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Abstract: Although advances in piling equipment and technologies have extended the global 16 

use of stabilizing piles (to stabilize slope or landslide), the design of stabilizing piles remains 17 

a challenge. Specifically, the installation of stabilizing piles can alter the behavior of the slope; 18 

and, the spatial variability of the geotechnical parameters required in the design is difficult to 19 

characterize with certainty, which can degrade the design performance. This paper presents an 20 

optimization-based design framework for stabilizing piles. The authors explicitly consider the 21 

coupling between the stabilizing piles and the slope, and the robustness of the stability of the 22 

reinforced slope against the spatial variability of the geotechnical parameters. The proposed 23 

design framework is implemented as a multi-objective optimization problem considering the 24 

design robustness as an objective, in addition to safety and cost efficiency, two objectives 25 

considered in the conventional design approaches. The design of stabilizing piles in an earth 26 

slope is studied as an example to illustrate the effectiveness of this new design framework. A 27 

comparison study is also undertaken to demonstrate the superiority of this new framework 28 

over the conventional design approaches.  29 
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1. Introduction 34 

“Stabilizing piles” are the piles that are installed to stabilize unstable slopes or active 35 

landslides, which transfer part of the earth pressure from the upper unstable layer to the lower 36 

stable layer, thus improving the stability of the geomaterials behind the piles (Poulos 1995; 37 

Zeng and Liang 2002; Lirer 2012). Since their inception, stabilizing piles have been widely 38 

used in the mitigation of slope instability and landslide geohazards. For example, many active 39 

landslides and unstable slopes in the Three Gorges Reservoir Area have been reinforced with 40 

stabilizing piles (Tang et al. 2014&2019). It is known that the installation of stabilizing piles 41 

can greatly alter the behavior of the slope. The stability of a reinforced slope could be 42 

evaluated with both uncoupled and coupled methods. In an uncoupled analysis, the earth 43 

pressure and its distribution along the piles are first estimated, followed by the use of the earth 44 

pressure as an input to the analysis of the behavior of the pile-slope system (Ito and Matsui 45 

1975; Galli and Di Prisco 2012); whereas, in a coupled analysis, the piles and the slope are 46 

dealt as an integrated system, and the behavior of this system is studied considering explicitly 47 

the pile-slope interaction (Jeong et al. 2013). Though theoretically sound, the computationally 48 

demanding characteristics of this coupled analysis might hinder its application in engineering 49 

practice. As a result, the uncoupled analysis still dominates the design of stabilizing piles in 50 

the current practice.  51 

Though the behavior of the pile-slope system has been the subject of extensive studies, 52 

little effort has been undertaken to elucidate design methods for stabilizing piles, especially 53 

on the selection of pile parameters such as the diameter, spacing, length and position (Lee et 54 

al. 1995). Indeed, the design of stabilizing piles is a multidisciplinary problem, which must be 55 

informed with knowledge of geotechnical engineering, structural engineering, and economics. 56 
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Hence, the design of the stabilizing piles would better be implemented as a multi-objective 57 

optimization problem, in which the requirements from the stability of the reinforced slope, 58 

bearing capacity of the piles, and economic concerns should be simultaneously considered. 59 

However, most of the discussions regarding the design of stabilizing piles do not encompass 60 

economic requirements but instead place most emphasis upon either the stability of reinforced 61 

slope or the pile bearing capacity (Chen and Martin 2002; Comodromos et al. 2009).  62 

The geomaterials (e.g., soils and/or rocks) within a slope are natural materials, and the 63 

properties of the geomaterials are dependent upon the natural deposit and loading histories, 64 

which are beyond the control of the engineer. Due to the incomplete knowledge regarding the 65 

deposit and loading histories, the geotechnical properties at a site could not be known prior to 66 

the site investigation. In addition, because only a limited number of boreholes are afforded in 67 

a given project, the geotechnical properties are only known at the borehole locations. The 68 

properties at all other positions cannot be known and must be characterized from the known 69 

values at the borehole locations. Owing to the inherent spatial variability of the geotechnical 70 

properties and the limited availability of borehole data, the geotechnical properties at a given 71 

site will be uncertain. The uncertain geotechnical properties are often characterized with fuzzy 72 

or random variables, or random fields (Cho 2007; Wang et al. 2010; Ching and Phoon 2013; 73 

Tian et al. 2016; Xiao et al. 2016; Li et al. 2017; Wang et al. 2017; Xiao et al. 2017; Zhang et 74 

al. 2017; Liu and Cheng 2018; Kawa and Puła 2019; Tun et al. 2019). The uncertainty in the 75 

input geotechnical properties further complicates the design of stabilizing piles.   76 

In the face of the geotechnical properties uncertainty, the level of stability of a slope, 77 

regardless of whether it is reinforced with stabilizing piles or not, will be uncertain and could 78 

not be expressed as a fixed value (Griffiths and Fenton 2004; Cho 2007; Li et al. 2016; Wang 79 
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et al. 2018). To compensate for this uncertainty, a conservative estimate of the geotechnical 80 

properties is usually made in the design. And, to further ensure safety, the computed factor of 81 

safety FS, as a measure of the safety level, in a feasible design is required to be no less than a 82 

target FS. With such a deterministic design approach, however, the true safety of a candidate 83 

design is unknown, the resulting design might be either over- or under-designed. Alternatively, 84 

the probabilistic design approaches that allow for an explicit consideration of the uncertainty 85 

have long been advocated (Li and Lumb 1987; Christian et al. 1994; Duncan 2000; Juang et al. 86 

2018). However, the designs obtained with the probabilistic approaches are strongly affected 87 

by the statistical information of the input geotechnical properties (Wang et al. 2013; Juang et 88 

al. 2014), which are difficult to characterize. Thus, the dilemma of whether to over-design for 89 

safety or under-design for cost efficiency has not been fully overcome, even though the design 90 

approaches evolve from deterministic to probabilistic approaches. To address this dilemma, 91 

robust design methods, originated in the field of quality and industrial engineering (Taguchi 92 

1986; Phadke 1989; Beyer and Sendhoff 2007), have recently been adopted for applications in 93 

geotechnical designs (Juang and Wang 2013; Juang et al. 2014; Khoshnevisan et al. 2014). In 94 

the context of robust geotechnical design (RGD), the design robustness of the geotechnical 95 

system against the uncertainty in the input geotechnical parameters is explicitly considered 96 

along with cost and safety requirements.   97 

In this paper, a new framework for the robust design of stabilizing piles is established 98 

that considers: 1) the coupling between the stabilizing piles and the slope; 2) the robustness of 99 

the stability of the reinforced slope against the uncertainty in the input parameters; and 3) the 100 

multi-objective optimization of the design robustness, economic aspect, and safety. The rest 101 

of this paper is organized as follows. First, this new optimization-based design framework for 102 
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stabilizing piles is established. A hypothetical example, in terms of the design of stabilizing 103 

piles in a homogeneous earth slope, that utilizes this new design framework is then detailed. 104 

Thereafter, a comparison with the conventional geotechnical design approaches is undertaken 105 

to demonstrate the superiority of the advanced framework. Finally, the concluding remarks 106 

are made based upon the results presented.  107 

 108 

2. New Design Framework for Stabilizing Piles in Slopes 109 

While the significance of the coupling between the stabilizing piles and the slope, the 110 

uncertainty in the input geotechnical parameters, and the economic constraint in the design of 111 

stabilizing piles have long been recognized, an integrated design framework that can consider 112 

explicitly all these factors remains unavailable. In this paper, a new optimization-based design 113 

framework for stabilizing piles that considers all these factors simultaneously is advanced.  114 

2.1 Modeling of the coupling in the pile-slope system 115 

Figure 1 illustrates the coupling in a pile-slope system, in which the failure surface in 116 

an unreinforced slope and those in reinforced slopes (with three designs of stabilizing piles 117 

herein) are examined. In Figure 1(a), the depth of the failure surface in the unreinforced slope 118 

is shallow and passes above the slope toe. In Figure 1(b) and Figure 1(c), the piles are located 119 

around the middle part of the slope, and the pile lengths are greater than the depth of the 120 

initial failure surface; as a result, the failure surfaces in the reinforced slopes extend to greater 121 

depths. However, the length of the piles in Figure 1(b) is only slightly greater than the depth 122 

of the initial failure surface, unlike the one in Figure 1(c). Consequently, the failure surface in 123 

the reinforced slope in Figure 1(b) could not be blocked by the piles; and, the earth pressure 124 

transferred by the piles, indicated by the maximum bending moment of the piles Mmax, is quite 125 
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small (i.e., Mmax = 99.4 kNm), indicating that the bearing capacity of the piles cannot be fully 126 

utilized. On the other hand, the failure surface in the reinforced slope in Figure 1(c) could be 127 

blocked by the piles, and a greater part of the earth pressure from the upper unstable layer is 128 

transferred to the lower stable layer (i.e., Mmax = 1153 kNm). Thus, the improvement of the 129 

slope stability, indicated by the factor of safety of the reinforced slope FS2, in Figure 1(c) is 130 

more significant (i.e., FS2 = 1.28) than that in Figure 1(b) (i.e., FS2 = 1.09). In Figure 1(d), the 131 

stabilizing piles are located in the lower part of the slope and the length of the piles is much 132 

greater than the depth of the initial failure surface, which causes a reduction in the length of 133 

the failure surface in the reinforced slope, and the new failure surface passes above the top of 134 

the piles. Note that although the earth pressure transferred by the piles is significant in Figure 135 

1(d) (i.e., Mmax = 1081 kNm), the improvement of the slope stability is not apparent (i.e., FS2 136 

= 1.16). Thus, the failure surface, earth pressures on piles, and stability of reinforced slope are 137 

all affected by the coupling between the stabilizing piles and the slope. This coupling must be 138 

explicitly considered in the analysis and design of stabilizing piles.  139 

Given the recognized effectiveness of numerical solutions for analyzing the coupling 140 

between the structures and the geomaterials, the 2-D explicit finite difference program FLAC 141 

version 7.0 (2011) is adopted herein as the solution model for evaluating the stability of the 142 

pile-slope system. Within FLAC version 7.0, the slope stability is evaluated with the strength 143 

reduction method, in which the resistance (i.e., shear strength) of the geomaterials is gradually 144 

adjusted to bring the slope (either reinforced or unreinforced) to the limit equilibrium state. It 145 

is well known that the behavior of a pile-slope system is a 3-D problem and which should be 146 

studied with 3-D numerical simulations; otherwise, the sliding of the geomaterials through the 147 

space between adjacent piles could not be simulated. However, the 3-D numerical simulation 148 
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can be computationally prohibitive for the following probabilistic stability analysis and design 149 

optimization. In reference to Kourkoulis et al. (2010), an effective soil arching can be formed 150 

between adjacent piles when the ratio of the pile spacing over the pile diameter is less than 4.0. 151 

Under such circumstances, the plane-strain condition is taken in this study and the maximum 152 

ratio of the pile spacing (i.e., center-to-center spacing between piles) over the pile diameter is 153 

set to be 3.0. Thus, the stability of the pile-slope system can be evaluated with 2-D numerical 154 

simulations; in which, the piles are modeled with elastic-perfectly plastic beam elements, the 155 

interfaces between the piles and the geomaterials are modeled with interface elements, and the 156 

pile spacing is inputted to the numerical models to realize the resistance of the piles (against 157 

slope failure) per longitudinal length. The plastic moment of the piles, which is required in the 158 

2-D numerical simulations, is derived with plasticity theory of reinforced concrete. Since the 159 

stability of a slope (either reinforced or unreinforced) can be dominated by the shear strength 160 

of the geomaterials, the behaviors of the geomaterials in this study are simulated with Mohr-161 

Coulomb models.  162 

2.2 Formulation of the design robustness of the reinforced slope 163 

For the pile-slope system with the design parameters d and the non-design variables  164 

as inputs, the response or performance of this system g(d, θ) is expressed as: 165 

( , ) ( , ) ( , )= −d d dg R T           (1) 166 

where R(d, θ) and T(d, θ) are the resistance term and load term, respectively. Mathematically, 167 

the uncertainty in the input parameters  will lead to the uncertainty in the output or system 168 

response g(d, θ). In reference to Figure 2, the relationship between the output g(d, θ) and the 169 

inputs  is captured by a monotonic performance function g(d, θ). For an arbitrary distribution 170 

of the inputs , the output g(d, θ) is a distribution, rather than a fixed value.  171 
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In a deterministic design, the safety of a design is evaluated and expressed as a factor 172 

of safety FS: 173 

( , )

( , )
=

d

d

R
FS

T




          (2) 174 

In practice, a design is deemed feasible if the computed FS is greater than 1.0. To compensate 175 

for the uncertainty in the input parameters and adopted model, a conservative estimate of the 176 

input parameters (e.g., 20th percentile of the resistance term R and 80th percentile of the load 177 

term T; see Figure 2) and a target FS, FST (e.g., FST = a value greater than 1.0, say, 1.2), may 178 

be adopted. Since the uncertainty is not explicitly included in the analysis, the true safety of 179 

the design is unknown and the resulting design might be either over- or under-designed. To 180 

overcome this problem, the probabilistic approaches which permit an explicit consideration of 181 

the uncertainty (e.g., uncertain variables are simulated as random variables or random fields) 182 

have long been advocated (Li and Lumb 1987; Christian et al. 1994; Cherubini 2000; Duncan 183 

2000). In probabilistic designs, the safety of a design d is evaluated with the computed failure 184 

probability Pf or reliability index . 185 

0

-
( , ) 0

Pr[ ( , ) 0] ( ) = ( )f

g

P g f d f g dg




=  =  
d

d


        (3a) 186 

( )fP =  −           (3b) 187 

where f() is the probability density function (PDF) of the uncertain input parameters ; f(g) is 188 

the PDF of the performance function g(d, θ); and, () is the cumulative distribution function 189 

(CDF) of the standard normal variable. To ensure the safety of the resulting design, a target 190 

failure probability PfT (e.g., PfT = 4.710-3) or a target reliability index T (e.g., T = 2.6) is 191 

suggested. A design is deemed feasible if the computed failure probability Pf is less than the 192 
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target failure probability PfT or the related reliability index  is larger than the target reliability 193 

index T.  194 

Note that while the formulation is simple and easy-to-follow, the practical application 195 

of the probabilistic approaches in the geotechnical design is not an easy task. The challenge in 196 

the geotechnical design is attributed to the fact that the geomaterials are natural, rather than 197 

manufactured materials. The degree of uncertainty in the geotechnical properties tends to be 198 

greater than that in the structural counterpart and the uncertainty in the geotechnical properties 199 

could be much more difficult to characterize. Furthermore, the property of the geomaterials is 200 

often spatially correlated. The spatial correlation characteristics of the geotechnical properties 201 

could best be characterized with the random field theory (Fenton 1999; Cho 2007; Tian et al. 202 

2016). The anisotropic exponential autocorrelation structure is adopted herein to capture the 203 

spatial correlation of the geotechnical properties: 204 

( ) 1 2 1 2

1 2 1 2

h v

2 2
, exp exp

x x y y
x x y y

 

 −  − 
− − = − −    

  

    (4) 205 

where |x1 – x2| is the horizontal distance between the two positions of (x1, y1) and (x2, y2); |y1 – 206 

y2| is the vertical distance between the two positions of (x1, y1) and (x2, y2); and, h and v are 207 

the horizontal and vertical scale of fluctuations of the geotechnical properties, respectively.  208 

In a numerical modeling of a slope (either reinforced or unreinforced), the geometrical 209 

domain of the slope is discretized into a set of small elements, thus permitting an assignment 210 

of different geotechnical properties to different numerical elements. That is to say, the spatial 211 

variability of the geotechnical parameters can be directly simulated in the numerical modeling. 212 

Note that while lots of computationally efficient methods have been developed for the 213 

probabilistic analysis of the geotechnical systems, most of them cannot be applied to 214 



 

11 

geotechnical systems with random fields as inputs; whereas, the sampling-based methods 215 

such as the Monte Carlo simulation (MCS) are often deemed the most reliable approaches for 216 

dealing with the random fields. To consider the spatial variability of the input geotechnical 217 

parameters in the design of stabilizing piles, the random finite difference method (RFDM) is 218 

adopted in this study. In the context of the RFDM, the spatial variability of the input 219 

geotechnical parameters is simulated with the random field theory, and potential realizations 220 

of the random field of the geotechnical parameters are sampled with MCSs. For each and 221 

every realization of the random field, the stability of the slope will be analyzed 222 

deterministically utilizing the finite difference program (e.g., the 2-D FLAC adopted in this 223 

paper). Since the parameters within a numerical element are captured by fixed parameters and 224 

no variation can be allowed, the geotechnical parameters that are averaged within the element 225 

domain, rather than those at the grids, should be sampled and taken as the inputs to the 226 

numerical analysis. The integration of brute MCS and numerical analysis can be 227 

computationally prohibitive. To improve the computational efficiency (of this RFDM), the 228 

subdomain sampling method (SSM) (Juang et al. 2017), in lieu of the brute MCS, is adopted 229 

in this paper for sampling the potential realizations of the random field of the input 230 

geotechnical parameters. A detailed formulation of this SSM is summarized in Appendix A.  231 

In a typical geotechnical practice, site-specific data can be quite limited due to budget 232 

constraints for site investigation. Thus, it is difficult to derive the statistical information of the 233 

input geotechnical parameters with certainty (Gong et al. 2017). In such a circumstance, the 234 

probabilistic approaches are usually undertaken using inaccurate or assumed statistics; 235 

however, the designs obtained with the probabilistic approaches are strongly influenced by the 236 

adopted statistics (Wang et al. 2013). To overcome this issue of the probabilistic approaches, 237 



 

12 

robust design, originated from the field of quality and industrial engineering (Taguchi 1986), 238 

is adopted, in this paper, for the design of stabilizing piles. The essence of this robust design 239 

is to derive a design in which the system behavior is robust against the uncertainty in the input 240 

parameters. In the proposed robust design of stabilizing piles, the robustness of the stability of 241 

the reinforced slope against the uncertainty (i.e., spatial variability) in the input geotechnical 242 

parameters, R, is formulated based upon the concept of “signal-to-noise ratio” (SNR) (Phadke 243 

1989; Gong et al. 2014a).  244 

2

2
10 2

2

[ ]
10 log

[ ]

E FS
R SNR

FS

 
= =  

 
       (5) 245 

where E[FS2] and [FS2] are the mean and standard deviation, respectively, of the stability of 246 

the reinforced slope. Note that although various robustness measures have been developed for 247 

the robust geotechnical design (RGD) (Wang et al. 2013; Juang et al. 2014; Khoshnevisan et 248 

al. 2014; Gong et al. 2014a&2014b), the selection of the robustness measure can be problem-249 

specific depending upon the level of uncertainty in geotechnical parameters characterization: 250 

1) in the scenario where only the nominal values of the geotechnical parameters are known, 251 

the gradient-based robustness may be utilized (Gong et al. 2014b); 2) in the scenario where 252 

the ranges of the geotechnical parameters could be estimated, the SNR-based robustness may 253 

be utilized (Gong et al. 2014a); and 3) in the scenario where the probabilistic distribution of 254 

the geotechnical parameters may be characterized but the statistical information could not be 255 

ascertained, the feasibility-based robustness may be used (Wang et al. 2013). In the proposed 256 

robust design of stabilizing piles, the noise factors (i.e., difficult-to-characterize and hard-to-257 

control parameters) are mainly associated with the spatially varied geotechnical parameters. 258 

Note that while the feasibility-based robustness is theoretically sound, the simpler SNR-based 259 
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robustness measure formulated in Eq. (5) is adopted herein owing to its simplicity and 260 

practical applicability. As such, the calculation of the feasibility of the failure probability 261 

satisfying the target failure probability can be avoided; meanwhile, the characterization of the 262 

uncertainty in the statistical parameters of the geotechnical properties, which is required for 263 

the feasibility calculation, can be avoided.  264 

With the numerical model established in the previous section as a solution model, the 265 

uncertainty in the noise factors naturally propagates into the uncertainty in the stability of the 266 

reinforced slope, which could be captured by the standard deviation of the stability (in terms 267 

of the factor of safety FS) of the reinforced slope [FS2]. It is noted that a higher [FS2] value 268 

indicates a higher variability of the stability of the reinforced slope (in the face of the input 269 

geotechnical properties uncertainty), thus signaling a lower robustness of the stabilizing pile 270 

design. Since the safety of the stabilizing pile design can also be affected by the mean of the 271 

stability of the reinforced slope E[FS2], the standard deviation of the stability [FS2] is further 272 

normalized by the mean of the stability E[FS2]. Then, the SNR-based robustness R is readily 273 

formulated, as shown in Eq. (5). Similarly, a higher R value signals a lower variability of the 274 

stability of the reinforced slope, and thus indicating a higher robustness. Here, the detailed 275 

procedure for derivation of the mean E[FS2] and standard deviation [FS2] of the stability of 276 

the reinforced slope using the subdomain sampling method (SSM) is given in Appendix A. In 277 

reference to the robustness measure formulated in Eq. (5), the conventional factor of safety FS 278 

is embedded in this design robustness; and, this design robustness measure is calculated from 279 

the by-products of the probabilistic analysis, in terms of the statistics of the factor of safety FS. 280 

Hence, the proposed design framework is compatible with the conventional deterministic and 281 

probabilistic design approaches; and, the computational coupling of the evaluation of the 282 
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design robustness and the probabilistic analysis would not lead to significant increase in the 283 

computational demands of the advanced robust design. Indeed, the only increase in the 284 

computational demand of the advanced design framework is the multi-optimization shown in 285 

Eq. (6), in comparison to the conventional probabilistic design approaches. 286 

2.3 Optimization-based design of stabilizing piles incorporating robustness 287 

The goal of the advanced optimization-based design framework for stabilizing piles is 288 

to derive an optimal stabilizing pile design (represented by a set of design parameters d) in the 289 

design space DS such that the target stability of the reinforced slope TS can be satisfied, while 290 

both robustness R and cost efficiency E will be simultaneously optimized. This optimization-291 

based design framework for stabilizing piles is set up as follows.  292 

ult

Find:           Pile parameters 

Subject to:   Design space 

                    Target stability of

Ultimate bearing cap

 reinforced slope 

 acity of stabilizi  ng          pile         

Objectiv

s M

d

DS

TS

es:  Maximizing design robustness 

        Minimizing constru    ctio      n c    ost

R

C

   (6) 293 

where d represents the design parameters of the stabilizing piles that are easy-to-control (by 294 

the engineer). For example, the geometrical parameters of the pile diameter D, pile spacing S, 295 

pile length L and pile position X are taken as the design parameters d, expressed as d = {D, S, 296 

L, X}. Whereas, the mechanical parameters of the piles such as the steel reinforcement ratio 297 

and concrete modulus are taken as fixed values; and, the steel strength and concrete strength, 298 

which are essential for estimating the ultimate bearing capacity of the piles, could be dealt as 299 

uncertain parameters (or noise factors) due to the manufacturing error.  300 

The design space DS is an assembly of candidate designs of stabilizing piles, which 301 

can be determined based upon local experience and engineering judgment. The target stability 302 
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TS is a mandatory requirement of the stability of the reinforced slope, expressed in terms of 303 

the target factor of safety FST or target failure probability PfT (or equivalently target reliability 304 

index T), which could be specified by the owner or client based upon the significance of the 305 

project or consequences of failure. The ultimate bearing capacity Mult is the plastic moment of 306 

the piles, which is evaluated with the plasticity theory of steel reinforced concrete. The design 307 

robustness R is the “signal-to-noise ratio” (SNR) of the stability of the reinforced slope against 308 

the variation in the uncertain input parameters (or noise factors). The construction cost C is 309 

the economic aspect of the design of stabilizing piles. Assuming no variation in the cost with 310 

respect to the site condition and pile installation technique in a given project, only the material 311 

cost of the piles is considered in this paper. Further, the steel reinforcement ratio of the piles is 312 

taken as a fixed value. Thus, the cost C could be approximated herein by the volume of the 313 

stabilizing piles per longitudinal length.  314 

2

0
4

D L
C C

S

 
=


         (7) 315 

where C0 represents the cost per cubic meter of steel reinforcement concrete.  316 

The desire to maximize the design robustness R and that to minimize the cost C are 317 

two conflicting objectives. The optimization in Eq. (6) cannot lead to a single best design with 318 

respect to both objectives simultaneously. Instead, this optimization only leads to a set of non-319 

dominated designs which are superior to all others in the design space, but not superior or 320 

inferior to any other in this set. As depicted in Figure 3, although the non-dominated design d1 321 

is less expensive (indicating higher cost efficiency), the counterpart of non-dominated design 322 

d2 yields a larger R value (indicating higher robustness). Note that although the utopia design 323 

d0 is optimal with respect to both objectives, it may not be located in the feasible domain (i.e., 324 
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the target stability TS is not satisfied or not belong to design space DS). These non-dominated 325 

designs collectively form a Pareto front which reveals a tradeoff relationship between these 326 

two conflicting design objectives (Deb et al. 2002; Juang et al. 2014). This Pareto front can be 327 

obtained utilizing multi-objective optimization algorithms such as the Multi-objective Genetic 328 

Algorithm, MOGA (Murata and Ishibuchi 1995), Niched Pareto Genetic Algorithm, NPGA 329 

(Horn et al. 1994), Non-dominated Sorting Genetic Algorithm version II, NSGA-II (Deb et al. 330 

2002; Juang and Wang 2013), Multi-algorithm Genetically Adaptive Multiobjective Method, 331 

AMALGAM (Vrugt and Robinson 2007; Huang et al. 2014), weighted sum-based algorithm 332 

(Hajela and Lin 1992), or spreadsheet-based algorithm (Khoshnevisan et al. 2014).  333 

Note that although various optimization algorithms could be available in the literature 334 

of industrial, civil and electrical engineering, the optimization of the geotechnical system such 335 

as the stabilizing piles is different from the optimization problem in other fields. For example, 336 

the choice of the pile diameter is limited to piling equipment and local practice, only discrete 337 

values can be taken. A survey of the geometrical parameters of the stabilizing piles installed 338 

in the Three Gorges Reservoir Area, China indicates that the pile lengths were often taken as 339 

discrete or integer values and the piles were usually constructed at the elevations of discrete or 340 

integer values. Thus, a discrete design space DS is selected in this paper for the optimization 341 

design of stabilizing piles to ensure the feasibility in the construction. Since a discrete design 342 

space is adopted with a finite number of candidate designs (e.g., 480 designs in this paper), 343 

the optimization presented in this study adopts an exhaustive search among the designs in the 344 

discrete design space, which is different from many other optimization techniques reported in 345 

the literature (e.g., Hajela and Lin 1992; Murata and Ishibuchi 1995; Deb et al. 2002; Vrugt 346 

and Robinson 2007), where potential candidate designs are generated and analyzed selectively, 347 
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and not exhaustively. Here, the safety, robustness, and cost for each and every candidate 348 

design in the selected discrete design space are evaluated. On the basis of the evaluated 349 

performance of candidate designs, the Pareto front revealing the tradeoff between design 350 

robustness and cost efficiency can be derived utilizing the non-dominated sorting algorithm in 351 

the NSGA-II (Deb et al. 2002). It should be noted that although a discrete design space is 352 

adopted in this study, it is not the limitation of the advanced design framework and a 353 

continuous design space can also be adopted if so desired (and then the optimization 354 

algorithms reported in the literature can be applied); however, the random finite difference 355 

method (RFDM)-based probabilistic analysis of the candidate design will be iteratively called 356 

in the direct application of these optimization algorithms, which might increase the 357 

computational efforts for this problem.  358 

The obtained Pareto front could help render an informed design decision. For example, 359 

either the least cost design that is above a pre-specified level of robustness RP (see design d3 360 

in Figure 3) or the most robust design that is below a pre-specified level of cost CP (see design 361 

d4 in Figure 3) can be selected as the most preferred design in the design space DS. However, 362 

the determination of an appropriate level of the robustness or cost is usually problem-specific. 363 

In situations where a strong preference is not pre-specified by the owner or client, the knee 364 

point on the Pareto front, which can yield the best compromise with respect to the conflicting 365 

objectives, can be identified (see design d5 in Figure 3) and taken as the most preferred design 366 

(Deb and Gupta 2011). As illustrated in Figure 3, on the left side of the knee point design d5, a 367 

slight reduction in cost C could lead to a drastic decrease in the design robustness R, which is 368 

not desirable; and, on the right side of the knee point design d5, a slight improvement in the 369 

design robustness R requires a huge increase in cost C, which is also not desirable. Thus, this 370 
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knee point design could be taken as the most preferred design in the design pool, if no design 371 

preference is specified by the owner or client. Once the Pareto front is obtained, this knee 372 

point design is easily identified with the marginal utility function approach (Deb and Gupta 373 

2011), normal boundary intersection approach (Deb and Gupta 2011), reflex angle approach 374 

(Deb and Gupta 2011), or minimum distance approach (Gong et al. 2016a).  375 

 376 

As can be seen, the coupling between the stabilizing piles and the slope, the robustness 377 

of the stability of the reinforced slope against the uncertainty in the input parameters (e.g., the 378 

spatial variability of the geotechnical parameters and the manufacturing error of the structural 379 

materials), economic aspect, and conventional safety requirements are explicitly considered in 380 

the advanced design framework for stabilizing piles; and, this design framework is carried out 381 

through a multi-objective optimization with respect to these design objectives.  382 

 383 

3. Illustrative Example: Design of Stabilizing Piles in An Earth Slope  384 

To demonstrate the effectiveness and significance of the advanced design framework, 385 

the design of stabilizing piles in a homogeneous earth slope, shown in Figure 4, is adopted as 386 

an illustrative example. The parameters setting and the design results are presented below.  387 

3.1 Parameters setting in the illustrative example 388 

In reference to Figure 4, the width and height of the studied slope are 20.0 m and 14.0 389 

m, respectively, and the depth to bed rock is assumed to approach infinity (H→ ). Further 390 

assume no surcharge on the top of the slope and the groundwater level far below the slope. In 391 

this example, both soil strength parameters, in terms of the cohesion c and friction angle , are 392 

treated as random fields, and their statistical information is tabulated in Table 1. The other soil 393 
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parameters such as the unit weight, bulk modulus and shear modulus are assumed as fixed (or 394 

deterministic) values, as listed in Table 2.  395 

An initial analysis of this slope indicates that the stability of this slope is relatively low 396 

(i.e., FS1 = 1.14), which is thus designed to be reinforced by a single row of steel reinforced 397 

concrete stabilizing piles. According to the optimization framework outlined above, the easy-398 

to-control geometrical parameters, including the pile diameter D, pile spacing S, pile length L 399 

and pile position X, are taken as the design parameters d, expressed as d = {D, S, L, X}. The 400 

steel reinforcement ratio and concrete modulus (of the piles) are treated as fixed values, as 401 

shown in Table 2; and, the steel strength and concrete strength are taken as uncertain input 402 

parameters and their statistical information is also given in Table 1. For ease of construction, a 403 

discrete design space DS shown in Table 3 is selected in this paper for the optimization design. 404 

The maximum ratio of the pile spacing S over the pile diameter D is set to be 3.0 (i.e., S/D = 405 

3.0) in this optimization problem, thus effective soil arching can be formed between adjacent 406 

piles (Kourkoulis et al. 2010). In the selected design space DS shown in Table 3, a total of 407 

480 candidate designs are possible and the optimal design will be identified from this pool.  408 

To incorporate the coupling between the stabilizing piles and the slope explicitly, the 409 

numerical model established above is adopted herein as the solution model for evaluating the 410 

safety performance of the pile-slope system. The 2-D explicit finite difference program FLAC 411 

version 7.0 (2011) is used and plane-strain condition is assumed. To minimize the boundary 412 

effect, the bottom boundary is set at 30.0 m below the slope toe, the left-side boundary is set 413 

at 30.0 m away from the slope toe, and the right-side boundary is set at 30.0 m away from the 414 

slope crest. The geometrical domain of this slope problem is discretized into 1,296 elements 415 

(the minimum size of the discretized elements is 1.0 m×1.0 m) for ease of assigning the soil 416 
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parameters (e.g., c and ). The left- and right-side boundaries are restrained horizontally, and 417 

the bottom boundary is restrained vertically. The soil is simulated with Mohr-Coulomb model, 418 

the stabilizing piles are modeled with elastic-perfectly plastic beam elements, and the soil-pile 419 

interfaces are modeled with interface elements. The setting of the parameters of the piles and 420 

those of the interfaces is tabulated in Table 2. Note that a bracketing approach similar to that 421 

proposed by Dawson et al (1999) is used in FLAC version 7 for deriving the factor of safety 422 

FS of the slope, and the resolution limit is set at 0.02 in this paper. As such, the model error of 423 

this numerical model, in terms of the discrepancy between the true FS and the calculated FS 424 

(i.e., true FS minus calculated FS), might be taken as an uncertain variable that is uniformly 425 

distributed in the range of [-0.02, 0.02]. 426 

It should be noted that the execution of a deterministic analysis of the slope stability 427 

takes about 100 seconds on the Windows 7® PC equipped with a 192 GB RAM and an Intel® 428 

Xeon® Processor E5-2699 v4 @ 2.20 GHz. To reduce the number of the realizations or 429 

samples of the uncertain input parameters involved in the RFDM analysis and thus improving 430 

the computational efficiency, the subdomain sampling method (SSM) (Juang et al. 2017) is 431 

utilized for generating the realizations of the random fields of soil strength parameters and the 432 

samples of the other uncertain parameters (i.e., the steel strength, concrete strength and model 433 

error). The parameters of the adopted SSM are set up as follows: 1) the probability of  in Eq. 434 

(A3) is taken as  = 1.010-6 for locating the possible domain of uncertain parameters; 2) the 435 

likelihoods of the samples being located in the subdomains are taken as a decreasing sequence 436 

of pd1 = 1/3, pd2 = 1/32, pd3 = 1/33, … ; 3) the target number of samples in each subdomain is 437 

taken as t1 = 30; and 4) the number of subdomains is taken as ns = 13. Thus, a total of 390 438 

realizations or samples of the uncertain input parameters will be generated and analyzed for 439 
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estimating the statistics of the stability of the slope (either reinforced or unreinforced). This 440 

number of samples is close to that required in the stochastic response surface method (Li et al. 441 

2011&2015), which is well known for its high computational efficiency in analyzing random 442 

field problems.  443 

3.2 Results obtained with the advanced optimization-based design framework 444 

With the derived statistics of the stability of the reinforced slope (using SSM), the 445 

design robustness R, in terms of the “signal-to-noise ratio” (SNR), and the design safety, in 446 

terms of the mean of the stability E[FS2] (to be compatible with the deterministic approach) or 447 

failure probability Pf (to be compatible with the probabilistic approach) of the reinforced 448 

slope, can readily be evaluated. For example, the failure probability of the reinforced slope Pf 449 

(or equivalent reliability index ) in this paper is estimated with the fourth moment method 450 

FM-1 outlined in Zhao and Ono (2001). Figure 5 validates the effectiveness and accuracy of 451 

the adopted SSM, using MCS, in deriving the design robustness R, design safety E[FS2] and 452 

design safety Pf of the reinforced slope through an analysis of 15 arbitrarily selected candidate 453 

designs. Note that the number of samples utilized in the brute MCS herein is taken as 5,000. 454 

In Figure 5(a) and Figure 5(b), the data points (of design robustness R and safety E[FS2]) are 455 

both close to the 1:1 line (i.e., a perfect match), thus the design robustness R and design safety 456 

E[FS2] estimated from the adopted SSM match well with those from the MCS. In Figure 5(c), 457 

although there is some discrepancy in the derived failure probability Pf between the SSM and 458 

the MCS, the 90% confidence interval of the failure probability Pf derived from the MCS can 459 

bracket the failure probability Pf derived from the SSM with a high chance. In the context of 460 

the brute MCS, the coefficient of variation of the failure probability estimate Pf, denoted as Pf, 461 

is approximated as follows (Ang and Tang 2007). 462 
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where nMCS represents the number of samples utilized in the MCS. With the estimated failure 464 

probability Pf and its COV, the 90% confidence interval of the failure probability Pf shown in 465 

Figure 5(c) can readily be obtained with an assumption that the estimated failure probability 466 

follows a lognormal distribution. From there, the accuracy of the adopted SSM in evaluating 467 

the design robustness and safety of the reinforced slope is validated. However, with the SSM, 468 

only 390 realizations (or samples) of the uncertain input parameters are required. As such, the 469 

computational efficiency of the proposed optimization design could be guaranteed.  470 

Since a discrete design space is adopted in this example, the design safety, robustness, 471 

and cost for each and every candidate design could be evaluated and the results are shown in 472 

Figure 6. The performance evaluation of these 480 candidate designs took approximately 30 473 

days utilizing parallel computing on the Windows 7® PC equipped with a 192 GB RAM and 474 

an Intel® Xeon® Processor E5-2699 v4 @ 2.20 GHz. To be compatible with the conventional 475 

deterministic and probabilistic approaches, the design safety in this example is measured with 476 

the mean of the stability E[FS2] and the reliability index  (or equivalent failure probability Pf) 477 

of the reinforced slope, respectively. Figure 6(a) depicts the relationship between the mean of 478 

the stability E[FS2] and the cost C. Figure 6(b) depicts the relationship between the reliability 479 

index  and the cost C. Figure 6(c) depicts the relationship between the robustness R and the 480 

cost C. In Figure 6(a) and Figure 6(b), the design safety tends to increase with the increase of 481 

the cost C, as indicated by the increase of the mean of the stability E[FS2] and increase of the 482 

reliability index . In Figure 6(c), the robustness also increases with the increase of the cost. 483 

Thus, a more conservative and robust design will cost more, indicating that a tradeoff exists 484 
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between the safety (and robustness) and the cost. However, the various combinations of the 485 

design parameters means that the candidate designs of similar cost level may yield different 486 

levels of safety and robustness, and the candidate designs of different cost level may yield 487 

similar level of safety and robustness. Indeed, these combinations of the design parameters 488 

provide the theoretical basis for the optimization-based design of stabilizing piles.  489 

In reference to the optimization algorithm of the stabilizing piles shown in Eq. (6), the 490 

design of the stabilizing piles in this example slope is readily undertaken. Through the sorting 491 

algorithm in the NSGA-II (Deb et al. 2002), a Pareto front consisting of nine non-dominated 492 

designs is established in the selected design space DS, as depicted in Figure 6(c). This Pareto 493 

front shows the tradeoff between the robustness and the cost. As can be seen from Figure 6(c), 494 

these non-dominated designs on the Pareto front are superior to all others in the design space 495 

(either costs less or yields higher design robustness). Next, the knee point on this Pareto front, 496 

as depicted in Figure 6(c), is identified with the minimum distance approach outlined in Gong 497 

et al. (2016a). Here, this knee point could be taken as the most preferred design in the design 498 

space if the design constraint of the target stability TS is not applied.  499 

It should be noted that the choice of the target stability TS can affect the resulting 500 

design, as indicated by the design results obtained with different choices of the target stability 501 

TS shown in Figure 7 and Table 4. The design results, in terms of the Pareto front and knee 502 

point, obtained with two different levels of target FS (i.e., FST = 1.20 and 1.25) (MCPRC 503 

2002) are illustrated in Figure 7(a) and Figure 7(b). Similarly, the design results obtained with 504 

two different levels of target reliability index (i.e., T = 2.6 and 3.2) are shown in Figure 7(c) 505 

and Figure 7(d). The design results in Figure 7 and Table 4 depict that a reduction in the target 506 

stability TS, as reflected by the decrease of target factor of safety and the decrease of target 507 



 

24 

reliability index, could result in more feasible designs and more non-dominated designs (on 508 

the Pareto front); and, the associated most preferred design, in terms of the knee point on the 509 

Pareto front, will generally yield a smaller cost (desirable) and lower safety (not desirable), 510 

even though the most preferred design derived with T = 2.6 and that derived with T = 3.2 are 511 

identical in this problem. The design results that two different target reliability indexes yield 512 

the same knee point design might be caused by the parameters setting of the design space. The 513 

advantages of the Pareto front and knee point for identifying the most preferred design of the 514 

stabilizing piles, as presented in this paper, are not fully realized because of the finite number 515 

of candidate designs. For example, only three possible values of pile diameter are available. 516 

As a matter of fact, the Pareto fronts derived in the multi-objective optimizations are often 517 

continuous curves; whereas, the Pareto fronts derived in this example are contiguous polylines, 518 

as shown in Figure 7. Thus, the Pareto fronts shown in Figure 7 may not reveal the theoretical 519 

(or mathematical) tradeoff between the robustness and the cost in the design of the stabilizing 520 

piles, but only the tradeoff between the robustness and the cost in the design space analyzed. 521 

Similarly, the knee points shown in Figure 7 and Table 4 may only indicate the most preferred 522 

designs in the design space. However, the discrete design space adopted in this study could be 523 

deemed rational and acceptable owing to the following reasons: 1) some design parameters of 524 

the stabilizing piles could only be taken as discrete values (due to equipment or local practice); 525 

and 2) computational efficiency issue would not allow for the numerical analysis of an infinite 526 

number of candidate designs.  527 

3.3 Comparison between advanced design framework and conventional designs 528 

The conventional geotechnical design approaches (either deterministic or probabilistic) 529 

tend to focus on the design safety; thus, the design of stabilizing piles with such approaches 530 



 

25 

can be implemented as a single-objective optimization problem: the design constraints are the 531 

design space DS and target stability TS, and the objective is to minimize the cost C. With this 532 

single-objective optimization algorithm, the stabilizing piles in this slope are designed and the 533 

design results are compared here to those obtained from the advanced design framework.  534 

As mentioned above, a conservative estimate of the uncertain input parameters and a 535 

target factor of safety FST are usually taken in the deterministic design approach to overcome 536 

the uncertainty involved. The following design scenarios are studied for comparison purposes: 537 

the conservative estimate of the soil strength parameters is simulated by taking the 50th, 40th 538 

and 30th percentiles of the assumed distributions (see Table 1), and the target factor of safety 539 

FST is taken as 1.20. The designs obtained with all these design scenarios are given in Table 5. 540 

The data in Table 5 depict that a more conservative estimate of the uncertain input parameters 541 

could lead to a more conservative and costly design. However, the true safety or the degree of 542 

conservativeness of the design is not known. Thus, the resulting design may be either over- or 543 

under-designed depending upon the degree of conservativeness adopted (in the estimation of 544 

the uncertain input parameters and the selection of target factor of safety FST). For example, if 545 

the 40th percentiles of the assumed distributions are taken as the inputs, the resulting design is 546 

fairly conservative in this problem (i.e., the reliability index  is close to 4.0 and the failure 547 

probability Pf is 3.6110-5). Further, if the 30th percentiles of the assumed distributions are 548 

taken, no feasible designs can be identified in the design space DS shown in Table 2.  549 

Next, the stabilizing piles in this slope are designed utilizing the probabilistic approach. 550 

With the relationship between the reliability index  and the cost C illustrated in Figure 6(b), 551 

the least cost design that is above the target reliability index T can be located and taken as the 552 

most preferred design. For comparison purposes, the following two levels of target reliability 553 
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index T are studied: T = 2.6 and 3.2. The designs obtained from these two target reliability 554 

indexes are tabulated in Table 5. The results indicate that a more conservative target reliability 555 

index could lead to a more conservative and costly design. Since the uncertainty in the input 556 

parameters can be explicitly considered, the true safety of the design, in terms of the failure 557 

probability Pf, is known to the engineer, which allows for a more informed design decision. 558 

However, the statistical information of the input geotechnical parameters, a prerequisite for 559 

the probabilistic designs, is often difficult to estimate with certainty due to limited availability 560 

of site-specific data. Thus, the effectiveness of the probabilistic design can be degraded by the 561 

inaccurate statistical characterization of the input geotechnical parameters (Juang and Wang 562 

2013; Wang et al. 2013).  563 

With the design results presented above, a comparison between the designs obtained 564 

with the conventional design approaches and those obtained with the advanced design 565 

framework is made, as shown in Figure 8. This comparison focuses on the cost C, design 566 

safety (in terms of the failure probability Pf) and design robustness R. The comparison 567 

between the deterministic approach and the advanced framework is shown in Figure 8(a), and 568 

the comparison between the probabilistic approach and the advanced framework is shown in 569 

Figure 8(b). It can be seen from Figure 8 that the robustness of the designs derived from the 570 

advanced design framework is always greater than that of the designs obtained from the 571 

conventional design approaches. Figure 8(a) shows that when the 50th percentiles of the 572 

assumed distributions are taken as the inputs, the deterministic design approach results in a 33% 573 

reduction in the cost while increasing the failure probability by 4.8 times, which is not 574 

desirable; and, when the 40th percentiles of the assumed distributions are taken, the 575 

deterministic approach results in a 100% increase in the cost and the associated failure 576 
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probability is reduced to 3.6110-5, which appears to be overly conservative. Thus, the 577 

designs derived from the deterministic approach might be either cost-inefficient or overly 578 

conservative, when the uncertainty is present but not explicitly included. In Figure 8(b), when 579 

the target reliability index T, in the probabilistic approach, is taken as 2.6, the probabilistic 580 

approach leads to a 43% reduction in the cost while the failure probability is increased 6.6 581 

times, which is not desirable; and, when the target reliability index T is taken as 3.2, the cost 582 

and the failure probability of the design obtained from the probabilistic approach are reduced 583 

29% and 25%, respectively. That is to say, the advantages of the advanced design framework 584 

over the probabilistic approach are not evident when the target reliability index T is taken as 585 

3.2, which could be attributed to the fact that the target reliability index of T = 2.6 and that of 586 

T = 3.2 yield the same knee point design (because of the discrete design space adopted), as 587 

shown in Figure 7(c) and Figure 7(d). 588 

Limited availability of site-specific data, in a typical geotechnical practice, can hinder 589 

an accurate characterization of the statistics of input geotechnical parameters. In general, the 590 

autocorrelation structure is the most difficult to characterize, the COV less so, and the mean 591 

the easiest (Gong et al. 2017). A parametric study is undertaken to study the influences of the 592 

COV and vertical scale of fluctuation (which describes the vertical autocorrelation structure) 593 

on the variation of the stability of reinforced slope. For illustration purposes, the study results 594 

of the preferred designs listed in Table 4 and Table 5 are shown in Figure 9 and Figure 10. As 595 

can be seen, although the variation of the stability of reinforced slope are greatly influenced 596 

by the input statistics (of geotechnical parameters), the influence on the designs obtained with 597 

the advanced design framework is less significant; and, the design obtained with the advanced 598 

framework tends to yield a smaller variation of the stability of the reinforced slope. In other 599 
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words, the performances of the designs obtained with the advanced design framework tend to 600 

be more robust against, or insensitive to, the uncertainty in the statistical characterization of 601 

the input geotechnical parameters. Hence, the superiority of the advanced design framework 602 

over the conventional design approaches in the aspect of design robustness is demonstrated.  603 

 604 

4. Concluding Remarks  605 

This paper presents a new optimization-based design framework for stabilizing piles. 606 

The advanced design framework consists of three components: 1) the coupling between the 607 

stabilizing piles and the slope, which is explicitly modeled with the finite difference program; 608 

2) the spatial variability of the input geotechnical parameters, which is characterized with the 609 

random field theory, and its influence on the design of stabilizing piles is evaluated with the 610 

formulated design robustness; and 3) the optimization-based design, which is implemented as 611 

a multi-objective optimization considering the design robustness, economic aspect and safety 612 

requirements. This optimization-based design will only lead to a Pareto front, indicating the 613 

tradeoff between robustness and cost among all designs that can satisfy the design constraints 614 

(primarily safety). This Pareto front can aid in the informed design decision making process. 615 

For example, the knee point on this Pareto front that yields the best compromise with respect 616 

to the conflicting design objectives may be taken as the most preferred (or final) design.  617 

The effectiveness of the advanced framework is demonstrated through an illustrative 618 

example, the design of stabilizing piles in a homogeneous earth slope. It should be noted that 619 

apart from the spatial variability of the input geotechnical parameters, both model uncertainty 620 

and structural parameters uncertainty are also explicitly included in this example. The results 621 

indicate that this new framework can be compatible with the conventional design approaches. 622 
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The comparison between the designs obtained with the advanced framework and those 623 

obtained with the conventional design approaches indicate that while the former might cost 624 

more, the benefit in the improvement of the design safety is much more significant. Further, 625 

the designs obtained with the advanced design framework are more robust against, or 626 

insensitive to, the uncertainty in the statistical characterization of the geotechnical parameters. 627 

Since the advanced design framework is built upon the foundation of conventional design 628 

approaches (either deterministic or probabilistic) by considering explicitly an additional 629 

design objective, namely, the design robustness, the advanced framework could be seen as a 630 

complementary design strategy to the existing design approaches.  631 

It is noted that the optimization of stabilizing piles is a challenging problem, especially 632 

in the face of uncertainty. While the advanced design framework can be deemed effective, the 633 

following limitations will warrant further investigation: 1) the computational efficiency of the 634 

analysis and optimization of stabilizing piles caused by the coupling of numerical analysis and 635 

random field modeling; 2) the advantages of the Pareto front and knee point for identifying 636 

the most preferred design are not fully realized due to the discrete design space adopted; and 3) 637 

the behavior of the pile-slope system is much more complicated than that derived from the 2-638 

D numerical analysis. Nevertheless, the design framework advanced could be regarded as a 639 

significant step towards an improved design of stabilizing piles in the face of uncertainty.  640 
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 800 

Appendix A. Subdomain Sampling Method (SSM) for Estimating the Statistics of 801 

System Behavior 802 

 803 

The essence of the SSM is to partition the possible domain of uncertain variables into 804 

a set of subdomains and then to generate samples of uncertain variables in each and every 805 

subdomain separately (Juang et al., 2017). In which, a distance index (d) based upon Hasofer-806 

Lind reliability index is adopted to locate the possible domain and to partition this domain.  807 

     
T 1−

=
n

n R nd          (A1) 808 

where Rn is the correlation matrix among the equivalent standard normal variables n = [n1, n2, 809 

, 
xnn ]T, where nx is the number of uncertain variables. The standard normal variable ni in n 810 

is related to the uncertain variable xi in x.  811 

 1 ( )i in F x−=           (A2) 812 

where F(xi) is the cumulative distribution function (CDF) of uncertain variable xi, and () is 813 

the CDF of the standard normal variable. With the distance index formulated in Eq. (A1), the 814 

possible domain of uncertain variables x, denoted as [0, dmax), can be located. 815 

2 2

max( )
xn d =           (A3) 816 

where 2 ( ) 
xn

 is the chi-square CDF with nx degrees of freedom, and  is a probability which is 817 

relatively low. The located possible domain of uncertain variables x, in terms of [0, dmax), is 818 

readily partitioned into a set of subdomains, in terms of [d0, d1), [d1, d2), [d2, d3), etc. The 819 

likelihoods of the uncertain variables x being located in these subdomains could be taken as a 820 

decreasing sequence for the purpose of being computationally efficient. 821 
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where pdi is the likelihood of the uncertain variables x being located in the subdomain [di-1, di). 823 

Then, the samples of uncertain variables x are generated in each subdomain. The procedures 824 

for generating a target number of samples in the subdomain [di-1, di) are given in Gong et al. 825 

(2016b). 826 

For ease of programing, a same target number of samples, denoted as t1, is adopted in 827 

all these subdomains and this target number is taken as: t1 = 10pdi/pd(i-1). With the generated 828 

samples of uncertain variables, the deterministic analysis of the system behavior can readily 829 

be undertaken, from which the statistics of the system behavior, in terms of the mean E[g], the 830 

standard deviation [g], the skewness 3[g] and the kurtosis 4[g], can be approximated as: 831 
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where gij is the system behavior evaluated with the jth sample in the ith subdomain, denoted 836 

as xij; ns is the number of subdomains; and, pij is the likelihood or probability of the sample xij 837 

being generated in the domain of uncertain variables, which could be expressed as: 838 

2 2 2 2

1

1 1

( ) ( )
x xn i n idi

ij

d dp
p

t t

  −−
= =        (A9) 839 



 

39 

 

List of Figures 

 

Figure 1. Conceptual illustration of the coupled behavior in the pile-slope system (notation: D 

is the pile diameter, S is the pile spacing in the longitudinal direction, L is the pile 

length, X is the pile location, FS1 is the factor of safety of the unreinforced slope, FS2 

is the factor of safety of the reinforced slope, and Mmax is the maximum bending 

moment of the piles)  

 

Figure 2. Conceptual illustration of the design under the influence of uncertainties 

 

Figure 3. Conceptual illustration of the optimization results of stabilizing piles 

 

Figure 4. Schematic diagram of the illustrative example 

 

Figure 5. Effectiveness of the adopted SSM in deriving the design robustness and safety: (a) 

Design robustness R; (b) Design safety E[FS2]; (c) Design safety Pf 

 

Figure 6. Evaluation of the design safety, design robustness and construction cost for 

candidate designs in the design space DS: (a) Design safety E[FS2]versus cost C: (b) 

Design safety Pf versus cost C: (c) Design robustness R versus cost C 

 

Figure 7. Influence of the target stability TS on the design results of the stabilizing piles: (a) 

Target stability TS of FST = 1.20; (b) Target stability TS of FST = 1.25; (c) Target 

stability TS of T = 2.6; (d) Target stability TS of T = 3.2 

 

Figure 8. Designs obtained with conventional design approaches versus those with the 

advanced design framework (Note: the vertical coordinate represents the ratio of the 

design objective of the designs obtained with the conventional design approaches 

over that of the designs obtained with advanced design framework): (a) Designs 

obtained with deterministic approach versus those with advanced framework (target 

stability TS is set up as FST = 1.20); (b) Designs obtained with probabilistic approach 

versus those with advanced framework 

 

Figure 9. Influence of the input statistical information of soil strength parameters on the 

variation of the stability of reinforced slope (advanced framework versus 

deterministic approach: target stability FST = 1.20 and different percentiles of the 

inputs are taken): (a) COV of cohesion; (b) COV of friction angle; (c) Vertical scale 

of fluctuation 

 

Figure 10. Influence of the input statistical information of soil strength parameters on the 

variation of the stability of reinforced slope (advanced framework versus 

probabilistic approach: different target reliability index T are studied): (a) COV of 

cohesion; (b) COV of friction angle; (c) Vertical scale of fluctuation 

  



 

40 

 

List of Tables 

 

Table 1. Statistical information of the uncertain input parameters (or noise factors) in the 

illustrative example 

 

Table 2. Deterministic parameters in the illustrative example 

 

Table 3. Design space DS selected in the illustrative example 

 

Table 4. Optimal designs of the stabilizing piles obtained with the advanced design 

framework 

 

Table 5. Optimal designs of the stabilizing piles obtained with the conventional geotechnical 

design approaches 

 



 

1 

 

 
 

Figure 1. Conceptual illustration of the coupled behavior in the pile-slope system (notation: D 

is the pile diameter, S is the pile spacing in the longitudinal direction, L is the pile length, X is 

the pile location, FS1 is the factor of safety of the unreinforced slope, FS2 is the factor of 

safety of the reinforced slope, and Mmax is the maximum bending moment of the piles)  

 

  



 

2 

 

 
 

Figure 2. Conceptual illustration of the design under the influence of uncertainties 
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Figure 3. Conceptual illustration of the optimization results of stabilizing piles 
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Figure 4. Schematic diagram of the illustrative example 
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  (a) Design robustness R      (b) Design safety E[FS2]   (c) Design safety Pf 

 

Figure 5. Effectiveness of the adopted SSM in deriving the design robustness and safety 
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      (a) Design safety E[FS2]versus cost C           (b) Design safety Pf versus cost C              (c) Design robustness R versus cost C 

 

Figure 6. Evaluation of the design safety, design robustness and construction cost for candidate designs in the design space DS 
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(a) Target stability TS of FST = 1.20  (b) Target stability TS of FST = 1.25 

 

  
(c) Target stability TS of T = 2.6  (d) Target stability TS of T = 3.2 

 

Figure 7. Influence of the target stability TS on the design results of the stabilizing piles 
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(a) Designs obtained with deterministic approach versus those with advanced framework 

(target stability TS is set up as FST = 1.20) 

 

 
(b) Designs obtained with probabilistic approach versus those with advanced framework 

 

Figure 8. Designs obtained with conventional design approaches versus those with the 

advanced design framework (Note: the vertical coordinate represents the ratio of the design 

objective of the designs obtained with the conventional design approaches over that of the 

designs obtained with advanced design framework) 
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(a) COV of cohesion                                    (b) COV of friction angle                              (c) Vertical scale of fluctuation 

 

Figure 9. Influence of the input statistical information of soil strength parameters on the variation of the stability of reinforced slope 

(advanced framework versus deterministic approach: target stability FST = 1.20 and different percentiles of the inputs are taken) 
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(a) COV of cohesion                                    (b) COV of friction angle                              (c) Vertical scale of fluctuation 

 

Figure 10. Influence of the input statistical information of soil strength parameters on the variation of the stability of reinforced 

slope (advanced framework versus probabilistic approach: different target reliability index T are studied) 
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Table 1. Statistical information of the uncertain input parameters (or noise factors) in the illustrative example 

 

Uncertain input parameters Distribution Mean COV 
Scale of fluctuation 

Horizontal, h Vertical, v 

Soil strength 

parameters a 

Cohesion, c Lognormal 12.0 kPa 0.40 b 50.0 m 2.5 m 

Friction angle,  Lognormal 20.0  0.25 b 50.0 m 2.5 m 

Structural 

properties 

Yielding strength of steel bar Normal 345103 kPa 0.05 c - - 

Compression strength of concrete Normal 39103 kPa 0.12 c - - 

Model error (true FS) – (calculated FS) Uniform The distribution range is [-0.02, 0.02] 
 

Note: a the correlation coefficient between soil cohesion and soil friction angle is -0.5;  

          b data are from Cherubini (2000); 

          c data are from Wiśniewski et al. (2012).  
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Table 2. Deterministic parameters in the illustrative example 

 

Category Parameter Value 

Soil 

Unit weight (kN/m3)  17.0 

Bulk modulus (MPa) 330 

Shear modulus (MPa) 150 

Stabilizing piles 

Unit weight (kN/m3) 25.0 

Young’s modulus (GPa) 35.0 

Steel reinforcement ratio (%) 1.0 

Thickness of concrete protective cover (m) 0.05 

Soil-pile interfaces 

Normal stiffness (MPa/m) 550 

Shear stiffness (MPa/m) 550 

Cohesion (kPa) 12.0 

Friction angle () 20.0 
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Table 3. Design space DS selected in the illustrative example 

 

Design parameters Design pool (i.e., potential values of pile parameters) 

Pile diameter, D (m) {0.6 m, 0.9 m, 1.2 m} 

Pile spacing, S (m) {S | S/D = 2.0, S/D = 3.0} 

Pile length, L (m) {6 m, 8 m, 10 m, 12 m, 14 m, 16 m, 18 m, 20 m} 

Pile position, X (m) {1 m, 3 m, 5 m, 7 m, 9 m, 11 m, 13 m, 15 m, 17 m, 19 m} 
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Table 4. Optimal designs of the stabilizing piles obtained with the advanced design framework 

 

Target stability TS 

Number 

of feasible 

designs 

Number 

of non-

dominated 

designs 

Most preferred design 

Pile design parameters d 
Cost, C 

(C0 m3/m) 

Design safety Design 

robustness, 

R 
D (m) S (m) L (m) X (m) E[FS2]  

Factor 

of safety 

FST = 1.20 217 6 0.9 2.7 12.0 5.0 2.827 1.22 3.624 25.995 

FST = 1.25 74 4 1.2 3.6 14.0 3.0 4.398 1.25 4.707 25.902 
 

Reliability 

index 

T = 2.6 256 7 0.6 1.8 14.0 5.0 2.199 1.19 3.237 25.870 

T = 3.2 111 5 0.6 1.8 14.0 5.0 2.199 1.19 3.237 25.870 
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Table 5. Optimal designs of the stabilizing piles obtained with the conventional geotechnical design approaches 

 

Design approach 

Pile design parameters d 
Cost, C 

(C0 m3/m) 

Design safety Design 

robustness, 

R 
D (m) S (m) L (m) X (m) E[FS2]  Pf 

Deterministic 

approach 

(FST = 1.2) 

50th percentile 0.9 2.7 8.0 3.0 1.885 1.20 3.192 7.0610-4 24.834 

40th percentile 1.2 2.4 12.0 5.0 5.655 1.30 3.969 3.6110-5 22.896 

30th percentile 
The maximum FS2 of the candidate pile design is less than FST = 1.2, and no feasible 

designs could be identified in the design space DS shown in Table 2. 
 

Probabilistic 

approach 

T = 2.6 0.6 1.8 8.0 3.0 1.257 1.18 2.655 3.9710-3 23.953 

T = 3.2 0.6 1.8 10.0 5.0 1.571 1.19 3.320 4.5110-4 25.201 
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