

1
2 **Optimization Design of Stabilizing Piles in Slopes Considering Spatial Variability**

3 Wenping Gong¹, Huiming Tang², C. Hsein Juang³, and Lei Wang⁴

5 ¹ Professor, Faculty of Engineering, China University of Geosciences, Wuhan, Hubei 430074,
6 China. Email: wenpinggong@cug.edu.cn

7 ² Professor, Faculty of Engineering, China University of Geosciences, Wuhan, Hubei 430074,
8 China. Email: tanghm@cug.edu.cn

9 ³ Chair Professor, Department of Civil Engineering and Graduate Institute of Applied
10 Geology, National Central University, Taoyuan City 32001, Taiwan; also affiliate with
11 Faculty of Engineering, China University of Geosciences, Wuhan, Hubei 430074, China, and
12 Clemson University, Clemson SC 29634, USA. Email: hsein@clemson.edu

13 ⁴ Assistant Professor, Department of Civil Engineering, University of the District of Columbia,
14 Washington, DC 20008, USA. Email: lei.wang@udc.edu (Corresponding author)

15

16 **Abstract:** Although advances in piling equipment and technologies have extended the global
17 use of stabilizing piles (to stabilize slope or landslide), the design of stabilizing piles remains
18 a challenge. Specifically, the installation of stabilizing piles can alter the behavior of the slope;
19 and, the spatial variability of the geotechnical parameters required in the design is difficult to
20 characterize with certainty, which can degrade the design performance. This paper presents an
21 optimization-based design framework for stabilizing piles. The authors explicitly consider the
22 coupling between the stabilizing piles and the slope, and the robustness of the stability of the
23 reinforced slope against the spatial variability of the geotechnical parameters. The proposed
24 design framework is implemented as a multi-objective optimization problem considering the
25 design robustness as an objective, in addition to safety and cost efficiency, two objectives
26 considered in the conventional design approaches. The design of stabilizing piles in an earth
27 slope is studied as an example to illustrate the effectiveness of this new design framework. A
28 comparison study is also undertaken to demonstrate the superiority of this new framework
29 over the conventional design approaches.

30

31 **Keywords:** Stabilizing Piles; Slope; Factor of Safety; Design Robustness; Spatial Variability;

32 Multi-Objective Optimization.

33

34 **1. Introduction**

35 “Stabilizing piles” are the piles that are installed to stabilize unstable slopes or active
36 landslides, which transfer part of the earth pressure from the upper unstable layer to the lower
37 stable layer, thus improving the stability of the geomaterials behind the piles (Poulos 1995;
38 Zeng and Liang 2002; Lirer 2012). Since their inception, stabilizing piles have been widely
39 used in the mitigation of slope instability and landslide geohazards. For example, many active
40 landslides and unstable slopes in the Three Gorges Reservoir Area have been reinforced with
41 stabilizing piles (Tang et al. 2014&2019). It is known that the installation of stabilizing piles
42 can greatly alter the behavior of the slope. The stability of a reinforced slope could be
43 evaluated with both uncoupled and coupled methods. In an uncoupled analysis, the earth
44 pressure and its distribution along the piles are first estimated, followed by the use of the earth
45 pressure as an input to the analysis of the behavior of the pile-slope system (Ito and Matsui
46 1975; Galli and Di Prisco 2012); whereas, in a coupled analysis, the piles and the slope are
47 dealt as an integrated system, and the behavior of this system is studied considering explicitly
48 the pile-slope interaction (Jeong et al. 2013). Though theoretically sound, the computationally
49 demanding characteristics of this coupled analysis might hinder its application in engineering
50 practice. As a result, the uncoupled analysis still dominates the design of stabilizing piles in
51 the current practice.

52 Though the behavior of the pile-slope system has been the subject of extensive studies,
53 little effort has been undertaken to elucidate design methods for stabilizing piles, especially
54 on the selection of pile parameters such as the diameter, spacing, length and position (Lee et
55 al. 1995). Indeed, the design of stabilizing piles is a multidisciplinary problem, which must be
56 informed with knowledge of geotechnical engineering, structural engineering, and economics.

57 Hence, the design of the stabilizing piles would better be implemented as a multi-objective
58 optimization problem, in which the requirements from the stability of the reinforced slope,
59 bearing capacity of the piles, and economic concerns should be simultaneously considered.
60 However, most of the discussions regarding the design of stabilizing piles do not encompass
61 economic requirements but instead place most emphasis upon either the stability of reinforced
62 slope or the pile bearing capacity (Chen and Martin 2002; Comodromos et al. 2009).

63 The geomaterials (e.g., soils and/or rocks) within a slope are natural materials, and the
64 properties of the geomaterials are dependent upon the natural deposit and loading histories,
65 which are beyond the control of the engineer. Due to the incomplete knowledge regarding the
66 deposit and loading histories, the geotechnical properties at a site could not be known prior to
67 the site investigation. In addition, because only a limited number of boreholes are afforded in
68 a given project, the geotechnical properties are only known at the borehole locations. The
69 properties at all other positions cannot be known and must be characterized from the known
70 values at the borehole locations. Owing to the inherent spatial variability of the geotechnical
71 properties and the limited availability of borehole data, the geotechnical properties at a given
72 site will be uncertain. The uncertain geotechnical properties are often characterized with fuzzy
73 or random variables, or random fields (Cho 2007; Wang et al. 2010; Ching and Phoon 2013;
74 Tian et al. 2016; Xiao et al. 2016; Li et al. 2017; Wang et al. 2017; Xiao et al. 2017; Zhang et
75 al. 2017; Liu and Cheng 2018; Kawa and Puła 2019; Tun et al. 2019). The uncertainty in the
76 input geotechnical properties further complicates the design of stabilizing piles.

77 In the face of the geotechnical properties uncertainty, the level of stability of a slope,
78 regardless of whether it is reinforced with stabilizing piles or not, will be uncertain and could
79 not be expressed as a fixed value (Griffiths and Fenton 2004; Cho 2007; Li et al. 2016; Wang

80 et al. 2018). To compensate for this uncertainty, a conservative estimate of the geotechnical
81 properties is usually made in the design. And, to further ensure safety, the computed factor of
82 safety FS , as a measure of the safety level, in a feasible design is required to be no less than a
83 target FS . With such a deterministic design approach, however, the true safety of a candidate
84 design is unknown, the resulting design might be either over- or under-designed. Alternatively,
85 the probabilistic design approaches that allow for an explicit consideration of the uncertainty
86 have long been advocated (Li and Lumb 1987; Christian et al. 1994; Duncan 2000; Juang et al.
87 2018). However, the designs obtained with the probabilistic approaches are strongly affected
88 by the statistical information of the input geotechnical properties (Wang et al. 2013; Juang et
89 al. 2014), which are difficult to characterize. Thus, the dilemma of whether to over-design for
90 safety or under-design for cost efficiency has not been fully overcome, even though the design
91 approaches evolve from deterministic to probabilistic approaches. To address this dilemma,
92 robust design methods, originated in the field of quality and industrial engineering (Taguchi
93 1986; Phadke 1989; Beyer and Sendhoff 2007), have recently been adopted for applications in
94 geotechnical designs (Juang and Wang 2013; Juang et al. 2014; Khoshnevisan et al. 2014). In
95 the context of robust geotechnical design (RGD), the design robustness of the geotechnical
96 system against the uncertainty in the input geotechnical parameters is explicitly considered
97 along with cost and safety requirements.

98 In this paper, a new framework for the robust design of stabilizing piles is established
99 that considers: 1) the coupling between the stabilizing piles and the slope; 2) the robustness of
100 the stability of the reinforced slope against the uncertainty in the input parameters; and 3) the
101 multi-objective optimization of the design robustness, economic aspect, and safety. The rest
102 of this paper is organized as follows. First, this new optimization-based design framework for

103 stabilizing piles is established. A hypothetical example, in terms of the design of stabilizing
104 piles in a homogeneous earth slope, that utilizes this new design framework is then detailed.
105 Thereafter, a comparison with the conventional geotechnical design approaches is undertaken
106 to demonstrate the superiority of the advanced framework. Finally, the concluding remarks
107 are made based upon the results presented.

108

109 **2. New Design Framework for Stabilizing Piles in Slopes**

110 While the significance of the coupling between the stabilizing piles and the slope, the
111 uncertainty in the input geotechnical parameters, and the economic constraint in the design of
112 stabilizing piles have long been recognized, an integrated design framework that can consider
113 explicitly all these factors remains unavailable. In this paper, a new optimization-based design
114 framework for stabilizing piles that considers all these factors simultaneously is advanced.

115 **2.1 Modeling of the coupling in the pile-slope system**

116 Figure 1 illustrates the coupling in a pile-slope system, in which the failure surface in
117 an unreinforced slope and those in reinforced slopes (with three designs of stabilizing piles
118 herein) are examined. In Figure 1(a), the depth of the failure surface in the unreinforced slope
119 is shallow and passes above the slope toe. In Figure 1(b) and Figure 1(c), the piles are located
120 around the middle part of the slope, and the pile lengths are greater than the depth of the
121 initial failure surface; as a result, the failure surfaces in the reinforced slopes extend to greater
122 depths. However, the length of the piles in Figure 1(b) is only slightly greater than the depth
123 of the initial failure surface, unlike the one in Figure 1(c). Consequently, the failure surface in
124 the reinforced slope in Figure 1(b) could not be blocked by the piles; and, the earth pressure
125 transferred by the piles, indicated by the maximum bending moment of the piles M_{max} , is quite

126 small (i.e., $M_{\max} = 99.4 \text{ kN}\cdot\text{m}$), indicating that the bearing capacity of the piles cannot be fully
127 utilized. On the other hand, the failure surface in the reinforced slope in Figure 1(c) could be
128 blocked by the piles, and a greater part of the earth pressure from the upper unstable layer is
129 transferred to the lower stable layer (i.e., $M_{\max} = 1153 \text{ kN}\cdot\text{m}$). Thus, the improvement of the
130 slope stability, indicated by the factor of safety of the reinforced slope FS_2 , in Figure 1(c) is
131 more significant (i.e., $FS_2 = 1.28$) than that in Figure 1(b) (i.e., $FS_2 = 1.09$). In Figure 1(d), the
132 stabilizing piles are located in the lower part of the slope and the length of the piles is much
133 greater than the depth of the initial failure surface, which causes a reduction in the length of
134 the failure surface in the reinforced slope, and the new failure surface passes above the top of
135 the piles. Note that although the earth pressure transferred by the piles is significant in Figure
136 1(d) (i.e., $M_{\max} = 1081 \text{ kN}\cdot\text{m}$), the improvement of the slope stability is not apparent (i.e., FS_2
137 = 1.16). Thus, the failure surface, earth pressures on piles, and stability of reinforced slope are
138 all affected by the coupling between the stabilizing piles and the slope. This coupling must be
139 explicitly considered in the analysis and design of stabilizing piles.

140 Given the recognized effectiveness of numerical solutions for analyzing the coupling
141 between the structures and the geomaterials, the 2-D explicit finite difference program FLAC
142 version 7.0 (2011) is adopted herein as the solution model for evaluating the stability of the
143 pile-slope system. Within FLAC version 7.0, the slope stability is evaluated with the strength
144 reduction method, in which the resistance (i.e., shear strength) of the geomaterials is gradually
145 adjusted to bring the slope (either reinforced or unreinforced) to the limit equilibrium state. It
146 is well known that the behavior of a pile-slope system is a 3-D problem and which should be
147 studied with 3-D numerical simulations; otherwise, the sliding of the geomaterials through the
148 space between adjacent piles could not be simulated. However, the 3-D numerical simulation

149 can be computationally prohibitive for the following probabilistic stability analysis and design
150 optimization. In reference to Kourkoulis et al. (2010), an effective soil arching can be formed
151 between adjacent piles when the ratio of the pile spacing over the pile diameter is less than 4.0.
152 Under such circumstances, the plane-strain condition is taken in this study and the maximum
153 ratio of the pile spacing (i.e., center-to-center spacing between piles) over the pile diameter is
154 set to be 3.0. Thus, the stability of the pile-slope system can be evaluated with 2-D numerical
155 simulations; in which, the piles are modeled with elastic-perfectly plastic beam elements, the
156 interfaces between the piles and the geomaterials are modeled with interface elements, and the
157 pile spacing is inputted to the numerical models to realize the resistance of the piles (against
158 slope failure) per longitudinal length. The plastic moment of the piles, which is required in the
159 2-D numerical simulations, is derived with plasticity theory of reinforced concrete. Since the
160 stability of a slope (either reinforced or unreinforced) can be dominated by the shear strength
161 of the geomaterials, the behaviors of the geomaterials in this study are simulated with Mohr-
162 Coulomb models.

163 **2.2 Formulation of the design robustness of the reinforced slope**

164 For the pile-slope system with the design parameters \mathbf{d} and the non-design variables $\boldsymbol{\theta}$
165 as inputs, the response or performance of this system $g(\mathbf{d}, \boldsymbol{\theta})$ is expressed as:

$$166 \quad g(\mathbf{d}, \boldsymbol{\theta}) = R(\mathbf{d}, \boldsymbol{\theta}) - T(\mathbf{d}, \boldsymbol{\theta}) \quad (1)$$

167 where $R(\mathbf{d}, \boldsymbol{\theta})$ and $T(\mathbf{d}, \boldsymbol{\theta})$ are the resistance term and load term, respectively. Mathematically,
168 the uncertainty in the input parameters $\boldsymbol{\theta}$ will lead to the uncertainty in the output or system
169 response $g(\mathbf{d}, \boldsymbol{\theta})$. In reference to Figure 2, the relationship between the output $g(\mathbf{d}, \boldsymbol{\theta})$ and the
170 inputs $\boldsymbol{\theta}$ is captured by a monotonic performance function $g(\mathbf{d}, \boldsymbol{\theta})$. For an arbitrary distribution
171 of the inputs $\boldsymbol{\theta}$, the output $g(\mathbf{d}, \boldsymbol{\theta})$ is a distribution, rather than a fixed value.

172 In a deterministic design, the safety of a design is evaluated and expressed as a factor
 173 of safety FS :

$$174 \quad FS = \frac{R(\mathbf{d}, \boldsymbol{\theta})}{T(\mathbf{d}, \boldsymbol{\theta})} \quad (2)$$

175 In practice, a design is deemed feasible if the computed FS is greater than 1.0. To compensate
 176 for the uncertainty in the input parameters and adopted model, a conservative estimate of the
 177 input parameters (e.g., 20th percentile of the resistance term R and 80th percentile of the load
 178 term T ; see Figure 2) and a target FS , FS_T (e.g., $FS_T =$ a value greater than 1.0, say, 1.2), may
 179 be adopted. Since the uncertainty is not explicitly included in the analysis, the true safety of
 180 the design is unknown and the resulting design might be either over- or under-designed. To
 181 overcome this problem, the probabilistic approaches which permit an explicit consideration of
 182 the uncertainty (e.g., uncertain variables are simulated as random variables or random fields)
 183 have long been advocated (Li and Lumb 1987; Christian et al. 1994; Cherubini 2000; Duncan
 184 2000). In probabilistic designs, the safety of a design \mathbf{d} is evaluated with the computed failure
 185 probability P_f or reliability index β .

$$186 \quad P_f = \Pr[g(\mathbf{d}, \boldsymbol{\theta}) < 0] = \int_{g(\mathbf{d}, \boldsymbol{\theta}) < 0} f(\boldsymbol{\theta}) d\boldsymbol{\theta} = \int_{-\infty}^0 f(g) dg \quad (3a)$$

$$187 \quad P_f = \Phi(-\beta) \quad (3b)$$

188 where $f(\boldsymbol{\theta})$ is the probability density function (PDF) of the uncertain input parameters $\boldsymbol{\theta}$, $f(g)$ is
 189 the PDF of the performance function $g(\mathbf{d}, \boldsymbol{\theta})$; and, $\Phi(\cdot)$ is the cumulative distribution function
 190 (CDF) of the standard normal variable. To ensure the safety of the resulting design, a target
 191 failure probability P_{fT} (e.g., $P_{fT} = 4.7 \times 10^{-3}$) or a target reliability index β_T (e.g., $\beta_T = 2.6$) is
 192 suggested. A design is deemed feasible if the computed failure probability P_f is less than the

193 target failure probability P_{fT} or the related reliability index β is larger than the target reliability
194 index β_T .

195 Note that while the formulation is simple and easy-to-follow, the practical application
196 of the probabilistic approaches in the geotechnical design is not an easy task. The challenge in
197 the geotechnical design is attributed to the fact that the geomaterials are natural, rather than
198 manufactured materials. The degree of uncertainty in the geotechnical properties tends to be
199 greater than that in the structural counterpart and the uncertainty in the geotechnical properties
200 could be much more difficult to characterize. Furthermore, the property of the geomaterials is
201 often spatially correlated. The spatial correlation characteristics of the geotechnical properties
202 could best be characterized with the random field theory (Fenton 1999; Cho 2007; Tian et al.
203 2016). The anisotropic exponential autocorrelation structure is adopted herein to capture the
204 spatial correlation of the geotechnical properties:

$$205 \rho(|x_1 - x_2|, |y_1 - y_2|) = \exp\left(-\frac{2|x_1 - x_2|}{\lambda_h}\right) \exp\left(-\frac{2|y_1 - y_2|}{\lambda_v}\right) \quad (4)$$

206 where $|x_1 - x_2|$ is the horizontal distance between the two positions of (x_1, y_1) and (x_2, y_2) ; $|y_1 -$
207 $y_2|$ is the vertical distance between the two positions of (x_1, y_1) and (x_2, y_2) ; and, λ_h and λ_v are
208 the horizontal and vertical scale of fluctuations of the geotechnical properties, respectively.

209 In a numerical modeling of a slope (either reinforced or unreinforced), the geometrical
210 domain of the slope is discretized into a set of small elements, thus permitting an assignment
211 of different geotechnical properties to different numerical elements. That is to say, the spatial
212 variability of the geotechnical parameters can be directly simulated in the numerical modeling.
213 Note that while lots of computationally efficient methods have been developed for the
214 probabilistic analysis of the geotechnical systems, most of them cannot be applied to

215 geotechnical systems with random fields as inputs; whereas, the sampling-based methods
216 such as the Monte Carlo simulation (MCS) are often deemed the most reliable approaches for
217 dealing with the random fields. To consider the spatial variability of the input geotechnical
218 parameters in the design of stabilizing piles, the random finite difference method (RFDM) is
219 adopted in this study. In the context of the RFDM, the spatial variability of the input
220 geotechnical parameters is simulated with the random field theory, and potential realizations
221 of the random field of the geotechnical parameters are sampled with MCSs. For each and
222 every realization of the random field, the stability of the slope will be analyzed
223 deterministically utilizing the finite difference program (e.g., the 2-D FLAC adopted in this
224 paper). Since the parameters within a numerical element are captured by fixed parameters and
225 no variation can be allowed, the geotechnical parameters that are averaged within the element
226 domain, rather than those at the grids, should be sampled and taken as the inputs to the
227 numerical analysis. The integration of brute MCS and numerical analysis can be
228 computationally prohibitive. To improve the computational efficiency (of this RFDM), the
229 subdomain sampling method (SSM) (Juang et al. 2017), in lieu of the brute MCS, is adopted
230 in this paper for sampling the potential realizations of the random field of the input
231 geotechnical parameters. A detailed formulation of this SSM is summarized in Appendix A.

232 In a typical geotechnical practice, site-specific data can be quite limited due to budget
233 constraints for site investigation. Thus, it is difficult to derive the statistical information of the
234 input geotechnical parameters with certainty (Gong et al. 2017). In such a circumstance, the
235 probabilistic approaches are usually undertaken using inaccurate or assumed statistics;
236 however, the designs obtained with the probabilistic approaches are strongly influenced by the
237 adopted statistics (Wang et al. 2013). To overcome this issue of the probabilistic approaches,

238 robust design, originated from the field of quality and industrial engineering (Taguchi 1986),
239 is adopted, in this paper, for the design of stabilizing piles. The essence of this robust design
240 is to derive a design in which the system behavior is robust against the uncertainty in the input
241 parameters. In the proposed robust design of stabilizing piles, the robustness of the stability of
242 the reinforced slope against the uncertainty (i.e., spatial variability) in the input geotechnical
243 parameters, R , is formulated based upon the concept of “signal-to-noise ratio” (SNR) (Phadke
244 1989; Gong et al. 2014a).

245
$$R = SNR = 10 \log_{10} \left(\frac{E^2[FS_2]}{\sigma^2[FS_2]} \right) \quad (5)$$

246 where $E[FS_2]$ and $\sigma[FS_2]$ are the mean and standard deviation, respectively, of the stability of
247 the reinforced slope. Note that although various robustness measures have been developed for
248 the robust geotechnical design (RGD) (Wang et al. 2013; Juang et al. 2014; Khoshnevisan et
249 al. 2014; Gong et al. 2014a&2014b), the selection of the robustness measure can be problem-
250 specific depending upon the level of uncertainty in geotechnical parameters characterization:
251 1) in the scenario where only the nominal values of the geotechnical parameters are known,
252 the gradient-based robustness may be utilized (Gong et al. 2014b); 2) in the scenario where
253 the ranges of the geotechnical parameters could be estimated, the SNR -based robustness may
254 be utilized (Gong et al. 2014a); and 3) in the scenario where the probabilistic distribution of
255 the geotechnical parameters may be characterized but the statistical information could not be
256 ascertained, the feasibility-based robustness may be used (Wang et al. 2013). In the proposed
257 robust design of stabilizing piles, the *noise factors* (i.e., difficult-to-characterize and hard-to-
258 control parameters) are *mainly* associated with the spatially varied geotechnical parameters.
259 Note that while the feasibility-based robustness is theoretically sound, the simpler SNR -based

robustness measure formulated in Eq. (5) is adopted herein owing to its simplicity and practical applicability. As such, the calculation of the feasibility of the failure probability satisfying the target failure probability can be avoided; meanwhile, the characterization of the *uncertainty in the statistical parameters* of the geotechnical properties, which is required for the feasibility calculation, can be avoided.

With the numerical model established in the previous section as a solution model, the uncertainty in the noise factors naturally propagates into the uncertainty in the stability of the reinforced slope, which could be captured by the standard deviation of the stability (in terms of the factor of safety FS) of the reinforced slope $\sigma[FS_2]$. It is noted that a higher $\sigma[FS_2]$ value indicates a higher variability of the stability of the reinforced slope (in the face of the input geotechnical properties uncertainty), thus signaling a lower robustness of the stabilizing pile design. Since the safety of the stabilizing pile design can also be affected by the mean of the stability of the reinforced slope $E[FS_2]$, the standard deviation of the stability $\sigma[FS_2]$ is further normalized by the mean of the stability $E[FS_2]$. Then, the *SNR*-based robustness R is readily formulated, as shown in Eq. (5). Similarly, a higher R value signals a lower variability of the stability of the reinforced slope, and thus indicating a higher robustness. Here, the detailed procedure for derivation of the mean $E[FS_2]$ and standard deviation $\sigma[FS_2]$ of the stability of the reinforced slope using the subdomain sampling method (SSM) is given in Appendix A. In reference to the robustness measure formulated in Eq. (5), the conventional factor of safety FS is embedded in this design robustness; and, this design robustness measure is calculated from the by-products of the probabilistic analysis, in terms of the statistics of the factor of safety FS . Hence, the proposed design framework is compatible with the conventional deterministic and probabilistic design approaches; and, the computational coupling of the evaluation of the

283 design robustness and the probabilistic analysis would not lead to significant increase in the
284 computational demands of the advanced robust design. Indeed, the only increase in the
285 computational demand of the advanced design framework is the multi-optimization shown in
286 Eq. (6), in comparison to the conventional probabilistic design approaches.

287 **2.3 Optimization-based design of stabilizing piles incorporating robustness**

288 The goal of the advanced optimization-based design framework for stabilizing piles is
289 to derive an optimal stabilizing pile design (represented by a set of design parameters \mathbf{d}) in the
290 design space \mathbf{DS} such that the target stability of the reinforced slope \mathbf{TS} can be satisfied, while
291 both robustness R and cost efficiency E will be simultaneously optimized. This optimization-
292 based design framework for stabilizing piles is set up as follows.

Find: Pile parameters \mathbf{d}
Subject to: Design space \mathbf{DS}
293 Target stability of reinforced slope \mathbf{TS}
Ultimate bearing capacity of stabilizing piles M_{ult} (6)
Objectives: Maximizing design robustness R
Minimizing construction cost C

294 where \mathbf{d} represents the design parameters of the stabilizing piles that are easy-to-control (by
295 the engineer). For example, the geometrical parameters of the pile diameter D , pile spacing S ,
296 pile length L and pile position X are taken as the design parameters \mathbf{d} , expressed as $\mathbf{d} = \{D, S,$
297 $L, X\}$. Whereas, the mechanical parameters of the piles such as the steel reinforcement ratio
298 and concrete modulus are taken as fixed values; and, the steel strength and concrete strength,
299 which are essential for estimating the ultimate bearing capacity of the piles, could be dealt as
300 uncertain parameters (or noise factors) due to the manufacturing error.

301 The design space \mathbf{DS} is an assembly of candidate designs of stabilizing piles, which
302 can be determined based upon local experience and engineering judgment. The target stability

303 **TS** is a mandatory requirement of the stability of the reinforced slope, expressed in terms of
304 the target factor of safety FS_T or target failure probability P_{fT} (or equivalently target reliability
305 index β_T), which could be specified by the owner or client based upon the significance of the
306 project or consequences of failure. The ultimate bearing capacity M_{ult} is the plastic moment of
307 the piles, which is evaluated with the plasticity theory of steel reinforced concrete. The design
308 robustness R is the “signal-to-noise ratio” (SNR) of the stability of the reinforced slope against
309 the variation in the uncertain input parameters (or noise factors). The construction cost C is
310 the economic aspect of the design of stabilizing piles. Assuming no variation in the cost with
311 respect to the site condition and pile installation technique in a given project, only the material
312 cost of the piles is considered in this paper. Further, the steel reinforcement ratio of the piles is
313 taken as a fixed value. Thus, the cost C could be approximated herein by the volume of the
314 stabilizing piles per longitudinal length.

$$315 \quad C = \frac{\pi \cdot D^2 \cdot L}{4S} C_0 \quad (7)$$

316 where C_0 represents the cost per cubic meter of steel reinforcement concrete.

317 The desire to maximize the design robustness R and that to minimize the cost C are
318 two conflicting objectives. The optimization in Eq. (6) cannot lead to a single best design with
319 respect to both objectives simultaneously. Instead, this optimization only leads to a set of non-
320 dominated designs which are superior to all others in the design space, but not superior or
321 inferior to any other in this set. As depicted in Figure 3, although the non-dominated design d_1
322 is less expensive (indicating higher cost efficiency), the counterpart of non-dominated design
323 d_2 yields a larger R value (indicating higher robustness). Note that although the utopia design
324 d_0 is optimal with respect to both objectives, it may not be located in the feasible domain (i.e.,

325 the target stability TS is not satisfied or not belong to design space DS). These non-dominated
326 designs collectively form a Pareto front which reveals a tradeoff relationship between these
327 two conflicting design objectives (Deb et al. 2002; Juang et al. 2014). This Pareto front can be
328 obtained utilizing multi-objective optimization algorithms such as the Multi-objective Genetic
329 Algorithm, MOGA (Murata and Ishibuchi 1995), Niched Pareto Genetic Algorithm, NPGA
330 (Horn et al. 1994), Non-dominated Sorting Genetic Algorithm version II, NSGA-II (Deb et al.
331 2002; Juang and Wang 2013), Multi-algorithm Genetically Adaptive Multiobjective Method,
332 AMALGAM (Vrugt and Robinson 2007; Huang et al. 2014), weighted sum-based algorithm
333 (Hajela and Lin 1992), or spreadsheet-based algorithm (Khoshnevisan et al. 2014).

334 Note that although various optimization algorithms could be available in the literature
335 of industrial, civil and electrical engineering, the optimization of the geotechnical system such
336 as the stabilizing piles is different from the optimization problem in other fields. For example,
337 the choice of the pile diameter is limited to piling equipment and local practice, only discrete
338 values can be taken. A survey of the geometrical parameters of the stabilizing piles installed
339 in the Three Gorges Reservoir Area, China indicates that the pile lengths were often taken as
340 discrete or integer values and the piles were usually constructed at the elevations of discrete or
341 integer values. Thus, a discrete design space DS is selected in this paper for the optimization
342 design of stabilizing piles to ensure the feasibility in the construction. Since a discrete design
343 space is adopted with a finite number of candidate designs (e.g., 480 designs in this paper),
344 the optimization presented in this study adopts an exhaustive search among the designs in the
345 discrete design space, which is different from many other optimization techniques reported in
346 the literature (e.g., Hajela and Lin 1992; Murata and Ishibuchi 1995; Deb et al. 2002; Vrugt
347 and Robinson 2007), where potential candidate designs are generated and analyzed selectively,

348 and not exhaustively. Here, the safety, robustness, and cost for each and every candidate
349 design in the selected discrete design space are evaluated. On the basis of the evaluated
350 performance of candidate designs, the Pareto front revealing the tradeoff between design
351 robustness and cost efficiency can be derived utilizing the non-dominated sorting algorithm in
352 the NSGA-II (Deb et al. 2002). It should be noted that although a discrete design space is
353 adopted in this study, it is not the limitation of the advanced design framework and a
354 continuous design space can also be adopted if so desired (and then the optimization
355 algorithms reported in the literature can be applied); however, the random finite difference
356 method (RFDM)-based probabilistic analysis of the candidate design will be iteratively called
357 in the direct application of these optimization algorithms, which might increase the
358 computational efforts for this problem.

359 The obtained Pareto front could help render an informed design decision. For example,
360 either the least cost design that is above a pre-specified level of robustness R_P (see design d_3
361 in Figure 3) or the most robust design that is below a pre-specified level of cost C_P (see design
362 d_4 in Figure 3) can be selected as the most preferred design in the design space **DS**. However,
363 the determination of an appropriate level of the robustness or cost is usually problem-specific.
364 In situations where a strong preference is not pre-specified by the owner or client, the knee
365 point on the Pareto front, which can yield the best compromise with respect to the conflicting
366 objectives, can be identified (see design d_5 in Figure 3) and taken as the most preferred design
367 (Deb and Gupta 2011). As illustrated in Figure 3, on the left side of the knee point design d_5 , a
368 slight reduction in cost C could lead to a drastic decrease in the design robustness R , which is
369 not desirable; and, on the right side of the knee point design d_5 , a slight improvement in the
370 design robustness R requires a huge increase in cost C , which is also not desirable. Thus, this

371 knee point design could be taken as the most preferred design in the design pool, if no design
372 preference is specified by the owner or client. Once the Pareto front is obtained, this knee
373 point design is easily identified with the marginal utility function approach (Deb and Gupta
374 2011), normal boundary intersection approach (Deb and Gupta 2011), reflex angle approach
375 (Deb and Gupta 2011), or minimum distance approach (Gong et al. 2016a).

376
377 As can be seen, the coupling between the stabilizing piles and the slope, the robustness
378 of the stability of the reinforced slope against the uncertainty in the input parameters (e.g., the
379 spatial variability of the geotechnical parameters and the manufacturing error of the structural
380 materials), economic aspect, and conventional safety requirements are explicitly considered in
381 the advanced design framework for stabilizing piles; and, this design framework is carried out
382 through a multi-objective optimization with respect to these design objectives.

383

384 **3. Illustrative Example: Design of Stabilizing Piles in An Earth Slope**

385 To demonstrate the effectiveness and significance of the advanced design framework,
386 the design of stabilizing piles in a homogeneous earth slope, shown in Figure 4, is adopted as
387 an illustrative example. The parameters setting and the design results are presented below.

388 **3.1 Parameters setting in the illustrative example**

389 In reference to Figure 4, the width and height of the studied slope are 20.0 m and 14.0
390 m, respectively, and the depth to bed rock is assumed to approach infinity ($H \rightarrow \infty$). Further
391 assume no surcharge on the top of the slope and the groundwater level far below the slope. In
392 this example, both soil strength parameters, in terms of the cohesion c and friction angle ϕ , are
393 treated as random fields, and their statistical information is tabulated in Table 1. The other soil

394 parameters such as the unit weight, bulk modulus and shear modulus are assumed as fixed (or
395 deterministic) values, as listed in Table 2.

396 An initial analysis of this slope indicates that the stability of this slope is relatively low
397 (i.e., $FS_1 = 1.14$), which is thus designed to be reinforced by a single row of steel reinforced
398 concrete stabilizing piles. According to the optimization framework outlined above, the easy-
399 to-control geometrical parameters, including the pile diameter D , pile spacing S , pile length L
400 and pile position X , are taken as the design parameters \mathbf{d} , expressed as $\mathbf{d} = \{D, S, L, X\}$. The
401 steel reinforcement ratio and concrete modulus (of the piles) are treated as fixed values, as
402 shown in Table 2; and, the steel strength and concrete strength are taken as uncertain input
403 parameters and their statistical information is also given in Table 1. For ease of construction, a
404 discrete design space \mathbf{DS} shown in Table 3 is selected in this paper for the optimization design.
405 The maximum ratio of the pile spacing S over the pile diameter D is set to be 3.0 (i.e., $S/D =$
406 3.0) in this optimization problem, thus effective soil arching can be formed between adjacent
407 piles (Kourkoulis et al. 2010). In the selected design space \mathbf{DS} shown in Table 3, a total of
408 480 candidate designs are possible and the optimal design will be identified from this pool.

409 To incorporate the coupling between the stabilizing piles and the slope explicitly, the
410 numerical model established above is adopted herein as the solution model for evaluating the
411 safety performance of the pile-slope system. The 2-D explicit finite difference program FLAC
412 version 7.0 (2011) is used and plane-strain condition is assumed. To minimize the boundary
413 effect, the bottom boundary is set at 30.0 m below the slope toe, the left-side boundary is set
414 at 30.0 m away from the slope toe, and the right-side boundary is set at 30.0 m away from the
415 slope crest. The geometrical domain of this slope problem is discretized into 1,296 elements
416 (the minimum size of the discretized elements is 1.0 m×1.0 m) for ease of assigning the soil

417 parameters (e.g., c and ϕ). The left- and right-side boundaries are restrained horizontally, and
418 the bottom boundary is restrained vertically. The soil is simulated with Mohr-Coulomb model,
419 the stabilizing piles are modeled with elastic-perfectly plastic beam elements, and the soil-pile
420 interfaces are modeled with interface elements. The setting of the parameters of the piles and
421 those of the interfaces is tabulated in Table 2. Note that a bracketing approach similar to that
422 proposed by Dawson et al (1999) is used in FLAC version 7 for deriving the factor of safety
423 (FS) of the slope, and the resolution limit is set at 0.02 in this paper. As such, the model error of
424 this numerical model, in terms of the discrepancy between the true FS and the calculated FS
425 (i.e., true FS minus calculated FS), might be taken as an uncertain variable that is uniformly
426 distributed in the range of [-0.02, 0.02].

427 It should be noted that the execution of a deterministic analysis of the slope stability
428 takes about 100 seconds on the Windows 7® PC equipped with a 192 GB RAM and an Intel®
429 Xeon® Processor E5-2699 v4 @ 2.20 GHz. To reduce the number of the realizations or
430 samples of the uncertain input parameters involved in the RFDM analysis and thus improving
431 the computational efficiency, the subdomain sampling method (SSM) (Juang et al. 2017) is
432 utilized for generating the realizations of the random fields of soil strength parameters and the
433 samples of the other uncertain parameters (i.e., the steel strength, concrete strength and model
434 error). The parameters of the adopted SSM are set up as follows: 1) the probability of ε in Eq.
435 (A3) is taken as $\varepsilon = 1.0 \times 10^{-6}$ for locating the possible domain of uncertain parameters; 2) the
436 likelihoods of the samples being located in the subdomains are taken as a decreasing sequence
437 of $p_{d1} = 1/3, p_{d2} = 1/3^2, p_{d3} = 1/3^3, \dots$; 3) the target number of samples in each subdomain is
438 taken as $t_1 = 30$; and 4) the number of subdomains is taken as $n_s = 13$. Thus, a total of 390
439 realizations or samples of the uncertain input parameters will be generated and analyzed for

440 estimating the statistics of the stability of the slope (either reinforced or unreinforced). This
441 number of samples is close to that required in the stochastic response surface method (Li et al.
442 2011&2015), which is well known for its high computational efficiency in analyzing random
443 field problems.

444 **3.2 Results obtained with the advanced optimization-based design framework**

445 With the derived statistics of the stability of the reinforced slope (using SSM), the
446 design robustness R , in terms of the “signal-to-noise ratio” (SNR), and the design safety, in
447 terms of the mean of the stability $E[FS_2]$ (to be compatible with the deterministic approach) or
448 failure probability P_f (to be compatible with the probabilistic approach) of the reinforced
449 slope, can readily be evaluated. For example, the failure probability of the reinforced slope P_f
450 (or equivalent reliability index β) in this paper is estimated with the fourth moment method
451 FM-1 outlined in Zhao and Ono (2001). Figure 5 validates the effectiveness and accuracy of
452 the adopted SSM, using MCS, in deriving the design robustness R , design safety $E[FS_2]$ and
453 design safety P_f of the reinforced slope through an analysis of 15 arbitrarily selected candidate
454 designs. Note that the number of samples utilized in the brute MCS herein is taken as 5,000.
455 In Figure 5(a) and Figure 5(b), the data points (of design robustness R and safety $E[FS_2]$) are
456 both close to the 1:1 line (i.e., a perfect match), thus the design robustness R and design safety
457 $E[FS_2]$ estimated from the adopted SSM match well with those from the MCS. In Figure 5(c),
458 although there is some discrepancy in the derived failure probability P_f between the SSM and
459 the MCS, the 90% confidence interval of the failure probability P_f derived from the MCS can
460 bracket the failure probability P_f derived from the SSM with a high chance. In the context of
461 the brute MCS, the coefficient of variation of the failure probability estimate P_f , denoted as δ_{P_f} ,
462 is approximated as follows (Ang and Tang 2007).

463
$$\delta_{P_f} \approx \sqrt{\frac{1 - P_f}{n_{MCS} \cdot P_f}} \quad (8)$$

464 where n_{MCS} represents the number of samples utilized in the MCS. With the estimated failure
 465 probability P_f and its COV, the 90% confidence interval of the failure probability P_f shown in
 466 Figure 5(c) can readily be obtained with an assumption that the estimated failure probability
 467 follows a lognormal distribution. From there, the accuracy of the adopted SSM in evaluating
 468 the design robustness and safety of the reinforced slope is validated. However, with the SSM,
 469 only 390 realizations (or samples) of the uncertain input parameters are required. As such, the
 470 computational efficiency of the proposed optimization design could be guaranteed.

471 Since a discrete design space is adopted in this example, the design safety, robustness,
 472 and cost for each and every candidate design could be evaluated and the results are shown in
 473 Figure 6. The performance evaluation of these 480 candidate designs took approximately 30
 474 days utilizing parallel computing on the Windows 7® PC equipped with a 192 GB RAM and
 475 an Intel® Xeon® Processor E5-2699 v4 @ 2.20 GHz. To be compatible with the conventional
 476 deterministic and probabilistic approaches, the design safety in this example is measured with
 477 the mean of the stability $E[FS_2]$ and the reliability index β (or equivalent failure probability P_f)
 478 of the reinforced slope, respectively. Figure 6(a) depicts the relationship between the mean of
 479 the stability $E[FS_2]$ and the cost C . Figure 6(b) depicts the relationship between the reliability
 480 index β and the cost C . Figure 6(c) depicts the relationship between the robustness R and the
 481 cost C . In Figure 6(a) and Figure 6(b), the design safety tends to increase with the increase of
 482 the cost C , as indicated by the increase of the mean of the stability $E[FS_2]$ and increase of the
 483 reliability index β . In Figure 6(c), the robustness also increases with the increase of the cost.
 484 Thus, a more conservative and robust design will cost more, indicating that a tradeoff exists

485 between the safety (and robustness) and the cost. However, the various combinations of the
486 design parameters means that the candidate designs of similar cost level may yield different
487 levels of safety and robustness, and the candidate designs of different cost level may yield
488 similar level of safety and robustness. Indeed, these combinations of the design parameters
489 provide the theoretical basis for the optimization-based design of stabilizing piles.

490 In reference to the optimization algorithm of the stabilizing piles shown in Eq. (6), the
491 design of the stabilizing piles in this example slope is readily undertaken. Through the sorting
492 algorithm in the NSGA-II (Deb et al. 2002), a Pareto front consisting of nine non-dominated
493 designs is established in the selected design space DS , as depicted in Figure 6(c). This Pareto
494 front shows the tradeoff between the robustness and the cost. As can be seen from Figure 6(c),
495 these non-dominated designs on the Pareto front are superior to all others in the design space
496 (either costs less or yields higher design robustness). Next, the knee point on this Pareto front,
497 as depicted in Figure 6(c), is identified with the minimum distance approach outlined in Gong
498 et al. (2016a). Here, this knee point could be taken as the most preferred design in the design
499 space if the design constraint of the target stability TS is not applied.

500 It should be noted that the choice of the target stability TS can affect the resulting
501 design, as indicated by the design results obtained with different choices of the target stability
502 TS shown in Figure 7 and Table 4. The design results, in terms of the Pareto front and knee
503 point, obtained with two different levels of target FS (i.e., $FS_T = 1.20$ and 1.25) (MCPHC
504 2002) are illustrated in Figure 7(a) and Figure 7(b). Similarly, the design results obtained with
505 two different levels of target reliability index (i.e., $\beta_T = 2.6$ and 3.2) are shown in Figure 7(c)
506 and Figure 7(d). The design results in Figure 7 and Table 4 depict that a reduction in the target
507 stability TS , as reflected by the decrease of target factor of safety and the decrease of target

508 reliability index, could result in more feasible designs and more non-dominated designs (on
509 the Pareto front); and, the associated most preferred design, in terms of the knee point on the
510 Pareto front, will generally yield a smaller cost (desirable) and lower safety (not desirable),
511 even though the most preferred design derived with $\beta_T = 2.6$ and that derived with $\beta_T = 3.2$ are
512 identical in this problem. The design results that two different target reliability indexes yield
513 the same knee point design might be caused by the parameters setting of the design space. The
514 advantages of the Pareto front and knee point for identifying the most preferred design of the
515 stabilizing piles, as presented in this paper, are not fully realized because of the finite number
516 of candidate designs. For example, only three possible values of pile diameter are available.
517 As a matter of fact, the Pareto fronts derived in the multi-objective optimizations are often
518 continuous curves; whereas, the Pareto fronts derived in this example are contiguous polylines,
519 as shown in Figure 7. Thus, the Pareto fronts shown in Figure 7 may not reveal the theoretical
520 (or mathematical) tradeoff between the robustness and the cost in the design of the stabilizing
521 piles, but only the tradeoff between the robustness and the cost in the design space analyzed.
522 Similarly, the knee points shown in Figure 7 and Table 4 may only indicate the most preferred
523 designs in the design space. However, the discrete design space adopted in this study could be
524 deemed rational and acceptable owing to the following reasons: 1) some design parameters of
525 the stabilizing piles could only be taken as discrete values (due to equipment or local practice);
526 and 2) computational efficiency issue would not allow for the numerical analysis of an infinite
527 number of candidate designs.

528 **3.3 Comparison between advanced design framework and conventional designs**

529 The conventional geotechnical design approaches (either deterministic or probabilistic)
530 tend to focus on the design safety; thus, the design of stabilizing piles with such approaches

531 can be implemented as a single-objective optimization problem: the design constraints are the
532 design space \mathbf{DS} and target stability \mathbf{TS} , and the objective is to minimize the cost C . With this
533 single-objective optimization algorithm, the stabilizing piles in this slope are designed and the
534 design results are compared here to those obtained from the advanced design framework.

535 As mentioned above, a conservative estimate of the uncertain input parameters and a
536 target factor of safety F_{ST} are usually taken in the deterministic design approach to overcome
537 the uncertainty involved. The following design scenarios are studied for comparison purposes:
538 the conservative estimate of the soil strength parameters is simulated by taking the 50th, 40th
539 and 30th percentiles of the assumed distributions (see Table 1), and the target factor of safety
540 F_{ST} is taken as 1.20. The designs obtained with all these design scenarios are given in Table 5.
541 The data in Table 5 depict that a more conservative estimate of the uncertain input parameters
542 could lead to a more conservative and costly design. However, the true safety or the degree of
543 conservativeness of the design is not known. Thus, the resulting design may be either over- or
544 under-designed depending upon the degree of conservativeness adopted (in the estimation of
545 the uncertain input parameters and the selection of target factor of safety F_{ST}). For example, if
546 the 40th percentiles of the assumed distributions are taken as the inputs, the resulting design is
547 fairly conservative in this problem (i.e., the reliability index β is close to 4.0 and the failure
548 probability P_f is 3.61×10^{-5}). Further, if the 30th percentiles of the assumed distributions are
549 taken, no feasible designs can be identified in the design space \mathbf{DS} shown in Table 2.

550 Next, the stabilizing piles in this slope are designed utilizing the probabilistic approach.
551 With the relationship between the reliability index β and the cost C illustrated in Figure 6(b),
552 the least cost design that is above the target reliability index β_T can be located and taken as the
553 most preferred design. For comparison purposes, the following two levels of target reliability

554 index β_T are studied: $\beta_T = 2.6$ and 3.2 . The designs obtained from these two target reliability
555 indexes are tabulated in Table 5. The results indicate that a more conservative target reliability
556 index could lead to a more conservative and costly design. Since the uncertainty in the input
557 parameters can be explicitly considered, the *true* safety of the design, in terms of the failure
558 probability P_f , is known to the engineer, which allows for a more informed design decision.
559 However, the statistical information of the input geotechnical parameters, a prerequisite for
560 the probabilistic designs, is often difficult to estimate with certainty due to limited availability
561 of site-specific data. Thus, the effectiveness of the probabilistic design can be degraded by the
562 inaccurate statistical characterization of the input geotechnical parameters (Juang and Wang
563 2013; Wang et al. 2013).

564 With the design results presented above, a comparison between the designs obtained
565 with the conventional design approaches and those obtained with the advanced design
566 framework is made, as shown in Figure 8. This comparison focuses on the cost C , design
567 safety (in terms of the failure probability P_f) and design robustness R . The comparison
568 between the deterministic approach and the advanced framework is shown in Figure 8(a), and
569 the comparison between the probabilistic approach and the advanced framework is shown in
570 Figure 8(b). It can be seen from Figure 8 that the robustness of the designs derived from the
571 advanced design framework is always greater than that of the designs obtained from the
572 conventional design approaches. Figure 8(a) shows that when the 50th percentiles of the
573 assumed distributions are taken as the inputs, the deterministic design approach results in a 33%
574 reduction in the cost while increasing the failure probability by 4.8 times, which is not
575 desirable; and, when the 40th percentiles of the assumed distributions are taken, the
576 deterministic approach results in a 100% increase in the cost and the associated failure

577 probability is reduced to 3.61×10^{-5} , which appears to be overly conservative. Thus, the
578 designs derived from the deterministic approach might be either cost-inefficient or overly
579 conservative, when the uncertainty is present but not explicitly included. In Figure 8(b), when
580 the target reliability index β_T , in the probabilistic approach, is taken as 2.6, the probabilistic
581 approach leads to a 43% reduction in the cost while the failure probability is increased 6.6
582 times, which is not desirable; and, when the target reliability index β_T is taken as 3.2, the cost
583 and the failure probability of the design obtained from the probabilistic approach are reduced
584 29% and 25%, respectively. That is to say, the advantages of the advanced design framework
585 over the probabilistic approach are not evident when the target reliability index β_T is taken as
586 3.2, which could be attributed to the fact that the target reliability index of $\beta_T = 2.6$ and that of
587 $\beta_T = 3.2$ yield the same knee point design (because of the discrete design space adopted), as
588 shown in Figure 7(c) and Figure 7(d).

589 Limited availability of site-specific data, in a typical geotechnical practice, can hinder
590 an accurate characterization of the statistics of input geotechnical parameters. In general, the
591 autocorrelation structure is the most difficult to characterize, the COV less so, and the mean
592 the easiest (Gong et al. 2017). A parametric study is undertaken to study the influences of the
593 COV and vertical scale of fluctuation (which describes the vertical autocorrelation structure)
594 on the variation of the stability of reinforced slope. For illustration purposes, the study results
595 of the preferred designs listed in Table 4 and Table 5 are shown in Figure 9 and Figure 10. As
596 can be seen, although the variation of the stability of reinforced slope are greatly influenced
597 by the input statistics (of geotechnical parameters), the influence on the designs obtained with
598 the advanced design framework is less significant; and, the design obtained with the advanced
599 framework tends to yield a smaller variation of the stability of the reinforced slope. In other

600 words, the performances of the designs obtained with the advanced design framework tend to
601 be more robust against, or insensitive to, the uncertainty in the statistical characterization of
602 the input geotechnical parameters. Hence, the superiority of the advanced design framework
603 over the conventional design approaches in the aspect of design robustness is demonstrated.

604

605 **4. Concluding Remarks**

606 This paper presents a new optimization-based design framework for stabilizing piles.
607 The advanced design framework consists of three components: 1) the coupling between the
608 stabilizing piles and the slope, which is explicitly modeled with the finite difference program;
609 2) the spatial variability of the input geotechnical parameters, which is characterized with the
610 random field theory, and its influence on the design of stabilizing piles is evaluated with the
611 formulated design robustness; and 3) the optimization-based design, which is implemented as
612 a multi-objective optimization considering the design robustness, economic aspect and safety
613 requirements. This optimization-based design will only lead to a Pareto front, indicating the
614 tradeoff between robustness and cost among all designs that can satisfy the design constraints
615 (primarily safety). This Pareto front can aid in the informed design decision making process.
616 For example, the knee point on this Pareto front that yields the best compromise with respect
617 to the conflicting design objectives may be taken as the most preferred (or final) design.

618 The effectiveness of the advanced framework is demonstrated through an illustrative
619 example, the design of stabilizing piles in a homogeneous earth slope. It should be noted that
620 apart from the spatial variability of the input geotechnical parameters, both model uncertainty
621 and structural parameters uncertainty are also explicitly included in this example. The results
622 indicate that this new framework can be compatible with the conventional design approaches.

623 The comparison between the designs obtained with the advanced framework and those
624 obtained with the conventional design approaches indicate that while the former might cost
625 more, the benefit in the improvement of the design safety is much more significant. Further,
626 the designs obtained with the advanced design framework are more robust against, or
627 insensitive to, the uncertainty in the statistical characterization of the geotechnical parameters.
628 Since the advanced design framework is built upon the foundation of conventional design
629 approaches (either deterministic or probabilistic) by considering explicitly an additional
630 design objective, namely, the design robustness, the advanced framework could be seen as a
631 complementary design strategy to the existing design approaches.

632 It is noted that the optimization of stabilizing piles is a challenging problem, especially
633 in the face of uncertainty. While the advanced design framework can be deemed effective, the
634 following limitations will warrant further investigation: 1) the computational efficiency of the
635 analysis and optimization of stabilizing piles caused by the coupling of numerical analysis and
636 random field modeling; 2) the advantages of the Pareto front and knee point for identifying
637 the most preferred design are not fully realized due to the discrete design space adopted; and 3)
638 the behavior of the pile-slope system is much more complicated than that derived from the 2-
639 D numerical analysis. Nevertheless, the design framework advanced could be regarded as a
640 significant step towards an improved design of stabilizing piles in the face of uncertainty.

641

642 **Acknowledgments**

643 The financial support provided by the National Natural Science Foundation of China
644 (No. 41702294 and No. 41977242) and the National Key R&D Program of China (No.
645 2017YFC1501302) is acknowledged. The fourth author would also like to acknowledge the

646 support by the National Science Foundation through Grant HRD-1818649. The results and
647 opinions expressed in this paper do not necessarily reflect the views and policies of both the
648 National Natural Science Foundation of China and the National Science Foundation.

649

650 **References**

651 Ang, A.H.S., and Tang, W.H. (2007). Probability Concepts in Engineering: Emphasis on
652 Application to Civil and Environmental Engineering (2nd Ed.), Wiley, New York.

653 Beyer, H.G., and Sendhoff, B. (2007). Robust optimization - A comprehensive survey.
654 Computer methods in applied mechanics and engineering, 196(33-34), 3190-3218.

655 Chen, C.Y., and Martin, G.R. (2002). Soil-structure interaction for landslide stabilizing piles.
656 Computers and Geotechnics, 29(5), 363-386.

657 Cherubini, C. (2000). Reliability evaluation of shallow foundation bearing capacity on c' , φ'
658 soils. Canadian Geotechnical Journal, 37(1), 264-269.

659 Ching, J., and Phoon, K.K. (2013). Mobilized shear strength of spatially variable soils under
660 simple stress states. Structural Safety, 41(3), 20-28.

661 Cho, S.E. (2007). Effects of spatial variability of soil properties on slope stability.
662 Engineering Geology, 92(3), 97-109.

663 Christian, J.T., Ladd, C.C., and Baecher, G.B. (1994). Reliability applied to slope stability
664 analysis. Journal of Geotechnical Engineering, 120(12), 2180-2207.

665 Comodromos, E.M., Papadopoulou, M.C., and Rentzeperis, I.K. (2009). Effect of cracking on
666 the response of pile test under horizontal loading. Journal of Geotechnical and
667 Geoenvironmental Engineering, 135(9), 1275-1284.

668 Dawson, E.M., Roth, W.H., and Drescher, A. (1999). Slope stability analysis by strength
669 reduction. *Géotechnique*, 49(6), 835-840.

670 Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist multi-objective
671 genetic algorithm: NSGA-II. *IEEE Transactions on Evolutionary Computation*, 6(2),
672 182-197.

673 Deb, K., and Gupta, S. (2011). Understanding knee points in bicriteria problems and their
674 implications as preferred solution principles. *Engineering Optimization*, 43(11), 1175-
675 1204.

676 Duncan, J.M. (2000). Factors of safety and reliability in geotechnical engineering. *Journal of
677 Geotechnical and Geoenvironmental Engineering*, 126(4), 307-316.

678 Fenton, G.A. (1999). Random field modeling of CPT data. *Journal of Geotechnical and
679 Geoenvironmental Engineering*, 125(6), 486-498.

680 FLAC version 7.0. (2011). *Fast Lagrangian Analysis of Continua*, Minneapolis, USA: Itasca
681 Consulting Group Inc.

682 Galli, A., and Di Prisco, C. (2012). Displacement-based design procedure for slope-stabilizing
683 piles. *Canadian Geotechnical Journal*, 50(1), 41-53.

684 Gong, W., Wang, L., Juang, C.H., Zhang, J., and Huang, H. (2014a). Robust geotechnical
685 design of shield-driven tunnels. *Computers and Geotechnics*, 56, 191-201.

686 Gong, W., Khoshnevisan, S., and Juang, C.H. (2014b). Gradient-based design robustness
687 measure for robust geotechnical design. *Canadian Geotechnical Journal*, 51(11), 1331-
688 1342.

689 Gong, W., Juang, C.H., Khoshnevisan, S., and Phoon, K.K. (2016a). R-LRFD: Load and
690 resistance factor design considering robustness. *Computers and Geotechnics*, 74, 74-87.

691 Gong, W., Juang, C.H., Martin, J.R., and Ching, J. (2016b). New sampling method and
692 procedures for estimating failure probability. *Journal of Engineering Mechanics*, 142(4),
693 04015107.

694 Gong, W., Tien, Y.M., Juang, C.H., Martin, J.R., and Luo, Z. (2017). Optimization of site
695 investigation program for improved statistical characterization of geotechnical property
696 based on random field theory. *Bulletin of Engineering Geology and the Environment*,
697 76(3), 1021-1035.

698 Griffiths, D.V., and Fenton, G.A. (2004). Probabilistic slope stability analysis by finite
699 elements. *Journal of Geotechnical and Geoenvironmental Engineering*, 130(5), 507-518.

700 Hajela, P., and Lin, C.Y. (1992). Genetic search strategies in multicriterion optimal design.
701 *Structural Optimization*, 4(2), 99-107.

702 Horn, J., Nafpliotis, N., and Goldberg, D.E. (1994). A niched Pareto genetic algorithm for
703 multiobjective optimization. In *Proceedings of the first IEEE conference on Evolutionary
704 Computation*, IEEE World Congress on Computational Intelligence, New York, 82-87.

705 Huang, Z.H., Zhang, L.L., Cheng, S. Y., Zhang, J., and Xia, X.H. (2014). Back-analysis and
706 parameter identification for deep excavation based on Pareto multiobjective optimization.
707 *Journal of Aerospace Engineering*, 28(6), A4014007.

708 Ito, T., and Matsui, T. (1975). Methods to estimate lateral force acting on stabilizing piles.
709 *Soils and Foundations*, 15(4), 43-59.

710 Jeong, S., Kim, B., Won, J., and Lee, J. (2003). Uncoupled analysis of stabilizing piles in
711 weathered slopes. *Computers and Geotechnics*, 30(8), 671-682.

712 Juang, C.H., and Wang, L. (2013). "Reliability-based robust geotechnical design of spread
713 foundations using multi-objective genetic algorithm." *Computers and Geotechnics*, 48,
714 96-106.

715 Juang, C.H., Wang, L., Hsieh, H.S., and Atamturktur, S. (2014). Robust geotechnical design
716 of braced excavations in clays. *Structural Safety*, 49, 37-44.

717 Juang, C.H., Gong, W., and Martin, J.R. (2017). Subdomain sampling methods – Efficient
718 algorithm for estimating failure probability. *Structural Safety*, 66, 62-73.

719 Juang, C.H., Gong, W., Martin II, J. R., and Chen, Q. (2018). Model selection in geological
720 and geotechnical engineering in the face of uncertainty – Does a complex model always
721 outperform a simple model? *Engineering Geology*, 242, 184-196.

722 Kawa, M., and Puła, W. (2019). 3D bearing capacity probabilistic analyses of footings on
723 spatially variable $c-\varphi$ soil. *Acta Geotechnica*, 1-14.

724 Khoshnevisan, S., Gong, W., Juang, C.H., and Atamturktur, S. (2014). Efficient robust
725 geotechnical design of drilled shafts in clay using a spreadsheet. *Journal of Geotechnical
726 and Geoenvironmental Engineering*, 141(2), 4014092.

727 Kourkoulis, R., Gelagoti, F., Anastasopoulos, I., and Gazetas, G. (2010). Slope stabilizing
728 piles and pile-groups: parametric study and design insights. *Journal of Geotechnical and
729 Geoenvironmental Engineering*, 137(7), 663-677.

730 Lee, C.Y., Hull, T.S., and Poulos, H.G. (1995). Simplified pile-slope stability analysis.
731 *Computers and Geotechnics*, 17(1), 1-16.

732 Li, D.Q., Chen, Y., Lu, W., and Zhou, C. (2011). Stochastic response surface method for
733 reliability analysis of rock slopes involving correlated non-normal variables. *Computers
734 and Geotechnics*, 38(1), 58-68.

735 Li, D.Q., Jiang, S.H., Cao, Z.J., Zhou, W., Zhou, C.B., and Zhang, L.M. (2015). A multiple
736 response-surface method for slope reliability analysis considering spatial variability of
737 soil properties. *Engineering Geology*, 187, 60-72.

738 Li, D.Q., Xiao, T., Cao, Z.J., Zhou, C.B., and Zhang, L.M. (2016). Enhancement of random
739 finite element method in reliability analysis and risk assessment of soil slopes using
740 subset simulation. *Landslides*, 13(2), 293-303.

741 Li, D. Q., Yang, Z. Y., Cao, Z. J., Au, S. K., and Phoon, K. K. (2017). System reliability
742 analysis of slope stability using generalized subset simulation. *Applied Mathematical
743 Modelling*, 46, 650-664.

744 Li, K.S., and Lumb, P. (1987). Probabilistic design of slopes. *Canadian Geotechnical Journal*,
745 24(4), 520-535.

746 Lirer, S. (2012). Landslide stabilizing piles: Experimental evidences and numerical
747 interpretation. *Engineering Geology*, 149, 70-77.

748 Liu, L. L., and Cheng, Y. M. (2018). System Reliability Analysis of Soil Slopes Using an
749 Advanced Kriging Metamodel and Quasi-Monte Carlo Simulation. *International Journal
750 of Geomechanics*, 18(8), 06018019.

751 Ministry of Construction of the People's Republic of China (MCPRC) (2002). Technical
752 Code for Building Slope Engineering (GB50330-2002). China Building Industry Press,
753 Beijing (in Chinese).

754 Murata, T., and Ishibuchi, H. (1995). MOGA: Multi-objective genetic algorithms. In 1995
755 IEEE International Conference on Evolutionary Computation, New York, 289-294.

756 Phadke, M.S. (1989), *Quality Engineering Using Robust Design*, Prentice Hall. Englewood
757 Cliffs, New Jersey.

758 Poulos, H.G. (1995). Design of reinforcing piles to increase slope stability. Canadian
759 Geotechnical Journal, 32(5), 808-818.

760 Taguchi, G. (1986). Introduction to Quality Engineering: Designing Quality into Products and
761 Processes, Quality Resources, White Plains, New York.

762 Tang, H., Hu, X., Xu, C., Li, C., Yong, R., and Wang, L. (2014). A novel approach for
763 determining landslide pushing force based on landslide-pile interactions. Engineering
764 Geology, 182, 15-24.

765 Tang, H., Wasowski, J., and Juang, C.H. (2019). Geohazards in the three Gorges Reservoir
766 Area, China—Lessons learned from decades of research. Engineering Geology, 105267.

767 Tian, M., Li, D.Q., Cao, Z.J., Phoon, K.K., and Wang, Y. (2016). Bayesian identification of
768 random field model using indirect test data. Engineering Geology, 210, 197-211.

769 Tun, Y. W., Llano-Serna, M. A., Pedroso, D. M., and Scheuermann, A. (2019). Multimodal
770 reliability analysis of 3D slopes with a genetic algorithm. Acta Geotechnica, 14(1), 207-
771 223.

772 Vrugt, J.A., and Robinson, B.A. (2007). Improved evolutionary optimization from genetically
773 adaptive multimethod search. Proceedings of the National Academy of Sciences, 104(3),
774 708-711.

775 Wang, L., Hwang, J.H., Juang, C.H., and Atamturktur, S. (2013). Reliability-based design of
776 rock slopes – A new perspective on design robustness. Engineering Geology, 154, 56-63.

777 Wang, F., Li, H., and Zhang, Q. L. (2017). Response-Surface-Based Embankment Reliability
778 under Incomplete Probability Information. International Journal of Geomechanics,
779 17(12), 06017021.

780 Wang, X., Wang, H., and Liang, R.Y. (2018). A method for slope stability analysis
781 considering subsurface stratigraphic uncertainty. *Landslides*, 15(5), 925-936.

782 Wang, Y., Cao, Z., and Au, S. K. (2010). Efficient Monte Carlo simulation of parameter
783 sensitivity in probabilistic slope stability analysis. *Computers and Geotechnics*, 37(7-8),
784 1015-1022.

785 Wiśniewski, D.F., Cruz, P.J., Henriques, A.A.R., and Simões, R.A. (2012). Probabilistic
786 models for mechanical properties of concrete, reinforcing steel and pre-stressing steel.
787 *Structure and Infrastructure Engineering*, 8(2), 111-123.

788 Xiao, T., Li, D. Q., Cao, Z. J., Au, S. K., and Phoon, K. K. (2016). Three-dimensional slope
789 reliability and risk assessment using auxiliary random finite element method. *Computers*
790 and *Geotechnics*, 79, 146-158.

791 Xiao, T., Li, D. Q., Cao, Z. J., and Tang, X. S. (2017). Full probabilistic design of slopes in
792 spatially variable soils using simplified reliability analysis method. *Georisk: Assessment*
793 and *Management of Risk for Engineered Systems and Geohazards*, 11(1), 146-159.

794 Zeng, S., and Liang, R.Y. (2002). Stability analysis of drilled shafts reinforced slope. *Soils*
795 and *Foundations*, 42(2), 93-102.

796 Zhang, J., Wang, H., Huang, H. W., and Chen, L. H. (2017). System reliability analysis of soil
797 slopes stabilized with piles. *Engineering Geology*, 229, 45-52.

798 Zhao, Y.G., and Ono, T. (2001). Moment methods for structural reliability. *Structural Safety*,
799 23(1), 47-75.

800

801 **Appendix A. Subdomain Sampling Method (SSM) for Estimating the Statistics of**
 802 **System Behavior**

803 The essence of the SSM is to partition the possible domain of uncertain variables into
 804 a set of subdomains and then to generate samples of uncertain variables in each and every
 805 subdomain separately (Juang et al., 2017). In which, a distance index (d) based upon Hasofer-
 806 Lind reliability index is adopted to locate the possible domain and to partition this domain.

808
$$d = \sqrt{[\mathbf{n}]^T [\mathbf{R}_n]^{-1} [\mathbf{n}]} \quad (\text{A1})$$

809 where \mathbf{R}_n is the correlation matrix among the equivalent standard normal variables $\mathbf{n} = [n_1, n_2,$
 810 ..., $n_{n_x}]^T$, where n_x is the number of uncertain variables. The standard normal variable n_i in \mathbf{n}
 811 is related to the uncertain variable x_i in \mathbf{x} .

812
$$n_i = \Phi^{-1}[F(x_i)] \quad (\text{A2})$$

813 where $F(x_i)$ is the cumulative distribution function (CDF) of uncertain variable x_i , and $\Phi(\cdot)$ is
 814 the CDF of the standard normal variable. With the distance index formulated in Eq. (A1), the
 815 possible domain of uncertain variables \mathbf{x} , denoted as $[0, d_{\max}]$, can be located.

816
$$\chi_{n_x}^2(d_{\max}^2) = \varepsilon \quad (\text{A3})$$

817 where $\chi_{n_x}^2(\cdot)$ is the chi-square CDF with n_x degrees of freedom, and ε is a probability which is
 818 relatively low. The located possible domain of uncertain variables \mathbf{x} , in terms of $[0, d_{\max}]$, is
 819 readily partitioned into a set of subdomains, in terms of $[d_0, d_1], [d_1, d_2], [d_2, d_3]$, etc. The
 820 likelihoods of the uncertain variables \mathbf{x} being located in these subdomains could be taken as a
 821 decreasing sequence for the purpose of being computationally efficient.

822
$$p_{di} = \Pr \left[d_{i-1} \leq \sqrt{\mathbf{[n]}^T \mathbf{[R]}^{-1} \mathbf{[n]}} < d_i \right] = \Pr \left[d_{i-1}^2 \leq d^2 < d_i^2 \right] = \chi_{n_x}^2(d_i^2) - \chi_{n_x}^2(d_{i-1}^2) \quad (\text{A4})$$

823 where p_{di} is the likelihood of the uncertain variables \mathbf{x} being located in the subdomain $[d_{i-1}, d_i]$.
 824 Then, the samples of uncertain variables \mathbf{x} are generated in each subdomain. The procedures
 825 for generating a target number of samples in the subdomain $[d_{i-1}, d_i]$ are given in Gong et al.
 826 (2016b).

827 For ease of programming, a same target number of samples, denoted as t_1 , is adopted in
 828 all these subdomains and this target number is taken as: $t_1 = 10p_{di}/p_{d(i-1)}$. With the generated
 829 samples of uncertain variables, the deterministic analysis of the system behavior can readily
 830 be undertaken, from which the statistics of the system behavior, in terms of the mean $E[g]$, the
 831 standard deviation $\sigma[g]$, the skewness $\alpha_3[g]$ and the kurtosis $\alpha_4[g]$, can be approximated as:

832
$$E[g] \approx \sum_{i=1}^{i=n_s} \sum_{j=1}^{j=t_1} p_{ij} \cdot g_{ij} \quad (\text{A5})$$

833
$$\sigma[g] \approx \left[\sum_{i=1}^{i=n_s} \sum_{j=1}^{j=t_1} p_{ij} \cdot (g_{ij} - E[g])^2 \right]^{0.5} \quad (\text{A6})$$

834
$$\alpha_3[g] \approx \sum_{i=1}^{i=n_s} \sum_{j=1}^{j=t_1} p_{ij} \cdot \left(\frac{g_{ij} - E[g]}{\sigma[g]} \right)^3 \quad (\text{A7})$$

835
$$\alpha_4[g] \approx \sum_{i=1}^{i=n_s} \sum_{j=1}^{j=t_1} p_{ij} \cdot \left(\frac{g_{ij} - E[g]}{\sigma[g]} \right)^4 \quad (\text{A8})$$

836 where g_{ij} is the system behavior evaluated with the j th sample in the i th subdomain, denoted
 837 as \mathbf{x}_{ij} ; n_s is the number of subdomains; and, p_{ij} is the likelihood or probability of the sample \mathbf{x}_{ij}
 838 being generated in the domain of uncertain variables, which could be expressed as:

839
$$p_{ij} = \frac{p_{di}}{t_1} = \frac{\chi_{n_x}^2(d_i^2) - \chi_{n_x}^2(d_{i-1}^2)}{t_1} \quad (\text{A9})$$

List of Figures

Figure 1. Conceptual illustration of the coupled behavior in the pile-slope system (notation: D is the pile diameter, S is the pile spacing in the longitudinal direction, L is the pile length, X is the pile location, FS_1 is the factor of safety of the unreinforced slope, FS_2 is the factor of safety of the reinforced slope, and M_{\max} is the maximum bending moment of the piles)

Figure 2. Conceptual illustration of the design under the influence of uncertainties

Figure 3. Conceptual illustration of the optimization results of stabilizing piles

Figure 4. Schematic diagram of the illustrative example

Figure 5. Effectiveness of the adopted SSM in deriving the design robustness and safety: **(a)** Design robustness R ; **(b)** Design safety $E[FS_2]$; **(c)** Design safety P_f

Figure 6. Evaluation of the design safety, design robustness and construction cost for candidate designs in the design space DS : **(a)** Design safety $E[FS_2]$ versus cost C ; **(b)** Design safety P_f versus cost C ; **(c)** Design robustness R versus cost C

Figure 7. Influence of the target stability TS on the design results of the stabilizing piles: **(a)** Target stability TS of $FS_T = 1.20$; **(b)** Target stability TS of $FS_T = 1.25$; **(c)** Target stability TS of $\beta_T = 2.6$; **(d)** Target stability TS of $\beta_T = 3.2$

Figure 8. Designs obtained with conventional design approaches versus those with the advanced design framework (Note: the vertical coordinate represents the ratio of the design objective of the designs obtained with the conventional design approaches over that of the designs obtained with advanced design framework): **(a)** Designs obtained with deterministic approach versus those with advanced framework (target stability TS is set up as $FS_T = 1.20$); **(b)** Designs obtained with probabilistic approach versus those with advanced framework

Figure 9. Influence of the input statistical information of soil strength parameters on the variation of the stability of reinforced slope (advanced framework versus deterministic approach: target stability $FS_T = 1.20$ and different percentiles of the inputs are taken): **(a)** COV of cohesion; **(b)** COV of friction angle; **(c)** Vertical scale of fluctuation

Figure 10. Influence of the input statistical information of soil strength parameters on the variation of the stability of reinforced slope (advanced framework versus probabilistic approach: different target reliability index β_T are studied): **(a)** COV of cohesion; **(b)** COV of friction angle; **(c)** Vertical scale of fluctuation

List of Tables

Table 1. Statistical information of the uncertain input parameters (or noise factors) in the illustrative example

Table 2. Deterministic parameters in the illustrative example

Table 3. Design space DS selected in the illustrative example

Table 4. Optimal designs of the stabilizing piles obtained with the advanced design framework

Table 5. Optimal designs of the stabilizing piles obtained with the conventional geotechnical design approaches

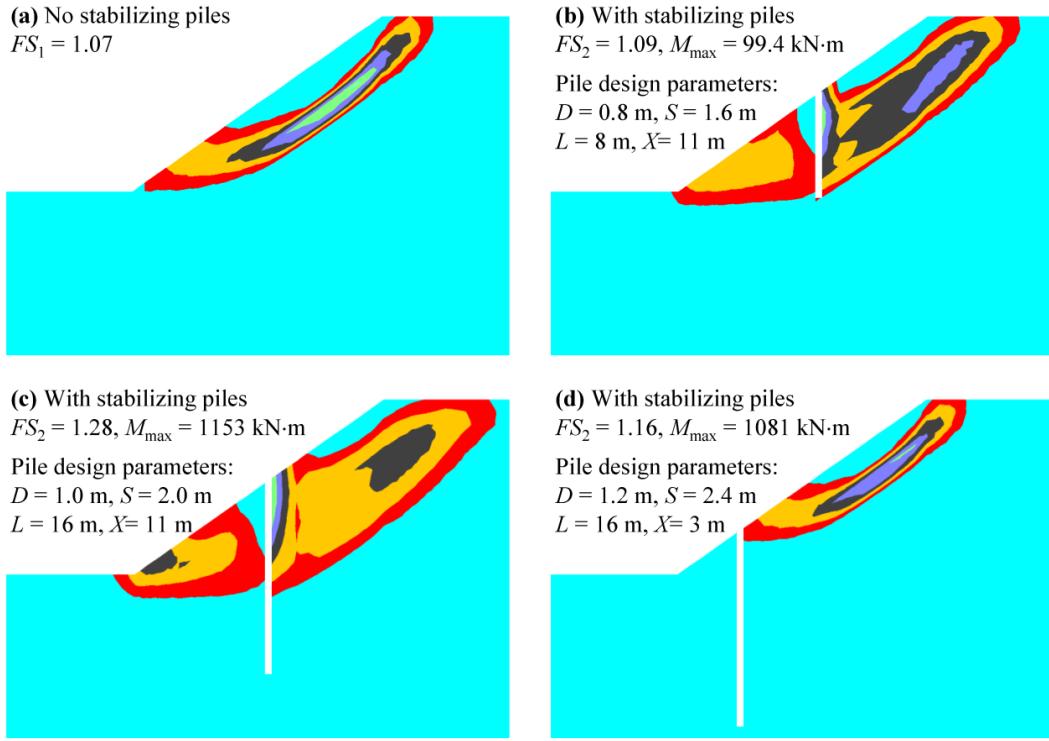


Figure 1. Conceptual illustration of the coupled behavior in the pile-slope system (notation: D is the pile diameter, S is the pile spacing in the longitudinal direction, L is the pile length, X is the pile location, FS_1 is the factor of safety of the unreinforced slope, FS_2 is the factor of safety of the reinforced slope, and M_{\max} is the maximum bending moment of the piles)

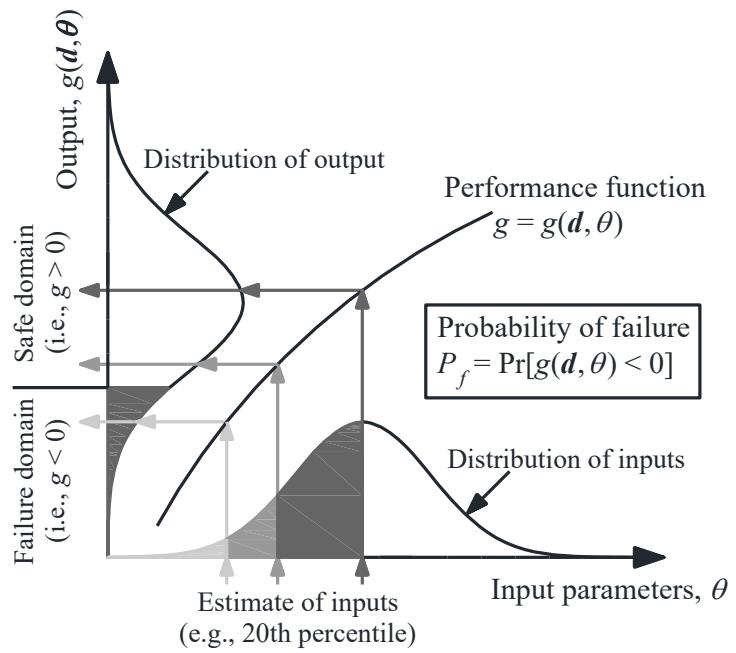


Figure 2. Conceptual illustration of the design under the influence of uncertainties

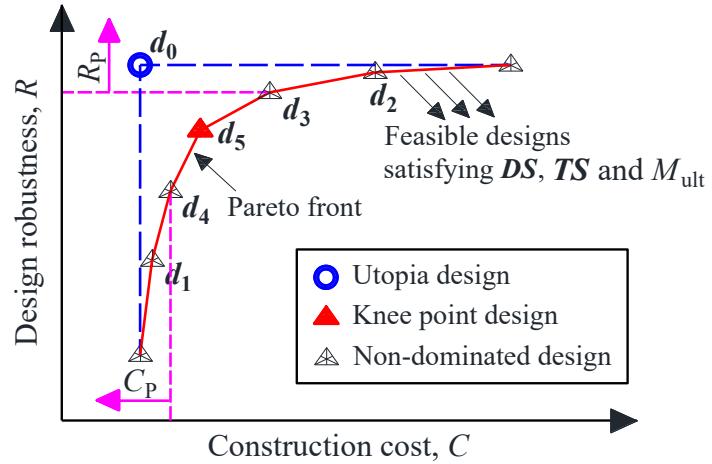


Figure 3. Conceptual illustration of the optimization results of stabilizing piles

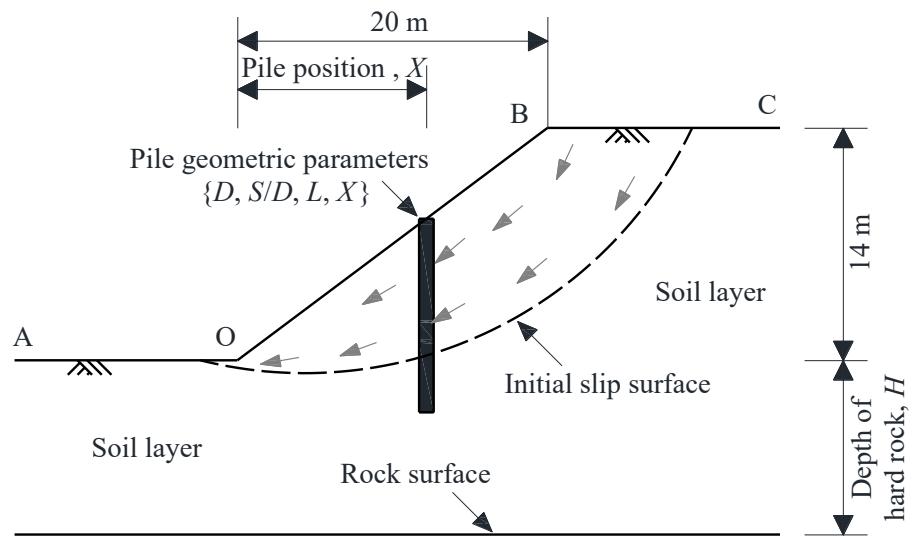


Figure 4. Schematic diagram of the illustrative example

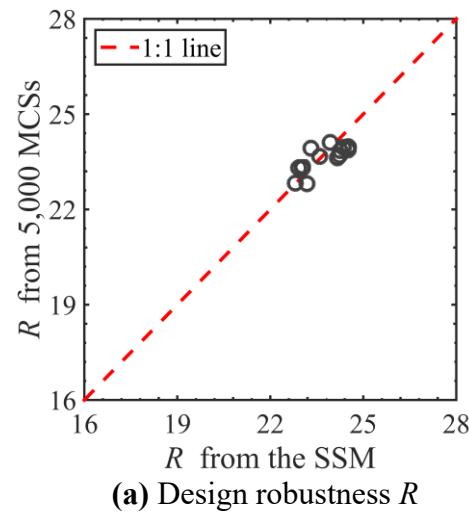
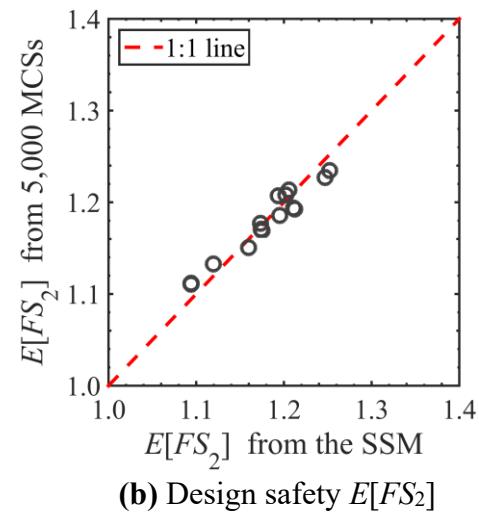
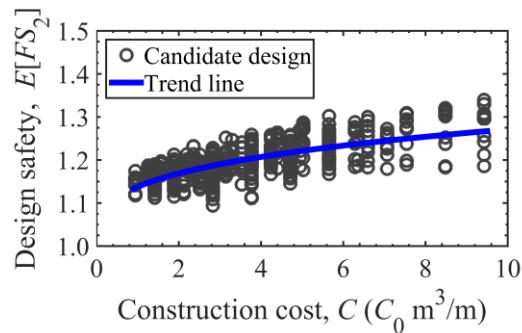
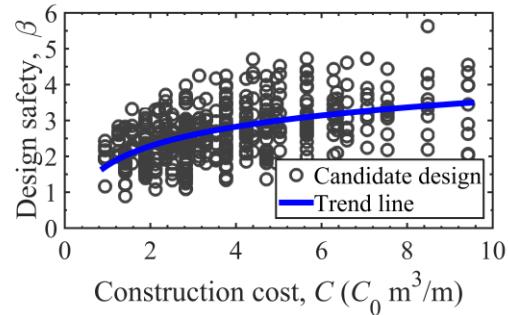


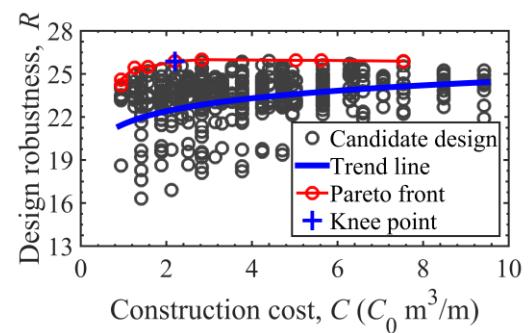
Figure 5. Effectiveness of the adopted SSM in deriving the design robustness and safety



(a) Design safety $E[FS_2]$ versus cost C



(b) Design safety P_f versus cost C



(c) Design robustness R versus cost C

Figure 6. Evaluation of the design safety, design robustness and construction cost for candidate designs in the design space DS

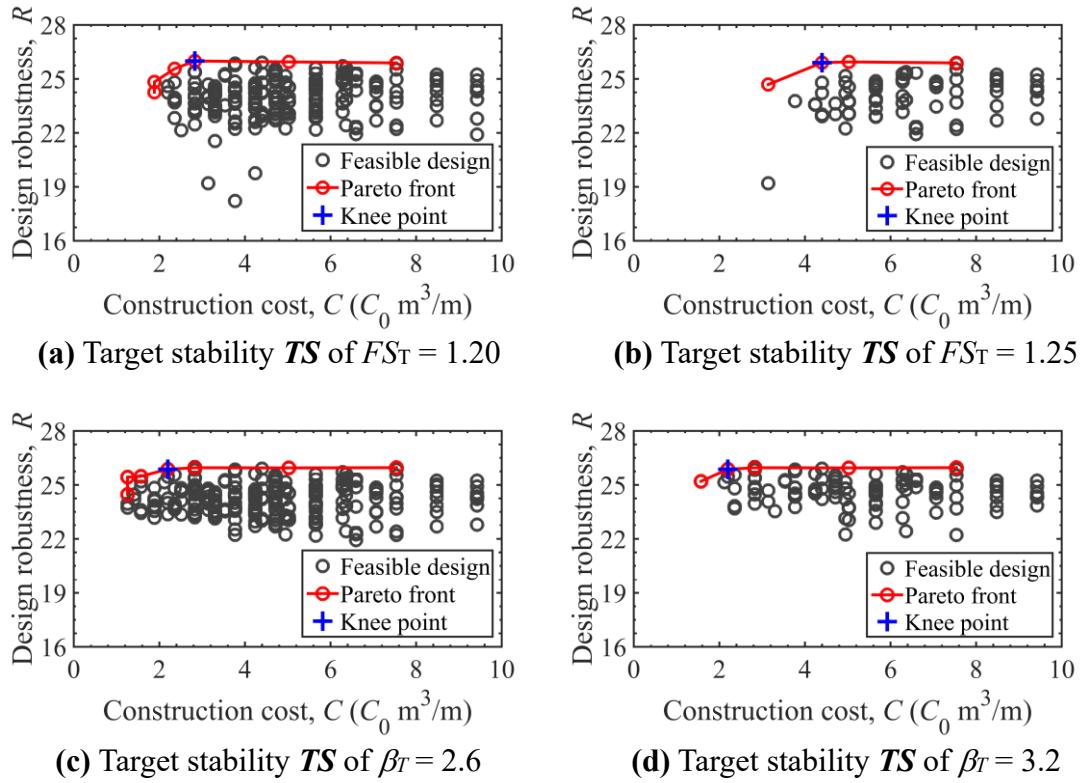
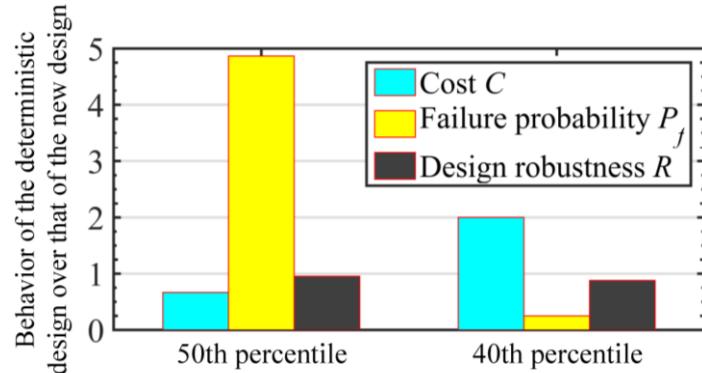
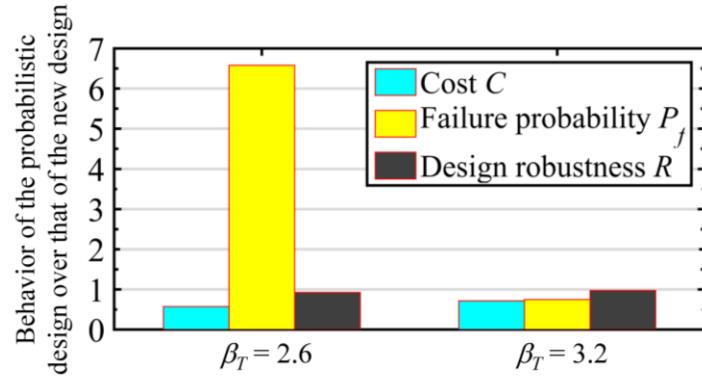


Figure 7. Influence of the target stability TS on the design results of the stabilizing piles



Estimate of the uncertain input parameters as inputs

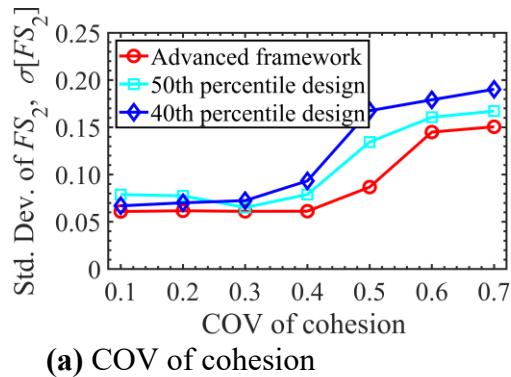
(a) Designs obtained with deterministic approach versus those with advanced framework (target stability TS is set up as $FS_T = 1.20$)



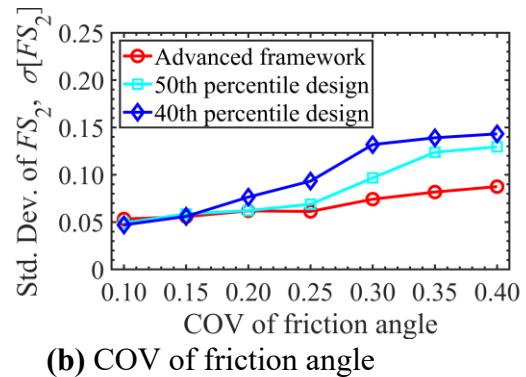
Target stability TS in the probabilistic design

(b) Designs obtained with probabilistic approach versus those with advanced framework

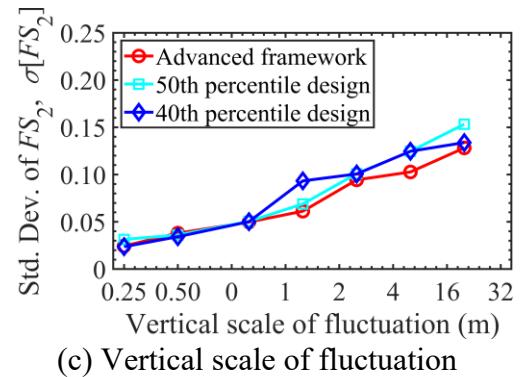
Figure 8. Designs obtained with conventional design approaches versus those with the advanced design framework (Note: the vertical coordinate represents the ratio of the design objective of the designs obtained with the conventional design approaches over that of the designs obtained with advanced design framework)



(a) COV of cohesion

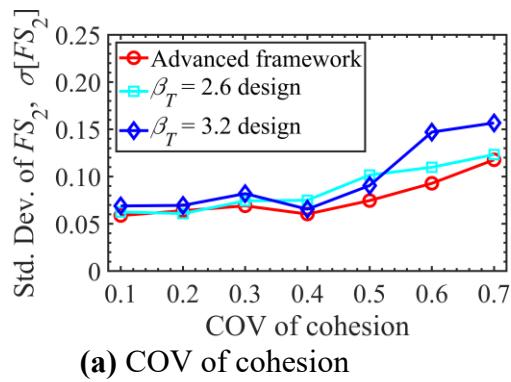


(b) COV of friction angle

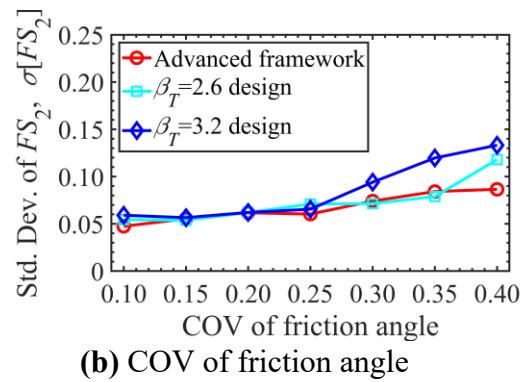


(c) Vertical scale of fluctuation

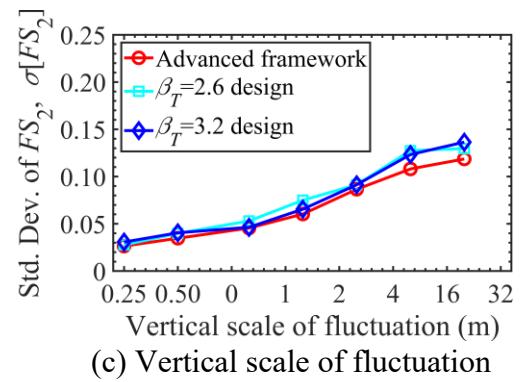
Figure 9. Influence of the input statistical information of soil strength parameters on the variation of the stability of reinforced slope (advanced framework versus deterministic approach: target stability $FS_T = 1.20$ and different percentiles of the inputs are taken)



(a) COV of cohesion



(b) COV of friction angle



(c) Vertical scale of fluctuation

Figure 10. Influence of the input statistical information of soil strength parameters on the variation of the stability of reinforced slope (advanced framework versus probabilistic approach: different target reliability index β_T are studied)

Table 1. Statistical information of the uncertain input parameters (or noise factors) in the illustrative example

Uncertain input parameters		Distribution	Mean	COV	Scale of fluctuation	
					Horizontal, λ_h	Vertical, λ_v
Soil strength parameters ^a	Cohesion, c	Lognormal	12.0 kPa	0.40 ^b	50.0 m	2.5 m
	Friction angle, ϕ	Lognormal	20.0 °	0.25 ^b	50.0 m	2.5 m
Structural properties	Yielding strength of steel bar	Normal	345×10^3 kPa	0.05 ^c	-	-
	Compression strength of concrete	Normal	39×10^3 kPa	0.12 ^c	-	-
Model error	(true FS) – (calculated FS)	Uniform	The distribution range is [-0.02, 0.02]			

Note: ^a the correlation coefficient between soil cohesion and soil friction angle is -0.5;

^b data are from Cherubini (2000);

^c data are from Wiśniewski et al. (2012).

Table 2. Deterministic parameters in the illustrative example

Category	Parameter	Value
Soil	Unit weight (kN/m ³)	17.0
	Bulk modulus (MPa)	330
	Shear modulus (MPa)	150
Stabilizing piles	Unit weight (kN/m ³)	25.0
	Young's modulus (GPa)	35.0
	Steel reinforcement ratio (%)	1.0
	Thickness of concrete protective cover (m)	0.05
Soil-pile interfaces	Normal stiffness (MPa/m)	550
	Shear stiffness (MPa/m)	550
	Cohesion (kPa)	12.0
	Friction angle (°)	20.0

Table 3. Design space \mathbf{DS} selected in the illustrative example

Design parameters	Design pool (i.e., potential values of pile parameters)
Pile diameter, D (m)	{0.6 m, 0.9 m, 1.2 m}
Pile spacing, S (m)	{ $S \mid S/D = 2.0, S/D = 3.0$ }
Pile length, L (m)	{6 m, 8 m, 10 m, 12 m, 14 m, 16 m, 18 m, 20 m}
Pile position, X (m)	{1 m, 3 m, 5 m, 7 m, 9 m, 11 m, 13 m, 15 m, 17 m, 19 m}

Table 4. Optimal designs of the stabilizing piles obtained with the advanced design framework

Target stability TS		Number of feasible designs	Number of non-dominated designs	Most preferred design								Design robustness, R	
				Pile design parameters d				Cost, C ($C_0 \text{ m}^3/\text{m}$)	Design safety				
				D (m)	S (m)	L (m)	X (m)		$E[FS_2]$	β			
Factor of safety	$FSt = 1.20$	217	6	0.9	2.7	12.0	5.0	2.827	1.22	3.624	25.995		
	$FSt = 1.25$	74	4	1.2	3.6	14.0	3.0	4.398	1.25	4.707	25.902		
Reliability index	$\beta_T = 2.6$	256	7	0.6	1.8	14.0	5.0	2.199	1.19	3.237	25.870		
	$\beta_T = 3.2$	111	5	0.6	1.8	14.0	5.0	2.199	1.19	3.237	25.870		

Table 5. Optimal designs of the stabilizing piles obtained with the conventional geotechnical design approaches

Design approach		Pile design parameters \mathbf{d}				Cost, C ($C_0 \text{m}^3/\text{m}$)	Design safety			Design robustness, R
		D (m)	S (m)	L (m)	X (m)		$E[FS_2]$	β	P_f	
Deterministic approach ($FS_T = 1.2$)	50th percentile	0.9	2.7	8.0	3.0	1.885	1.20	3.192	7.06×10^{-4}	24.834
	40th percentile	1.2	2.4	12.0	5.0	5.655	1.30	3.969	3.61×10^{-5}	22.896
	30th percentile	The maximum FS_2 of the candidate pile design is less than $FS_T = 1.2$, and no feasible designs could be identified in the design space DS shown in Table 2.								
Probabilistic approach	$\beta_T = 2.6$	0.6	1.8	8.0	3.0	1.257	1.18	2.655	3.97×10^{-3}	23.953
	$\beta_T = 3.2$	0.6	1.8	10.0	5.0	1.571	1.19	3.320	4.51×10^{-4}	25.201