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Abstract

We consider a class of convex decentralized consensus optimization problems over connected multi-
agent networks. Each agent in the network holds its local objective function privately, and can only
communicate with its directly connected agents during the computation to find the minimizer of the
sum of all objective functions. We propose a randomized incremental primal dual method to solve this
problem, where the dual variable over the network in each iteration is only updated at a randomly
selected node, whereas the dual variables elsewhere remain the same as in the previous iteration. Thus,
the communication only occurs in the neighborhood of the selected node in each iteration and hence
can greatly reduce the chance of communication delay and failure in the standard fully synchronized
consensus algorithms. We provide comprehensive convergence analysis including convergence rates of
the primal residual and conensus error of the proposed algorithm, and conduct numerical experiments to
show its performance using both uniform sampling and important sampling as node selection strategy.

Keywords. Decentralized consensus optimization; primal-dual method; incremental dual; importance
sampling.

1 Introduction

In this paper, we are interested in solving the following class of convex decentralized consensus optimization
(DCO) problems:

min
x̂∈Rn

f̂(x̂), where f̂(x̂) :=

m∑
i=1

fi(x̂), (1)

The problem (1) is defined on a simple, connected, undirected graph (network) G = (V,E), where G consists
of a node set V = {1, 2, · · · ,m} and an edge set E ⊆ V × V such that (i, j) ∈ E if and only if i and j are
connected by an edge. Each node i can only communicate with its neighbors j ∈ Ni := {j | (i, j) ∈ E} (we
also denote Gi := {i} ∪Ni for later use) during the computation. To establish convergence and the rates of
our algorithm in this paper, we assume that each fi : Rn → R, which is held privately at node i, is convex
and has Lipschitz continuous gradient.

To present our algorithmic development and convergence analysis in a more general and concise way, we
adopt the notation M = L ⊗ In ∈ Rmn×mn which is a square matrix consisting of m ×m blocks with the
(i, j)-th block as lijIn ∈ Rn×n. Here In is the n×n identity matrix, L = [lij ] := I −D−1/2AD−1/2 ∈ Rm×m
is the (normalized) graph Laplacian matrix, where A is the adjacency matrix of G, D = diag(d1, . . . , dm) is
the diagonal matrix with the degree di = |Ni| of node i as the i-th diagonal entry, and ⊗ is the Kronecker
product. During the computation, each node i may obtain an estimate xi ∈ Rn of the underlying solution
x∗ ∈ Rn of (1). We hence define x := [x1; . . . ;xn] ∈ Rmn by stacking the column vectors xi’s vertically.
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Then the problem (1) can be rewritten as an equivalent, constrained optimization problem1:

min
x∈Rmn

f(x) :=
m∑
i=1

fi(xi), subject to Mx = 0, (2)

due to the definition of L and the Perron-Frobenius theorem. More precisely, L is a symmetric matrix with
zero row sums, and the eigenvalues of L are in [0, 2) with 0 being the eigenvalue of multiplicity 1. Moreover,
Lu = 0 if and only if u = (c, . . . , c)> ∈ Rn for some constant c ∈ R. Therefore, Mx = 0 if and only if
x1 = x2 = · · · = xm ∈ Rn, and hence the equivalency of (1) and (2). We further partition the rows of M
into m sub-matrices such that M = [M1; . . . ;Mm] where the sub-matrix Mi ∈ Rn×mn consists of the rows
(i − 1)n + 1 to in of M . Note that L assumes equal weights for all edges and use the binary adjacency
matrix A in its definition. If the graph is weighted, we can use weighted Laplacian matrix L and all results
presented in this paper follow similarly.

Following the theory of Lagrangian multipliers, we introduce a dual variable z = [z1; . . . ; zn] ∈ Rmn for
the constraint Mx = 0, and further rewrite the problem (2) as a saddle point problem:

min
x∈Rmn

max
z∈Rmn

{
m∑
i=1

fi(xi) + 〈Mx, z〉

}
. (3)

Therefore, the problems (1), (2), and (3) are all equivalent and hence can be referred interchangeably. Note
that 〈Mx, z〉 =

∑m
i=1〈Mix, zi〉 =

∑m
i=1〈xi,Miz〉.

The DCO problem (1) has a wide range of applications such as distributed machine learning [6, 12, 20, 24],
sensor networks [17, 35, 41], smart grids [13, 27], multiple-agent control and coordination [32, 33, 49]. In these
applications, it is often uneconomical, difficult, and sometimes impossible to have a central (master) node
that communicates with every individual node and processes all the data, due to various reasons including
the extremely large sizes of local datasets and privacy issues. These limitations prohibit the transmission
of fi(x) between nodes. Hence, a more promising approach of sensor network applications is to let the
nodes share their own estimates of x∗, the optimal solution of the global optimization problem (1), only with
their neighbor nodes during the computation. In addition, the estimate xi obtained by node i should be
consensual, namely x1 = · · · = xn or Mx = 0 in (2), upon convergence. This ensures that one can retrieve
an accurate approximation to x∗ from any node on the network, as required in real-world decentralized
consensus network applications.

However, the applications of modern large-scale networks are severely hindered by the increased chance
of communication delays or failures in the standard synchronous decentralized consensus optimization set-
ting, where all nodes are required to complete exchanging local estimates (or equivalent) with neighbors in
each iteration. To overcome this issues, there have been a number of asynchronous algorithms, which are
considered in a variety of application settings to allow computation and/or communication delays to some
extent [4, 10, 31, 40, 43, 45, 46]. However, these methods are often based on very specific assumptions of
the delays, which may not be practical in real-world applications.

Instead of building an asynchronous algorithm that allows delays, in this work we focus on how to greatly
reduce the chance of delays by only requiring communications within local neighborhood during iterations.
The main idea of our proposed method, called Randomized Incremental Primal Dual (RIPD) method, is
that at each iteration the dual variable over the network G is only updated at a randomly selected node
(say i), then the partially updated dual variable is exerted to establish an estimator for updating of the
primal variable over the entire network. Therefore, in this iteration, communications only occur in the local
neighborhood Gi of i, which greatly reduces delays compared to global synchronizations in the standard
decentralized consensus optimization setting. Although such local communication strategy increases the
total number of iterations, we will show that the total node-to-node communication number remains low,
with the additional benefit of reducing delays per iteration for significantly improved efficiency overall.

The contributions of this paper mainly lie in two aspects as follows. First, we develop a randomized
incremental primal-dual (RIPD) method for convex decentralized consensus optimization problem (1). Our

1It is convenient to use f̂ : Rn → R in (1) and f : Rmn → R in (2) interchangeably as the meaning will be clear in the
context. In particular, for consensual x = [x̂; . . . ; x̂] ∈ Rmn that consists of m identical copies of x̂ ∈ Rn (by stacking these

column vectors x̂ vertically following the standard Matlab syntax [· ; ·]), there is f(x) = f̂(x̂). Therefore we only use f in the
remainder of the paper.
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proposed algorithm incorporates the idea of randomized incremental gradients into the primal-dual formula-
tion, which only requires randomized incremental dual variable to update primal variables. More precisely,
in each iteration, the algorithm only updates the dual variable at a randomly selected node, other nodes
on the network can keep using outdated dual variables without communicating with their neighbors. Then
the partially updated dual variable is exerted to establish an estimator for updating of the primal vari-
able over the entire network This significantly lowers the per-iteration communication and synchronization
requirement, which can greatly reduce the chance of delays in the standard decentralized consensus opti-
mization setting. Second, we provide a comprehensive convergence analysis for the proposed RIPD method
which fully characterizes the primal residual and consensus error. The convergence analysis mainly relies
on the estimate of duality gap function. We are able to show that the RIPD can achieve the iteration
complexity of O(L̄/ε + ml̄/ε) with the total number of communication in the order of O(dL̄/ε + mdl̄/ε),
where d :=

∑m
i=1 pidi, pi is the probability that node i is selected at each iteration, L̄ := max(Lf ,

√
mLf ),

l̄ := max1≤i≤m li and li := (
∑m
i=1 l

2
ij)

1/2.
The remainder of this paper is organized as follows. Section 2 reviews the related work in the literature

of decentralized consensus optimization. In Section 3, we propose our RIPD algorithm, and present its main
convergence properties under the uniform sampling and important sampling for the random incremental dual
update setting. A comprehensive convergence analysis RIPD is carried out in Section 4. Section 5 presents
the numerical results of the proposed algorithm. Finally, Section 6 concludes this paper.

2 Related work

Early attempts to the decentralized consensus optimization problem (1) focus on the globally synchronized
setting. Under such setting, the decentralized gradient descent method [33] can solve the DCO problem
(1) with diminishing step sizes. However, with constant step size policy, the iterates only converge to a
point in the neighborhood of a solution. This issue is fixed by the decentralized exact first-order algorithm
(EXTRA) developed in [38]. By introducing an error-correction term into the scheme of the decentralized
gradient descent algorithm, it can converge consensually to the exact solution of (1) with a fixed large step
size independent of the network size. EXTRA has a convergent rate O(1/N) for general convex smooth fi
and a linear rate for restricted strongly convex f , where N is the number of iterations. Another approach
to solve the DCO problem (1) is to use the alternating direction method of multipliers (ADMM) to solve
problem (2), where the equality constraints ensure the consensus property. ADMM is firstly applied to
distributed optimization in [2] and further popularized in [1, 7, 11, 26, 28, 30, 36, 48]. ADMM (or linearlized
ADMM) exhibits an O(1/N) convergence rate for a convex smooth objective function [1, 42], and a linear
convergence rate for strongly convex smooth problems [39]. Furthermore, in [16] an ADMM based method
achieves a O(1/

√
N) rate for solving non-convex global consensus problem.

Primal-Dual method has also been studied for DCO problems (e.g. [3, 8, 15, 18, 29, 34]). The works
in [3, 8, 34] developed random coordinate decent primal-dual algorithms for distributed and asynchronous
optimization. The numerical results showed high performance of these methods, but no convergence rates are
given. The work in [29] presented a primal-dual based algorithm that uses local stochastic averaging gradients
to achieve a linear rate for smooth and strongly convex problems. The work [15] develops a stochastic
proximal gradient method for solving problem (1). It randomly activates edges with given probability in
each iteration. The primal and dual variables which are related to activated edges will be updated. The
consensus in [15] is achieved by communication in a global scale, due to the fact that all the edges in network
are probably activated. A rate of convergence O(1/N) is achieved for (1) with convex objective function.

During the past few years, randomized incremental gradient (RIG) methods have emerged as an important
class of first-order methods for finite-sum optimization problems [5, 9, 14, 19, 25, 37, 44, 47]. RIG methods
are designed to reduce the number of full gradient evaluations but improve the convergence rate of stochastic
gradient descent algorithm. For instance, the stochastic variance reduced gradient (SVRG) method presented
in [19] iteratively updates the gradient of one randomly selected function in the summation and re-evaluating
the exact gradient from time to time, to reduce the number of full gradient evaluation.. SVRG is extended
to solve proximal finite-sum problems in [44]. Later, the work in [47] shows that SVRG can be accelerated
to achieve an optimal rate for minimizing the sum of strongly convex smooth functions. The randomized
primal dual gradient (RPDG) developed in [22] also achieves a similar rate for minimizing the sum of strongly
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convex smooth functions.
Recently, there have been several works on stochastic distributed primal-dual type methods for solving

distributed optimization problems directly to improve communication efficiency. In [21], a decentralized
communication sliding method is proposed for solving nonsmooth decentralized convex problems, in where
the subproblem of the primal variable is approximately solved by an iterative subgradient descent procedure,
and the inter-node communications only occur during the updates of the dual variables. The work in [23]
proposes a centralized primal dual gradient method. The structure of this network consists of slave agents and
a master server. The master server dedicates to update the primal information using incremental gradients,
and slave agents update dual variables. The idea of incremental gradients is similar to RPDG in [22], but the
initialization in [22] requires an evaluation of full gradients from all the locally stored functions, while [23]
does not require evaluation of full gradient at all. Inspired by the advancements in distributed algorithms,
especially the work in [22, 23], the main focus of this work is to propose a randomized incremental primal
dual algorithm that requires less communications at each iteration, but maintains the same convergence rate
as its deterministic counterpart.

3 Proposed Randomized Incremental Primal-Dual Method

In this section, we present the details of our proposed randomized incremental primal-dual (RIPD). In RIPD,
each node i maintains xi and x̄i for its own primal variable, and zj and z̃j for the dual variable of each of
its neighbor j ∈ Ni, which will be updated according the rules of RIPD during iterations. These variables
with superscript t indicate their current values at iteration t. In each iteration t, RIPD selects one node
it = i ∈ V randomly according to probability (p1, . . . , pm). Then all nodes in the neighborhood Gi of this
node i perform a weighted sum of its local primal variable obtained at the previous two iterations (see (4)
below) to obtain x̄tj , and the neighbors in Ni send their x̄tj to i, which updates its own dual variable zi
to zt+1

i , and then use it to establish an estimator z̃i
t+1 as shown in (5) and (6) below. Then the node i

sends z̃t+1
i back to its neighbors. Each node j 6= i (i.e., the neighbors of i and those outside of Gi) simply

sets zt+1
j , z̃t+1

j to their old values ztj as in (6). Therefore z̃t+1, with only z̃t+1
i actually updated, serves as

the estimator for the dual variable of the entire network. To compensate the bias of this partially updated
dual variable, the node i performs an extrapolation in (6) to obtain z̃t+1

i according to the probability pi. All
nodes on the network then perform the gradient descent (7) using the weighted sum of dual variables Mj z̃

t+1

to obtain the new xt+1
j . Here Mjz =

∑
l∈Gj

ljlzl =
∑m
l=1 ljlzl is the weighted sum (using weights ljl) of zl

in the neighbor l ∈ Gj . Since only the neighbors of i receive an updated z̃t+1
i , each node j outside of Gi

performs the update of xt+1
j effectively based on their old copy of ztl for l ∈ Nj without any communications.

Therefore, the communication cost is only 2di in this iteration2 (or
∑m
i=1 2pidi expectedly in any iteration),

in contrast to 2|E| per iteration in the standard decentralized consensus optimization. The proposed RIPD
algorithm is summarized in Algorithm 1.

We present the main convergence results for RIPD in the following theorem. The RIPD algorithm can
achieve a rate of convergence of O(1/N) in terms of both primal residual f(x)− f(x∗) and consensus error
‖Mx‖, where N is the iteration number. The proofs involve several lemmas and are postponed to the next
section.

Theorem 3.1. Let (xN , zN ) be generated by Algorithm 1, and (x∗, z∗) be a saddle point of problem (3).
Suppose that the parameters in Algorithm 1 satisfy the following conditions for all t ≥ 1:

ηt ≥ ηt−1 ≥ Lf + max
1≤i≤m

{
4l2i
τpi

}
, τt = τ, θt = 1. (8)

Then the primal residual is bounded by

E
[
f(xN )− f(x∗)

]
≤ η1‖x∗ − x1‖2

2N
+

1

N

m∑
i=1

τ‖z1i ‖2

2pi
, (9)

2We count the communication number by one for every estimate sent by a node i and received by another node j.
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Algorithm 1 Randomized Incremental Primal-Dual Method (RIPD)

For node i, initialize x1i ∈ Xi, z
1
i ∈ Zi, x0i = x1i , i = 1, · · · ,m.

for t = 1, . . . , N do
Randomly choose it according to P (it = i) = pi, 1 ≤ i ≤ m.
Update xt, zt as follows:

x̄tj = θt(x
t
j − xt−1j ) + xtj , if j ∈ Git , (4)

zt+1
i =

{
arg minzi∈zi〈−Mix̄

t, zi〉+ τt
2 ‖zi − z

t
i‖2, if i = it

zti , otherwise
(5)

z̃t+1
i =

{
p−1i (zt+1

i − zti) + zti , if i = it
zti , otherwise

(6)

xt+1
j = arg min

xj∈Xj

〈∇fj(xtj) +Mj z̃
t+1, xj〉+

ηt
2
‖xj − xtj‖2 (7)

end for
Return (xN , zN ) = 1

N

∑N
t=1(xt+1, zt+1).

and the consensus error is bounded by

E
[
‖MxN‖

]
≤ U‖x∗ − x1‖

N
+

m∑
i=1

Vi‖z∗i − z1i ‖
N

, (10)

where the constants are

U =
τ

p

√
η1
2C

+ l̄

√
η1
2C

, Vi =
τ

p

√
τ

2piC
+ l̄

√
τ

2piC
, (11)

C =
ηN − Lf

4
−

m∑
i=1

pil
2
i

2τN
, C = min

1≤i≤m

{
τ

2pi
− ‖Mi‖2

ηN − Lf

}
, (12)

and p = min1≤i≤m pi and l̄ = max1≤i≤m li.

Next, we provide two possible parameter settings with uniform sampling or importance sampling for
Algorithm 1. Uniform sampling is a standard setting where all nodes are selected with equal probability
pi = 1/m. In contrast, importance sampling improves convergence by selecting nodes of higher degree with
greater probability. Corollary 3.1.2 provides the details of such importance sampling strategy.

We first give a parameter setting with uniform sampling for Algorithm 1.

Corollary 3.1.1. Suppose that the parameters are given as

pi =
1

m
, τt = τ, ηt = Lf +

4ml̄2

τ
, (13)

where τ > 0 is a constant. Then, {ηt}Nt=1, {τt}Nt=1 satisfy (8).

Now we provide an example of parameter setting with importance sampling in Corollary 3.1.2, in which
each node is picked with certain node-related importance.

Corollary 3.1.2. Suppose that the parameters are given as

pi =
lαi
‖l‖αα

, τt = τ, ηt = Lf +
4‖l‖αα
τ

l̄2−α, (14)

where α ∈ [0, 2], τ > 0 are constants, ‖l‖αα =
∑m
i=1 l

α
i . Then, {ηt}Nt=1, {τt}Nt=1 satisfy (8).

5



Comparing Corollary 3.1.1 with Corollary 3.1.2, we can see that taking importance sampling can improve
the performance of the RIPD algorithm. For example, if we set α = 1 in (13), then the step size η−1t in
RIPD is 1/(Lf + 4τ−1‖l‖1 l̄). While by taking uniform sampling as in Corollary 3.1.1, the step size is
1/(Lf + 4τ−1ml̄2). By the definition of l̄, we have that ‖l‖1 ≤ ml̄, which implies that importance sampling
may allow a greater step size η−1t than that in uniform sampling.

From Theorem 3.1 and Corollary 3.1.1, we can have the estimate for the iteration complexity of O(L̄/ε+
ml̄/ε) for RIPD to obtain an ε-solution xε to problem (2), i.e. E[f(xε)− f(x∗)] < ε, and E[‖Mxε‖] < ε. The
total communication complexity of RIPD to obtain an ε-solution of problem (2) is O(dL̄/ε+mdl̄/ε).

4 Convergence Analysis

In this section, we conduct comprehensive convergence analysis of Algorithm 1. First of all, we introduce
the duality gap function and provided some of its important properties. Denote W = X × Z. For any
w = (x, z), w′ = (x′, z′) ∈W , we define

Q(w,w′) = f(x)− f(x′) + 〈Mx, z′〉 − 〈Mx′, z〉. (15)

It can be easily seen that w = (x, z) is a solution of problem (3) if and only if Q(w,w′) ≤ 0 for all
w′ = (x′, z′) ∈ W due to the convex-concave structure of (3). This suggests us to define the duality gap
function as follows:

Definition 4.1. For problems (3) with compact feasible set W = X ×Z, the duality gap function is defined
as

d(w) = sup
w′∈W

Q(w,w′). (16)

For problems (3) with closed but unbounded feasible set W , the duality gap function is defined as

dZ(v, w) = sup
z′∈Z
{Q((x, z), (x∗, z′))− 〈v, z′〉} . (17)

where v ∈ X and x∗ is optimal for problem (1).

In this paper, we consider the case with Z = Z1 × · · · × Zm = Rmn where Zi ∈ Rn, which is necessary
for the decentralized consensus problem (3) but more challenging than the compact W case. We denote
d(v, w) := dZ(v, w) for notation simplicity.

Proposition 4.2 below states the relation between the duality gap function, the primal residue and the
consensus error for problem (3):

Proposition 4.2. Let Z = Rmn. Suppose the random variables w = (x, z) and v satisfy E[d(v, w)] < ∞,
where d(v, w) is defined in (17), then the following identities hold almost surely (a.s.):

f(x)− f(x∗) = d(v, w), (18)

Mx = v. (19)

In addition, if E[d(v, w)] ≤ ε, and E[‖v‖] ≤ δ, we have

E[f(x)− f(x∗)] ≤ ε and E[‖Mx‖] ≤ δ. (20)

Proof. By the definition of the duality gap function for Z = Rmn, there is

d(v, w) = f(x)− f(x∗) + sup
z′∈Z
〈Mx− v, z′〉, (21)

where we used the fact that Mx∗ = 0 since x∗ is optimal for (3). Thus, d(v, w) <∞ if and only if v = Mx.
Furthermore, E[d(v, w)] <∞ implies Prob[d(v, w) <∞] = 1, then Prob[v = Mx] = 1, which implies Mx = v
a.s. as in (19). Hence, d(v, w) = f(x)− f(x∗) a.s. as in (18). Then (20) follows immediately.

We now present several lemmas that will be critically useful for the convergence analysis later.
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Lemma 4.3. Suppose f has Lf -Lipschitz continuous gradient ∇f , then the following estimate holds for any
x ∈ X:

f(xt+1)− f(x) ≤ 〈∇f(xt), xt+1 − x〉+
Lf
2
‖xt+1 − xt‖2. (22)

Proof. By the Lipschitz continuity of ∇f , we have

f(xt+1) ≤ f(xt) + 〈∇f(xt), xt+1 − xt〉+
Lf
2
‖xt+1 − xt‖2. (23)

Moreover, by the convexity of f , there is f(x) ≥ f(xt) + 〈∇f(xt), x − xt〉 for all x ∈ X. Combining these
two inequalities yields (22).

Lemma 4.4. Suppose the nonnegative real sequence {at} is non-increasing, then

N∑
t=1

at
(
‖x− xt‖2 − ‖x− xt+1‖2

)
≤ a1‖x− x1‖2 − aN‖x− xN+1‖2. (24)

Proof. The result follows immediately by rearranging the sum in the left side into

a1‖x− x1‖2 − aN‖x− xN+1‖2 +
N∑
t=2

(at − at−1)‖x− xt‖2, (25)

and using the fact that at ≤ at−1 for all t.

The following lemma provides three identities to characterize the conditional first and second moments
of z̃t+1 and zt+1 given Ft, the filtration of the randomized consensus process in Algorithm 1 up to the t-th
iteration. For notation simplicity, we denote E|t[X] = E[X|Ft] for any random variable (vector) X.

Lemma 4.5. Let Zi = Rn and ẑt+1
i := arg minzi∈Zi

〈−Mix̄
t, zi〉 + τt

2 ‖zi − z
t
i‖2 for i = 1, · · · ,m. Then the

following identities hold:

E|t[z̃t+1
i ] = ẑt+1

i , (26)

E|t[‖zti − zt+1
i ‖2] = pi‖zti − ẑt+1

i ‖2, (27)

E|t[‖zi − zt+1
i ‖2] = pi‖zi − ẑt+1

i ‖2 + (1− pi)‖zi − zti‖2, ∀zi ∈ Zi. (28)

Proof. Recall the definition of z̃t+1
i in Algorithm 1, we have

z̃t+1
i =

{
p−1i (zt+1

i − zti) + zti , if i = it,
zti , if i 6= it.

(29)

Note that, at the t-th iteration, Prob[z̃t+1
i = p−1i (zt+1

i − zti) + zti = p−1i (ẑt+1
i − zti) + zti ] = Prob[it = i] = pi,

and Prob[z̃t+1
i = zti ] = Prob[it 6= i] = 1− pi. Then it follows immediately that

E[z̃t+1
i ] = pi · (p−1i (ẑt+1

i − zti) + zti) + (1− pi) · zti = ẑt+1
i . (30)

The identities (27) and (28) follow similarly.

Now we provide an important estimate to bound the duality gap function (17) at (xt, zt) generated by
Algorithm 1:
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Lemma 4.6. Let (xt+1, zt+1) be generated by Algorithm 1, then the following estimate holds for any (x, z) ∈
W :

E|t
[
Q((xt+1, zt+1), (x, z))

]
≤ E|t

[
〈M(xt+1 − xt), z − z̃t+1〉 − θt〈M(xt − xt−1), z − z̃t〉+ 〈Mx, z̃t+1 − zt+1〉

+
ηt
2
‖x− xt‖2 − ηt

2
‖x− xt+1‖2 − ηt − Lf

2
‖xt+1 − xt‖2 (31)

+
m∑
i=1

τtp
−1
i

2

(
‖zi − zti‖2 − ‖zi − zt+1

i ‖2 − ‖zti − zt+1
i ‖2

)
+ θt〈Mit(x

t − xt−1), p−1it (zt+1
it
− ztit)〉

− θt〈Mit−1(xt − xt−1), (p−1it−1
− 1) · (ztit−1

− zt−1it−1
)〉
]
.

Proof. By the definition of Q and Lemma 4.3, we have

Q((xt+1, zt+1), (x, z)) = f(xt+1)− f(x) + 〈Mxt+1, z〉 − 〈Mx, zt+1〉

≤ 〈∇f(xt), xt+1 − x〉+
Lf
2
‖xt+1 − xt‖2 (32)

+ 〈Mxt+1, z〉 − 〈Mx, zt+1〉.

On the other hand, the optimality condition of xt+1
j in (7) Algorithm 1 implies

〈∇fj(xtj), xt+1
j 〉+ 〈Mj z̃

t+1, xt+1
j 〉+

ηt
2
‖xt+1

j − xtj‖2 (33)

≤ 〈∇fj(xtj), xj〉+ 〈Mj z̃
t+1, xj〉+

ηt
2
‖xj − xtj‖2 −

ηt
2
‖xj − xt+1

j ‖
2.

for all xj ∈ Xj . Therefore, summing (33) over i = 1, . . . ,m yields

〈∇f(xt), xt+1 − x〉 ≤ ηt
2
‖x− xt‖2 − ηt

2
‖x− xt+1‖2 − ηt

2
‖xt+1 − xt‖2 (34)

+ 〈Mz̃t+1, x− xt+1〉

where x = [x1; . . . ;xm] ∈ Rmn. Combining (32) and (34) yields

Q((xt+1, zt+1), (x, z)) ≤ 〈Mz̃t+1, x− xt+1〉+ 〈Mxt+1, z〉 − 〈Mx, zt+1〉 (35)

+
ηt
2
‖x− xt‖2 − ηt

2
‖x− xt+1‖2 − ηt − Lf

2
‖xt+1 − xt‖2.

Due to the optimality condition of ẑt+1
i in (5), we have

〈−Mix̄
t, ẑt+1

i 〉+
τt
2
‖ẑt+1
i − zti‖2 (36)

≤ 〈−Mix̄
t, zi〉+

τt
2
‖zi − zti‖2 −

τt
2
‖zi − ẑt+1

i ‖2,

for all zi ∈ Zi, which can be rearranged into

〈Mix̄
t, zi − ẑt+1

i 〉 ≤ τt
2
‖zi − zti‖2 −

τt
2
‖zi − ẑt+1

i ‖2 − τt
2
‖ẑt+1
i − zti‖2. (37)

Then, by (26), we have E|t[〈Mix̄
t, zi − ẑt+1

i 〉] = E|t[〈Mix̄
t, zi − z̃t+1

i 〉]. Furthermore, by (27) and (28) in
Lemma 4.5, we have

E|t
[
〈Mix̄

t, zi − z̃t+1
i 〉

]
≤ E|t

[τt
2
‖zi − zti‖2 −

τt
2
‖zi − ẑt+1

i ‖2 − τt
2
‖ẑt+1
i − zti‖2

]
≤ E|t

[
τtp
−1
i

2

(
‖zi − zti‖2 − ‖zi − zt+1

i ‖2 − ‖zti − zt+1
i ‖2

)]
,
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summing over i = 1, . . . ,m of which implies that

E|t

[
〈Mx̄t, z̃t+1 − z〉+

m∑
i=1

τt
2pi

(
‖zi − zti‖2 − ‖zi − zt+1

i ‖2 − ‖zti − zt+1
i ‖2

)]
≥ 0.

Combining this inequality and (35), we can get

E|t
[
Q((xt+1, zt+1), (x, z))

]
≤ E|t

[
〈Mz̃t+1, x− xt+1〉+ 〈Mxt+1, z〉 − 〈Mx, zt+1〉+ 〈Mx̄t, ẑt+1 − z〉

+
ηt
2
‖x− xt‖2 − ηt

2
‖x− xt+1‖2 − ηt − Lf

2
‖xt+1 − xt‖2

+
m∑
i=1

τtp
−1
i

2

(
‖zi − zti‖2 − ‖zi − zt+1

i ‖2 − ‖zti − zt+1
i ‖2

) ]
= E|t

[
〈M(xt+1 − xt), z − z̃t+1〉 − θt〈M(xt − xt−1), z − z̃t〉〉 (38)

+θt〈M(xt − xt−1), z̃t+1 − z̃t〉+ 〈Mx, z̃t+1 − zt+1〉

+
ηt
2
‖x− xt‖2 − ηt

2
‖x− xt+1‖2 − ηt − Lf

2
‖xt+1 − xt‖2

+

m∑
i=1

τtp
−1
i

2

(
‖zi − zti‖2 − ‖zi − zt+1

i ‖2 − ‖zti − zt+1
i ‖2

) ]
Now we focus on the term 〈M(xt − xt−1), z̃t+1 − z̃t〉 above. From the updating rule of zt+1 in (5) and

z̃t+1 in (6) of Algorithm 1, we know that

z̃ti − zti =

{
(p−1i − 1) · (zti − z

t−1
i ), if i = it−1,

0, if i 6= it−1.
(39)

and that

z̃t+1
i − zti =

{
p−1i (zt+1

i − zti), if i = it,
0, if i 6= it.

(40)

Combining (39) and (40) yields

〈M(xt − xt−1), z̃t+1 − z̃t〉

=
m∑
i=1

〈Mi(x
t − xt−1), z̃t+1

i − zti〉+
m∑
i=1

〈Mi(x
t − xt−1), zti − z̃ti〉

= 〈Mit(x
t − xt−1), p−1it (zt+1

it
− ztit)〉 − 〈Mit−1

(xt − xt−1), (p−1it−1
− 1)(ztit−1

− zt−1it−1
)〉.

Plugging this into (38) implies (31), which completes the proof.

Now we are ready to prove the main convergence result, i.e., Theorem 3.1.

Proof. By the convexity of Q(w,w′) in w and the definition of (xN , zN ), we know

Q((xN , zN ), (x, z)) ≤ 1

N

N∑
t=1

Q((xt+1, zt+1), (x, z)) (41)
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for any (x, z) ∈W . By Lemma 4.6, we have

E
[
Q((xN , zN ), (x, z))

]
≤ 1

N
· E

{
N∑
t=1

[
〈M(xt+1 − xt), z − z̃t+1〉 − θt〈M(xt − xt−1), z − z̃t〉

]
+

N∑
t=1

[ηt
2
‖x− xt‖2 − ηt

2
‖x− xt+1‖2

]
+ 〈Mx, sN 〉 (42)

+
N∑
t=1

m∑
i=1

τtp
−1
i

2

[
‖zi − zti‖2 − ‖zi − zt+1

i ‖2
]
− Λ0

}
,

where sN := 1
N

∑N
t=1(z̃t+1 − zt+1), and Λ0 above denotes

Λ0 :=
N∑
t=1

ηt − Lf
2

‖xt+1 − xt‖2 +
N∑
t=1

τtp
−1
it

2
‖ztit − z

t+1
it
‖2

−
N∑
t=1

θt〈Mit(x
t − xt−1), p−1it (zt+1

it
− ztit)〉 (43)

+

N∑
t=1

θt〈Mit−1(xt − xt−1), (p−1it−1
− 1) · (ztit−1

− zt−1it−1
)〉.

and we used the fact that
∑N
t=1

∑m
i=1

τtp
−1
i

2 ‖zti − z
t+1
i ‖2 =

∑N
t=1

τtp
−1
it

2 ‖ztit − z
t+1
it
‖2. By setting θt = 1 for all

t as in (8), the first two terms on the right side of (42) becomes

N∑
t=1

[
〈M(xt+1 − xt), z − z̃t+1〉 − θt〈M(xt − xt−1), z − z̃t〉

]
= 〈M(xN+1 − xN ), z − z̃N+1〉 − θ1〈M(x1 − x0), z − z̃1〉 (44)

= 〈M(xN+1 − xN ), z − z̃N+1〉,

where the last equality is due to the initialization x1 = x0. For the second summation term in (42), we know
that the sequence {ηt}Nt=1 is non-increasing, and hence by Lemma 4.4 we have

N∑
t=1

[ηt
2
‖x− xt‖2 − ηt

2
‖x− xt+1‖2

]
≤ η1

2
‖x− x1‖2 − ηN

2
‖x− xN+1‖2. (45)

Moreover, by the setting of τt in (8), we have

N∑
t=1

m∑
i=1

τtp
−1
i

2

[
‖zi − zti‖2 − ‖zi − zt+1

i ‖2
]

(46)

≤
m∑
i=1

p−1i

[τ1
2
‖zi − z1i ‖2 −

τN
2
‖zi − zN+1

i ‖2
]
.

Plugging (44), (45) and (46) into (42), we obtain

E
[
Q((xN , zN ), (x, z))

]
≤ 1

N
· E

{
η1
2
‖x− x1‖2 − ηN

2
‖x− xN+1‖2 (47)

+
m∑
i=1

p−1i

[τ1
2
‖zi − z1i ‖2 −

τN
2
‖zi − zN+1

i ‖2
]
− Λ

}
.
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where we used the updating rule of z̃t+1 in Algorithm 1, and

Λ := Λ0 +−〈M(xN+1 − xN ), z − zN+1〉 (48)

Using the definition of Λ0 in (43) and reorganizing Λ yield

Λ ≥
[
ηN − Lf

4
‖xN+1 − xN‖2 − 〈M(xN+1 − xN ), z − zN+1〉

]
(49)

+Λ1 + Λ2 + Λ3 +
N∑
t=2

ηt−1 − Lf
2

‖xt − xt−1‖2.

where

Λ1 =
ηN − Lf

4
‖xN+1 − xN‖2 +

τNp
−1
iN

4
‖zNiN − z

N+1
iN
‖2 ≥ 0 (50)

Λ2 =
N∑
t=2

[
τtp
−1
it

4
‖ztit − z

t+1
it
‖2 − 〈Mit(x

t − xt−1), p−1it (zt+1
it
− ztit)〉

]
(51)

≥ −
N∑
t=2

‖Mit(x
t − xt−1)‖2

τtpit
≥ −

N∑
t=2

‖Mit‖2

τtpit
‖xt − xt−1‖2,

Λ3 =

N∑
t=2

[
τt−1

4pit−1

‖zt−1it−1
− ztit−1

‖2 + 〈Mit−1(xt − xt−1), (p−1it−1
− 1) · (ztit−1

− zt−1it−1
)〉
]

≥ −
N∑
t=2

(1− pit−1
)2‖Mit−1

(xt − xt−1)‖2

τt−1pit−1

(52)

≥ −
N∑
t=2

(1− pit−1)2‖Mit−1‖2

τt−1pit−1

‖xt − xt−1‖2.

Substituting (50), (51) and (52) in (49), we obtain

Λ ≥ ηN − Lf
4

‖xN+1 − xN‖2 − 〈M(xN+1 − xN ), z − zN+1〉

+
N∑
t=2

(
ηt−1 − Lf

2
− ‖Mit‖2

τtpit
−

(1− pit−1
)2‖Mit−1

‖2

τt−1pit−1

)
‖xt − xt−1‖2

≥ ηN − Lf
4

‖xN+1 − xN‖2 − 〈M(xN+1 − xN ), z − zN+1〉,

where we obtained the second inequality by using (8), the definition li = ‖Mi‖, and observing that

ηt − Lf
4

≥ max
1≤i≤m

{
l2i
τpi

}
≥ l2i
τpi

> max

{
(1− pi)2l2i

τpi
,
l2i

2τpi

}
∀ t, i. (53)
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To sum up, we have an estimate of the duality gap function Q((xN , zN ), (x, z)) as follows,

E
[
Q((xN , zN ), (x, z))

]
≤ 1

N
· E

{
η1
2
‖x− x1‖2 − ηN

2
‖x− xN+1‖2 + 〈Mx, sN 〉

+
m∑
i=1

p−1i ·
[τ1

2
‖zi − z1i ‖2 −

τN
2
‖zi − zN+1

i ‖2
]

−
[
ηN − Lf

4
‖xN+1 − xN‖2 − 〈M(xN+1 − xN ), z − zN+1〉

]}
(54)

=
1

N
· E

{
η1
2
‖x− x1‖2 − ηN

2
‖x− xN+1‖2 +

m∑
i=1

p−1i τ1
2
‖z1i ‖2 + 〈Mx, sN 〉

−

[
ηN − Lf

4
‖xN+1 − xN‖2 + 〈M(xN+1 − xN ), zN+1〉+

m∑
i=1

p−1i τN
2
‖zN+1
i ‖2

]

−
m∑
i=1

〈 p−1i (τ1z
1
i − τNzN+1

i ) +Mi(x
N − xN+1), zi〉

}

By reorganizing above inequality, we obtain

E
[
Q((xN , zN ), (x, z)) +

1

N

m∑
i=1

〈 p−1i (τ1z
1
i − τNzN+1

i ) +Mi(x
N − xN+1), zi〉

]
≤ 1

N
· E

{
η1
2
‖x− x1‖2 − ηN

2
‖x− xN+1‖2 +

m∑
i=1

p−1i τ1
2
‖z1i ‖2 + 〈Mx, sN 〉

−

[
ηN − Lf

4
‖xN+1 − xN‖2 + 〈M(xN+1 − xN ), zN+1〉+

m∑
i=1

p−1i τN
2
‖zN+1
i ‖2

]}

=
1

N
· E

{
η1
2
‖x− x1‖2 − ηN

2
‖x− xN+1‖2 +

m∑
i=1

p−1i τ1
2
‖z1i ‖2 + 〈Mx, sN 〉

−

[
ηN − Lf

4
‖xN+1 − xN‖2 −

m∑
i=1

pi
2τN
‖Mi(x

N − xN+1)‖2
]}

(55)

=
1

N
· E

{
η1
2
‖x− x1‖2 − ηN

2
‖x− xN+1‖2 +

m∑
i=1

p−1i τ1
2
‖z1i ‖2 + 〈Mx, sN 〉

−

(
ηN − Lf

4
−

m∑
i=1

pil
2
i

2τN

)
‖xN+1 − xN‖2

}
(56)

≤ 1

N
· E

[
η1
2
‖x− x1‖2 +

m∑
i=1

p−1i τ1
2
‖z1i ‖2

]
.

where we obtained the last inequality by using (8) and observing that

m∑
i=1

pil
2
i =

m∑
i=1

p2i
l2i
pi
≤ max

1≤i≤m

{
l2i
pi

} m∑
i=1

p2i < max
1≤i≤m

{
l2i
pi

}
<
ηt − Lf

2τ−1
. (57)

Now for i = 1, . . . ,m, we set

vi := − 1

N

[
p−1i (τ1z

1
i − τNzN+1

i ) +Mi(x
N − xN+1)

]
. (58)

12



By setting x = x∗ in (55), we haveMx∗ = 0 due to the optimality of x∗ and thus obtain E[Q((xN , zN ), (x∗, z))−
〈v, z〉] ≤ 1

N · E[η12 ‖x
∗ − x1‖2 +

∑m
i=1

p−1
i τ1
2 ‖z1i ‖2] for any z ∈ Z, where the right hand side is bounded and

independent of z. Therefore, E[d(v, (xN , zN ))] < ∞, and hence we obtain (9) and MxN = v a.s. due to
Proposition 4.2.

Next, to estimate the consensus error v = MxN defined in (58), we only need to bound ‖τ1z1i − τNz
N+1
i ‖

and ‖xN − xN+1‖. For a saddle point (x∗, z∗) of problem (3), we know that Q((xN , zN ), (x∗, z∗)) ≥ 0 due
to the optimality of (x∗, z∗). Thus, by (54), we have

E
[
ηN − Lf

4
‖xN+1 − xN‖2

]
≤ E

[
〈M(xN+1 − xN ), z∗ − zN+1〉 −

m∑
i=1

τN
2pi
‖z∗i − zN+1

i ‖2 (59)

+
η1
2
‖x∗ − x1‖2 +

m∑
i=1

τ1
2pi
‖z∗i − z1i ‖2

]
.

≤ E

[
m∑
i=1

pi
2τN
‖Mi(x

N+1 − xN )‖2 +
η1
2
‖x∗ − x1‖2 +

m∑
i=1

τ1
2pi
‖z∗i − z1i ‖2

]
,

which implies that

E

[(
ηN − Lf

4
−

m∑
i=1

pil
2
i

2τN

)
‖xN+1 − xN‖2

]

≤ η1
2
‖x∗ − x1‖2 +

m∑
i=1

τ1
2pi
‖z∗i − z1i ‖2. (60)

Hence, we have

E
[
‖xN+1 − xN‖

]
≤
√
η1
2C
‖x∗ − x1‖+

m∑
i=1

√
τ1

2piC
‖z∗i − z1i ‖, (61)

where C is defined in (12) and hence is positive by (57). Similarly, (54) above implies that

E

[
m∑
i=1

τN
2pi
‖z∗i − zN+1

i ‖2
]

≤ E
[
〈M(xN+1 − xN ), z∗ − zN+1〉 − ηN − Lf

4
‖xN+1 − xN‖2

+
η1
2
‖x∗ − x1‖2 +

m∑
i=1

τ1
2pi
‖z∗i − z1i ‖2

]
.

≤ E
[ m∑
i=1

l2i ‖xN+1 − xN‖ ‖z∗i − zN+1
i ‖ − ηN − Lf

4
‖xN+1 − xN‖2

+
η1
2
‖x∗ − x1‖2 +

m∑
i=1

τ1
2pi
‖z∗i − z1i ‖2

]
.

≤ E

[
m∑
i=1

l2i ‖z∗i − z
N+1
i ‖2

ηN − Lf
+
η1
2
‖x∗ − x1‖2 +

m∑
i=1

τ1
2pi
‖z∗i − z1i ‖2

]
, (62)

which implies that

E

[
m∑
i=1

(
τN
2pi
− l2i
ηN − Lf

)
‖z∗i − zN+1

i ‖2
]
≤ η1

2
‖x∗ − x1‖2 +

m∑
i=1

τ1
2pi
‖z∗i − z1i ‖2.
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Therefore we have

E
[
‖z∗ − zN+1‖2

]
≤ η1

2C
‖x∗ − x1‖2 +

m∑
i=1

τ1
2piC

‖z∗i − z1i ‖2. (63)

where C is defined in (12) and hence must be positive due to (53). Notice that ‖z1−zN+1‖2 ≤ 2‖z∗−z1‖2 +
2‖z∗ − zN+1‖2, we can have an estimate for ‖z∗ − zN+1‖2 as following

E
[
‖z1 − zN+1‖2

]
≤ η1
C
‖x∗ − x1‖2 +

m∑
i=1

(
2 +

τ1
piC

)
‖z∗i − z1i ‖2, (64)

from which we have

E
[
‖z1 − zN+1‖

]
≤ U‖x∗ − x1‖+

m∑
i=1

Vi‖z∗i − z1i ‖. (65)

where U and Vi are defined in (11). Therefore, combining (58), (61) and (65) yields (10).

5 Numerical Experiments

In this section, we present several numerical results of Algorithm 1 on synthetic decentralized consensus
optimization problem on networks. We simulate six (6) two-dimensional (2D) lattice networks with different
sizes: 2 × 5, 3 × 6, 3 × 7, 3 × 8, 5 × 8, and 10 × 10. The size m of the networks are hence 10, 18, 21, 24,
40, and 100, respectively. The dimension of unknown x is set to n = 5. We randomly generate the ground
truth xtrue ∈ Rn. For each node i in the simulated network, we randomly generate matrices Ai ∈ Rq×n with
q = 5, and normalize each column of Ai. Then bi is obtained by bi = Aixtrue+ εi, where noise εi is generated
from normal distribution N (0, 0.0001). The objective function fi(x) of node i is defined as 1

2‖Aix − bi‖
2,

and f(x) =
summ

i=1fi(x). Then we know that the Lipschitz constant Lf of ∇f is given by max1≤i≤m Li, where Li is the
Lipschitz constant of ∇fi, Li = ‖A>i Ai‖2. The initialization of xi is set to be 0 for all nodes.

The performance is evaluated by the primal residual f(xt) = 1
2

∑m
i=1 ‖Aixti − bi‖2 and disagreement∑m

i=1 ‖xti − xtmean‖2, where xtmean is the average value of xti at t-th iteration, xtmean = 1
m

∑m
i=1 x

t
i. We test

three sampling strategies: uniform sampling (curves labeled by “uniform” in figures), importance sampling of
pi ∝ li (curves labeled by “one” in figures), and importance sampling of pi ∝ l2i (curves labeled by “square”
in figures). In all tests, we set τt = τ = 2, and ηt as in (13) for the “uniform” case and (3.1.2) for the “one”
and “square” cases (with α = 1 and 2 respectively). The primal residual and disagreement versus iteration
t for the six networks are plotted in Figure 1, 2, 3, 4, 5, 6, respecitvely. In Figure 2, we can observe that
the primal residual f(xt) and disagreement both converges to 0 as stated in theoretical analysis. Besides,
we see that importance sampling show some advantages over uniform sampling, both in the primal residual
and disagreement. The step size η in RIPD with importance sampling is greater than step size in uniform
sampling. Larger step size may accelerate the convergence of proposed method and result better practical
performance.

6 Conclusion

We present a randomized incremental primal dual method for solving a class of smooth convex optimization
problems. The dual variable over the network in each iteration is only updated at a randomly selected node,
whereas the dual variables elsewhere remain the same as in the previous iteration. Thus, the communication
only occurs in the neighborhood of the selected node in each iteration and hence can greatly reduce the
chance of communication delay and failure in the standard fully synchronized consensus algorithms. The
proposed method converges to optimal solution with a provable rate of O(1/t), where t is the iteration
number.
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Figure 1: Comparisons on decentralized least squares by local communication on 2× 5 network. The agents
in each iteration are activated with different probability distributions. Left: the objective function values.
Right: the disagreements.
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Figure 2: Comparisons on decentralized least squares by local communication on 3× 6 network. The agents
in each iteration are activated with different probability distributions. Left: the objective function values.
Right: the disagreements.
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Figure 3: Comparisons on decentralized least squares by local communication on 3× 7 network. The agents
in each iteration are activated with different probability distributions. Left: the objective function values.
Right: the disagreements.
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Figure 4: Comparisons on decentralized least squares by local communication on 3× 8 network. The agents
in each iteration are activated with different probability distributions. Left: the objective function values.
Right: the disagreements.
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Figure 5: Comparisons on decentralized least squares by local communication on 5× 8 network. The agents
in each iteration are activated with different probability distributions. Left: the objective function values.
Right: the disagreements.
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Figure 6: Comparisons on decentralized least squares by local communication on 10 × 10 network. The
agents in each iteration are activated with different probability distributions. Left: the objective function
values. Right: the disagreements.
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