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Abstract: Although advances in piling equipment and technologies have extended the global
use of stabilizing piles (to stabilize slope or landslide), the design of stabilizing piles remains
a challenge. Specifically, the installation of stabilizing piles can alter the behavior of the slope;
and, the spatial variability of the geotechnical parameters required in the design is difficult to
characterize with certainty, which can degrade the design performance. This paper presents an
optimization-based design framework for stabilizing piles. The authors explicitly consider the
coupling between the stabilizing piles and the slope, and the robustness of the stability of the
reinforced slope against the spatial variability of the geotechnical parameters. The proposed
design framework is implemented as a multi-objective optimization problem considering the
design robustness as an objective, in addition to safety and cost efficiency, two objectives
considered in the conventional design approaches. The design of stabilizing piles in an earth
slope is studied as an example to illustrate the effectiveness of this new design framework. A

comparison study is also undertaken to demonstrate the superiority of this new framework

over the conventional design approaches.
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1. Introduction

“Stabilizing piles” are the piles that are installed to stabilize unstable slopes or active
landslides, which transfer part of the earth pressure from the upper unstable layer to the lower
stable layer, thus improving the stability of the geomaterials behind the piles (Poulos 1995;
Zeng and Liang 2002; Lirer 2012). Since their inception, stabilizing piles have been widely
used in the mitigation of slope instability and landslide geohazards. For example, many active
landslides and unstable slopes in the Three Gorges Reservoir Area have been reinforced with
stabilizing piles (Tang et al. 2014&2019). It is known that the installation of stabilizing piles
can greatly alter the behavior of the slope. The stability of a reinforced slope could be
evaluated with both uncoupled and coupled methods. In an uncoupled analysis, the earth
pressure and its distribution along the piles are first estimated, followed by the use of the earth
pressure as an input to the analysis of the behavior of the pile-slope system (Ito and Matsui
1975; Galli and Di Prisco 2012); whereas, in a coupled analysis, the piles and the slope are
dealt as an integrated system, and the behavior of this system is studied considering explicitly
the pile-slope interaction (Jeong et al. 2013). Though theoretically sound, the computationally
demanding characteristics of this coupled analysis might hinder its application in engineering
practice. As a result, the uncoupled analysis still dominates the design of stabilizing piles in
the current practice.

Though the behavior of the pile-slope system has been the subject of extensive studies,
little effort has been undertaken to elucidate design methods for stabilizing piles, especially
on the selection of pile parameters such as the diameter, spacing, length and position (Lee et
al. 1995). Indeed, the design of stabilizing piles is a multidisciplinary problem, which must be

informed with knowledge of geotechnical engineering, structural engineering, and economics.
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Hence, the design of the stabilizing piles would better be implemented as a multi-objective
optimization problem, in which the requirements from the stability of the reinforced slope,
bearing capacity of the piles, and economic concerns should be simultaneously considered.
However, most of the discussions regarding the design of stabilizing piles do not encompass
economic requirements but instead place most emphasis upon either the stability of reinforced
slope or the pile bearing capacity (Chen and Martin 2002; Comodromos et al. 2009).

The geomaterials (e.g., soils and/or rocks) within a slope are natural materials, and the
properties of the geomaterials are dependent upon the natural deposit and loading histories,
which are beyond the control of the engineer. Due to the incomplete knowledge regarding the
deposit and loading histories, the geotechnical properties at a site could not be known prior to
the site investigation. In addition, because only a limited number of boreholes are afforded in
a given project, the geotechnical properties are only known at the borehole locations. The
properties at all other positions cannot be known and must be characterized from the known
values at the borehole locations. Owing to the inherent spatial variability of the geotechnical
properties and the limited availability of borehole data, the geotechnical properties at a given
site will be uncertain. The uncertain geotechnical properties are often characterized with fuzzy
or random variables, or random fields (Cho 2007; Wang et al. 2010; Ching and Phoon 2013;
Tian et al. 2016; Xiao et al. 2016; Li et al. 2017; Wang et al. 2017; Xiao et al. 2017; Zhang et
al. 2017; Liu and Cheng 2018; Kawa and Puta 2019; Tun et al. 2019). The uncertainty in the
input geotechnical properties further complicates the design of stabilizing piles.

In the face of the geotechnical properties uncertainty, the level of stability of a slope,
regardless of whether it is reinforced with stabilizing piles or not, will be uncertain and could

not be expressed as a fixed value (Griffiths and Fenton 2004; Cho 2007; Li et al. 2016; Wang
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et al. 2018). To compensate for this uncertainty, a conservative estimate of the geotechnical
properties is usually made in the design. And, to further ensure safety, the computed factor of
safety FS, as a measure of the safety level, in a feasible design is required to be no less than a
target FS. With such a deterministic design approach, however, the true safety of a candidate
design is unknown, the resulting design might be either over- or under-designed. Alternatively,
the probabilistic design approaches that allow for an explicit consideration of the uncertainty
have long been advocated (Li and Lumb 1987; Christian et al. 1994; Duncan 2000; Juang et al.
2018). However, the designs obtained with the probabilistic approaches are strongly affected
by the statistical information of the input geotechnical properties (Wang et al. 2013; Juang et
al. 2014), which are difficult to characterize. Thus, the dilemma of whether to over-design for
safety or under-design for cost efficiency has not been fully overcome, even though the design
approaches evolve from deterministic to probabilistic approaches. To address this dilemma,
robust design methods, originated in the field of quality and industrial engineering (Taguchi
1986; Phadke 1989; Beyer and Sendhoff 2007), have recently been adopted for applications in
geotechnical designs (Juang and Wang 2013; Juang et al. 2014; Khoshnevisan et al. 2014). In
the context of robust geotechnical design (RGD), the design robustness of the geotechnical
system against the uncertainty in the input geotechnical parameters is explicitly considered
along with cost and safety requirements.

In this paper, a new framework for the robust design of stabilizing piles is established
that considers: 1) the coupling between the stabilizing piles and the slope; 2) the robustness of
the stability of the reinforced slope against the uncertainty in the input parameters; and 3) the
multi-objective optimization of the design robustness, economic aspect, and safety. The rest

of this paper is organized as follows. First, this new optimization-based design framework for
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stabilizing piles is established. A hypothetical example, in terms of the design of stabilizing
piles in a homogeneous earth slope, that utilizes this new design framework is then detailed.
Thereafter, a comparison with the conventional geotechnical design approaches is undertaken
to demonstrate the superiority of the advanced framework. Finally, the concluding remarks

are made based upon the results presented.

2. New Design Framework for Stabilizing Piles in Slopes

While the significance of the coupling between the stabilizing piles and the slope, the
uncertainty in the input geotechnical parameters, and the economic constraint in the design of
stabilizing piles have long been recognized, an integrated design framework that can consider
explicitly all these factors remains unavailable. In this paper, a new optimization-based design
framework for stabilizing piles that considers all these factors simultaneously is advanced.
2.1 Modeling of the coupling in the pile-slope system

Figure 1 illustrates the coupling in a pile-slope system, in which the failure surface in
an unreinforced slope and those in reinforced slopes (with three designs of stabilizing piles
herein) are examined. In Figure 1(a), the depth of the failure surface in the unreinforced slope
is shallow and passes above the slope toe. In Figure 1(b) and Figure 1(c), the piles are located
around the middle part of the slope, and the pile lengths are greater than the depth of the
initial failure surface; as a result, the failure surfaces in the reinforced slopes extend to greater
depths. However, the length of the piles in Figure 1(b) is only slightly greater than the depth
of the initial failure surface, unlike the one in Figure 1(c). Consequently, the failure surface in
the reinforced slope in Figure 1(b) could not be blocked by the piles; and, the earth pressure

transferred by the piles, indicated by the maximum bending moment of the piles Mmax, is quite
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small (i.e., Mmax = 99.4 kN-m), indicating that the bearing capacity of the piles cannot be fully
utilized. On the other hand, the failure surface in the reinforced slope in Figure 1(c) could be
blocked by the piles, and a greater part of the earth pressure from the upper unstable layer is
transferred to the lower stable layer (i.e., Mmax = 1153 kN-m). Thus, the improvement of the
slope stability, indicated by the factor of safety of the reinforced slope FS2, in Figure 1(c) is
more significant (i.e., F'S2 = 1.28) than that in Figure 1(b) (i.e., F:S2 = 1.09). In Figure 1(d), the
stabilizing piles are located in the lower part of the slope and the length of the piles is much
greater than the depth of the initial failure surface, which causes a reduction in the length of
the failure surface in the reinforced slope, and the new failure surface passes above the top of
the piles. Note that although the earth pressure transferred by the piles is significant in Figure
1(d) (i.e., Mmax = 1081 kN-m), the improvement of the slope stability is not apparent (i.e., F'S2
= 1.16). Thus, the failure surface, earth pressures on piles, and stability of reinforced slope are
all affected by the coupling between the stabilizing piles and the slope. This coupling must be
explicitly considered in the analysis and design of stabilizing piles.

Given the recognized effectiveness of numerical solutions for analyzing the coupling
between the structures and the geomaterials, the 2-D explicit finite difference program FLAC
version 7.0 (2011) is adopted herein as the solution model for evaluating the stability of the
pile-slope system. Within FLAC version 7.0, the slope stability is evaluated with the strength
reduction method, in which the resistance (i.e., shear strength) of the geomaterials is gradually
adjusted to bring the slope (either reinforced or unreinforced) to the limit equilibrium state. It
is well known that the behavior of a pile-slope system is a 3-D problem and which should be
studied with 3-D numerical simulations; otherwise, the sliding of the geomaterials through the

space between adjacent piles could not be simulated. However, the 3-D numerical simulation
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can be computationally prohibitive for the following probabilistic stability analysis and design
optimization. In reference to Kourkoulis et al. (2010), an effective soil arching can be formed
between adjacent piles when the ratio of the pile spacing over the pile diameter is less than 4.0.
Under such circumstances, the plane-strain condition is taken in this study and the maximum
ratio of the pile spacing (i.e., center-to-center spacing between piles) over the pile diameter is
set to be 3.0. Thus, the stability of the pile-slope system can be evaluated with 2-D numerical
simulations; in which, the piles are modeled with elastic-perfectly plastic beam elements, the
interfaces between the piles and the geomaterials are modeled with interface elements, and the
pile spacing is inputted to the numerical models to realize the resistance of the piles (against
slope failure) per longitudinal length. The plastic moment of the piles, which is required in the
2-D numerical simulations, is derived with plasticity theory of reinforced concrete. Since the
stability of a slope (either reinforced or unreinforced) can be dominated by the shear strength
of the geomaterials, the behaviors of the geomaterials in this study are simulated with Mohr-
Coulomb models.
2.2 Formulation of the design robustness of the reinforced slope

For the pile-slope system with the design parameters d and the non-design variables @
as inputs, the response or performance of this system g(d, 6) is expressed as:

g(d.0)=R(d,0)-T(d,0) (1)
where R(d, #) and T(d, 0) are the resistance term and load term, respectively. Mathematically,
the uncertainty in the input parameters @ will lead to the uncertainty in the output or system
response g(d, 6). In reference to Figure 2, the relationship between the output g(d, #) and the

inputs @1is captured by a monotonic performance function g(d, #). For an arbitrary distribution

of the inputs 6, the output g(d, ) is a distribution, rather than a fixed value.
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In a deterministic design, the safety of a design is evaluated and expressed as a factor
of safety F'S:

o _Rd.9)
7(d,0)

2

In practice, a design is deemed feasible if the computed F'S is greater than 1.0. To compensate
for the uncertainty in the input parameters and adopted model, a conservative estimate of the
input parameters (e.g., 20" percentile of the resistance term R and 80" percentile of the load
term 7; see Figure 2) and a target F'S, FSt (e.g., FSt = a value greater than 1.0, say, 1.2), may
be adopted. Since the uncertainty is not explicitly included in the analysis, the true safety of
the design is unknown and the resulting design might be either over- or under-designed. To
overcome this problem, the probabilistic approaches which permit an explicit consideration of
the uncertainty (e.g., uncertain variables are simulated as random variables or random fields)
have long been advocated (Li and Lumb 1987; Christian et al. 1994; Cherubini 2000; Duncan

2000). In probabilistic designs, the safety of a design d is evaluated with the computed failure

probability Pror reliability index £.

P, =Pilgd.0)<0]= [ f(©)do=[ f(g)dg (3a)

2(d.8)<0
P, =0(-p) (3b)
where f{ 0) is the probability density function (PDF) of the uncertain input parameters &, f{(g) is
the PDF of the performance function g(d, #); and, ®(-) is the cumulative distribution function
(CDF) of the standard normal variable. To ensure the safety of the resulting design, a target
failure probability Py (e.g., Pir = 4.7x10) or a target reliability index Sr (e.g., fr = 2.6) is

suggested. A design is deemed feasible if the computed failure probability Pris less than the
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target failure probability Py or the related reliability index fis larger than the target reliability
index fr.

Note that while the formulation is simple and easy-to-follow, the practical application
of the probabilistic approaches in the geotechnical design is not an easy task. The challenge in
the geotechnical design is attributed to the fact that the geomaterials are natural, rather than
manufactured materials. The degree of uncertainty in the geotechnical properties tends to be
greater than that in the structural counterpart and the uncertainty in the geotechnical properties
could be much more difficult to characterize. Furthermore, the property of the geomaterials is
often spatially correlated. The spatial correlation characteristics of the geotechnical properties
could best be characterized with the random field theory (Fenton 1999; Cho 2007; Tian et al.
2016). The anisotropic exponential autocorrelation structure is adopted herein to capture the

spatial correlation of the geotechnical properties:

2|x, — 2|y, —
y.—y2|)=exp[——|x‘ﬂhxZ']exp(——'” y2|j )

p(|xl X

3

A

v

where |x1 — x2| is the horizontal distance between the two positions of (x1, y1) and (x2, y2); [y1 —
2| is the vertical distance between the two positions of (x1, y1) and (x2, y2); and, An and Av are
the horizontal and vertical scale of fluctuations of the geotechnical properties, respectively.

In a numerical modeling of a slope (either reinforced or unreinforced), the geometrical
domain of the slope is discretized into a set of small elements, thus permitting an assignment
of different geotechnical properties to different numerical elements. That is to say, the spatial
variability of the geotechnical parameters can be directly simulated in the numerical modeling.
Note that while lots of computationally efficient methods have been developed for the

probabilistic analysis of the geotechnical systems, most of them cannot be applied to
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geotechnical systems with random fields as inputs; whereas, the sampling-based methods
such as the Monte Carlo simulation (MCS) are often deemed the most reliable approaches for
dealing with the random fields. To consider the spatial variability of the input geotechnical
parameters in the design of stabilizing piles, the random finite difference method (RFDM) is
adopted in this study. In the context of the RFDM, the spatial variability of the input
geotechnical parameters is simulated with the random field theory, and potential realizations
of the random field of the geotechnical parameters are sampled with MCSs. For each and
every realization of the random field, the stability of the slope will be analyzed
deterministically utilizing the finite difference program (e.g., the 2-D FLAC adopted in this
paper). Since the parameters within a numerical element are captured by fixed parameters and
no variation can be allowed, the geotechnical parameters that are averaged within the element
domain, rather than those at the grids, should be sampled and taken as the inputs to the
numerical analysis. The integration of brute MCS and numerical analysis can be
computationally prohibitive. To improve the computational efficiency (of this RFDM), the
subdomain sampling method (SSM) (Juang et al. 2017), in lieu of the brute MCS, is adopted
in this paper for sampling the potential realizations of the random field of the input
geotechnical parameters. A detailed formulation of this SSM is summarized in Appendix A.
In a typical geotechnical practice, site-specific data can be quite limited due to budget
constraints for site investigation. Thus, it is difficult to derive the statistical information of the
input geotechnical parameters with certainty (Gong et al. 2017). In such a circumstance, the
probabilistic approaches are usually undertaken using inaccurate or assumed statistics;
however, the designs obtained with the probabilistic approaches are strongly influenced by the

adopted statistics (Wang et al. 2013). To overcome this issue of the probabilistic approaches,
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robust design, originated from the field of quality and industrial engineering (Taguchi 1986),
is adopted, in this paper, for the design of stabilizing piles. The essence of this robust design
is to derive a design in which the system behavior is robust against the uncertainty in the input
parameters. In the proposed robust design of stabilizing piles, the robustness of the stability of
the reinforced slope against the uncertainty (i.e., spatial variability) in the input geotechnical
parameters, R, is formulated based upon the concept of “signal-to-noise ratio” (SNR) (Phadke

1989; Gong et al. 2014a).

©)

2
R=S8NR=101log,, w
o’ [FS,]

where E[FS2] and of F'S2] are the mean and standard deviation, respectively, of the stability of
the reinforced slope. Note that although various robustness measures have been developed for
the robust geotechnical design (RGD) (Wang et al. 2013; Juang et al. 2014; Khoshnevisan et
al. 2014; Gong et al. 2014a&2014b), the selection of the robustness measure can be problem-
specific depending upon the level of uncertainty in geotechnical parameters characterization:
1) in the scenario where only the nominal values of the geotechnical parameters are known,
the gradient-based robustness may be utilized (Gong et al. 2014b); 2) in the scenario where
the ranges of the geotechnical parameters could be estimated, the SNR-based robustness may
be utilized (Gong et al. 2014a); and 3) in the scenario where the probabilistic distribution of
the geotechnical parameters may be characterized but the statistical information could not be
ascertained, the feasibility-based robustness may be used (Wang et al. 2013). In the proposed
robust design of stabilizing piles, the noise factors (i.e., difficult-to-characterize and hard-to-
control parameters) are mainly associated with the spatially varied geotechnical parameters.

Note that while the feasibility-based robustness is theoretically sound, the simpler SNR-based
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robustness measure formulated in Eq. (5) is adopted herein owing to its simplicity and
practical applicability. As such, the calculation of the feasibility of the failure probability
satisfying the target failure probability can be avoided; meanwhile, the characterization of the
uncertainty in the statistical parameters of the geotechnical properties, which is required for
the feasibility calculation, can be avoided.

With the numerical model established in the previous section as a solution model, the
uncertainty in the noise factors naturally propagates into the uncertainty in the stability of the
reinforced slope, which could be captured by the standard deviation of the stability (in terms
of the factor of safety FS) of the reinforced slope of F'S2]. It is noted that a higher of F'S2] value
indicates a higher variability of the stability of the reinforced slope (in the face of the input
geotechnical properties uncertainty), thus signaling a lower robustness of the stabilizing pile
design. Since the safety of the stabilizing pile design can also be affected by the mean of the
stability of the reinforced slope E[FS2], the standard deviation of the stability of F'S2] is further
normalized by the mean of the stability E[FS2]. Then, the SNR-based robustness R is readily
formulated, as shown in Eq. (5). Similarly, a higher R value signals a lower variability of the
stability of the reinforced slope, and thus indicating a higher robustness. Here, the detailed
procedure for derivation of the mean E[FS2] and standard deviation of F'S2] of the stability of
the reinforced slope using the subdomain sampling method (SSM) is given in Appendix A. In
reference to the robustness measure formulated in Eq. (5), the conventional factor of safety FS
is embedded in this design robustness; and, this design robustness measure is calculated from
the by-products of the probabilistic analysis, in terms of the statistics of the factor of safety FS.
Hence, the proposed design framework is compatible with the conventional deterministic and

probabilistic design approaches; and, the computational coupling of the evaluation of the
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design robustness and the probabilistic analysis would not lead to significant increase in the
computational demands of the advanced robust design. Indeed, the only increase in the
computational demand of the advanced design framework is the multi-optimization shown in
Eq. (6), in comparison to the conventional probabilistic design approaches.
2.3 Optimization-based design of stabilizing piles incorporating robustness

The goal of the advanced optimization-based design framework for stabilizing piles is
to derive an optimal stabilizing pile design (represented by a set of design parameters d) in the
design space DS such that the target stability of the reinforced slope TS can be satisfied, while
both robustness R and cost efficiency E will be simultaneously optimized. This optimization-
based design framework for stabilizing piles is set up as follows.

Find: Pile parameters d
Subject to: Design space DS

Target stability of reinforced slope 7S

6
Ultimate bearing capacity of stabilizing piles M ©)

Objectives: Maximizing design robustness R

Minimizing construction cost C

where d represents the design parameters of the stabilizing piles that are easy-to-control (by
the engineer). For example, the geometrical parameters of the pile diameter D, pile spacing S,
pile length L and pile position X are taken as the design parameters d, expressed as d = {D, S,
L, X}. Whereas, the mechanical parameters of the piles such as the steel reinforcement ratio
and concrete modulus are taken as fixed values; and, the steel strength and concrete strength,
which are essential for estimating the ultimate bearing capacity of the piles, could be dealt as
uncertain parameters (or noise factors) due to the manufacturing error.

The design space DS is an assembly of candidate designs of stabilizing piles, which

can be determined based upon local experience and engineering judgment. The target stability
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TS is a mandatory requirement of the stability of the reinforced slope, expressed in terms of
the target factor of safety FSt or target failure probability Psr (or equivalently target reliability
index fr), which could be specified by the owner or client based upon the significance of the
project or consequences of failure. The ultimate bearing capacity Muit is the plastic moment of
the piles, which is evaluated with the plasticity theory of steel reinforced concrete. The design
robustness R is the “signal-to-noise ratio” (SNR) of the stability of the reinforced slope against
the variation in the uncertain input parameters (or noise factors). The construction cost C is
the economic aspect of the design of stabilizing piles. Assuming no variation in the cost with
respect to the site condition and pile installation technique in a given project, only the material
cost of the piles is considered in this paper. Further, the steel reinforcement ratio of the piles is
taken as a fixed value. Thus, the cost C could be approximated herein by the volume of the

stabilizing piles per longitudinal length.

_z-D*-L
45

¢ Co ()

where Co represents the cost per cubic meter of steel reinforcement concrete.

The desire to maximize the design robustness R and that to minimize the cost C are
two conflicting objectives. The optimization in Eq. (6) cannot lead to a single best design with
respect to both objectives simultaneously. Instead, this optimization only leads to a set of non-
dominated designs which are superior to all others in the design space, but not superior or
inferior to any other in this set. As depicted in Figure 3, although the non-dominated design d
is less expensive (indicating higher cost efficiency), the counterpart of non-dominated design
d, yields a larger R value (indicating higher robustness). Note that although the utopia design

dy is optimal with respect to both objectives, it may not be located in the feasible domain (i.e.,
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the target stability 7§ is not satisfied or not belong to design space DS). These non-dominated
designs collectively form a Pareto front which reveals a tradeoff relationship between these
two conflicting design objectives (Deb et al. 2002; Juang et al. 2014). This Pareto front can be
obtained utilizing multi-objective optimization algorithms such as the Multi-objective Genetic
Algorithm, MOGA (Murata and Ishibuchi 1995), Niched Pareto Genetic Algorithm, NPGA
(Horn et al. 1994), Non-dominated Sorting Genetic Algorithm version II, NSGA-II (Deb et al.
2002; Juang and Wang 2013), Multi-algorithm Genetically Adaptive Multiobjective Method,
AMALGAM (Vrugt and Robinson 2007; Huang et al. 2014), weighted sum-based algorithm
(Hajela and Lin 1992), or spreadsheet-based algorithm (Khoshnevisan et al. 2014).

Note that although various optimization algorithms could be available in the literature
of industrial, civil and electrical engineering, the optimization of the geotechnical system such
as the stabilizing piles is different from the optimization problem in other fields. For example,
the choice of the pile diameter is limited to piling equipment and local practice, only discrete
values can be taken. A survey of the geometrical parameters of the stabilizing piles installed
in the Three Gorges Reservoir Area, China indicates that the pile lengths were often taken as
discrete or integer values and the piles were usually constructed at the elevations of discrete or
integer values. Thus, a discrete design space DS is selected in this paper for the optimization
design of stabilizing piles to ensure the feasibility in the construction. Since a discrete design
space is adopted with a finite number of candidate designs (e.g., 480 designs in this paper),
the optimization presented in this study adopts an exhaustive search among the designs in the
discrete design space, which is different from many other optimization techniques reported in
the literature (e.g., Hajela and Lin 1992; Murata and Ishibuchi 1995; Deb et al. 2002; Vrugt

and Robinson 2007), where potential candidate designs are generated and analyzed selectively,
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and not exhaustively. Here, the safety, robustness, and cost for each and every candidate
design in the selected discrete design space are evaluated. On the basis of the evaluated
performance of candidate designs, the Pareto front revealing the tradeoff between design
robustness and cost efficiency can be derived utilizing the non-dominated sorting algorithm in
the NSGA-II (Deb et al. 2002). It should be noted that although a discrete design space is
adopted in this study, it is not the limitation of the advanced design framework and a
continuous design space can also be adopted if so desired (and then the optimization
algorithms reported in the literature can be applied); however, the random finite difference
method (RFDM)-based probabilistic analysis of the candidate design will be iteratively called
in the direct application of these optimization algorithms, which might increase the
computational efforts for this problem.

The obtained Pareto front could help render an informed design decision. For example,
either the least cost design that is above a pre-specified level of robustness Rp (see design d3
in Figure 3) or the most robust design that is below a pre-specified level of cost Cr (see design
d4 in Figure 3) can be selected as the most preferred design in the design space DS. However,
the determination of an appropriate level of the robustness or cost is usually problem-specific.
In situations where a strong preference is not pre-specified by the owner or client, the knee
point on the Pareto front, which can yield the best compromise with respect to the conflicting
objectives, can be identified (see design ds in Figure 3) and taken as the most preferred design
(Deb and Gupta 2011). As illustrated in Figure 3, on the left side of the knee point design ds, a
slight reduction in cost C could lead to a drastic decrease in the design robustness R, which is
not desirable; and, on the right side of the knee point design ds, a slight improvement in the

design robustness R requires a huge increase in cost C, which is also not desirable. Thus, this
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knee point design could be taken as the most preferred design in the design pool, if no design
preference is specified by the owner or client. Once the Pareto front is obtained, this knee
point design is easily identified with the marginal utility function approach (Deb and Gupta
2011), normal boundary intersection approach (Deb and Gupta 2011), reflex angle approach

(Deb and Gupta 2011), or minimum distance approach (Gong et al. 2016a).

As can be seen, the coupling between the stabilizing piles and the slope, the robustness
of the stability of the reinforced slope against the uncertainty in the input parameters (e.g., the
spatial variability of the geotechnical parameters and the manufacturing error of the structural
materials), economic aspect, and conventional safety requirements are explicitly considered in
the advanced design framework for stabilizing piles; and, this design framework is carried out

through a multi-objective optimization with respect to these design objectives.

3. Illustrative Example: Design of Stabilizing Piles in An Earth Slope

To demonstrate the effectiveness and significance of the advanced design framework,
the design of stabilizing piles in a homogeneous earth slope, shown in Figure 4, is adopted as
an illustrative example. The parameters setting and the design results are presented below.
3.1 Parameters setting in the illustrative example

In reference to Figure 4, the width and height of the studied slope are 20.0 m and 14.0
m, respectively, and the depth to bed rock is assumed to approach infinity (H— o). Further
assume no surcharge on the top of the slope and the groundwater level far below the slope. In
this example, both soil strength parameters, in terms of the cohesion ¢ and friction angle ¢, are

treated as random fields, and their statistical information is tabulated in Table 1. The other soil
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parameters such as the unit weight, bulk modulus and shear modulus are assumed as fixed (or
deterministic) values, as listed in Table 2.

An initial analysis of this slope indicates that the stability of this slope is relatively low
(i.e., F'S1 = 1.14), which is thus designed to be reinforced by a single row of steel reinforced
concrete stabilizing piles. According to the optimization framework outlined above, the easy-
to-control geometrical parameters, including the pile diameter D, pile spacing S, pile length L
and pile position X, are taken as the design parameters d, expressed as d = {D, S, L, X}. The
steel reinforcement ratio and concrete modulus (of the piles) are treated as fixed values, as
shown in Table 2; and, the steel strength and concrete strength are taken as uncertain input
parameters and their statistical information is also given in Table 1. For ease of construction, a
discrete design space DS shown in Table 3 is selected in this paper for the optimization design.
The maximum ratio of the pile spacing S over the pile diameter D is set to be 3.0 (i.e., S/D =
3.0) in this optimization problem, thus effective soil arching can be formed between adjacent
piles (Kourkoulis et al. 2010). In the selected design space DS shown in Table 3, a total of
480 candidate designs are possible and the optimal design will be identified from this pool.

To incorporate the coupling between the stabilizing piles and the slope explicitly, the
numerical model established above is adopted herein as the solution model for evaluating the
safety performance of the pile-slope system. The 2-D explicit finite difference program FLAC
version 7.0 (2011) is used and plane-strain condition is assumed. To minimize the boundary
effect, the bottom boundary is set at 30.0 m below the slope toe, the left-side boundary is set
at 30.0 m away from the slope toe, and the right-side boundary is set at 30.0 m away from the
slope crest. The geometrical domain of this slope problem is discretized into 1,296 elements

(the minimum size of the discretized elements is 1.0 mx1.0 m) for ease of assigning the soil
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parameters (e.g., ¢ and ¢). The left- and right-side boundaries are restrained horizontally, and
the bottom boundary is restrained vertically. The soil is simulated with Mohr-Coulomb model,
the stabilizing piles are modeled with elastic-perfectly plastic beam elements, and the soil-pile
interfaces are modeled with interface elements. The setting of the parameters of the piles and
those of the interfaces is tabulated in Table 2. Note that a bracketing approach similar to that
proposed by Dawson et al (1999) is used in FLAC version 7 for deriving the factor of safety
FS of the slope, and the resolution limit is set at 0.02 in this paper. As such, the model error of
this numerical model, in terms of the discrepancy between the true FS and the calculated F'S
(i.e., true F'S minus calculated FS), might be taken as an uncertain variable that is uniformly
distributed in the range of [-0.02, 0.02].

It should be noted that the execution of a deterministic analysis of the slope stability
takes about 100 seconds on the Windows 7® PC equipped with a 192 GB RAM and an Intel®
Xeon® Processor E5-2699 v4 @ 2.20 GHz. To reduce the number of the realizations or
samples of the uncertain input parameters involved in the RFDM analysis and thus improving
the computational efficiency, the subdomain sampling method (SSM) (Juang et al. 2017) is
utilized for generating the realizations of the random fields of soil strength parameters and the
samples of the other uncertain parameters (i.e., the steel strength, concrete strength and model
error). The parameters of the adopted SSM are set up as follows: 1) the probability of ¢ in Eq.
(A3) is taken as &€ = 1.0x107° for locating the possible domain of uncertain parameters; 2) the
likelihoods of the samples being located in the subdomains are taken as a decreasing sequence
of par=1/3, p2=1/3%, pa3=1/3%, ... ; 3) the target number of samples in each subdomain is
taken as #1 = 30; and 4) the number of subdomains is taken as ns = 13. Thus, a total of 390

realizations or samples of the uncertain input parameters will be generated and analyzed for
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estimating the statistics of the stability of the slope (either reinforced or unreinforced). This
number of samples is close to that required in the stochastic response surface method (L1 et al.
2011&2015), which is well known for its high computational efficiency in analyzing random
field problems.
3.2 Results obtained with the advanced optimization-based design framework

With the derived statistics of the stability of the reinforced slope (using SSM), the
design robustness R, in terms of the “signal-to-noise ratio” (SNR), and the design safety, in
terms of the mean of the stability E[FS2] (to be compatible with the deterministic approach) or
failure probability Pr (to be compatible with the probabilistic approach) of the reinforced
slope, can readily be evaluated. For example, the failure probability of the reinforced slope Pr
(or equivalent reliability index f) in this paper is estimated with the fourth moment method
FM-1 outlined in Zhao and Ono (2001). Figure 5 validates the effectiveness and accuracy of
the adopted SSM, using MCS, in deriving the design robustness R, design safety E[FS2] and
design safety Prof the reinforced slope through an analysis of 15 arbitrarily selected candidate
designs. Note that the number of samples utilized in the brute MCS herein is taken as 5,000.
In Figure 5(a) and Figure 5(b), the data points (of design robustness R and safety E[FS2]) are
both close to the 1:1 line (i.e., a perfect match), thus the design robustness R and design safety
E[FS>] estimated from the adopted SSM match well with those from the MCS. In Figure 5(c),
although there is some discrepancy in the derived failure probability Prbetween the SSM and
the MCS, the 90% confidence interval of the failure probability Prderived from the MCS can
bracket the failure probability Prderived from the SSM with a high chance. In the context of
the brute MCS, the coefficient of variation of the failure probability estimate Py, denoted as opy,

is approximated as follows (Ang and Tang 2007).
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S 1- Pf (8)
Pr = Mypes * p/ _

where nucs represents the number of samples utilized in the MCS. With the estimated failure
probability Prand its COV, the 90% confidence interval of the failure probability Prshown in
Figure 5(c) can readily be obtained with an assumption that the estimated failure probability
follows a lognormal distribution. From there, the accuracy of the adopted SSM in evaluating
the design robustness and safety of the reinforced slope is validated. However, with the SSM,
only 390 realizations (or samples) of the uncertain input parameters are required. As such, the
computational efficiency of the proposed optimization design could be guaranteed.

Since a discrete design space is adopted in this example, the design safety, robustness,
and cost for each and every candidate design could be evaluated and the results are shown in
Figure 6. The performance evaluation of these 480 candidate designs took approximately 30
days utilizing parallel computing on the Windows 7® PC equipped with a 192 GB RAM and
an Intel® Xeon® Processor E5-2699 v4 @ 2.20 GHz. To be compatible with the conventional
deterministic and probabilistic approaches, the design safety in this example is measured with
the mean of the stability E[FS2] and the reliability index £ (or equivalent failure probability Py)
of the reinforced slope, respectively. Figure 6(a) depicts the relationship between the mean of
the stability E[FS2] and the cost C. Figure 6(b) depicts the relationship between the reliability
index £ and the cost C. Figure 6(c) depicts the relationship between the robustness R and the
cost C. In Figure 6(a) and Figure 6(b), the design safety tends to increase with the increase of
the cost C, as indicated by the increase of the mean of the stability E[FS2] and increase of the
reliability index f. In Figure 6(c), the robustness also increases with the increase of the cost.

Thus, a more conservative and robust design will cost more, indicating that a tradeoff exists
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between the safety (and robustness) and the cost. However, the various combinations of the
design parameters means that the candidate designs of similar cost level may yield different
levels of safety and robustness, and the candidate designs of different cost level may yield
similar level of safety and robustness. Indeed, these combinations of the design parameters
provide the theoretical basis for the optimization-based design of stabilizing piles.

In reference to the optimization algorithm of the stabilizing piles shown in Eq. (6), the
design of the stabilizing piles in this example slope is readily undertaken. Through the sorting
algorithm in the NSGA-II (Deb et al. 2002), a Pareto front consisting of nine non-dominated
designs is established in the selected design space DS, as depicted in Figure 6(c). This Pareto
front shows the tradeoff between the robustness and the cost. As can be seen from Figure 6(c),
these non-dominated designs on the Pareto front are superior to all others in the design space
(either costs less or yields higher design robustness). Next, the knee point on this Pareto front,
as depicted in Figure 6(c), is identified with the minimum distance approach outlined in Gong
et al. (2016a). Here, this knee point could be taken as the most preferred design in the design
space if the design constraint of the target stability 7S is not applied.

It should be noted that the choice of the target stability 7§ can affect the resulting
design, as indicated by the design results obtained with different choices of the target stability
TS shown in Figure 7 and Table 4. The design results, in terms of the Pareto front and knee
point, obtained with two different levels of target FS (i.e., St = 1.20 and 1.25) (MCPRC
2002) are illustrated in Figure 7(a) and Figure 7(b). Similarly, the design results obtained with
two different levels of target reliability index (i.e., fr = 2.6 and 3.2) are shown in Figure 7(c)
and Figure 7(d). The design results in Figure 7 and Table 4 depict that a reduction in the target

stability 7S, as reflected by the decrease of target factor of safety and the decrease of target
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reliability index, could result in more feasible designs and more non-dominated designs (on
the Pareto front); and, the associated most preferred design, in terms of the knee point on the
Pareto front, will generally yield a smaller cost (desirable) and lower safety (not desirable),
even though the most preferred design derived with fr= 2.6 and that derived with fr= 3.2 are
identical in this problem. The design results that two different target reliability indexes yield
the same knee point design might be caused by the parameters setting of the design space. The
advantages of the Pareto front and knee point for identifying the most preferred design of the
stabilizing piles, as presented in this paper, are not fully realized because of the finite number
of candidate designs. For example, only three possible values of pile diameter are available.
As a matter of fact, the Pareto fronts derived in the multi-objective optimizations are often
continuous curves; whereas, the Pareto fronts derived in this example are contiguous polylines,
as shown in Figure 7. Thus, the Pareto fronts shown in Figure 7 may not reveal the theoretical
(or mathematical) tradeoff between the robustness and the cost in the design of the stabilizing
piles, but only the tradeoff between the robustness and the cost in the design space analyzed.
Similarly, the knee points shown in Figure 7 and Table 4 may only indicate the most preferred
designs in the design space. However, the discrete design space adopted in this study could be
deemed rational and acceptable owing to the following reasons: 1) some design parameters of
the stabilizing piles could only be taken as discrete values (due to equipment or local practice);
and 2) computational efficiency issue would not allow for the numerical analysis of an infinite
number of candidate designs.
3.3 Comparison between advanced design framework and conventional designs

The conventional geotechnical design approaches (either deterministic or probabilistic)

tend to focus on the design safety; thus, the design of stabilizing piles with such approaches
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can be implemented as a single-objective optimization problem: the design constraints are the
design space DS and target stability 7S, and the objective is to minimize the cost C. With this
single-objective optimization algorithm, the stabilizing piles in this slope are designed and the
design results are compared here to those obtained from the advanced design framework.

As mentioned above, a conservative estimate of the uncertain input parameters and a
target factor of safety FSt are usually taken in the deterministic design approach to overcome
the uncertainty involved. The following design scenarios are studied for comparison purposes:
the conservative estimate of the soil strength parameters is simulated by taking the 50, 40t
and 30™ percentiles of the assumed distributions (see Table 1), and the target factor of safety
FSt is taken as 1.20. The designs obtained with all these design scenarios are given in Table 5.
The data in Table 5 depict that a more conservative estimate of the uncertain input parameters
could lead to a more conservative and costly design. However, the true safety or the degree of
conservativeness of the design is not known. Thus, the resulting design may be either over- or
under-designed depending upon the degree of conservativeness adopted (in the estimation of
the uncertain input parameters and the selection of target factor of safety FSt). For example, if
the 40™ percentiles of the assumed distributions are taken as the inputs, the resulting design is
fairly conservative in this problem (i.e., the reliability index g is close to 4.0 and the failure
probability Pris 3.61x107). Further, if the 30" percentiles of the assumed distributions are
taken, no feasible designs can be identified in the design space DS shown in Table 2.

Next, the stabilizing piles in this slope are designed utilizing the probabilistic approach.
With the relationship between the reliability index £ and the cost C illustrated in Figure 6(b),
the least cost design that is above the target reliability index fr can be located and taken as the

most preferred design. For comparison purposes, the following two levels of target reliability
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554  index pfr are studied: fr= 2.6 and 3.2. The designs obtained from these two target reliability
555  indexes are tabulated in Table 5. The results indicate that a more conservative target reliability
556  index could lead to a more conservative and costly design. Since the uncertainty in the input
557  parameters can be explicitly considered, the frue safety of the design, in terms of the failure
558  probability Py, is known to the engineer, which allows for a more informed design decision.
559  However, the statistical information of the input geotechnical parameters, a prerequisite for
560 the probabilistic designs, is often difficult to estimate with certainty due to limited availability
561  of site-specific data. Thus, the effectiveness of the probabilistic design can be degraded by the
562  inaccurate statistical characterization of the input geotechnical parameters (Juang and Wang
563  2013; Wang et al. 2013).

564 With the design results presented above, a comparison between the designs obtained
565  with the conventional design approaches and those obtained with the advanced design
566  framework is made, as shown in Figure 8. This comparison focuses on the cost C, design
567  safety (in terms of the failure probability Py) and design robustness R. The comparison
568  between the deterministic approach and the advanced framework is shown in Figure 8(a), and
569  the comparison between the probabilistic approach and the advanced framework is shown in
570  Figure 8(b). It can be seen from Figure 8 that the robustness of the designs derived from the
571  advanced design framework is always greater than that of the designs obtained from the
572 conventional design approaches. Figure 8(a) shows that when the 50™ percentiles of the
573  assumed distributions are taken as the inputs, the deterministic design approach results in a 33%
574  reduction in the cost while increasing the failure probability by 4.8 times, which is not
575  desirable; and, when the 40" percentiles of the assumed distributions are taken, the

576  deterministic approach results in a 100% increase in the cost and the associated failure
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probability is reduced to 3.61x10”, which appears to be overly conservative. Thus, the
designs derived from the deterministic approach might be either cost-inefficient or overly
conservative, when the uncertainty is present but not explicitly included. In Figure 8(b), when
the target reliability index fr, in the probabilistic approach, is taken as 2.6, the probabilistic
approach leads to a 43% reduction in the cost while the failure probability is increased 6.6
times, which is not desirable; and, when the target reliability index fr is taken as 3.2, the cost
and the failure probability of the design obtained from the probabilistic approach are reduced
29% and 25%, respectively. That is to say, the advantages of the advanced design framework
over the probabilistic approach are not evident when the target reliability index fr is taken as
3.2, which could be attributed to the fact that the target reliability index of fr= 2.6 and that of
Pr= 3.2 yield the same knee point design (because of the discrete design space adopted), as
shown in Figure 7(c) and Figure 7(d).

Limited availability of site-specific data, in a typical geotechnical practice, can hinder
an accurate characterization of the statistics of input geotechnical parameters. In general, the
autocorrelation structure is the most difficult to characterize, the COV less so, and the mean
the easiest (Gong et al. 2017). A parametric study is undertaken to study the influences of the
COV and vertical scale of fluctuation (which describes the vertical autocorrelation structure)
on the variation of the stability of reinforced slope. For illustration purposes, the study results
of the preferred designs listed in Table 4 and Table 5 are shown in Figure 9 and Figure 10. As
can be seen, although the variation of the stability of reinforced slope are greatly influenced
by the input statistics (of geotechnical parameters), the influence on the designs obtained with
the advanced design framework is less significant; and, the design obtained with the advanced

framework tends to yield a smaller variation of the stability of the reinforced slope. In other
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words, the performances of the designs obtained with the advanced design framework tend to
be more robust against, or insensitive to, the uncertainty in the statistical characterization of
the input geotechnical parameters. Hence, the superiority of the advanced design framework

over the conventional design approaches in the aspect of design robustness is demonstrated.

4. Concluding Remarks

This paper presents a new optimization-based design framework for stabilizing piles.
The advanced design framework consists of three components: 1) the coupling between the
stabilizing piles and the slope, which is explicitly modeled with the finite difference program;
2) the spatial variability of the input geotechnical parameters, which is characterized with the
random field theory, and its influence on the design of stabilizing piles is evaluated with the
formulated design robustness; and 3) the optimization-based design, which is implemented as
a multi-objective optimization considering the design robustness, economic aspect and safety
requirements. This optimization-based design will only lead to a Pareto front, indicating the
tradeoff between robustness and cost among all designs that can satisfy the design constraints
(primarily safety). This Pareto front can aid in the informed design decision making process.
For example, the knee point on this Pareto front that yields the best compromise with respect
to the conflicting design objectives may be taken as the most preferred (or final) design.

The effectiveness of the advanced framework is demonstrated through an illustrative
example, the design of stabilizing piles in a homogeneous earth slope. It should be noted that
apart from the spatial variability of the input geotechnical parameters, both model uncertainty
and structural parameters uncertainty are also explicitly included in this example. The results

indicate that this new framework can be compatible with the conventional design approaches.
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The comparison between the designs obtained with the advanced framework and those
obtained with the conventional design approaches indicate that while the former might cost
more, the benefit in the improvement of the design safety is much more significant. Further,
the designs obtained with the advanced design framework are more robust against, or
insensitive to, the uncertainty in the statistical characterization of the geotechnical parameters.
Since the advanced design framework is built upon the foundation of conventional design
approaches (either deterministic or probabilistic) by considering explicitly an additional
design objective, namely, the design robustness, the advanced framework could be seen as a
complementary design strategy to the existing design approaches.

It is noted that the optimization of stabilizing piles is a challenging problem, especially
in the face of uncertainty. While the advanced design framework can be deemed effective, the
following limitations will warrant further investigation: 1) the computational efficiency of the
analysis and optimization of stabilizing piles caused by the coupling of numerical analysis and
random field modeling; 2) the advantages of the Pareto front and knee point for identifying
the most preferred design are not fully realized due to the discrete design space adopted; and 3)
the behavior of the pile-slope system is much more complicated than that derived from the 2-
D numerical analysis. Nevertheless, the design framework advanced could be regarded as a

significant step towards an improved design of stabilizing piles in the face of uncertainty.
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Appendix A. Subdomain Sampling Method (SSM) for Estimating the Statistics of

System Behavior

The essence of the SSM is to partition the possible domain of uncertain variables into
a set of subdomains and then to generate samples of uncertain variables in each and every
subdomain separately (Juang et al., 2017). In which, a distance index (d) based upon Hasofer-

Lind reliability index is adopted to locate the possible domain and to partition this domain.

d=\[n] [&,][n] (A1)
where R is the correlation matrix among the equivalent standard normal variables n = [n1, n2,
s 1, 17, where 7. is the number of uncertain variables. The standard normal variable 7; in n
is related to the uncertain variable x; in x.

n =0 [F(x,)] (A2)
where F(x;) is the cumulative distribution function (CDF) of uncertain variable x;, and ®(-) is
the CDF of the standard normal variable. With the distance index formulated in Eq. (A1), the
possible domain of uncertain variables x, denoted as [0, dmax), can be located.

Zo () =¢ (A3)
where y; () is the chi-square CDF with n. degrees of freedom, and ¢ is a probability which is

relatively low. The located possible domain of uncertain variables x, in terms of [0, dmax), is
readily partitioned into a set of subdomains, in terms of [do, d1), [d1, d2), [d2, d3), etc. The
likelihoods of the uncertain variables x being located in these subdomains could be taken as a

decreasing sequence for the purpose of being computationally efficient.
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where pai is the likelihood of the uncertain variables x being located in the subdomain [di-1, d).
Then, the samples of uncertain variables x are generated in each subdomain. The procedures
for generating a target number of samples in the subdomain [di-1, d) are given in Gong et al.
(2016b).

For ease of programing, a same target number of samples, denoted as 71, is adopted in
all these subdomains and this target number is taken as: #1 = 10pai/pai-1. With the generated
samples of uncertain variables, the deterministic analysis of the system behavior can readily
be undertaken, from which the statistics of the system behavior, in terms of the mean E[g], the

standard deviation ofg], the skewness a3[g] and the kurtosis c4[g], can be approximated as:

i=ng j=t

E[g]zzng/'g;j (AS)
i=1 j=1
i=ng j=1 2 03
olgl~ p; (g, —Elg)) (A6)
i=1 j=1
3
o (&g —Ele]
a[gl~ Pyl = (A7)
i=l j=1 O-[g]
4
&L (g~ Elgl
a,lgl= Pl = (A8)
i=l j=1 G[g]

where gj; is the system behavior evaluated with the jth sample in the ith subdomain, denoted
as xij; ns 1s the number of subdomains; and, p; is the likelihood or probability of the sample x;;

being generated in the domain of uncertain variables, which could be expressed as:

_pu (@)=, ()

i tl tl

(A9)
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Table 1. Statistical information of the uncertain input parameters (or noise factors) in the illustrative example

Scale of fluctuation

Uncertain input parameters Distribution Mean Cov Horizontal, 4 | Vertical, 4
Soil strength Cohesion, ¢ Lognormal 12.0kPa_ | 0.40° 50.0 m 2.5m
parameters * Friction angle, ¢ Lognormal 20.0 ° 0.25° 50.0 m 25m
Structural | Yielding strength of steel bar Normal 345x10° kPa | 0.05 ¢ - -
properties | Compression strength of concrete |  Normal 39x10°kPa | 0.12°¢ - -
Model error (true FS) — (calculated F1S) Uniform The distribution range is [-0.02, 0.02]

Note: ? the correlation coefficient between soil cohesion and soil friction angle is -0.5;

b data are from Cherubini (2000);
c data are from Wisniewski et al. (2012).




Table 2. Deterministic parameters in the illustrative example

Category Parameter Value
Unit weight (kN/m?) 17.0
Soil Bulk modulus (MPa) 330
Shear modulus (MPa) 150
Unit weight (kN/m?) 25.0
e . Young’s modulus (GPa) 35.0

Stabilizing piles Steel rgeinforcement ratio (%) 1.0

Thickness of concrete protective cover (m) | 0.05
Normal stiffness (MPa/m) 550
Soil-pile interfaces Shear stiffness (MPa/m) 550
Cohesion (kPa) 12.0
Friction angle (°) 20.0




Table 3. Design space DS selected in the illustrative example

Design parameters | Design pool (i.e., potential values of pile parameters)

Pile diameter, D (m) | {0.6 m, 0.9 m, 1.2 m}

Pile spacing, S (m) | {S§|S/D=2.0,5/D=3.0}

Pile length, L (m) {6m,8m, 10m, 12m, 14 m, 16 m, 18 m, 20 m}

Pile position, X (m) | {Im,3m,5m,7m,9m,11m,13m, 15m, 17 m, 19 m}




Table 4. Optimal designs of the stabilizing piles obtained with the advanced design framework

Number Most preferred design
Number of non- Pile design parameters d Design safet Design
Target stability TS of feasible dominated © (eSIEN paratietls Cost, C eolEn STty roblfsst r%ess
. 3 D)
designs designs D(m) | S(m)|L(m)|X(m)|(Com’m) | E[FS:] p R
Factor FSr=1.20 217 6 0.9 27 [ 120 | 5.0 2.827 1.22 3.624 25.995
of safety | FSt=1.25 74 4 1.2 3.6 | 140 | 3.0 4.398 1.25 4.707 25.902
Reliability | pr=2.6 256 7 0.6 1.8 | 140 | 5.0 2.199 1.19 3.237 25.870
index pr=3.2 111 5 0.6 1.8 | 140 | 5.0 2.199 1.19 3.237 25.870




Table 5. Optimal designs of the stabilizing piles obtained with the conventional geotechnical design approaches

Pile design parameters d Design safety Design
Design approach Cost, C robustness
£n app D(m) | S(m)|Lm)|X(m)| (Com¥m) | E[FS:] B Py P
. ... | 50th percentile | 0.9 2.7 8.0 3.0 1.885 1.20 3.192 | 7.06x10* 24.834
Deterministic -
approach 40th percentile | 1.2 24 | 120 | 5.0 5.655 1.30 3.969 | 3.61x10° 22.896
FSt=1.2 .. | The maximum FS2 of the candidate pile design is less than /'St = 1.2, and no feasible
(FSt=12) | 30th percentile . . . . : .
designs could be identified in the design space DS shown in Table 2.
Probabilistic Pr=2.6 0.6 1.8 8.0 3.0 1.257 1.18 2.655 | 3.97x10° 23.953
approach Pr=3.2 0.6 1.8 | 10.0 | 5.0 1.571 1.19 3.320 | 4.51x10* 25.201
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