 [cos ( x −x 3 
x 4 −x 3 π)

+ 1 ], if x ∈ [ x 3 , x 4 ] , 
(3.2) 

for an artery of length L , with all the remaining parameters found 
in Table 2 . The initial conditions for the cross-sectional area and 
cross-sectional area at rest are thus given by 
A (x, 0) = πR (x, 0) 2 , A 0 (x ) = πR 0 (x ) 2 . (3.3) 

The initial velocity is assumed to be zero, thus Q(x, 0) = 0 . We 
impose transmissive boundary conditions at both endpoints of the 
domain and compute this example until time t = 5 . Since the ini- 
tial condition is the man-at-eternal-rest steady state, the solution 
should stay unchanged. The L 1 and L ∞ errors of the numerical 
solutions are shown in Table 3 and demonstrate that the well- 
balanced property was maintained when using the man-at-eternal- 
rest well-balanced scheme. The errors were computed by com- 
paring the numerical solution to the numerical initial conditions. 
Fig. 2 shows the area of the artery and the velocity at t = 5 with a 
mesh of 200 cells. 

For comparison, we also compute the same test using the tradi- 
tional DG method in which the standard numerical fluxes are used 

Fig. 2. Numerical solutions of the man-at-eternal-rest problem in Section 3.2 , at time t = 5 with quadratic basis functions and mesh of size 200 uniform cells. 
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Table 3 
Table of absolute and relative L 1 and L ∞ errors for the zero pressure man-at-eternal-rest well- 
balanced test representing an aneurysm in Section 3.2 . Errors are given for both the traditional 
DG scheme and the well-balanced scheme. The well-balanced scheme demonstrates the well- 
balanced property, while the traditional DG scheme does not have the well-balanced property. 
Relative errors are included for A since the scale of the problem is so small. However, relative 
errors are not included for Q since the exact value is identically 0. 

Traditional DG Scheme Man-at-Eternal-Rest WB DG Scheme 
Variable Error Type L 1 Error L ∞ Error L 1 Error L ∞ Error 
A Absolute 1.8404e-13 1.7712e-08 2.042e-19 2.4335e-15 

Relative 3.3148e-09 3.1990e-04 3.5744e-15 3.8730e-11 
Q Absolute 1.8404e-13 1.7712e-08 2.042e-19 2.4335e-15 

Table 4 
Parameters in (3.4) for the non-zero pressure man-at-eternal-rest well-balanced 
tests. 

˜ R &R K ρ L x 1 x 2 x 3 x 4 
4 × 10 −3 m 10 −3 m 10 8 Pa 

m 1060 kg 
m 3 0.14 m 9 L 

40 1 L 
4 3 L 

4 31 L 
40 

and the source term is computed with a straightforward numerical 
integration. Fig. 3 and the errors in Table 3 demonstrate that the 
traditional DG scheme does not preserve the steady state exactly 
in the discrete level. 
3.2.2. A non-zero pressure man-at-eternal-rest steady state 

In this subsection, we consider the case of a dead man with 
stenosis. Stenosis occurs when the artery narrows and it leads to 
reduced blood flow from the heart to the rest of the body. Steno- 
sis can be caused by a congenital heart defect, calcium buildup,or 
rheumatic fever which is a result of a strep throat infection. The 
radius at rest, R 0 , for an artery of length L is given by 
R 0 (x ) = 

⎧ 
⎪ ⎪ ⎨ 
⎪ ⎪ ⎩ 

˜ R + &R, if x ∈ [0 , x 1 ] ∪ [ x 4 , L ] , 
˜ R − &R 

2 [sin ( x −x 1 
x 2 −x 1 π − π

2 ) − 1 ], if x ∈ [ x 1 , x 2 ] , 
˜ R , if x ∈ [ x 2 , x 3 ] , 
˜ R − &R 

2 [cos ( x −x 3 
x 4 −x 3 π)

− 1 ], if x ∈ [ x 3 , x 4 ] , 
(3.4) 

where all the parameters are found in Table 4 . 
Then the initial conditions are determined by the equilibrium 

values, that is 
A (x, 0) = (C + √ 

πR 0 (x )) 2 , Q(x, 0) = 0 . (3.5) 
where we set the constant C = 10 −3 . We impose transmissive 
boundary conditions and run the scheme until the final time of 

t = 1 on mesh sizes of 50 and 200 uniform cells. The errors are 
found in Table 5 and demonstrate that the well-balanced property 
is preserved even on the coarse mesh of 50 cells. We also compare 
the results of the traditional DG scheme and non-zero pressure 
man-at-eternal-rest scheme well-balanced DG scheme in Fig. 4 . It 
is clear from the figures that the use of a well-balanced scheme is 
especially important for preserving the non-constant area A . 
3.3. Tests for small perturbations of the man-at-eternal-rest steady 
states 

In this section, we examine multiple tests in which the initial 
conditions of a man-at-eternal-rest steady state are perturbed in 
a small region. The initial perturbation will split into two waves 
moving away from the source in opposite directions. We compare 
the man-at-eternal-rest well-balanced and traditional DG schemes 
to demonstrate the advantage of well-balanced methods in han- 
dling the propagation of these small perturbations. 

Different wave propagation behaviors arise in arteries with con- 
stant and variable cross-sectional areas. We will first discuss the 
expected behaviors before exploring specific examples. Suppose an 
incident pulse is introduced at the left arterial end (with cross- 
sectional area A 1 ) and then travels towards the right (with cross- 
sectional area A 2 ). When the pulse crosses into the region of the 
vessel with cross-sectional area A 2 it generates a transmission 
pulse propagating in the same direction, and also a reflected pulse 
propagating to the left. The speed and wavelength of the reflected 
pulse is the same as the incident pulse because both pulses are 
traveling in the same medium. The amplitude of the reflected pulse 
is smaller and can be either inverted or non-inverted depending 
on the shape of the cross-sectional area. The reflection pulse is in- 
verted when A 1 < A 2 , and non-inverted when A 1 > A 2 . See Fig. 5 
for a visualization of this process. The ratio of the amplitude of 

Fig. 3. The difference between A, Q at the final time t = 5 and the numerical initial conditions, when the traditional DG scheme is used for the man-at-eternal-rest problem 
in Section 3.2 . 
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Fig. 4. Plots of the errors at time t = 1 for the non-zero pressure man-at-eternal-rest problem from Section 3.2.2 . The results using the non-zero pressure man-at-eternal-rest 
well-balanced scheme (top row) are compared with the results when using the traditional DG scheme (bottom row). 

Fig. 5. An initial perturbation pulse splits into a transmission and reflection pulse when it moves from a region of area A 1 to a region of area A 2 . The transmission pulse 
continues in the same direction of the original pulse while the reflection pulse moves in the opposite direction. 
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Table 5 
Table of absolute and relative L 1 and L ∞ errors for non-zero pressure man-at-eternal-rest well-balanced 
test representing stenosis in Section 3.2.2 . Errors are given for the traditional DG scheme and the well- 
balanced scheme for both J = 50 and J = 200 uniform spatial cells. The well-balanced scheme demonstrates 
the well-balanced property, while the traditional DG scheme does not have the well-balanced property. 

Traditional DG Scheme Man-at-Eternal-Rest WB DG Scheme 
J Variable Error Type L 1 Error L ∞ Error L 1 Error L ∞ Error 
50 A Absolute 6.5745e-09 3.2637e-05 6.9075e-17 1.7727e-13 

Relative 2.0676e-07 1.0273e-03 2.1538e-15 5.5236e-12 
Q Absolute 6.9733e-13 7.5473e-08 2.0062e-17 5.8616e-14 

200 A Absolute 2.1580e-10 4.1932e-06 8.1454e-17 8.3574e-13 
Relative 6.7907e-09 1.3198e-04 2.5398e-15 2.6044e-11 

Q Absolute 2.1929e-15 1.3615e-09 2.5451e-17 2.7981e-13 

Table 6 
Parameters for the wave equation problem (3.7) . 
R 0 K ρ x 1 x 2 x 3 L ϵ

4 × 10 −3 m 10 8 Pa 
m 1060 kg 

m 3 2 L 
10 m 4 L 

10 m 6 L 
10 m 0.16 m 5 × 10 −3 

the reflected pulse and the incident pulse, known as the reflection 
coefficient R , can be computed exactly and is given by 
R = A 1 

C 1 − A 2 
C 2 

A 1 
C 1 + A 2 C 2 . (3.6) 

where the Moens–Korteweg coefficients C i corresponding to A 1 and 
A 2 are defined as C i = √ 

K √ 
A i 

2 ρ√ 
π

for i = 1 , 2 . The transmission coeffi- 
cient, T , given by T = 1 + R represents the ratio of the amplitude 
of the transmission pulse to the incident pulse. 

The numerical example in Section 3.3.1 portrays an artery with 
constant cross-sectional area. Therefore, the waves resulting from 
the perturbation will propagate through the domain and after they 
exit the domain, the radii will return to the unperturbed state. On 
the other hand, the examples in Sections 3.3.2 and 3.3.3 represent 
arteries with non-constant cross-sectional area, resulting in the ap- 
pearance of reflection and transmission pulses. 
3.3.1. Wave equation 

We start with the following wave equation example with con- 
stant cross-section at rest, which has been studied in [8] by De- 
lestre et al. It is a small perturbation test, in which an “approxi- 
mate” solution can be found analytically. The initial conditions are 
given by 
A (x, 0) = {π (R 0 ) 2 , if x ∈ [0 , x 2 ] ∪ [ x 3 , L ] , 

π (R 0 ) 2 [1 + ϵ sin (π x −x 2 
x 1 )]2 

, if x ∈ [ x 2 , x 3 ] , 
Q(x, 0) = 0 , (3.7) 
on the computational domain [0, L ]. The cross-section at rest is 
given by A 0 (x ) = πR 0 (x ) 2 . The parameters used in our simulation 
are listed in Table 6 . 

As shown in [8] , when neglecting all the high order terms of ϵ, 
its solution can be expressed as 
⎧ 
⎨ 
⎩ 
R (x, t) = R 0 + ϵ

2 [ φ(x −C 0 t) + φ(x + C 0 t)] , 
u (x, t) = −ϵ

C 0 
R 0 [ −φ(x −C 0 t) + φ(x + C 0 t)] , (3.8) 

where φ(x ) = R 0 sin (π x −x 2 
x 1 ) 1 [ x 2 ,x 3 ] with 1 being the indicator 

function and the constant C 0 is the Moens–Korteweg wave velocity 
C 0 = 

√ 
K √ 

A 0 
2 ρ√ 

π
= √ 

KR 0 
2 ρ ≈ 13 . 73 . (3.9) 

Table 7 
Parameters for (3.10) in the propagation of a pulse to and from an expan- 
sion problems. 

˜ R &R K ρ x 1 x 2 L 
4 × 10 −3 m 10 −3 m 10 8 Pa 

m 1060 kg 
m 3 19 L 

40 m L 
2 m 0.16 m 

We employee transmissive boundary conditions at the end- 
points of the domain. Fig. 6 shows the numerical results at times 
t = 0 . 0 02 , 0 . 0 04 , and 0.006 with a mesh of 200 cells. Comparison 
with the analytical exact solution (3.8) demonstrates that these 
small perturbations are well captured. 
3.3.2. Propagation of a pulse to and from an expansion 

In the examples below, we consider the reflection and the 
transmission of a small wave in an aneurysm, when the cross- 
section at rest is not a constant. Following the setup in [8] , we 
consider the radius of the cross-section at rest given by 
R 0 (x ) = 

⎧ 
⎪ ⎨ 
⎪ ⎩ 

˜ R + &R, if x ∈ [0 , x 1 ] , 
˜ R + &R 

2 [1 + cos ( x −x 1 
x 2 −x 1 π)]

, if x ∈ [ x 1 , x 2 ] , 
˜ R , otherwise , (3.10) 

where the necessary parameters are listed in Table 7 . 
First, we consider a pulse propagating towards an expansion. 

The perturbation is applied to the region of the artery with smaller 
radii and given by the following 
R (x, 0) = 

⎧ 
⎨ 
⎩ R 0 (x ) 

[ 
1 + ϵ sin (100 

20 L π(
x − 65 L 

100 ))] 
, if x ∈ [ 65 L 

100 , 85 L 100 ], 
R 0 (x ) , otherwise . 

(3.11) 
The parameter ϵ = 5 . 0 × 10 −3 and the momentum Q(x, 0) = 0 m 3 

s 
are considered. The boundary conditions are transmissive at the 
endpoints of the domain. The initial state and numerical solutions 
at times t = 0 . 002 and t = 0 . 006 are presented in Fig. 7 . Fig. 8 
demonstrates how the wave propagates as a function of time for 
all time. 

Second, we consider a pulse propagation from an expansion. In 
this case, the perturbation is initiated in the region of the vessel 
with larger area. The perturbed radius now becomes 
R (x, 0) = 

⎧ 
⎨ 
⎩ R 0 (x ) 

[ 
1 + ϵ sin (100 

20 L π(
x − 15 L 

100 ))] 
, if x ∈ [ 15 L 

100 , 35 L 100 ], 
R 0 (x ) , otherwise , 

(3.12) 
where ϵ = 5 . 0 × 10 −3 . As before, the fluid is at rest, Q(x, 0) = 0 m 3 

s , 
and transmissive boundary conditions are imposed at the end- 
points of the domain. In Fig. 9 , we see the initial state and numer- 
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Fig. 6. Solutions of the radius R and velocity u of the wave equation problem at various times with quadratic basis functions and a uniform mesh of 200 cells and the exact 
solutions at the same times. 

Fig. 7. Initial conditions and solution of the propagation of a pulse to an expansion problem at various times with a mesh of 200 uniform cells. The reflection pulse, visible 
at time t = 0 . 006 , is inverted. 

Fig. 8. Propagation of the pulse to an expansion over all time. The plots show the difference between the numerical solution at time t and the initial conditions. A mesh of 
200 uniform cells was used to compute the solution. Around time t = 0 . 003 the left-moving wave meets the expansion and the inverted reflection wave forms. 
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Fig. 9. Initial conditions and solution of the propagation of a pulse from an expansion problem at various times computed with a mesh of 200 uniform cells. The reflection 
pulse, visible at time t = 0 . 006 , is non-inverted. 

Fig. 10. Propagation of the pulse from an expansion over all time. The plots show the difference between the numerical solution at time t and the initial conditions. A mesh 
of 200 uniform cells was used to compute the solution. Around time t = 0 . 003 the right-moving wave meets the expansion and the non-inverted reflection wave forms. 
ical results at times t = 0 . 002 and t = 0 . 006 . Fig. 10 demonstrates 
how the wave propagates as a function of time for all time. 
3.3.3. Perturbation of a non-zero pressure man-at-eternal-rest 
well-balanced problem 

In this subsection, we impose a small perturbation to a non- 
zero pressure man-at-eternal-rest steady state problem represent- 
ing stenosis in a ‘dead man’. We show that the well-balanced 
scheme aptly handles the perturbation. We also compute the same 
test using the traditional DG scheme and compare the results. 

The radius at rest is given by (3.4) and the original initial con- 
ditions are given by (3.5) . We impose a small perturbation at the 
center of the artery to the cross-sectional radii in the following 
manner, 
R pert (x, 0) 

= 
{ 
R 0 (x ) [1 + ϵ sin ( 100 

10 L π(
x − 45 L 

100 ))], if x ∈ [ 45 L 
100 , 55 L 100 ], 

R 0 (x ) , otherwise . 
The initial condition for the perturbed cross-sectional area is then 
defined as A pert (x, 0) = πR pert (x, 0) 2 . The scheme is run until time 

t = 8 × 10 −4 , before the traveling perturbation waves exit the do- 
main. 

We test this problem with ϵ = 10 −3 and ϵ = 10 −4 for two dif- 
ferent sizes of mesh, J = 50 and J = 200 uniform cells. The results 
for the well-balanced DG scheme are presented in Fig. 11 and the 
results for the traditional DG scheme are found in Fig. 12 . The well- 
balanced scheme aptly handles the perturbation for either mesh 
size and for either size perturbation. On the other hand, the tra- 
ditional DG scheme does not work as well. In the case where 
J = 50 uniform cells, then the undesirable behavior arises for ei- 
ther perturbation size. In the case where J = 200 uniform cells, 
the scheme has similar results for the perturbation with smaller 
amplitude (i.e. ϵ = 10 −4 ), however the scheme improves when the 
amplitude of the perturbation is larger (i.e. ϵ = 10 −3 ). However, in 
either case, the scheme is still out-performed by the well-balanced 
method. 
4. Living-man well-balanced DG scheme 

In this section, well-balanced methods for maintaining the gen- 
eral living-man steady state (1.7) will be described. Due to the 
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Fig. 11. Perturbation of non-zero pressure man-at-eternal-rest well-balanced problem in Section 3.3.3 for all time up until t = 0 . 008 using the non-zero pressure well-balanced 
DG scheme . The scheme performs well for both mesh sizes and for both perturbation sizes. 
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Fig. 12. Perturbation of non-zero pressure man-at-eternal-rest well-balanced problem in Section 3.3.3 for all time up until t = 0 . 008 using the traditional DG scheme . The 
scheme performs poorly on the coarse mesh of 50 uniform cells for either size perturbation. For the refined mesh of 200 uniform cells, the scheme improves slightly for the 
larger perturbation, but still does not perform as well as the well-balanced scheme. 
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Fig. 13. Radii at rest for the artery with an aneurysm defined by (5.6) . 
complexity of the steady state, extra attention is given to the pro- 
jection of the initial conditions, as well as the source term and nu- 
merical flux calculations. 
4.1. Numerical initial conditions 

In general, the L 2 projection of the true initial condition U 0 
is taken to be the numerical initial condition U 0 

h for modal DG 
schemes, as was done for the man-at-eternal-rest well-balanced 
DG scheme in Section 2 . However, the projected polynomial U 0 

h 
may not be in the equilibrium state. Thus the cell boundary values 
U ±
h, j+ 1 2 , as well as the function values at the quadrature points used 

to evaluate the volume integral, may also not be in equilibrium. 
This contributes to the challenges of how to recover the equilib- 
rium information from these polynomials. We would like to com- 
ment that this difficulty disappears for the finite difference meth- 
ods, because the points values of the initial condition in any fi- 
nite difference methods, by design, automatically satisfy the equi- 
librium. 

The same difficulty also appears in high order well-balanced fi- 
nite volume methods, whose numerical initial condition is simply 
the cell average. In [22] where well-balanced methods were de- 
signed for the shallow water equations with moving-water equilib- 
rium state, this difficulty was identified. The issue was addressed 
in that paper by defining the well-balanced states as the solu- 
tions of nonlinear equations and then solving them using Newton’s 
method. The same idea was later extended to construct numeri- 
cal initial conditions of well-balanced DG methods in [33] . A sim- 
pler approach, without involving the nonlinear equations and the 
Newton’s method, is proposed in [17] , by introducing a special pro- 
jection of the initial condition to take advantage of the flexibility 
of the DG method. A further modification of the projection from 
[17] is proposed in this paper to produce the numerical initial con- 
dition U 0 

h . 

We introduce the following projection P h ω of any function ω 
into the space V k 

h satisfying, on each interval I j , 
∫ 
I j P h ωv dx = ∫ 

I j ωv dx, (4.1) 
for any v ∈ P k −1 on I j , and 
(P h ω ) (x −

j+ 1 2 
)
= ω (x −

j+ 1 2 
)
, (4.2) 

at the right boundary value x 
j+ 1 2 of the cell I j . This projection is 

known as the Radau projection. The polynomial P h ω for each cell 
I j can be determined by solving a local linear algebra problem of 
the size (k + 1) × (k + 1) derived from the discretized versions of 
(4.1) and (4.2) . This is a local projection defined on each interval I j . 
One can show that the error of this projection has optimal order 
of h k +1 . 

The projections of the initial condition U 0 
h and the cross- 

sectional area at rest ( A 0 ) h ( x ) are defined to be 
U 0 h (x ) = P h U 0 (x ) , (A 0 ) h (x ) = P h A 0 (x ) . (4.3) 
At the right boundary point of each cell, it can be shown that 
U 0 h (x −j+ 1 2 

)
= U 0 (x −j+ 1 2 

)
, (A 0 ) h (x −j+ 1 2 

)
= A 0 (x −j+ 1 2 

)
, for all j, 

(4.4) 
which means that the equilibrium states (4.6) are recovered at 
these points 
(
u 2 
h 
2 + β(√ 

A h − √ 
(A 0 ) h ))(

x −
j+ 1 2 

)
= constant, for all j. 

This information will be very useful when decomposing the solu- 
tions into the equilibrium and fluctuation parts in the following 
section. 



16 J. Britton and Y. Xing / Computers and Fluids 203 (2020) 104493 

Fig. 14. The difference between A, Q at the final time t = 5 and the corresponding numerical initial conditions for the artery with an aneurysm problem from Section 5.2.1 . 
We compare the living-man well-balanced DG method (top row) and the man-at-eternal-rest well-balanced DG method (bottom row). Both plots were computed with a 
mesh of 200 uniform cells and S in = 0 . 5 . The man-at-eternal-rest method does not handle the non-zero velocity equilibria as well as the living-man scheme. 
Remark 4.1. In [17] , a slightly different projection was introduced 
to compute the numerical initial conditions. That was defined by 
the formula (4.1) , combined with 
(P h ω)(x j ) = ω(x j ) , (4.5) 
which requires the projected polynomial overlaps with the original 
function at the center x j of each cell I j . However, this projection 
may not be optimal for some polynomial degree k , therefore we in- 
troduce a different projection P h in this paper. Note that the choice 
of this projection is not unique. Alternatively, we could have also 
chosen to fix the numerical initial conditions to be equal to the 
true solution at the left side of each computational cell. 
4.2. Conservative, equilibrium variables and the decomposition of 
solutions 

The living-man equilibrium variables from (1.7) will be denoted 
as 
V = (Q 

E 
)

= 
( 

Q 
Q 2 
2 A 2 + β(√ 

A − √ 
A 0 )

) 
. (4.6) 

We need to transform the conservative variables U to the equilib- 
rium variables V and vice versa, during the construction of well- 
balanced numerical flux. The equilibrium variables can be eas- 

ily computed from U and the cross-sectional area at rest A 0 , and 
we denote it by V = V (U, A 0 ) . On the other hand, suppose V and 
the cross-sectional area at rest A 0 are given, we can evaluate U = 
U (V , A 0 ) (or simply A = A (V, A 0 ) as Q can be directly obtained from 
V ) in the following way. The equilibrium variable E is defined as 
E = Q 2 

2 A 2 + β(√ 
A − √ 

A 0 ), 
which is equivalent to 
βA 5 2 − (

β
√ 
A 0 + E )A 2 + 1 

2 Q 2 = 0 . (4.7) 
The conservative variable A can be recovered by finding the root 
of the Eq. (4.7) . One can use Newton’s method to find the root, 
by using A h ( x i ) as the initial guess, where x i is either a quadra- 
ture point or a cell-boundary value depending on where we are 
solving the problem. Müller et al. [20] address the recovery of A 
from the living-man equilibrium by solving the similar nonlinear 
equation and considering the subcritical, supercritical, or critical 
cases. In [14] by Ghigo et al., they assume that values for Q are 
small enough that living-man equilibrium variables (1.7) can be ap- 
proximated by (1.5) . This eliminates the need to recover A from a 
fractional-degree equality. 

Next, we propose the decomposition of the solution U h into the 
reference equilibrium state U e 

h and the fluctuation state U f 
h . The 
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Fig. 15. Radii at rest for the artery with stenosis defined by (5.7) . 
reference equilibrium values ˆ V j in cell I j are defined as 
ˆ V j = 

( ̂  Q j 
ˆ E j 

) 
= 

⎛ 
⎜ ⎝ Q h (x −j+ 1 2 

)

E h (x −j+ 1 2 
)

⎞ 
⎟ ⎠ . (4.8) 

The equilibrium state U e 
h (x ) can then be computed from these val- 

ues and the true function A 0 ( x ) (not ( A 0 ) h ( x )) 
U e h, j (x ) = (A e 

h, j (x ) 
Q e 
h, j (x ) 

)
= P h U ( ˆ V j , A 0 (x ) ), (4.9) 

in each cell I j . The projection P h is used to ensure that U e 
h ∈ V k 

h , 
since the functions U ( ˆ V j , A 0 (x ) ) may no longer be piecewise poly- 
nomials due to the nonlinear mapping. Finally, we can decompose 
the numerical solution U h as 
U h = U e h + U f 

h (4.10) 
with the fluctuation part U f 

h = U h −U e 
h ∈ V k 

h . Note that this decom- 
position will be computed at each time step t n . Both U e 

h and U f 
h 

will be used in the computation of the well-balanced fluxes and 
source term approximations. 
4.3. Well-balanced numerical fluxes 

As explained in Section 2 , the well-balanced DG scheme takes 
the form of ∫ 
I j ∂ t U n h v dx − ∫ 

I j f (U n h ) ∂ x v dx + ˆ f l 
j+ 1 2 v −j+ 1 2 

− ˆ f r 
j− 1 

2 v + j− 1 
2 = ∫ 

I j S(U n h , (A 0 ) h ) v dx. (4.11) 
However, to achieve living-man well-balanced method, different 
ways to construct the well-balanced numerical flux and source 
term from those in Section 2 are needed. 

If the system is in the living-man equilibrium (4.6) , at the ini- 
tial time t 0 , the cell boundary values U −

h, j+ 1 2 are equal to the ex- 
act equilibrium solutions at the right boundary point due to the 
choice of projection P h (4.2) , however the same does not hold 
for the other cell boundary values. This may generate discontin- 
uous cell interface values, leading to non-well-balanced numerical 
fluxes, which may result in the equilibrium state not being pre- 
served. One way to address this problem is to modify the projec- 
tion so that the exact values are taken at both cell boundaries, with 
an example being the nodal DG method with Gauss–Lobatto nodes. 
Here, we would like to avoid the usage of Gauss–Lobatto nodes, 
and use the idea of hydrostatic reconstruction to determine the 
numerical fluxes, following the study in [33,35,39] in the context 
of the shallow water equations. 

Prior to redefining the boundary values and constructing our 
fluxes, we first define the unique cell interface value of A 0 as 
(A 0 ) ∗h, j+ 1 2 = max ((A 0 ) + h, j+ 1 2 , (A 0 ) −h, j+ 1 2 

)
, (4.12) 

for all j . This choice of (A 0 ) ∗h, j+ 1 2 will aid in guaranteeing continuity 
across the cell interface at the equilibrium state for the conserva- 
tive variables. Now we set the redefined boundary values to be 
U ∗, ±
h, j+ 1 2 = 

( 
A ∗, ±
h, j+ 1 2 

Q ∗, ±
h, j+ 1 2 

) 
= 

( 
max (0 , A ( ̂  V j , (A 0 ) ∗h, j+ 1 2 ) 

)

ˆ Q ±
h, j+ 1 2 

) 
+ U f 

h (x ±j+ 1 2 ) 
= 

( 
max (0 , A ( ̂  V j , (A 0 ) ∗h, j+ 1 2 ) 

)
+ A f 

h (x ±j+ 1 2 ) 
Q ±
h, j+ 1 2 

) 
, (4.13) 

where the values ˆ V j are given in (4.8) and U f 
h is given in (4.10) . 

When the system is in equilibrium, A f 
h (x ±j+ 1 2 ) = 0 and ˆ V j = ˆ V j+1 , 

hence U ∗, −
h, j+ 1 2 = U ∗, + 

h, j+ 1 2 for all j . 
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Fig. 16. The difference between A, Q at the final time t = 5 and the corresponding numerical initial conditions for the artery with stenosis problem from Section 5.2.2 , when 
using the living-man well-balanced DG method (top row) and the man-at-eternal-rest well-balanced DG method (bottom row). Both plots were computed with a mesh of 
200 uniform cells and S in = 0 . 5 . 

It would also be satisfactory to define (A 0 ) ∗h, j+ 1 2 = 
min ((A 0 ) + h, j+ 1 2 , (A 0 ) −h, j+ 1 2 ) , or other combinations of (A 0 ) ±h, j+ 1 2 
following the generalization of the hydrostatic reconstruction 
idea and designed to ensure continuity across the cell interfaces. 
One possible choice is to let (A 0 ) ∗h, j+ 1 2 = (A 0 ) −h, j+ 1 2 , then one can 
show that A ( ˆ V j , (A 0 ) ∗h, j+ 1 2 

)
= A −

h, j+ 1 2 which eliminates the need to 
employ Newton’s method to recover A . 

Lastly, the well-balanced numerical fluxes can be computed in 
the same way as was introduced for the man-at-eternal-rest well- 
balanced scheme 
ˆ f l 
j+ 1 2 = F (U ∗, −

h, j+ 1 2 , U ∗, + 
h, j+ 1 2 

)
+ f (U −

h, j+ 1 2 
)

− f (U ∗, −
h, j+ 1 2 

)
, 

ˆ f r 
j− 1 

2 = F (U ∗, −
h, j− 1 

2 , U ∗, + 
h, j− 1 

2 
)
+ f (U + 

h, j− 1 
2 
)

− f (U ∗, + 
h, j− 1 

2 
)
, (4.14) 

where F ( a, b ) is a numerical flux, such as the Lax-Friedrichs flux 
defined in (2.3) . Notice that when U ∗, + 

h, j+ 1 2 = U ∗, −
h, j+ 1 2 , the fluxes re- 

duce to 
ˆ f l 
j+ 1 2 = f (U −

h, j+ 1 2 ) , ˆ f r 
j− 1 

2 = f (U + 
h, j− 1 

2 ) (4.15) 
as a result of the numerical flux F ( a, b ) being consistent. 

4.4. Well-balanced source term decomposition 
The source term approximation for the living-man well- 

balanced scheme is approached in the same manner as in 
Section 2.2.2 for the man-at-eternal-rest well-balanced scheme. 
Due to the fact that the source term is linear with respect to the 
variable A , the source term can take on a decomposition similar to 
the form found in (4.10) 
∫ 

S(U h , (A 0 ) h ) v dx = ∫ S(U e h , (A 0 ) h ) v dx + ∫ S(U f 
h , (A 0 ) h ) v dx. 

(4.16) 
The second term on the right hand side can be directly computed 
by any quadrature rule with sufficient accuracy. Since U e 

h is the 
equilibrium state, we can follow the discussion in Section 2.2.2 to 
approximate the first term. Thus the approximation for the source 
term takes the form 
∫ 
I j S(U h , (A 0 ) h ) v dx = − ∫ 

I j f (U e h ) v x dx + f (U e, −
h, j+ 1 2 ) v −j+ 1 2 

− f (U e, + 
h, j− 1 

2 ) v + j− 1 
2 + ∫ 

I j S(U f 
h , (A 0 ) h ) v dx. 

(4.17) 
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Fig. 17. Radii at rest for the artery with a decreasing step defined by (5.8) . 
The details of the derivation and some explanations can be found 
in Section 2.2.2 . 
4.5. A TVB slope limiter 

In this section we discuss the implementation of a slope limiter, 
which is necessary when the solution contains discontinuities. We 
employ the modified minmod slope limiter with a total variation 
bounded (TVB) parameter M , defined as 
˜ m (a 1 , . . . , a l ) = {a 1 , if | a 1 | ≤ M&x 2 , 

minmod (a 1 , . . . , a l ) , otherwise , (4.18) 
with the minmod function given by 
minmod (a 1 , . . . , a l ) 

= {s min (| a 1 | , . . . , | a l | ) , if s = sign (a 1 ) = . . . = sign (a l ) , 
0 , otherwise . 

(4.19) 
At each cell I j , we define the modified cell boundary values to 

be 
U (mod) 
h (x −

j+ 1 2 ) = Ū h, j 
+ minmod (U h (x −j+ 1 2 ) − Ū h, j , Ū n h, j − Ū n h, j−1 , Ū n h, j+1 − Ū n h, j ), 

U (mod) 
h (x + 

j− 1 
2 ) = Ū h, j 

−minmod (Ū h, j −U h (x + j− 1 
2 ) , Ū n h, j − Ū n h, j−1 , Ū n h, j+1 − Ū n h, j ), (4.20) 

where Ū n 
j is the cell average in cell I j at time t n . Note that the 

slope limiting procedure may not be required in every cell. If 
˜ m (a 1 , . . . , a l ) = a 1 (i.e., U (mod) 

h (x ±
j∓ 1 

2 ) = U h (x ±j∓ 1 
2 ) ) in cell I j , which 

implies that the solution is smooth, then limiting is not necessary 

in that cell. Otherwise, limiting is required and we can recover a 
new P k polynomial U n 

h, j (x ) from the cell average Ū n 
h, j and the up- 

dated cell boundary values (4.20) for k ≥ 2 that preserves the orig- 
inal cell average in I j . This new polynomial then replaces the old 
one in this cell and will be used in the computation. 

Note that when the living-man equilibrium state (1.7) is 
reached, the equilibrium may not be preserved if the slope lim- 
iter is activated. Therefore we wish to carefully determine which 
cells need limiting by applying the above procedure to the fluc- 
tuation part of the variables U f 

h . If limiting is required in a cell, 
the slope limiting procedure is then performed on U h . Recall that 
when a steady state is reached, U f 

h, j = 0 for all values of j . There- 
fore, limiting is not required and the limiter has no affect on the 
well-balanced property. 

It is important to note this procedure meets the necessary con- 
ditions of a limiter: it does not change the solution in smooth and 
well-balanced regions, and it does not change cell averages (hence 
maintains the mass conservation property of the DG method). 
4.6. Verification of the living-man well-balanced property 
Proposition 3. The proposed RKDG scheme (2.6) with numerical 
fluxes (4.14) and source term approximation (4.17) is exactly well- 
balanced for the living-man equilibrium (1.7) . 
Proof. We assume the initial data are in the living-man equilib- 
ria state, and the same analysis applies when the solution reaches 
the living-man equilibria at the time step t n . The projection P h 
guarantees the numerical initial conditions will satisfy the equi- 
librium condition at the values x −

j+ 1 2 for all j . This implies that 
ˆ V j = constant for all j . Therefore, the equilibrium part, U e 

h , com- 
puted from ˆ V j and A 0 ( x ) is equivalent to the conservative variable 
U h , and this further implies that U f 

h = 0 . The source term approxi- 
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Fig. 18. The difference between A, Q at the final time t = 5 and the corresponding numerical initial conditions for the decreasing step problem with S in = 0 . 5 from 
Section 5.2.3 , when using the living-man well-balanced DG method (top row) and the man-at-eternal-rest well-balanced DG method (bottom row). 
mation (4.17) can then be rewritten as 
∫ 
I j S(U h , (A 0 ) h ) v dx = − ∫ 

I j f (U h ) v x dx + f (U −
h, j+ 1 2 ) v −j+ 1 2 

− f (U + 
h, j− 1 

2 ) v + j− 1 
2 (4.21) 

The modified cell boundary values become 
U ∗, −
h, j+ 1 2 = 

( 
max (0 , A ( ̄V j , (A 0 ) ∗j± 1 

2 ) 
)

m̄ + 
j± 1 

2 
) 

= U ∗, + 
h, j+ 1 2 , (4.22) 

as a result of U f 
h = 0 . Due to the consistency of the Lax–Friedrichs 

flux and the definition of the left and right fluxes, it can be shown 
that 
ˆ f l 
j+ 1 2 = f (U −

h, j+ 1 2 ) , ˆ f r 
j− 1 

2 = f (U + 
h, j− 1 

2 ) (4.23) 
at the steady state. Therefore, one can easily observe that the flux 
terms exactly balance the source term approximation, which shows 
the well-balanced property. !

This section concludes with two remarks about the well- 
balanced RKDG methods for the arterial blood flow model when 
the cross-sectional area at rest is constant, and the comparison of 
living-man and the man-at-eternal-rest well-balanced methods. 
Remark 4.2. When the cross-sectional area at rest, A 0 , is constant, 
the traditional DG scheme is recovered, that is, the source term 

approximation reduces to 0 and the left and right numerical fluxes 
reduce to the original fluxes. First, we look at the source term. Def- 
inition (4.9) implies that U e 

h, j = P h U( ̂  V j , A 0 ) = constant in each cell 
I j when A 0 = constant . Therefore, it can be shown that 
∫ 
I j S 

(
U e h , ( A 0 ) h )v dx = − ∫ 

I j f 
(
U e h )v x dx + f (U e, −

h, j+ 1 2 
)
v −
j+ 1 2 

− f (U e, + 
h, j− 1 

2 
)
v + 
j− 1 

2 = 0 . 
Additionally, ((A 0 ) h ) x = 0 , hence, the numerical integral 
∫ 
I j S (U f 

h , ( A 0 ) h )v dx = 0 . Together, this implies the source term 
approximation is zero. 

Second, we will show that the left and right numerical 
fluxes reduce to the original DG fluxes. When A 0 is con- 
stant, then (A 0 ) ∗h, j+ 1 2 = (A 0 ) + h, j+ 1 2 = (A 0 ) −h, j+ 1 2 which implies that 
A ( ˆ V j , (A 0 ) ∗h, j+ 1 2 

)
recovers the original value of A e 

h at the cell in- 
terface exactly. Therefore, 
A ∗, ±
h, j+ 1 2 = max (0 , A ( ̂  V j , (A 0 ) ∗h, j+ 1 2 ) + A f, ±

h, j+ 1 2 
)

= max (0 , A e, ±
h, j+ 1 2 + A f, ±

h, j+ 1 2 
)
= A ±

h, j+ 1 2 . (4.24) 



J. Britton and Y. Xing / Computers and Fluids 203 (2020) 104493 21 

Fig. 19. The perturbation to the aneurysm problem for different values of S in when the living-man well-balanced scheme is used. The two types of plots include snapshots of 
the solution at times t = 0 , 0 . 0025 , 0 . 005 , as well as plots that demonstrate how the perturbation propagates throughout the domain as a function of time. It can be seen 
that the larger the Shapiro number, the faster the perturbation propagates, especially the right moving wave. We can also see the formation of reflection waves. 
More generally that U ∗, ±

h, j+ 1 2 = U ±
h, j+ 1 2 . Therefore the left and right 

numerical fluxes reduce to the original DG fluxes: ˆ f l 
j+ 1 2 = ˆ f 

j+ 1 2 , 
ˆ f r 
j− 1 

2 = ˆ f 
j− 1 

2 . 
Remark 4.3. Although the well-balanced methods presented in 
this section were designed to preserve the living-man equilibria, it 

also preserve the simpler man-at-eternal-rest steady state. Notice 
that when Q = 0 , the equilibrium values ˆ V j become 
ˆ V j = ( ˆ Q j 

ˆ E j 
)

= 
( 

0 
β
(√ 

A h − √ 
(A 0 ) h )(

x −
j+ 1 2 

)
) 
, (4.25) 
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Fig. 20. The perturbation to the aneurysm problem for different values of S in when the man-at-eternal-rest well-balanced scheme is used. The two types of plots include 
snapshots of the solution at times t = 0 , 0 . 0025 , 0 . 005 , as well as plots that demonstrate how the perturbation propagates throughout the domain as a function of time. 
It can be seen that the smaller the Shapiro number, the better the scheme performs because the living-man steady state becomes nearer to a non-zero pressure man-at- 
eternal-rest steady state. 
and the decomposition of U, as in (4.9) and (4.10) becomes 
U e h, j = 

( 
P h ( ˆ E j 

β + √ 
(A 0 ) h )2 

ˆ Q j 
) 
, 

U f 
h, j = (A h, j 

Q h, j 
)

−

( 
P h ( ˆ E j 

β + √ 
(A 0 ) h )2 

ˆ Q j 
) 
. (4.26) 

Therefore, the living-man well-balanced scheme reduces to 
the man-at-eternal-rest well-balanced scheme presented in 
Section 2.3 . 
5. Numerical tests for the living-man well-balanced methods 

In this section, we present numerical results for the one- 
dimensional blood flow system (1.3) using the generalized living- 
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Table 8 
L 1 errors and convergence orders of the accuracy test in Section 5.1 , using P 0 , P 1 and P 2 piecewise 
polynomials and the living-man well-balanced method. In each case, k + 1 order of accuracy is 
achieved. 

k = 0 k = 1 k = 2 
Variable J L 1 Error Order L 1 Error Order L 1 Error Order 
A 25 6.1773e-01 4.0942e-02 1.7301e-03 

50 4.0751e-01 0.6002 1.0068e-02 2.0237 2.2514e-04 2.9420 
100 2.4607e-01 0.7278 2.5003e-03 2.0097 2.8747e-05 2.9693 
200 1.3667e-01 0.8484 6.2353e-04 2.0036 3.6285e-06 2.9860 
400 7.2197e-02 0.9207 1.5570e-04 2.0017 4.5571e-07 2.9932 

Q 25 2.5275e02 6.2138e00 3.4179e-01 
50 1.4838e02 0.7684 1.5290e00 2.0229 4.1730e-02 3.0340 
100 8.0758e01 0.8776 3.8080e-01 2.0055 5.1098e-03 3.0297 
200 4.2223e01 0.9356 9.5164e-02 2.0005 6.2939e-04 3.0212 
400 2.1591e01 0.9676 2.3794e-02 1.9998 7.8033e-05 3.0118 

man well-balanced methods described in Section 4 . We implement 
our scheme using piecewise quadratic polynomials (k = 2) paired 
with the third order TVD Runge-Kutta time discretization (2.4) . The 
CFL number is take to be 0.15 and the constant M in the TVB 
limiter is taken to be 0, unless otherwise stated. Multiple types 
of tests: accuracy test, well-balanced test, perturbations of steady 
states, and tests for discontinuous solutions, are presented in this 
section. 
5.1. Accuracy test 

In this section, we will test the accuracy of our living-man well- 
balanced DG scheme for smooth solutions with non-zero velocity. 
We have chosen strictly positive functions for both A and A 0 to 
avoid difficulties with square roots and division by a small number. 
The initial conditions in the domain x ∈ [0, 10] are given by 
A (x, 0) = sin (π

5 x 
)
+ 10 , Q(x, 0) = e cos ( π5 x ) , (5.1) 

with the cross-sectional area at rest 
A 0 (x ) = 1 

2 cos 2 
(
π
5 x 

)
+ 5 , 

and K = 10 8 Pa 
m , ρ = 1060 kg 

m 3 . Periodic boundary conditions are 
employed in this test. We run the simulation until time t = 0 . 01 
when the solution is still smooth. Since there is no explicitly 

Fig. 21. The boundary condition (5.10) with S in = 0 . 1 , ϵ = 5 × 10 −2 , and T = 0 . 01 . 

known solution in this case, the errors are computed by comparing 
results from meshes of uniform cell widths h and h /2. Table 8 con- 
tains the L 1 errors and numerical orders of accuracy for P 0 , P 1 
and P 2 polynomials. For each polynomial degree k , (k + 1) th or- 
der is observed, which indicates the optimal convergence rate is 
achieved. 
5.2. Test for well-balanced property 

In this section, we will demonstrate that the proposed 
living-man well-balanced DG scheme preserves the steady state 
(1.7) with non-zero velocity. We will examine three examples that 
represent the physiological conditions of an aneurysm, stenosis, 
and a decreasing step. The initial conditions for each of the exam- 
ples in this section will be determined from the equilibrium vari- 
ables of the steady state, which take the form 
Q s = Q in , E s = Q 2 in 

2(A out ) 2 + β(√ 
A out − √ 

(A 0 (L ) ), (5.2) 
where the subscript ‘in’ represents the value at the inlet or left side 
of the domain, ‘out’ represents the value at the outlet or the right 
side of the domain, and L is the length of the artery. The function 
for A ( x , 0) can be determined from (5.2) and the cross-sectional 
area at rest, which is unique to each example. 

The values of A in and A out are given by 
A in = A 0 (0)[1 + S in ] 2 , A out = A 0 (L )[1 + S in ] 2 , (5.3) 
where S in is the Shapiro number at the inlet. The Shapiro num- 
ber is the equivalent of the Froude number for the shallow water 
equations and is determined by the formula S = u/C where C is the 
Moens–Korteweg wave velocity. The Shapiro number determines 
whether the system is in subcritical ( S < 1), critical ( S = 1 ), or su- 
percritical ( S > 1) flow. Blood flow is typically subcritical, hence 
that is the only case we will consider in the numerical examples. 
We will consider S in = { 0 . 5 , 0 . 1 , 0 . 01 } in our numerical examples. 
The Moens–Korteweg velocity at the inlet is defined as 
C in = 

√ 
K √ 

A in 
2 ρ√ 

π
. (5.4) 

Finally, the value for Q in can then be determined as a function of 
the Shapiro number in the following way 
Q in = A in S h,in C in . (5.5) 
We also introduce the notation &R to represent the wall defor- 
mation parameter. Other important parameters in this section are 
found in Table 9 . In each of the examples, we fix the boundary 
conditions to be Q in at the inlet and A out at the outlet of the do- 
main. 



24 J. Britton and Y. Xing / Computers and Fluids 203 (2020) 104493 

Fig. 22. The perturbation to the stenosis problem for different values of S in when the living-man well-balanced scheme is used. The two types of plots include snapshots of 
the solution at times t = 0 . 0 04 , 0 . 0 07 , 0 . 01 , as well as plots that demonstrate how the perturbation propagates throughout the domain as a function of time. It can be seen 
that the larger the Shapiro number, the faster the perturbation propagates. 

Table 9 
Parameters for well-balanced living-man problems. 
R in &R K ρ L 
4 × 10 −3 m 1 × 10 −3 m 10 8 Pa 

m 1060 kg 
m 3 0.16 m 

Table 10 
The parameters used in the following examples that depend 
on the Shapiro number at the inlet, S in . The smaller the 
Shapiro number S in , the slower the discharge Q in . 
S in 0.5 0.1 0.01 
A in 1 . 1310 × 10 −4 6 . 0821 × 10 −5 5 . 1276 × 10 −5 
C in 16.8232 14.4065 13.8046 
Q in 9 . 5133 × 10 −4 8 . 7622 × 10 −5 7 . 0784 × 10 −6 
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Fig. 23. The perturbation to the stenosis problem for different values of S in when the non-zero pressure man-at-eternal-rest well-balanced scheme is used. The two types 
of plots include snapshots of the solution at times t = 0 . 0 04 , 0 . 0 07 , 0 . 01 , as well as plots that demonstrate how the perturbation propagates throughout the domain as a 
function of time. 

Table 10 contains the some of the important constants used in 
the following examples. The constants all depend on the Shapiro 
number at the inlet. It can be seen that the smaller the Shapiro 
number, the slower the discharge value Q in . We expect the living- 
man well-balanced scheme to maintain the steady states with ma- 
chine zero error. The man-at-eternal-rest well-balanced scheme 
may not be able to preserve the non-zero velocity steady states. 
However, we expect the man-at-eternal-rest well-balanced scheme 

to perform better for lower Shapiro numbers because the lower the 
Shapiro number, the closer the living-man steady state will be to- 
wards the man-at-eternal-rest steady state (1.5) (i.e. zero velocity). 
5.2.1. An aneurysm 

In this subsection, we consider the living-man equilibrium 
(1.7) with non-zero velocity where the choice of cross-sectional 
radii is meant to represent that of an aneurysm. We set the cross- 
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Fig. 24. The perturbation to the decreasing step problem for different values of S in when the living-man well-balanced scheme is used. The two types of plots include snapshots 
of the solution at times t = 0 . 0 04 , 0 . 0 07 , 0 . 01 , as well as plots that demonstrate how the perturbation propagates throughout the domain as a function of time. 
sectional radii at rest to be 

R 0 (x ) = 
⎧ 
⎪ ⎪ ⎪ ⎨ 
⎪ ⎪ ⎪ ⎩ 
R in , if x ∈ [0 , x 1 ] ∪ [ x 4 , L ] , 
R in + &R 

2 [1 − cos ( x −x 1 
x 2 −x 1 π)]

, if x ∈ [ x 1 , x 2 ] , 
R in + &R, if x ∈ [ x 2 , x 3 ] , 
R in + &R 

2 [1 + cos ( x −x 3 
x 4 −x 3 π)]

, if x ∈ [ x 3 , x 4 ] , 
(5.6) 

with x 1 = 9 L 40 , x 2 = L 4 , x 3 = 3 L 4 , x 4 = 31 L 40 and the cross-sectional area 
at rest given by A 0 (x ) = πR 0 (x ) 2 . The radii at rest is shown in 
Fig. 13 . 

The living-man equilibrium state should be exactly preserved. 
We run the problem using a uniform mesh of 200 cells until time 
t = 5 . The L 1 and L ∞ errors shown in Table 11 demonstrate that the 
well-balanced property is indeed maintained. We also demonstrate 
that the man-at-eternal-rest well-balanced DG methods presented 
in Section 2 cannot maintain this general steady state with non- 
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Fig. 25. The perturbation to the decreasing step problem for different values of S in when the non-zero pressure man-at-eternal-rest well-balanced scheme is used. The two 
types of plots include snapshots of the solution at times t = 0 . 0 04 , 0 . 0 07 , 0 . 01 , as well as plots that demonstrate how the perturbation propagates throughout the domain 
as a function of time. 
zero velocity for larger Shapiro numbers. The corresponding L 1 and 
L ∞ errors are found in Table 11 as well. The difference between 
the numerical solution at the final time t = 5 and the numerical 
initial conditions is plotted in Fig. 14 , comparing both the living- 
man and man-at-eternal-rest well-balanced DG schemes when 
S in = 0 . 5 . 

5.2.2. Stenosis 
The function choice for the radius at rest representing aortic 

stenosis was first introduced in [14] , and we changed to the pa- 
rameters in this paper so that the units of measure are consistent 
with the units used in all other examples. The definition for the 
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Table 11 
Table of absolute and relative L 1 and L ∞ errors for aneurysm problem in Section 5.2.1 , using the living-man well- 
balanced scheme and the man-at-eternal-rest well-balanced scheme. The living-man scheme demonstrates the well- 
balanced property for each value of S in . The man-at-eternal-rest DG scheme does not preserve the more general non- 
zero equilibrium state, but does improve as S in , and thus Q in , decreases. 

L 1 Error L ∞ Error 
Variable Error Type S in = 0 . 5 S in = 0 . 1 S in = 0 . 01 S in = 0 . 5 S in = 0 . 1 S in = 0 . 01 
Living-Man Well-Balanced Scheme 
A Absolute 1.0083e-18 3.4893e-19 3.3321e-19 8.5896e-15 2.9880e-15 2.8745e-15 

Relative 7.3596e-15 4.6213e-15 5.1503e-15 6.2715e-11 4.0073e-11 4.4936e-11 
Q Absolute 9.3710e-18 3.4733e-19 1.4663e-19 7.3244e-14 2.7368e-15 1.1583e-15 

Relative 9.8505e-15 3.9640e-15 2.0715e-14 7.6992e-11 3.1234e-11 1.6363e-10 
Man-at-Eternal-Rest Well-Balanced Scheme 
A Absolute 1.5579e-13 4.1811e-15 4.0531e-17 1.8957e-08 2.4602e-10 1.9813e-12 

Relative 1.1679e-09 5.4732e-11 6.1572e-13 1.6030e-04 3.8299e-06 3.5730e-08 
Q Absolute 1.9450e-12 5.0298e-14 4.5631e-16 1.9807e-07 4.0129e-09 3.4643e-11 

Relative 2.0445e-09 5.7403e-10 6.4465e-11 2.0820e-04 4.5797e-05 4.8942e-06 
Table 12 
Table of absolute and relative L 1 and L ∞ errors for the stenosis problem in Section 5.2.2 , using the living-man well- 
balanced scheme and the man-at-eternal-rest well-balanced scheme. 

L 1 Error L ∞ Error 
Variable Error Type S in = 0 . 5 S in = 0 . 1 S in = 0 . 01 S in = 0 . 5 S in = 0 . 1 S in = 0 . 01 
Living-Man Well-Balanced Scheme 
A Absolute 9.3548e-19 2.9285e-19 2.5631e-19 7.4396e-15 2.3313e-15 2.0431e-15 

Relative 8.6103e-15 5.0023e-15 5.2088e-15 7.4199e-11 4.2203e-11 4.4224e-11 
Q Absolute 9.9849e-18 5.8225e-19 1.1724e-20 7.8033e-14 4.5572e-15 9.6175e-17 

Relative 1.0496e-14 6.6450e-15 1.6563e-15 8.2025e-11 5.2010e-11 1.3587e-11 
Man-at-Eternal-Rest Well-Balanced Scheme 
A Absolute 7.1488e-16 4.9425e-18 1.8366e-19 6.9856e-11 3.1689e-13 2.7633e-15 

Relative 7.2119e-12 8.6968e-14 3.7306e-15 7.3120e-07 6.0438e-09 6.2322e-11 
Q Absolute 6.2598e-15 8.6144e-17 8.4732e-19 4.5952e-10 4.6652e-12 3.9743e-14 

Relative 6.5801e-12 9.8313e-13 1.1971e-13 4.8303e-07 5.3242e-08 5.6147e-09 
radius at rest is 
R 0 (x ) 

= 
⎧ 
⎨ 
⎩ 
R in , if x ∈ [0 , x 1 ] ∪ [ x 2 , L ] , 
R in (1 − &R 

2 [ 
1 + cos (π + 2 π x − x 1 

x 2 − x 1 
)] )

, if x ∈ [ x 1 , x 2 ] , 
(5.7) 

where x 1 = 3 L 10 and x 2 = 7 L 10 . The radii at rest is shown in Fig. 15 . 
The problem is computed until the final time t = 5 with a uni- 

form mesh of 200 cells using both the living-man and man-at- 
eternal-rest well-balanced schemes. The L 1 and L ∞ errors shown 
in Table 12 and Fig. 16 displays the numerical solutions via the 
living-man and the man-at-eternal-rest schemes at the final time 
with S in = 0 . 5 . 
5.2.3. Decreasing step 

The example in this section represents blood flow from a par- 
ent to a daughter artery in which the transition is idealized, that is, 
the artery radii instantaneous changes from one value to a smaller 
value. The function choice for the radius at rest representing a 
decreasing step was first introduced in [14] . The radius at rest is 
given by 
R 0 (x ) = {R in if x < L 2 , 

R in ( 1 − &R ) if x ≥ L 
2 . (5.8) 

The radii at rest is shown in Fig. 17 . 
The problem is computed using both the living-man and man- 

at-eternal-rest well-balanced schemes with a uniform mesh of 200 

cells until the final time t = 5 . The L 1 and L ∞ errors shown in 
Table 13 demonstrate that the well-balanced property is indeed 
maintained for the living-man scheme, but not for the man-at- 
eternal-rest scheme. Fig. 18 displays the numerical solutions using 
both schemes with S in = 0 . 5 . Again, we observe that the man-at- 
eternal-rest well-balanced DG methods cannot maintain this gen- 
eral steady state with non-zero velocity well. 
5.3. Nearly equilibrium flows 

In this section, numerical tests are provided to demonstrate that 
the living-man well-balanced DG scheme can aptly handle small 
perturbations to living-man steady states, and capture the nearly 
equilibrium flows well. We will also compare the performance 
of the living-man and man-at-eternal-rest well-balanced schemes. 
Since each example from Section 5.2 contains arteries with non- 
constant area, we expect to see the formation of transmission and 
reflection pulses when the perturbation wave crosses through a 
portion of the domain that changes shape. The values of the re- 
flection and transmission coefficients in (3.6) become valid only for 
small S h,in since they were derived from linear analytic solutions 
and the flow is now nonlinear. 
5.3.1. Perturbation of A for the aneurysm 

We consider a small perturbation to the living-man equilib- 
rium state for an artery with an aneurysm, which was described 
in Section 5.2.1 . The initial conditions can be determined from 
(5.2) and the cross-sectional radii at rest given by (5.6) . The origi- 
nal initial condition for the cross-sectional area is denoted A ( x , 0) 
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Table 13 
Table of absolute and relative L 1 and L ∞ errors for the decreasing step test of in Section 5.2.3 , using the living-man 
well-balanced scheme and the man-at-eternal-rest well-balanced scheme. 

L 1 Error L ∞ Error 
Variable Error Type S in = 0 . 5 S in = 0 . 1 S in = 0 . 01 S in = 0 . 5 S in = 0 . 1 S in = 0 . 01 
Living-Man Well-Balanced Scheme 
A Absolute 8.2591e-19 2.697e-19 1.8666e-19 6.8517e-15 2.2094e-15 1.5366e-15 

Relative 8.0971e-15 4.9661e-15 4.0398e-15 6.5985e-11 4.0703e-11 3.3172e-11 
Q Absolute 1.0353e-17 4.8757e-19 1.1186e-18 8.0921e-14 3.8163e-15 8.7442e-15 

Relative 1.0883e-14 5.5644e-15 1.5802e-13 8.5061e-11 4.3554e-11 1.2353e-09 
Man-at-Eternal-Rest Well-Balanced Scheme 
A Absolute 2.4515e-11 1.0246e-13 2.9589e-16 4.0547e-06 5.8504e-08 4.7678e-10 

Relative 2.3512e-07 1.9215e-09 6.7841e-12 4.4164e-02 1.1875e-03 1.1455e-05 
Q Absolute 2.7844e-10 1.3728e-12 3.9381e-15 2.7728e-05 7.1167e-07 6.1411e-09 

Relative 2.9268e-07 1.5667e-08 5.5636e-10 2.9146e-02 8.1220e-03 8.6758e-04 
and we denote the perturbed initial conditions of A by 
A pert (x, 0) = A (x, 0) + π p(x ) 2 , 
where 
p(x ) = 

⎧ 
⎨ 
⎩ ϵ sin (100 

10 L π
(
x − 45 L 

100 
))

, if x ∈ [ 45 L 
100 , 55 L 100 ], 

0 , otherwise , (5.9) 
with ϵ = 5 × 10 −5 . The wave splits in two and moves in oppo- 
site directions away from the initial perturbation. The test is run 
with 200 uniform cells until the stopping time t = 0 . 005 and the 
solutions are shown in Fig. 19 for the living-man well-balanced 
scheme and in Fig. 20 for the man-at-eternal-rest well-balanced 
scheme. It can be seen that only in the case with S in = 0 . 5 , the 
man-at-eternal-rest well-balanced scheme does not handle the 
perturbation very well. This is because, for small Shapiro num- 
ber, the living-man equilibrium state is near to a man-at-eternal- 
rest equilibrium, so the error in using the man-at-eternal-rest well- 
balanced scheme is smaller than the error that arises from the per- 
turbation. 
5.3.2. Inflow pulse to Q for an artery with stenosis & a discontinuous 
step 

In this section we will simulate a pulse inflicted on the flow 
Q at the inlet of the domain. This pulse will be applied to both 
the stenosis and discontinuous step problems in Section 5.2 . The 
initial conditions for both A and Q are determined in the same way 
as in Section 5.2 , however we will introduce a different boundary 

condition for Q which simulates a pulse to the flow of blood. The 
boundary condition for Q at the inlet, denoted ˜ Q in , is defined in 
the following way 
˜ Q in (t) = 

{ 
Q in (1 + ϵ sin (2 π t 

T 
))

if t ≤ T 
2 , 

Q in otherwise , (5.10) 
where the pulse is inflicted until halfway through the compu- 
tational time T , and then no more pulse is inflicted after that. 
This problem is similar to the one introduced in [14] with 
some modifications and the introduction of parameter ϵ. The 
value for Q in is defined in (5.5) and depends on the Shapiro 
number S in = { 0 . 5 , 0 . 1 , 0 . 01 } . We set the amplitude parameter 
ϵ = 1 × 10 −7 for the artery with stenosis and ϵ = 5 × 10 −2 for 
the decreasing step problem. The boundary condition is shown 
in Fig. 21 . 

All tests in this section are run until the final time of t = 
0 . 01 with a mesh of 200 uniform cells. For each variation of 
the test, we will compare the performance of the living-man 
and man-at-eternal-rest well-balanced DG schemes. We present 
the results for an artery with stenosis in Figs. 22 and 23 . Simi- 
larly to the aneurysm perturbation problem, the man-at-eternal- 
rest scheme handles the perturbation as well as the living-man 
scheme for S in = 0 . 1 and 0 . 01 . When S in = 0 . 5 , obvious error is ob- 
served in the numerical results of the man-at-eternal-rest well- 
balanced scheme. In Figs. 24 and 25 , we list the numerical results 
for the decreasing step problem, using both living-man and man- 

Fig. 26. Numerical solutions at time t = 0 . 005 with quadratic basis function and mesh sizes of 200 and 1600 uniform cells for the ideal tourniquet problem (5.11) . 
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Fig. 27. Numerical solutions at time t = 0 . 008 with quadratic basis function and mesh sizes of 200 and 1600 uniform cells for the Riemann problem (5.12) . TVB Minmod 
limiter is used. 

Fig. 28. Numerical solutions of U e 
h (top row) and U f 

h (bottom row) at time t = 0 . 008 with quadratic basis function and mesh size of 200 uniform cells for the Riemann 
problem (5.12) . Cells in which the minmod limiter was applied after the last RK step are colored in blue and non-limited cells are colored red. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
at-eternal-rest well-balanced DG schemes. Similar behavior can be 
observed. 
5.4. Tests for discontinuous initial conditions 

Two Riemann problems with discontinuous initial conditions 
will be considered in this section. We test the performance of the 
well-balanced DG methods in capturing discontinuous solutions. 

5.4.1. The ideal tourniquet 
Dam break problems are frequently studied for the shallow wa- 

ter equations. For the blood flow problem, the analogue is the ideal 
tourniquet problem. We consider a tourniquet that is applied and 
instantaneously removed. The computational domain for this prob- 
lem is [ −0 . 04 , 0 . 04] and the initial conditions are given by 
A (x, 0) = {π (R in ) 2 , if x ≤ 0 , 

π (R out ) 2 , otherwise , Q(x, 0) = 0 , (5.11) 
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Fig. 29. Numerical solutions at time t = 0 . 008 with quadratic basis function and mesh sizes of 200 and 1600 uniform cells for the Riemann problem (5.12) . The WENO 
limiter is used. 

Table 14 
Parameters for the ideal tourniquet problem (5.11) 
and the Riemann problem (5.12) . 
R in R out K ρ

5 × 10 −3 m 4 × 10 −3 m 10 7 Pa 
m 1060 kg 

m 3 
with the parameters listed in Table 14 . The cross-sectional area at 
rest is defined as A 0 (x ) = π (R out ) 2 . Transmissive boundary condi- 
tions are implemented at the endpoints of the computational do- 
main. The numerical solution is computed up to time t = 0 . 005 . 
The discontinuity in the center becomes a shock wave propagating 
to the right and a rarefaction wave moving to the left. The numer- 
ical results with 200 uniform cells are presented in Fig. 26 . For 
comparison, we also present the simulation results with refined 
1600 uniform cells as a “reference” solution. We can see that the 
numerical solution agree well with the refined solutions. Our well- 
balanced DG methods can capture the shock wave well, and the 
slope limiter removes oscillatory near the discontinuities. 
5.4.2. Riemann problem with non-flat radius at rest and non-zero 
velocity 

Next, we consider a problem similar to the ideal tourniquet 
problem, but with a non-zero velocity and discontinuous cross- 
sectional area at rest given by 
A (x, 0) = {π (4 × 10 −3 ) 2 , if x ≤ 0 , 

π (3 . 5 × 10 −3 ) 2 , x > 0 , 
Q(x, 0) = {1 . 5 × 10 −3 , if x ≤ 0 , 

1 × 10 −3 , if x > 0 , (5.12) 
and 
A 0 (x ) = {π (2 . 5 × 10 −3 ) 2 , if x ≤ 0 , 

π (3 × 10 −3 ) 2 , x > 0 , (5.13) 
The computational domain for this problem is [ −0 . 04 , 0 . 04] and 
the test is run until time t = 0 . 008 . The numerical results with 200 
uniform cells and TVB minmod limiter are presented in Fig. 27 , and 
compared with the “reference” solution obtained with refined 1600 
uniform cells. We can see that the numerical solution agrees well 
with the refined solutions. The minmod limiter marks the trou- 
bled cells based on U f 

h and performs the actual limiting procedure 
on U h . We also plotted the figures of the decomposed solutions 
U f 
h and U e 

h at the final time in Fig. 28 in which the troubled cells 
marked by the limiter are distinguished from the non-limited cells. 

We have compared minmod slope procedure with the results of 
the standard minmod limiter (both trouble cell indicator and lim- 
iting on U h ), and observed the same results. In these figures, it can 
be seen that the shock profiles are smeared with 200 cells. For 
comparison, we also included the numerical results in Fig. 29 when 
WENO limiter is used instead, and this gives a sharp shock profile 
on the same mesh (200 cells). 
6. Conclusion 

In this paper we constructed and tested DG methods for the 
one-dimensional arterial blood flow system with the man-at- 
eternal-rest and living-man equilibria. Well-balanced DG methods 
are designed to efficiently capture the nearly equilibria flow which 
are small perturbation of these equilibrium states. We focus on 
the living-man equilibrium states which are more relevant to the 
practical problem. To construct well-balanced methods, special at- 
tention was paid to the projection of the initial conditions into 
piecewise polynomial space, the approximation of the source term, 
and the construction of the numerical fluxes. Extensive numeri- 
cal examples were given to demonstrate the well-balanced prop- 
erty, accuracy, non-oscillatory behavior at discontinuities, and abil- 
ity to resolve small perturbations to steady states. DG methods 
have been shown to be efficient for the hyperbolic balance laws 
on network, and it would be interesting to test the performance of 
the proposed methods on the arterial network blood flow simula- 
tions, which will be our future work. 
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