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Abstract—Forwarding packets based on networking names is
essential for network protocols on different layers, where the
‘names’ could be addresses, packet/flow IDs, and content IDs.
For long there have been efforts using dynamic and compact data
structures for fast and memory-efficient forwarding. In this work,
we identify that the recently developed programmable network
paradigm has the potential to further reduce the time/memory
complexity of forwarding structures by separating the data
plane and control plane. This work presents the new designs of
network forwarding structures under the programmable network
paradigm, applying three typical dynamic and compact data
structures: Bloom filters, Cuckoo hashing, and Othello hashing.
We conduct careful analyses and experiments in real networks
of these forwarding methods for multiple performance metrics,
including lookup throughput, memory footprint, construction
time, dynamic updates, and lookup errors. The results give rich
insights on designing forwarding algorithms with dynamic and
compact data structures. In particular, the new designs based on
Cuckoo hashing and Othello hashing show significant advantages
over the extensively studied Bloom filter based methods, in all
situations discussed in this paper.

I. INTRODUCTION

Packet forwarding is a fundamental function of various
types of network devices running on different layers. For each
incoming packet, the forwarding device transmits it to the link
towards one of its neighbors, until reaching its destination.
There are two main types of packet forwarding: 1) IP prefix
matching that is mostly used on layer-3 routers; 2) name-based
matching that is used on most other network devices. For
name-based forwarding, the input of the forwarding algorithm
is a key (also called as a name or address in different designs)
included in the packet header, and the output is an entry
that matches the key exactly and indicates an outgoing link.
This work focuses on packet forwarding with such name-
based matching, which attracts growing attentions in emerging
network protocols and systems. We provide an incomplete list
of recently proposed name-based forwarding designs:

1) On the link layer (layer-2 or L2), interconnected Ether-
net has been used for large-scale data centers [22][54],
enterprise networks[51][56], and metro-scale Ethernet
[27][25][39][40], where the key is the MAC or other
L2 addresses. Although many existing data centers use
the fat tree based design that uses IP routing, name-
based routing and forwarding still provides a number
of advantages, including flexible management and host
mobility. L2 name-based architectures are also suggested
in many future network proposals [27][25][39].

978-1-7281-2700-2/19/$31.00 2019 © IEEE

1
RIB functions H
1. topology ! Control
2. link state i
1
]
7

plane

plane 3. routing algo.

i
1
i
Control H
i
|

Direct changes
to DCSes

’ J N, ’ ,

FIB func. FIB func.

Data
plane

Data
plane

FIB FIB

lookups

1
i
1. lookups i
! lookups
1
H
{

2. updates

1. lookups
2. updates

i \
] ]
i i
] i
i i
] i
i ]
i i
i ]
\ i
. ’

. ’

(a) Classic programmable network (b) New model for DCS based FIB

Fig. 1. Separating a DCS-based FIB to two planes

2) On the network layer (layer-3 or L3), flow-based net-
works, such as OpenFlow-style software defined networks
(SDN5s), match multiple fields in packet headers to per-
form fine-grained per-flow control on packet forwarding
[56][23][38][43]. The matching key is some header fields.
In addition, many new Internet architectures suggest flat-
name forwarding in the network layer, such as MPLS
[42], LTE [55], Mobility-first [41], and AIP [10].

3) On the application layer (layer-7 or L7), a content distri-
bution network (CDN) uses the content ID as the key
to search for the cache server that stores the content
[20][30]. The emerging edge computing provides more
sophisticated content/service caching services [45][50].

Unlike IP addresses, aggregating network names is tough —

if ever possible. Large networks using name-based forward-
ing may suffer from the forwarding information base (FIB)
explosion problem: a forwarding device needs to maintain a
large number of key-action entries in the FIB. To resolve
this problem, for long, there have been efforts to apply
dynamic and compact data structures (DCSes) for the for-
warding algorithms of network names, such as Bloom Filters
[20][511[34], Cuckoo hashing [56][55], and Bloomier filters
[16][15][52][53]. We summarize the desired properties of the
DCSes for forwarding algorithm designs:

1) Small memory footprint. Fast memory is the most
precious network resource, such as the on-chip memory
(SRAM) on a switch, or the CPU cache on a server.
DCSes reduce network infrastructure cost by using small
memory.

2) Fast lookups. Faster lookups mean higher forwarding
throughput. The throughput of a FIB should reach the
line rate to avoid being a bottleneck.

3) Dynamic updates. Modern networks are highly dynamic
due to massive incoming flows and host mobility. Hence,
the DCSes should allow the FIB to be frequently updated.



Although many FIB algorithms have been proposed, the
recently developed programmable network paradigm [13][14],
such as Software Defined Networks [21][35] and Network
Functions Virtualization [7], still provides the potential to
further reduce the time and memory complexity of forwarding
algorithms. Hence there is a need of re-designing forwarding
algorithms with the DCSes under this new paradigm. We
design and implement new forwarding algorithms for pro-
grammable networks, by re-visiting three representative DC-
Ses: Bloom Filters [12], Cuckoo hashing [36], and Bloomier
filters (Othello hashing) [16][15][52].

As shown in Fig. 1(a), in a traditional design, the controller
only runs the Routing Information Base (RIB), while the
whole FIBs are stored in the data plane. The key inno-
vation of our re-designs is show in Fig. 1(b). We relocate
the memory and computation of the update function from
many FIBs to the central control plane, and the data planes,
while supporting direct updates, focus on fast lookups. Our
approach significantly reduces data plane memory footprint
while preserving the control plane scalability. We conduct
careful analysis and experiments of the proposed methods
for multiple performance metrics, including memory footprint,
lookup throughput, construction time, dynamic updates, and
lookup errors. The results can be utilized for future forwarding
algorithm designs.

Our contributions are summarized as follows. 1) We propose
a new design framework of FIBs in programmable networks.
2) We design new forwarding algorithms with DCSes in the
programmable network paradigm that achieve small memory
and high lookup throughput compared to all existing methods.
3) We implement the proposed methods in real network envi-
ronments deployed in CloudLab [1] for real packet forwarding
experiments. 4) Our results provide rich insights of designing
forwarding algorithms. In particular, we find that the Bloom
filter based methods, which have been extensively studied in
the literature, are not ideal design choices compared to other
proposed methods, in all situations studied in this paper.

The balance of this paper is organized as follows. § II
presents the related work and three DCSes. § III introduces the
network models. We present the forwarding algorithm designs
in § IV and provide the analysis results in § V. The evaluation
results are shown in § VII. We discuss the insights of this
study in § VIII and conclude this work in § IX.

II. BACKGROUND AND RELATED WORK

To address the FIB explosion problem, DCSes have been
proposed as the forwarding data structures in various types of
network devices.

Bloom filters. The Bloom filter [12] is one of the most pop-
ular DCSes used in network protocols. A filter data structure
is a brief expression of a set of keys K. By querying a key
k, a filter should return True if k € K or False otherwise. A
well-known feature of Bloom filters is that its results include
false positives but no false negatives. The basic idea of using
Bloom filters for FIBs is that for every link to a neighbor,
the forwarding node maintains a Bloom filter for the set of
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Fig. 3. Construction of Othello hashing

names/addresses that should be forwarded to this link, such
as Summary Cache [20] and BUFFALO [51]. Each lookup
takes O(K - d) time, and each update takes O(d + K) time,
where d is the node degree. Despite the complex lookup and
update, false positives still occur, which hurt the bandwidth.
The Shifting Bloom Filter [48] achieves fast lookups, but its
false positive rate is high.

Cuckoo hashing. Cuckoo hashing [36] is a key-value
mapping data structure that achieves O(1) lookup time in the
worst case and O(1) update time on average. Many recent
system designs choose the (2,4)-Cuckoo hashing [18][56][55]
to maximize the memory load factor. As shown in Fig. 2: a
Cuckoo hashing is a table of a number of buckets, and each
bucket has 4 slots. Every key-value pair is stored in one of
the 8 slots of the two possible buckets based on the two hash
function results i1 (k) and ho(k). The lookup for the value of
a key k is to fetch the two buckets and match k with the keys
from all the 8 slots. The value associated with the matched key
is the result. FIBs using Cuckoo hashing store the link or port
index in each ‘value’ field together with the key (name), such
as CuckooSwitch [56]. ScaleBricks [55] uses both Cuckoo
hashing and SetSep [19] for cluster network functions. SetSep
is a compact structure with no update function, and hence it
is out of the scope of this work.

Bloomier filters. The Bloomier filters [16][15] and their
variants Othello hashing [52][47] and Coloring Embedder
[49] are key-value lookup tables inspired by dynamic perfect
hashing [31][11]. We use Othello hashing as an example to
introduce this idea. As shown in Fig. 3, Othello builds an
acyclic bipartite graph GG, where every key k corresponds to an
edge in the bipartite graph connecting the h,(k)-th vertex on
the top and the A, (k)-th vertex on the bottom, based on its two
hash functions h, and hy. As shown in Fig. 4(a), the Othello
lookup result is simply the value of A[hy(k)] €D Blha(k)],
where A and B are two arrays computed from G and the
key-value information. If G is acyclic, the values in A and B
can be easily determined to satisfy such lookup operation. Re-
hashing will happen if a cycle is found in G. The O(1) update
time is proved in [52]. The important features of Othello are
1) the memory cost is small as it stores no keys in the lookup
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structure; 2) it uses only two memory accesses to lookup a
key in the worst case; 3) it takes O(1) average time for each
addition/deletion/update. Concise [52] is an L2 FIB design
based on Othello. One weakness of Concise is that it cannot
tell whether a key (name/address) exists in the network. If
a packet carries an invalid key, Concise forwards it to an
arbitrary neighbor, as shown in Fig. 4(b). SDLB [53] and
Concury [44] are L4 load balancers using Othello.

ITI. NETWORK MODELS

A. Optimizing DCSes in Programmable Networks

Programmable networks use software, running on general-
purpose computers or programmable switches, to perform
various network functions, e.g., packet forwarding, firewalls,
load balancer, and traffic monitoring. The typical examples
include SDNs [32][26][24][21][35][13], software routing and
switching [28][38][56][23][43], and network functions virtual-
ization (NFV) [7][37][17]. We observe that the programmable
network paradigm provides a new opportunity to allow new
data structures and algorithms being run on network devices
and their further optimizations. As shown in Fig. 1(a), existing
networks require each data plane device to host the entire FIB,
such as the flow table, which supports both the lookup and
update functions. Even in the current SDNs, the controller
only runs the Routing Information Base (RIB) but not the
FIBs. We propose to split the FIB into two components, which
perform the lookup and update functions respectively. The
FIB data plane (DP) component focuses on the lookup and
only performs simple memory writes for updates. Hence the
DP fits in fast memory (e.g., switch ASICs or CPU cache).
The FIB control plane (CP) component is responsible
for the full states and calculations for the construction and
updates of the DPs and can be run on a server. This idea
creates two optimization opportunities for FIB designs: 1)
without the update component, the FIB lookup function can
be built with a DCS with small memory footprint; 2) The FIB
construction and update component can be reused for network-
wide data-plane nodes, to preserve control-plane scalability.
The reusability depends on the specific application. However,
it is always more efficient than maintaining a different update
component for every node.

B. Forwarding Model

There are a total number of n forwarding nodes inter-
connected to form a network. Each port of a node is linked to
either a host or another node. The number of ports of a node
is d. Each host has an address k as its unique ID or search key.
The forwarding structure (i.e., the FIB) on each node should
include the host-port mapping of all hosts in the network. The

port information of k in the FIB indicates the next-hop node
to route the packet to host k.

Practical examples: In a large-scale Ethernet (e.g.,
large organizations, metro Ethernet, and L2 data center
networks)[27][22][39], there are a huge amount of physical
hosts. Each host has an ID (e.g., its MAC address). An
interconnection of switches connects the hosts. Each switch
has multiple ports connecting neighboring switches and hosts.
A switch may be a gateway that connects to external networks
and filters alien keys — an alien key is a key that does not exist
in the network — or a core switch that only connects to internal
devices. Each network packet (Ethernet frame) processed by
a switch includes the MAC of the destination host. A switch
forwards the packet to a neighbor based on FIB lookups using
the MAC. Many modern networks are variants of this model
[27][22][39]. For flow-based networks [32], the flow ID may
be a combination of source/destination IPs, MACs, and other
header fields. The forwarding may be per flow basis, rather
than per destination basis. LTE backhaul networks and core
networks can also be regarded as an instance of the L2 network
model, especially for the down streams from the Internet to
mobile phones. The destinations are mobile phones, and the
IDs are Tunnel End Point Identifiers (TEIDs) or International
Mobile Equipment Identities (IMEIs) of the mobiles [55]. We
do not study routing protocols in this work and focus on
forwarding.

Application-layer (L7) forwarding. L7 network forward-
ing model is slightly different from the above L2/L3 models.
The examples of L7 forwarding include CDN content lookups
[20], distributed data storage [9], P2P systems, and edge com-
puting [45]. In L7, a node can be connected to arbitrarily many
neighbors, because those connection links are virtual, such
as TCP sessions. The number of neighbors of an L2 switch
is bounded by the number of physical ports: an important
parameter of the switch related to its price.

Packet forwarding in L2 and L7 can be simplified and
unified in the following statement: given a packet carrying the
key k, the forwarding structure should return the index of the
corresponding outgoing link. The network updates discussed
here can be key addition (new host joining with a new address
in L2 and new content being stored in L7), key deletion
(existing host failing or leaving in L2, and new content deletion
in L7), or value update of a key (host moving to a new location
or routing path changes in L2 and content being stored at a
new location in L7).

Although this work mainly focuses on the L.2/L.3 forwarding
model due to space limit, the proposed methods and results
may still apply to L7.

IV. FORWARDING STRUCTURE DESIGNS

By exploring the potential of the programmable network
paradigm, we optimize the lookup/memory/update efficiency
of DCSes based forwarding algorithms. We propose three for-
warding structures and algorithms: Bloom Forwarder (BFW)
based on Bloom filters [12], Cuckoo Forwarder (CFW) based
on a new data structure Cuckoo Filtable, and Othello For-
warder (OFW) that extends Othello hashing [52]. CFW and
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OFW are considered our main design contributi
BFW is a baseline for comparison.

A. Bloom Forwarder (BFW)

Limitations of existing methods. Both BUFFALO
Summary Cache [20] use Bloom based forwarding,
ideas are similar. For every outgoing link, the forwarc
maintains a Bloom filter (BF) representing the keys of the
packets that should be forwarded to this link. To look up a
key, the node iteratively checks each BF and then picks the
index of the first matched BF [20] as the link index. There are
d BFs for d links on a node. Summary Cache uses the counting
Bloom filters (CBFs), which support deletion operations. The
drawback of CBFs is that they increase the memory cost by
a factor of log, n;, in the worst case, where ny, is the number
of keys. BUFFALO [51] uses BFs as its DP and maintains
CBFs in its CP to save the switch ASICs. The main weakness
of using CBFs in the CP is that CBFs only record the hashed
bits but do not store keys. Hence, it is impossible to reconstruct
the DP in cases like topology changes and BF resizing because
reconstruction requires retrieving all original keys to build new
BFs.

Bloom Forwarder (BFW). BFW uses a similar DP design
to BUFFALO [51], but a different CP design. We follow the
extensive optimizations proposed in BUFFALO to minimize
the false positives. In addition, we propose to use a Cuckoo
hashing table to store all keys in the CP because the CBFs
do not support DP reconstruction. The DP includes both the
BFs of all ports for lookups and a set of CBFs to support
incremental updates without reconstruction. The CBFs are
kept in DP because a centralized CP may neither have enough
memory to maintain all CBFs of all forwarding nodes nor
enough computation power to perform a small update (such as
new address join or leave), which will trigger different updates
in different CBFs for all DPs.

B. Cuckoo Forwarder (CFW)

Limitations of existing methods. CuckooSwitch [56], the
typical example of Cuckoo hashing based forwarding, uses the
(2,4)-Cuckoo hashing table as its FIB, and stores the full keys
in the hash table. This approach incurs high memory overhead
on the DP. Cuckoo filter [18] stores the fingerprints of keys
rather than the full keys, but it only supports membership
queries and cannot be used as the FIB.

New Design: Cuckoo Forwarder (CFW) Data Plane. The
CFW DP uses a new structure design proposed by us called
Cuckoo Filtable, which borrows the ideas from both Cuckoo
hashing and Cuckoo filters. It is a table of n; buckets and
each bucket includes 4 slots. Each slot stores the fingerprint

Level 1 Level 2
key Cuckoo hashing: Miss | cuckoo hashing: __M_IS_S_ $ Drop
Key fingerprint — link === Full key — link
Hit Link # Hit | Link #
y P Forward to link
(a) Look up a key
No collision
llnsert kq
k
1 »| Collision Level 1 Level 2
avoidance Cuckoo hashing: Cuckoo hashing:
sets y Key fingerprint — link Full key — link
2
Collide | oo¢°
with k, 1 Insert k4 and k,
(b) Insert a key

Fig. 6. CFW insertion and lookup workflows

fr of a key k and the value v associated with k, which is the
index of the link to forward packets carrying ID k, as shown
in Fig. 5. fi is the fingerprint of k& with a fixed and much
shorter length than k, which can be computed by applying
a hash function to k. Storing f; instead of k significantly
reduces the memory cost. To lookup & for an incoming packet,
CFW fetches two buckets based on hi(k) and ho(k) and
computes the fingerprint fi. Then for each slot in these two
buckets, CFW compares f; with the stored fingerprint. If
there is a match, the stored value v, which is the link index
of the next hop neighbor, will be returned. Different from
the existing “partial key Cuckoo” solution [29], the Cuckoo
Filtable addresses the following challenges.

Challenges in CFW DP design. By storing the fingerprints,
CFW experiences the false hits: The fingerprint f(k) of a key
k will match a slot that stores the fingerprint of another key
k' if f(k) = f(K'). There are two kinds of false hits. 1)
k does not exist in the network, called an alien key, and it
has the same fingerprint as an existing key %’. This type of
false hits is called false positives. It is impossible to avoid
false positives unless CFW stores the entire keys. The false
positive rate depends on the length of the fingerprints. 2) &
and k' both exist in the network and happen to share the same
fingerprint and locate in the same bucket. This is called a valid
key collision. This problem is critical: in an L2 Ethernet-based
enterprise or data center network, all forwarding nodes in a
subnet/data center may share the same set of keys [27], and
thus, a pair of colliding valid keys & and &’ will collide at
every node. One of the destinations will never be successfully
accessed. We call this problem as key shadowing.

To resolve valid key collisions, we adopt a two-level design,
as shown in Fig. 5. Level 1 is a Cuckoo Filtable that stores
non-colliding fingerprints and their values, as described above.
Level 2 is a Cuckoo hashing table that stores full keys whose
fingerprints collide with one or more other keys. A key k will
be moved to Level 2 if these two conditions are satisfied: 1)
there is another k' such that f), = fi-; and 2) k and k' have at
least one common bucket. Each key relocated to Level 2 will
be inserted to a collision avoidance set (explained later) to
prevent future false hits. We expect that only a small portion
of keys are stored in Level 2. Thus the memory cost does not
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increase significantly. A lookup operation is to first search for

the fingerprint in the first level, and if there is a miss, CFW
looks up the key in the second level, as shown in Fig. 6(a).

New Design: CFW Control Plane. The CFW CP stores
the network topology and routing information. For the FIB, the
CFW CP uses a two-level design to support fast constructions
and updates for all DPs. The difference between the CP FIB
and the DP FIB is that each slot in Level 1 of CP FIB
stores three fields: the full key k, the fingerprint fj, and the
physical host ID (only for multi-tenant networks). The full
keys are used to help key additions and deletions. When a
reconstruction is needed, the two-level CP FIB can immedi-
ately be converted to the two-level DP FIB by removing all
full key fields. Besides, when some DPs hold the same set
of keys, the CP FIBs of the nodes share the same ‘skeleton’:
the same key at different nodes is in the same position of
the lookup structure (though their value fields are different).
The construction of a DP FIB is to directly copy the skeleton
without full keys and resolve each key to the port index on
the node based on the routing information stored in the RIB.
This property has been not explored by any prior work.
Based on this design, if there is a central control program, a
network-wide update will be extremely fast.

Challenges in CFW CP design. One problem may happen
when there is a three-key collision: keys a, b, and ¢ have the
same fingerprint and share a bucket. a and b are already stored
in the Level 2 hash table. When c is added to the FIB, it will
be directly added to the Level 1 without collisions — because
a and b are not there. However, it causes a problem in DP
lookups: all lookups of a and b will hit ¢’s slot.

In CFW, this problem is resolved by storing additional
information in Level 1 of CP FIB. Level 1 maintains a collision
avoidance set at each bucket, which stores all valid keys that
have this bucket as one of its two alternative buckets. For every
key being inserted, CFW should first check if its fingerprint
collides with any fingerprint in the collision avoidance sets
of its two alternative buckets to avoid possible collisions, as
shown in Fig. 6(b). Every inserted key is added to the collision
avoidance set of both the alternative buckets. If a collision is
detected before the insertion, the two colliding keys are moved

to the second level.
C. Othello Forwarder (OFW)

We further explore the efficiency of Othello hashing [52]
for a new FIB design in programmable networks.

Limitations of existing methods. Concise [52] is an L2 FIB
based on Othello hashing. Concise has two main limitations.
1) It only includes the design for a single switch but misses
the design for network-wide CP-DP coordination; 2) It has no
ability to filter alien keys that do not belong to the network.
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Fig. 8. OthelloSet for network-wide updates

New Design: Othello Forwarder (OFW) Data Plane. The
OFW DP consists of two arrays A and B, and two different
hash functions h; and hse. The lookup of a given key k&
works as follows: the hq(k)-th element in A, A[hy(k)], and
the ho(k)-th element in B, Blha(k)], are fetched; and the
DP calculates 7 = A[hy(k)] € Blha(k)]. The result 7 is the
concatenation v|| f, where v is the index of the forwarding port
and f is a fingerprint to filter alien keys, as in Fig. 7. The DP
then calculates the fingerprint fj, of the key k. If fi, = f, v is
returned, otherwise null is returned to indicate an alien key. If
all the request keys are guaranteed to be valid, length of f is
set to 0. The main drawback of adding fingerprints is the high
memory cost because the total number of slots in arrays A and
B is 2.33ny, for ni keys, and thus, one bit in the fingerprint
field contributes 2.33 bits to the overall memory. Intuitively,
when the fingerprint grows by 1 bit, the DP can reduce 50%
false hits. An interesting result is that using only 1 bit can filter
more than 50% alien keys: we call the last bit of a fingerprint
as ‘emptiness indicator’, which is set to 1 when this element
in the array A or B is associated with one or more keys. If
both indicators in the fetched two elements are 1, then there
may be a key matching the two values. If either of them is 0,
then the lookup key must be an alien key.

New Design: OFW Control Plane. The OFW CP uses a
new data structure, OthelloSet, to support efficient network-
wide FIB updates. The simplest way to maintain the OFW CP
is to maintain an array of key-port pairs for every node. In this
way, however, the CP may not have enough memory to hold all
the arrays and the DP construction will be prohibitively time-
consuming. Our important observation is that if some nodes
share the same set of keys, they also share the same bipartite
graph G because G only depends on the keys. Hence, OFW
CP maintains the routing information, an array of key-host
pairs, and a ‘skeleton’ for all DPs. As shown in Fig. 8, one
graph G and two arrays X and Y are maintained in the CP as
the ‘skeleton’, such that X [h, (k)] € Y [hy(k)] is the index of
the key-host pair array. For construction of each node, OFW
CP calculates the host-port mapping for each key in the array.
Then based on G and the derived key-port mapping, the OFW
DP (arrays A and B for lookup) can be easily constructed.

The reasons to use OthelloSet are: 1) OthelloSet stores full
key-value information which suffices to be a CP data structure;
2) we have to maintain a bipartite graph G of the Othellos at
the CP to quickly synchronize with DPs. The key insight here



Symbol Description
Nk total number of valid keys
d number of links
lp length of port index encoding
ly length of fingerprint field in slots
g length of a key
ls length of counters in CBF
ly bucket length in Cuckoo hashing or Cuckoo filter
n number of buckets a key is mapped to in Cuckoo
b hashing or Cuckoo Filtable (usually 2)
Ns number of a slots in a bucket (usually 4)
T load factor of Cuckoo hashing or Cuckoo filter
€] € = %l
l number of hash functions for a Bloom filter
TABLE I
NOTATIONS

is that, although the link indices (values) corresponding to the
keys are different on different nodes, hi, ha, and G can be
shared between the CP OthelloSet and all CPs in the network.
To construct a new FIB or to incrementally update FIBs in the
network, Othello reconstruction is no longer needed, the CP
only has to determine the values to fill the slots in arrays A
and B.
D. Control plane reusing and scalability

The key reason of letting the BFW DP to store the CBFs
is that the CBFs cannot be reused among different forwarding
nodes, and every node must have a set of unique CBFs. Hence,
storing the CBFs in the central controller will cause significant
scalability problem. In fact, the server used in our experiments
cannot afford storing CBFs for over 100 nodes. On the other
hand, the DPs of CFW and OFW can be reused if different
nodes are forwarding a same set of addresses, which is true
in many L2 networks [22][27][25][39]. We understand that
in some practical networks that are not pure L2 flat networks,
nodes in different regions may have different sets of addresses.
However, the designs of CFW and OFW can still significantly
reduce the control plane overhead if some nodes share similar
sets of addresses, e.g., those in a same subnet.

V. ANALYSIS AND FURTHER OPTIMIZATION

We conduct theoretical analysis on the following three
aspects: the memory footprint in the DP, times of hash function
invocations and memory reads for each lookup, and times of
hash function invocations and memory reads and writes for
each FIB update. We also present the system design details
guided by the analysis. The notations are listed in Table L.
A. DP memory footprint

The data structures at the DPs are analyzed as two parts for
BFW and CFW - the total memory footprint and the memory
footprint of frequently accessed parts during lookup. We use
the symbol M to denote the overall memory footprint, and let
My to be the memory footprint of the mostly accessed parts
that can be hosted in fast memory.

BFW. For BFW, a FIB is divided into two parts: the
counting Bloom filter and the Bloom filter. The Bloom filter
is the frequently accessed part. The FIB memory footprint
of BEW M® and M} (both in bits) are (1 + I;)m and m,
respectively, where m is the sum of the lengths of all Bloom
filters and m = hny/In2 for h hash functions [12].

CFW. The CFW DP consists of two levels. Level 1 is
the Cuckoo Filtable that stores key fingerprints, which is the
frequently accessed part. Level 2 stores the full keys for the
colliding keys. We first calculate the expected portion of keys
at Level 1 1 and then derive the expected CFW memory
footprint M¢€. Our experiments show that 7 is a function of
l¢ and is independent of n;. We define the function E, (1) to
reflect the experimental results. Based on that, the memory
footprint of Level 1 is M§ = E,(Iy) - ny - eIy +1,) and the
total memory is M€ = M$§ + (1 — E,(If))ny - er(li + 1p)-

OFW. There is only one data structure in the OFW DP,
which means the whole FIB memory M and the most
accessed memory M7 are the same: My = M° = 2.33ny, -
(I, + f), where the coefficient 2.33 is derived in [52].

B. Time complexity

Although different FIB designs have different workflows in
lookup, hashing keys and loading memory contents are com-
mon and most time consuming, compared to other operations
such as calculating memory offsets. Hence, we use the number
of memory accesses and hash function invocations to measure
time complexity. We denote the numbers of memory accesses
and hash function invocations as C,,, and C}, respectively. We
denote the expected numbers of memory loads and hash func-
tion invocations of an alien key as C,,, . and C}, . respectively.
The detailed derivations of the following results are skipped
due to space limit, but are available on [6].

BFW.
d—1
BCh) =Y 5 (G- 10+ =0+
. |
B = (X (-p) " - a-p)) G- ca)
=1
+(@-p) @ N
B(Ch) = E(/1d + C) = [ /11 + B

E(Cp.o) = B([li/lc] + Cr o) = [ln/1c] + E(Cy )

CFW. (Assuming the key locations are uniformly random)

B =2+ (1 By1p) (1) 3
E(Che) = 14 ny+mp =1+ 2n,
oy X ifns] - E(Cy) + E(Cyi)
E(CS) = [/l + > ny - N 4)

i=1
E(Cy,.0) = [lk/le] +np - E(Cy)

OFW. The expected portion of empty slots in A and B

_ e _
are: €, = (%ﬂl)m ~e ma 0471 and €, = (mj;ilbl)"k 2

e~ A~ 0.368. Let ly = ged(ly +1,,1:). Assume the If + 1,
is always smaller than /.. We get:
Cr=3

Che=¢€+2 (I—e)ep+3-(1—ea)(l—ep) )
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C. Collision rate and false positive rate

We consider two problems caused by hash collisions: valid
key collisions and false positives. A key collision happens
between two valid keys, causing the lookups of the two keys
ending up with the same value. A false positive happens when
an alien key that does not exist in the network gets the value
of an existing key. We use CR and FP to denote the valid key
collision rate per lookup and the alien key false positive rate
per lookup, respectively. We obtain the following results.

BFW.

(6)

FPP=1—(1—(1-p))*

d i—1
1 1 (7
E(CRY) = — i
=3 (1-5)
CFW.
CR° =0
C 1 rE,(ls)nsn (8)
FP¢ = —(1—27f)l 1 (Lr) b
OFW.
CR° =0
o ©)
FP :%771'(1—6(1)'(1—6[,)

D. Numerical results and discussions

We show the numerical results to compare different for-
warders and make some design choices based on the numerical
results.

DP memory footprint. We consider the DP memory in
two situations: with and without gateways. As described in
& III, the gateways may exist at the border of a network. A
gateway is also a forwarder, but with full key information.
Hence, a gateway will drop invalid requests and only forward
valid requests. Having all incoming requests passing through
the gateways, there is no false positive at internal forwarders. If
gateways are used, then other forwarding nodes do not need
to filter alien keys. Note even if gateways exist, BFWs on
internal nodes still suffer from the key collisions, but there
is no collision in CFW and OFW. We fix n; to be 10M,
I, =128, CR = 1% for BFW, Iy = 0 for OFW, and we pick
Iy for CFW giving out the smallest memory footprint. We let
l, range from 5 to 13. The results in Fig. 9 show that OFW

provides the least memory cost, around 20%-60% of the other
two.

If there is no gateway, we calculate the smallest memory
footprints of the three forwarders achieving a certain level
of false positive rate. We fix nj to 10M and let the false
positive rate range from 0.01 to 0.0001. We carefully adjust the
parameters of the three forwarders to let them have the smallest
memory footprint while meeting the target false positive rate.
The numerical results are shown in Fig. 10.

Comparing the results in Figures 9 and 10, it is clear that
when gateways exist, OFW costs the much less memory than
the other two designs. However, without gateways, OFW needs
much more memory to achieve a certain level of false positive.
CFW costs the least memory when false positive < 0.4%.
Hence, an ideal solution may be using Cuckoo hashing or
OthelloSet at the gateways and using OFWs for the remaining
internal nodes.

VI. IMPLEMENTATION

Algorithm implementation. We implement all three for-
warder prototypes in a total of 4360 lines of C++ code and
these prototypes share a part of the code. We build the CFW
prototype based on the presized_cuckoo_map implementation
in Tensorflow repository [8], with several major modifications
to implement Cuckoo Filtable and the control plane of CFW.
We also implement the collision avoidance sets at the control
plane Level 1 table. The insertion workflow is specially imple-
mented and tested for the two-level Cuckoo Filtable and the
collision avoidance sets. We reuse the code from the GitHub
repository of Othello hashing [3] and add the extra functions
such as fingerprint checking and the control plane to data
plane incremental synchronization. As the Bloom filters and
CBFs are easy to implement, we just implement the BFW and
its control plane from scratch and implement the incremental
update feature. We adopt the Google FarmHash [2] as the hash
function for all experiments.

Algorithm benchmark setup. We evaluate the single-
thread performance of three forwarder algorithms on a com-
modity desktop server with Intel i7-6700 CPU, 3.4GHz, 8
MB L3 Cache shared by 8 logical cores, and 16 GB memory
(2133MHz DDR4).

CloudLab benchmark setup. We implement the forwarder
prototypes BFW, CFW, and OFW using Intel Data Plane
Development Kit (DPDK) [4] running in CloudLab [1]. DPDK
is a series of libraries for fast user-space packet processing [4].
DPDK is useful for bypassing the complex networking stack
in the Linux kernel, and it has the utility functions for huge-
page memory allocation and lockless FIFO, etc. CloudLab
[1] is a research infrastructure to host experiments for real
networks and systems. Different kinds of commodity servers
are available from its 7 clusters. We use two nodes c220g2-
011307 (Node 1) and ¢220g2-011311 (Node 2) in CloudLab to
construct the evaluation platform of the forwarder prototypes.
Each of the two nodes is equipped with one Dual-port Intel
X520 10Gbps NIC, with 8 lanes of PCle V3.0 connections
between the CPU and the NIC. Each node has two Intel E5-
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2660 v3 10-core CPUs at 2.60 GHz. The Ethernet connection
between the two nodes is 2x10Gbps. The switches between
the two nodes support OpenFlow [32] and provide the full
bandwidth.

Logically, Node 1 works as one of the forwarders in the
network, and Node 2 works as all other nodes in the network,
including gateways and switches. Node 2 uses the DPDK
official packet generator Pktgen-DPDK [5] to generate random
packets and sends them to Node 1. The destination IDs carried
by the generated packets are uniformly sampled from a set
of valid IDs. BFW, CFW, or OFW is deployed on Node 1
and forwards each packet back to Node 2 after determining
the outbound port of the packet. By specifying a virtual link
between the two servers, CloudLab configures the OpenFlow
switches such that all packets from Node 1, with different
destination IDs, will be received by Node 2. Node 2 then
records the receiving bandwidth as the throughput of the whole
system.

Network setup. We use one ISP network topology from the
Rocketfuel project [46] as the topology model of the simulated
network. Gateways are placed in the networks. [; of OFW is
set to 0, while [; of Level 1 of CFW is set to 13 for lowest
memory footprint. The lookup keys may be valid or alien,
sampled from the following categories: 32-bit IPv4 addresses,
48-bit MAC addresses, 128-bit IPv6 addresses, and 104-bit
S-tuples.

VII. EVALUATION

In this section, we carry out the algorithm benchmark and
the CloudLab experiments to evaluate the performance of the
three forwarder prototypes.

A. Comparison methodology

The distributions of lookup requests are simulated in two
types: uniform distribution and Zipfian distribution. To under-
stand the performance variations, each data point is the average
of 10 experiments with different random seeds and the error
bar on each data point shows the minimum and maximum
value among the 10 results.

We conduct two kinds of comparisons: 1) Algorithm micro-
benchmarks to examine different performance metrics; 2) Real
packet forwarding experiments in CloudLab to understand
the overall performances of the three forwarders in a real
network. For algorithm micro-benchmarks, we compare the
following performance metrics of all three forwarders: 1)
Lookup throughput of valid and invalid addresses; 2) Control
plane to data plane synchronization latency; 3) Control plane
construction time.

1-

B. Algorithm evaluation

Compare to prior methods. We have conducted the ex-
periments of the studied methods with prior solutions: CFW
vs. CuckooSwitch [56]; OFW vs. Concise [52]. All of BFW,
CFW, and OFW have a better or same performance
in throughput and memory efficiency compared to prior
solutions. We show some representative results. We calculate
the memory footprint for a single FIB to show that the CFW
saves a considerable amount of memory compared to Cuckoo
hashing as in CuckooSwitch. We set the [ 64 (MAC
addresses) for both FIBs, and FP = 1% for Cuckoo Filtable.
The results in Fig. 11 shows CFW, avoiding storing full keys,
saves > 3z memory compared to Cuckoo hashing. To show
the advantage of adopting OthelloSet in OFW, we compare
the construction time for a single forwarder: exporting OFW
DP from OthelloSet CP skeleton vs. building OFW DP from
scratch. We set [, = 48 and [, = 8. As shown in Fig. 12,
OthelloSet achieves > 3 faster DP construction and for a
network of 64M entries. In summary, both CFW and OFW
significantly improve the existing methods. We show more
results by comparing them with BFW.

Lookup throughput. We evaluate the lookup throughput of
both the gateway node and the core node. Figures 13 to 16
show the throughput of BFW, BFW gateway (BGW), CFW,
CFW gateway (CGW), OFW, and OFW gateway (OGW) in a
network where forwarding addresses are valid MAC addresses.
The experiments are performed with single-thread instances of
the three prototypes. We change the total amount of addresses
stored in the FIB and observe the throughput in terms of
million queries per second (Mqps).

The throughput decreases with the growth of FIB size
because larger FIBs incur higher cache miss rates. OFW
performs around 3x faster than CFW because of its small
memory and simple lookup logic. BFW performs >10x worse
than the other two. OGW performs 2x faster compared to other
gateways when FIB size is small. As memory loads dominant
the lookup latency for gateways when FIB is large, the lookup
throughputs of all three forwarders are close. OFW performs
slightly better under Zipfian distribution than under uniform
distribution when the FIB size is 4M.

Different types of keys. We evaluate the lookup throughput
for different key types, including IPv4, MAC, IPv6, flow ID,
and URL (CDN content name). The results in Fig. 17 show
that OFW always achieves the highest throughput, seconded
by CFW.

Alien addresses. To understand the difference between
lookups of alien addresses and valid addresses, we also exam-
ine the alien address lookup at gateways. Fig. 18 shows the
throughput of BFW gateway (BGW), CFW gateway (CGW),
and OFW gateway (OGW) where forwarding addresses are
invalid MAC addresses. We vary the total amount of addresses
stored in the FIBs. All gateways show performance decreases
with alien addresses because CFW perform key matching
for all addresses in the two buckets of the two levels (16
slots in total) to conclude the address is alien, and OFW
performs one extra address lookup to detect the alien address.
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different key types

The performance drop for OFW is caused by the memory
expansion, and the decrease only happens at small FIB sizes.

Data plane incremental update. As the valid addresses and
their corresponding values are subject to change at runtime to
reflect the network dynamics, FIB incremental updates happen
frequently. The workflow of an incremental update is modeled
as below. 1) The control plane receives an update report from
the application specific message sources. Updates have three
types: key addition, key deletion, and value modification. 2)
The control plane updates the FIB skeleton to reflect the
change and generates update messages for data planes based
on the skeleton and the network routing information. 3) The
data plane of each node receives the update message and
updates its FIB accordingly.

The evaluation focuses on the communication overhead
between the control plane and data planes, as well as the
update throughput for the data planes. We set the FIB size to
4M and use the MAC addresses. We uniformly generate update
messages of three different types and apply the same sequence
of updates to the three forwarders. We record the average
message lengths and the finish time of different update types,
and we calculate the throughput of different update types in
millions of operations per second (Mops).

Fig. 19 shows the update message lengths of BFW, CFW,
and OFW. Value modification messages of OFW is longer than
those of CFW because a value modification in OFW involves
recoloring the whole connected component. Deletion messages
are much shorter for OFW because it only needs to mark the
empty indicator bits in up to 2 slots. Though CFW and OFW
do not need to include full keys in the update messages, their
addition messages are longer because CFW needs to include
the cuckoo path, and the OFW needs to include the recoloring.

Fig. 20 shows the update throughput of BFW, CFW, and
OFW. OFW is fast in key deletion because it only needs to
mark the empty indicator bits. CFW is more than 10 times
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faster than others on value modifications because the update
of CFW is simply copying the value to the specified slot. As
we expect the update is less than 1M per second, all the three
forwarders support realtime incremental updates.

Construction time. Although most updates in a network
are incremental updates, there are always cases where new
DP construction is needed, such as system checkpoint loading
or forwarding node addition. We examine the construction
time of a forwarding structure. Fig. 21 shows the control
plane construction time at different FIB sizes. CFW and OFW
are about 5x slower than BFW in CP construction. Because
Cuckoo Filtable is faster to construct than Othello and the two-
level design degrade the construction performance of CFW
CP. However, the two-level design is necessary to make the
data plane memory consumption times smaller than the plain
Cuckoo hashing approach, which stores addresses. The high
variation of control plane construction time in OFW is because
of the varying number of rebuild times. In contrast, the CFW
faces much less rebuild during the construction.

Fig. 22 shows the construction time from the CP to a
single DP at different FIB sizes. CFW and OFW data plane
constructions are fast because of our ‘skeleton’ design. The
addresses are MAC addresses. The construction involves value
reassignments because CP stores the mapping from addresses
to hosts while the FIB in a DP is a mapping from addresses to
links. CFW is fast because the value reassignment is simply
traversing over slots. In OFW, the value reassignment involves
traversing connected components, which exhibits less locality

than that of CFW.
C. Evaluation in a real network

We conduct both single-thread and multi-thread forwarding
experiments to evaluate the throughput of different forwarders.
The multi-thread experiments run on the DPDK built-in poll
mode.

We first evaluate the maximum forwarding capacity of Node
1 by an ‘empty’ forwarder that loads the key from each packet
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and transmits it to Node 2, without looking up any FIB or
table. The maximum capacity is 28.40Mpps for 64-byte L2

packets.

Throughput. Figures 23 to 26 show the throughput of BFW,
CFW, and OFW where the forwarding keys are valid MAC
addresses. We vary the total amount of addresses stored in
the FIB and observe the throughput. The forwarders have
lower throughput under uniform key distribution because the
memory access pattern exhibits lower locality. OFW per-
forms the best among the three on both single thread and
two threads. While single thread OFW almost reaches the
forwarding capacity, two threads of OFW are sufficient to
reach the forwarding capacity for a 16M FIB. Throughput
for Zipfian distribution grows for all three forwarders because
their memory access patterns have more locality. CFW on two
threads also reaches the forwarding capacity. For all cases,
OFW and CFW perform >2x better than BFW.

D. Summary of comparison.

Throughput. OFW and OGW exhibits >2 times lookup
throughput compared to CFW and CGW. In other cases,
the throughput of OFW and CFW are similar. The lookup
throughput of BFW is < 10% compared to the other two.

Memory footprint. (Evaluated and compared in Section
V-D) When alien addresses are not a concern, such as in
core switches, OFW costs the least memory. The memory cost
of CFW and BFW are similar. When we need to filter alien
addresses, such as on gateway switches, the memory cost of
OFW is higher than that of CFW or BFW.

Incremental update. OFW and CFW can perform > 10M
updates per second, while BFW is much slower than them.

VIII. INSIGHTS AND DISCUSSION
Design consideration by network operators. For networks
using name-based forwarding, there are two types of for-
warding nodes: gateway nodes and core nodes. On gateway
nodes, CFW provides the lowest false positives rates given
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the same memory budget. Hence, CFW and potentially other
Cuckoo variants in future are ideal design choices for gateway
nodes. On core nodes, false positives are not a consideration.
OFW provides the highest throughput and lowest memory
cost compared to other solutions. Hence, OFW and poten-
tially other Othello variants are ideal design choice for core
switches/routers. In all situations studied in this paper, BFW,
the Bloom filter based solution, is not the best choice.
Further optimization. From the results, the performance of
Cuckoo Filtable downgrades dramatically compared to Cuckoo
hashing. Design optimizations are possible but hard. It is
difficult for a Cuckoo hashing based FIB to store a small
number of addresses to achieve memory efficiency while
avoiding valid key collisions, which lead to key shadowing
described in § IV. The implementation of collision avoidance
sets at Level 1 of CFW FIB can be further improved because
we store full keys in the sets instead of memory addresses of
the keys, which may waste memory and in turn downgrade the
construction performance. An adaptive Cuckoo filter (ACF)
[33] is a filter for approximate membership queries, rather
than a key-value lookup table that can be used for forwarding.
It costs more space to resolve false positives, and it cannot
avoid valid key collisions which lead to key shadowing.

IX. CONCLUSION

This work provides a comprehensive study of redesigning
DCSes for packet forwarding with network names in multi-
ple network models. By utilizing the programmable network
model, we propose new forwarding structure designs based
on three representative DCSes: BFW (based on Bloom filter),
CFW (based on Cuckoo hashing), and OFW (based on Othello
hashing). They improve existing non-programmable-network
methods by a big margin in both memory efficiency and
control plane scalability. The analytical and experimental
comparison among these three methods reveals that CFW and



OFW fit various network setups that can be chosen by network
operators, while BFW may not be ideal in most cases.

X. ACKNOWLEDGEMENT

This work is partially supported by National Science Foun-
dation Grants 1717948 and 1750704. We thank the shepherd
Fernando Kuipers and the anonymous reviewers for their
suggestions and comments.

[1]
[2
[3]

[4]
[5]
[6]

[8]

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

REFERENCES

CloudLab. https://www.cloudlab.us/.

Implementation of farmhash. https://github.com/google/farmhash.
Implementation of Othello: a concise and fast data structure for classi-
fication. https://github.com/sdyy1990/Othello.

Intel DPDK: Data Plane Development Kit. https://www.dpdk.org.
Pktgen-DPDK. https://github.com/pktgen/Pktgen-DPDK.

Technical report: detailed derivations of performance metrics. . https:
//mybinder.org/v2/gh/sshi27/Re-designing-Compact-structure-based-
Forwarding- for-Programmable- Networks/master?filepath=design.ipynb.
Network Functions Virtualisation: Introductory White Paper. https://
portal.etsi.org/nfv/nfv_white_paper.pdf, 2012.

Implementation of presized cuckoo map. https://github.com/tensorflow/
tensorflow/blob/master/tensorflow/core/util/presized_cuckoo_map.h,
2016.

H. Abu-Libdeh, P. Costa, A. Rowstron, G. O’Shea, and A. Donnelly.
Symbiotic routing in future data centers. In Proc. of ACM SIGCOMM,
2010.

D. G. Andersen, H. Balakrishnan, N. Feamster, T. Koponen, D. Moon,
and S. Shenker. Accountable Internet Protocol (AIP). In Proc. of ACM
SIGCOMM, 2008.

D. Belazzougui and F. C. Botelho. Hash, displace, and compress. In
Proc. of Algorithms-ESA, 2009.

B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Communications of the ACM, 13(7):422-426, 1970.

P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker. P4:
programming protocol-independent packet processors. ACM SIGCOMM
Computer Communication Review, 2014.

A. T. Campbell, H. G. D. Meer, M. E. Kounavis, K. M. Hitachi,
J. B. Vicente, and D. Villela. A survey of programmable networks.
SIGCOMM Computer Communication Review, 1999.

D. Charles and K. Chellapilla. Bloomier Filters: A Second Look. In
Proc. of European Symposium on Algorithms, 2008.

B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal. The Bloomier Filter:
An Efficient Data Structure for Static Support Lookup Tables. In Proc.
of ACM SODA, pages 30-39, 2004.

D. E. Eisenbud, C. Yi, C. Contavalli, C. Smith, R. Kononov, E. Mann-
Hielscher, A. Cilingiroglu, B. Cheyney, W. Shang, and J. D. Hosein.
Maglev: A Fast and Reliable Software Network Load Balancer. In Proc.
of USENIX NSDI, 2016.

B. Fan, D. G. Andersen, M. Kaminsky, and M. D. Mitzenmacher.
Cuckoo filter: Practically better than bloom. In Proceedings of the 10th
ACM International on Conference on emerging Networking Experiments
and Technologies. ACM, 2014.

B. Fan, D. Zhou, H. Lim, M. Kaminsky, and D. G. Andersen. When
cycles are cheap, some tables can be huge. In Proc. of USENIX HotOS,
2013.

L. Fan, P. Cao, J. Almeida, and A. Z. Broder.
A Scalable Wide-Area Web Cache Sharing Protocol.
Transactions on Networking, 2000.

N. Feamster, J. Rexford, and E. Zegura. The road to SDN: An
intellectual history of programmable networks. ACM Queue, 2013.

A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta. VL2: a scalable and flexible
data center network. In Proceedings of ACM SIGCOMM, 2009.

A. Hari, T. V. Lakshman, and G. Wilfong. Path Switching: Reduced-
State Flow Handling in SDN Using Path Information. In Proc. of ACM
CoNEXT, 2015.

C.-Y. Hong et al. Achieving High Utilization with Software-Driven
WAN. In Proceedings of ACM Sigcomm, 2013.

Summary Cache:
IEEE/ACM

[25]

[26]
[27]
(28]

[29]

[30]
[31]

(32]

[33]

[34]

(35]

(36]
[37]

[38]

(39]
[40]

[41]

[42]

[43]

[44]
[45]
[46]

[47]

(48]
[49]

[50]

(51]

[52]

S. Jain, Y. Chen, S. Jain, and Z.-L. Zhang. VIRO: A Scalable, Robust
and Name-space Independent Virtual Id ROuting for Future Networks.
In Proc. of IEEE INFOCOM, 2011.

S. Jain et al. B4: Experience with a Globally-Deployed Software Defined
WAN. In Proceedings of ACM Sigcomm, 2013.

C. Kim, M. Caesar, and J. Rexford. Floodless in SEATTLE: A Scalable
Ethernet Architecture for Large Enterprises. In Proc. of Sigcomm, 2008.
E. Kohler. The Click Modular Router. PhD thesis, Massachusetts
Institute of Technology, 2000.

H. Lim, B. Fan, D. G. Andersen, and M. Kaminsky. SILT: A Memory-
Efficient, High-Performance Key-Value Store. In Proc. of ACM SOSP,
2011.

B. M. Maggs and R. K. Sitaraman. Algorithmic Nuggets in Content
Delivery. ACM SIGCOMM Computer Communication Review, 2015.
B. S. Majewski, N. C. Wormald, G. Havas, and Z. J. Czech. A Family
of Perfect Hashing Methods. The Computer Journal, 1996.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner. Openflow: Enabling innovation
in campus networks. SIGCOMM Comput. Commun. Rev., 2008.

M. Mitzenmacher, S. Pontarelli, and P. Reviriego. Adaptive cuckoo
filters. In 2018 Proceedings of the Twentieth Workshop on Algorithm
Engineering and Experiments (ALENEX), pages 36-47. SIAM, 2018.
M. Moradi, F. Qian, Q. Xu, Z. M. Mao, D. Bethea, and M. K.
Reiter. Caesar: High-Speed and Memory-Efficient Forwarding Engine
for Future Internet Architecture. In Proceedings of ACM/IEEE ANCS,
2015.

B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and
T. Turletti. A Survey of Software-Defined Networking: Past, Present,
and Future of Programmable Networks . JEEE Communications Surveys
and Tutorials, 2014.

R. Pagh and F. F. Rodler. Cuckoo hashing. Journal of Algorithms, 2004.
S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Ratnasamy, L. Rizzo,
and S. Shenker. E2: A Framework for NFV Applications. In Proceedings
of the 25th Symposium on Operating Systems Principles, pages 121-136.
ACM, 2015.

B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado.
The Design and Implementation of Open vSwitch. In Proc. of USENIX
NSDI, 2015.

C. Qian and S. Lam. ROME: Routing On Metropolitan-scale Ethernet
. In Proceedings of IEEE ICNP, 2012.

C. Qian and S. Lam. A Scalable and Resilient Layer-2 Network with
Ethernet Compatibility. IEEE/ACM Transactions on Networking, 2016.
D. Raychaudhuri, K. Nagaraja, and A. Venkataramani. MobilityFirst:
A Robust and Trustworthy MobilityCentric Architecture for the Future
Internet. Mobile Computer Communication Review, 2012.

E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol Label
Switching Architecture. RFC 3031, 2001.

M. Shahbaz, S. Choi, B. Pfaff, C. Kim, N. Feamster, N. Mckeown, and
J. Rexford. PISCES: A Programmable, Protocol-Independent Software
Switch. In Proc. of the ACM SIGCOMM, 2016.

S. Shi, C. Qian, Y. Yu, X. Li, Y. Zhang, and X. Li. Concury: A Fast
and Light-weighted Software Load Balancer. arXiv:1908.01889, 2019.
W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge computing: Vision
and challenges. IEEE Internet of Things Journal, 3(5), 2016.

N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP Topologies
with Rocketfuel. In Proceedings of ACM SIGCOMM, 2002.

M. Wang, C. Qian, X. Li, and S. Shi. Collaborative Validation of Public-
Key Certificates for IoT by Distributed Caching. In Proc. of IEEE
INFOCOM, 2019.

T. Yang et al. A shifting bloom filter framework for set queries. In
Proceedings of VLDB, 2016.

T. Yang et al. Coloring embedder: a memory efficient data structure for
answering multi-set query. In Proceedings of IEEE ICDE, 2019.

K.-K. Yap et al. Taking the Edge off with Espresso: Scale, Reliability
and Programmability for Global Internet Peering. In Proc. of ACM
SIGCOMM, 2017.

M. Yu, A. Fabrikant, and J. Rexford. BUFFALO: Bloom filter forward-
ing architecture for large organizations. In Proc. of ACM CoNEXT,
2009.

Y. Yu, D. Belazzougui, C. Qian, and Q. Zhang. A concise forwarding
information base for scalable and fast name lookups. In Network
Protocols (ICNP), 2017 IEEE 25th International Conference on, 2017.


https://www.cloudlab.us/
https://github.com/google/farmhash
https://github.com/sdyy1990/Othello
https://www.dpdk.org
https://github.com/pktgen/Pktgen-DPDK
https://mybinder.org/v2/gh/sshi27/Re-designing-Compact-structure-based-Forwarding-for-Programmable-Networks/master?filepath=design.ipynb
https://mybinder.org/v2/gh/sshi27/Re-designing-Compact-structure-based-Forwarding-for-Programmable-Networks/master?filepath=design.ipynb
https://mybinder.org/v2/gh/sshi27/Re-designing-Compact-structure-based-Forwarding-for-Programmable-Networks/master?filepath=design.ipynb
https://portal.etsi.org/nfv/nfv_white_paper.pdf
https://portal.etsi.org/nfv/nfv_white_paper.pdf
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/util/presized_cuckoo_map.h
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/util/presized_cuckoo_map.h

[53]

[54]

[55]

[56]

Y. Yu, X. Li, and C. Qian. SDLB: A Scalable and Dynamic Software
Load Balancer for Fog and Mobile Edge Computing. In Proc. of ACM
SIGCOMM Workshop on Mobile Edge Computing (MECCOM), 2017.
Y. Yu and C. Qian. Space shuffle: A scalable, flexible, and high-
bandwidth data center network. In Proceedings of IEEE ICNP, 2014.

D. Zhou, B. Fan, H. Lim, D. G. Andersen, M. Kaminsky, M. Mitzen-
macher, R. Wang, and A. Singh. Scaling up clustered network appliances
with scalebricks. In SIGCOMM, 2015.

D. Zhou, B. Fan, H. Lim, M. Kaminsky, and D. G. Andersen. Scalable,
High Performance Ethernet Forwarding with CuckooSwitch. In Proc.
of ACM CoNEXT, 2013.



