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are also valid in the classical case 2n = 2 conditional on the conjecture that

H ∗(Tg;Q) is finite-dimensional in a range of degrees for large enough g.

Let us explain the variant of the Torelli group we consider and the form of our

main result. Let Diff(Wg, D2n) denote the topological group of diffeomorphisms

of Wg which are equal to the identity near a specified disc D2n ⊂ Wg, equipped

with the C∞-topology. This acts on the middle homology group Hn(Wg;Z), and

the Torelli group
Tor(Wg, D2n) 6 Diff(Wg, D2n)

is the normal subgroup of those diffeomorphisms which act trivially on

Hn(Wg;Z). In the case 2n = 2 this differs from the Torelli group Tg described

above, as we only consider those diffeomorphisms fixing a disc. However, the

difference between the cohomology of these two groups is mild (and described

in Section 7) and it is convenient to work with a fixed disc.

The automorphisms of the middle homology of Wg which may be realized by

diffeomorphisms are constrained: they must at least respect the intersection form,

which is (−1)n-symmetric and nondegenerate, giving a homomorphism

αg : Diff(Wg, D2n) −→ Gg :=

{
Sp2g(Z) if n is odd,

Og,g(Z) if n is even.

The image of αg is a certain finite index subgroup G ′
g 6 Gg, which is an

arithmetic subgroup associated to the algebraic group G ∈ {Sp2g,Og,g}. This

subgroup acts by outer automorphisms on Tor(Wg, D2n), and so the cohomology

ring H ∗(BTor(Wg, D2n);Q) has the structure both of a Q-algebra and of a

G ′
g-representation. Writing

H i(BTor(Wg, D2n);Q)alg ⊆ H i(BTor(Wg, D2n);Q)

for the sum of all finite-dimensional G ′
g-subrepresentations which extend to

representations of G, the goal of this paper is to determine the cohomology ring

H ∗(BTor(Wg, D2n);Q)alg as a Q-algebra and a G ′
g-representation in a range of

degrees tending to infinity with g.

1.1. Some stable cohomology. Before describing H ∗(BTor(Wg, D2n);Q)alg,

let us recall the description of the stable cohomology of the spaces BG ′
g and

BDiff(Wg, D2n) for 2n 6= 4.

The rational cohomology of G ′
g has been determined by Borel [Bor74] in a

range of degrees tending to infinity with g. In this range it is given by

H ∗(BG ′
g;Q) =

{
Q[σ2, σ6, σ10, . . .] if n is odd,

Q[σ4, σ8, σ12, . . .] if n is even,

for certain classes σ2i of degree |σ2i | = 2i .
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The rational cohomology of BDiff(Wg, D2n) in a stable range has been

determined by a combination of work by Harer and Madsen–Weiss [Har85,

MW07] for 2n = 2 and by Galatius–Randal-Williams [GRW14, GRW18] for

2n > 6. To give a uniform description, let us write V for the polynomial algebra

in the Euler class e of degree 2n, and the Pontrjagin classes pi of degree 4i , for

i = d n+1

4
e, . . . , n − 2, n − 1, and B for the set of monomials in these generators.

If c ∈ B,

Wg −→ E
π

−→ BDiff(Wg, D2n)

denotes the universal Wg-bundle over BDiff(Wg, D2n), and Tπ E → E denotes

its vertical tangent bundle, then we define the Miller–Morita–Mumford class

κc :=

∫

π

c(Tπ E) ∈ H |c|−2n(BDiff(Wg, D2n);Q).

Then as long as 2n 6= 4 the natural map

Q[κc | c ∈ B>2n] −→ H ∗(BDiff(Wg, D2n);Q)

is an isomorphism in a range of degrees tending to infinity with g.

The interaction between these two calculations is easy to describe. The

Hirzebruch L-classes Li are certain polynomials in the Pontrjagin classes pi ,

and we may write κLi
for the associated linear combination of κc’s, which is a

class of degree 4i − 2n. We choose the classes σi in Borel’s theorem to satisfy

κLi
= (αg)

∗(σ2(2i−n)), which is possible by a theorem of Atiyah [Ati69].

From this discussion we see that the Miller–Morita–Mumford classes κLi

vanish in the rational cohomology of BTor(Wg, D2n), so there is an induced map

Q[κc | c ∈ B>2n]

(κLi
| 4i − 2n > 0)

−→ H ∗(BTor(Wg, D2n);Q).

This will give the G ′
g-invariant part of the cohomology of BTor(Wg, D2n) in a

stable range—as was already shown in the pseudoisotopy stable range by Ebert–

Randal-Williams [ERW15]—but the full cohomology will be much larger.

1.2. Twisted Miller–Morita–Mumford classes. Our description of (the

algebraic part of) the cohomology of BTor(Wg, D2n) will be in terms of certain

variants of the Miller–Morita–Mumford classes. To describe them, now let

Wg −→ E
π

−→ BTor(Wg, D2n)

denote the universal Wg-bundle over BTor(Wg, D2n), and s : BTor(Wg, D2n) →

E denote the section determined by the centre of the disc D2n ⊂ Wg. The Serre
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spectral sequence for π degenerates at E2, and the section s determines a splitting

of the short exact sequence

0 −→ H n(BTor(Wg, D2n);Q)
π∗

−→ H n(E;Q) −→ H n(Wg;Q) −→ 0,

and hence a map ι : H n(Wg;Q)→ H n(E;Q). Then for v1, . . . , vr ∈ H n(Wg;Q)
and c ∈ B we define

κc(v1 ⊗· · ·⊗vr ) :=

∫

π

c(Tπ E) · ι(v1) · · · ι(vr ) ∈ H |c|+n(r−2)(BTor(Wg, D2n);Q).

These classes generalize the Miller–Morita–Mumford classes, in the sense that

κc(1)= κc for 1 ∈ Q = H n(Wg;Q)
⊗0. Under the action of G ′

g on the cohomology

ring H ∗(BTor(Wg, D2n);Q) these classes transform via the action of G ′
g on the

vi ∈ H n(Wg;Q), which is identified with the dual Hn(Wg;Q)
∨ of the standard

representation of G ′
g.

1.3. The ring presentation. The easiest formulation of our results is as a

presentation of the ring H ∗(BTor(Wg, D2n);Q)alg in a stable range of degrees,

generated by the classes κc(v1 ⊗ · · · ⊗ vr ) and subject to an explicit collection

of relations. To formulate this theorem we write a1, a2, . . . , a2g for a basis of

H n(Wg;Q), and a#
1, a#

2, . . . , a#
2g for the Poincaré dual basis characterized by

〈a#
i · a j , [Wg]〉 = δi j .

THEOREM A. If 2n > 6 then in a range of degrees tending to infinity with g the

graded-commutative ring H ∗(BTor(Wg, D2n);Q)alg is generated by the classes

κc(v1 ⊗ · · · ⊗ vr ) with r > 0, c ∈ B, and |c| + n(r − 2) > 0.

A complete set of relations in this range is given by

(i) linearity in each vi ;

(ii) κc(vσ(1) ⊗ · · · ⊗ vσ(k)) = sign(σ )n · κc(v1 ⊗ · · · ⊗ vk);

(iii)
∑

i κx(v1 ⊗ · · · ⊗ v j ⊗ ai) · κy(a
#
i ⊗ v j+1 ⊗ · · · ⊗ vr ) = κx ·y(v1 ⊗ · · · ⊗ vr );

(iv)
∑

i κx(v1 ⊗ · · · ⊗ vr ⊗ ai ⊗ a#
i ) = κe·x(v1 ⊗ · · · ⊗ vr );

(v) κLi
(1) = 0.

In the case 2n = 2, if H ∗(BTor(Wg, D2);Q) is finite-dimensional for ∗ < N and

g � 0, then this description is valid in degrees ∗ 6 N for g � 0.
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REMARK 1.1.

(i) The presentation in Theorem A is not supposed to be efficient. In Theorem

5.2 we give a smaller but somewhat more complicated presentation, in

which the generators are just the classes κc(1), κc(v1), and κ1(v1 ⊗ v2 ⊗ v3).

(ii) We describe explicit stability ranges for all the results of this paper in

Section 9.

(iii) No assumption about the finiteness of the cohomology of BTor(Wg, D2n) is

required in the case 2n > 6 because it is indeed finite-dimensional in each

degree: this has been recently proved by the first author [Kup19].

(iv) In a companion paper [KRW19] we prove that for 2n > 6 the G ′
g-

representations H i(BTor(Wg, D2n);Q) are in fact algebraic. Thus in this

case Theorem A in fact computes the whole cohomology ring in a stable

range.

(v) In dimension 2n = 2 the homology of BTor(Wg, D2) cannot be finite-

dimensional in every degree [Aki01]. However, it is a folk conjecture (see

for example, [Hai06, p. 71]) that the cohomology of BTor(Wg, D2) is finite-

dimensional in a range of degrees tending to infinity with g; assuming

this conjecture, Theorem A gives a complete description of the algebraic

subrepresentation of the cohomology of BTor(Wg, D2) in a stable range.

We explain further consequences for the case 2n = 2 in Section 8.

1.4. The categorical description. While Theorem A is the most easily

formulated of our results, it is often difficult to answer questions about an

object described by a presentation. Our main result is a different description

of H ∗(BTor(Wg, D2n);Q)alg in the stable range, of a categorical nature, which

we shall explain in this section.

Theorem A will be deduced from this categorical description, but using

this description it is also mechanical to calculate the character of each G ′
g-

representation H i(BTor(Wg, D2n);Q)alg in the stable range (whereas it is not

clear how to extract this from Theorem A). We will explain how to calculate

such characters in Section 6, and give several examples.

Our categorical description will be in terms of Brauer categories, a notion

which we learnt from Sam–Snowden [SS15]. The description we will give

depends of course on the value of n, but its form also depends on the parity

of n. In this introduction for simplicity we describe the case n even; the case n

odd is similar in spirit but requires a substantial discussion of signs, which we

defer to the body of the text.
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DEFINITION 1.2. An unordered matching of a finite set is a decomposition of

that set into disjoint pairs. The downward Brauer category dBr has objects finite

sets. A morphism in dBr from S to T is a pair ( f,mS) of an injection f : T ↪→ S

along with an unordered matching mS of S \ f (T ). The composition of such a

morphism with (g,mT ) : T → U is given by the injection f ◦ g : U ↪→ S along

with the unordered matching mS t f (mT ) of S \ ( f ◦ g)(U ). Disjoint union

endows dBr with a symmetric monoidal structure.

Figure 1. A graphical representation of a morphism ( f,mS) in dBr(S, T ) from a

6-element set S to a 4-element set T . The order of crossings is irrelevant.

As we have supposed that n is even for now, the fundamental representation

H(g) of G ′
g is equipped with a nondegenerate symmetric bilinear form

λ : H(g)⊗ H(g) → Q. Using it, we may define a functor

K : dBr −→ Rep(G ′
g)

to the category of Q-representations of G ′
g, given on objects by K (S) = H(g)⊗S

and on a morphism ( f,mS) : S → T by

K ( f,mS) : H(g)⊗S mS
−→ H(g)⊗ f (T ) H(g)⊗ f −1

−−−−−→ H(g)⊗T ,

where the first map applies the symmetric pairing λ to the matched pairs of S.

Taking Q-linear duals defines a functor K ∨ : dBrop
→ Rep(G ′

g).

Both Rep(G ′
g) and the category Gr(Q-mod) of graded Q-modules may

be considered as subcategories of the category Gr(Rep(G ′
g)) of graded Q-

representations of G ′
g, as those graded representations which are concentrated

in degree zero or are trivial, respectively. We can thus use coends to define a

functor

K ∨ ⊗dBr −: Gr(Q-mod)dBr −→ Gr(Rep(G ′
g)).

As K is strong symmetric monoidal, K ∨ ⊗dBr − is also strong symmetric

monoidal when the functor category Gr(Q-mod)dBr is equipped with the
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symmetric monoidal structure given by Day convolution. The categorical

formulation of our main result for n even is an identification of the commutative

ring object

H ∗(BTor(Wg, D2n);Q)alg ∈ Gr(Rep(G ′
g))

with the value of the functor K ∨ ⊗dBr − on a certain commutative ring object in

Gr(Q-mod)dBr, which we now define. Recall that B denotes the set of monomials

in the Euler class e and the Pontrjagin classes pi for i = d n+1

4
e, . . . , n − 2, n − 1,

including the trivial monomial 1.

DEFINITION 1.3. A partition of a finite set S is a finite collection of (possibly

empty) subsets {Sα}α∈I of S which are pairwise disjoint and whose union is S.

We write P(−;B)′>0 : dBr → Gr(Q-mod) for the functor which assigns to a

finite set S the vector space with basis the set of partitions {Sα}α∈I of S equipped

with a labelling of each part Sα by an element cα ∈ B, such that

(i) each part of size 0 has label of degree > 2n;

(ii) each part of size 1 has label of degree > n;

(iii) each part of size 2 has label of degree > 0.

We make this a graded vector space by declaring a part Sα labelled by cα to have

degree |cα| + n(|Sα| − 2), and a labelled partition to have degree the sum of the

degrees of its parts.

The linear map P(S;B)′>0 → P(T ;B)′>0 induced by a bijection ( f,∅) : S →

T in dBr is simply given by relabelling. The linear map induced by (inc, (x,

y)) : S → S\{x, y} sends a labelled partition ({Sα}, {cα}) to the labelled partition

given as follows:

(i′) if some Sα contains {x, y} (and |cα| > 0 if Sα = {x, y}) then we change the

part to Sα \ {x, y}, and change the label to e · cα;

(ii′) if x and y lie in different parts Sα and Sβ , then we merge these into a new

part (Sα \ {x}) ∪ (Sβ \ {y}) labelled by cα · cβ .

On a more general morphism in dBr the effect of the functor P(−;B)′>0 is

determined by the above and functoriality.

The functor P(−;B)′>0 has a lax symmetric monoidality given by disjoint

union, making it into a commutative ring object in Gr(Q-mod)dBr.

When n is odd we must instead consider a variant dsBr, the downwards signed

Brauer category, and the analogue of the functor of Definition 1.3 must be twisted
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by a certain determinant line functor. Allowing for these differences, for all n the

categorical formulation of our result is as follows, where we identify an empty

part labelled by c ∈ B>2n with the Miller–Morita–Mumford class κc.

THEOREM B. There is a morphism

K ∨ ⊗d(s)Br
(
P(−;B)′>0 ⊗ det⊗n

)

(κLi
| 4i − 2n > 0)

−→ H ∗(BTor(Wg, D2n);Q)alg

of commutative ring objects in Gr(Rep(G ′
g)), which if 2n > 6 is an isomorphism

in a range of degrees tending to infinity with g.

If 2n = 2 and H ∗(BTor(Wg, D2);Q) is finite-dimensional for ∗ < N and g �

0, then this map is an isomorphism in degrees ∗ 6 N, and is a monomorphism

in degree N + 1, for g � 0.

REMARK 1.4.

(i) Many of the remarks after the statement of Theorem A apply here too.

(ii) Irreducible representations of the symmetric groups and of the algebraic

groups {Sp2g,Og,g} are both indexed by partitions. In the stable range we

will show that the multiplicity in H ∗(BTor(Wg, D2n);Q) of the irreducible

algebraic G ′
g-representation corresponding to a partition λ ` q is the same

as the multiplicity in

Q ⊗Q[κLi
| 4i−2n>0] P({1, 2, . . . , q};B)′>0 ⊗ det(Qq)

⊗n

of the irreducible Σq-representation corresponding to the partition λ. We

explain how to calculate these multiplicities in Section 6.

(iii) Letting H(g) denote the local coefficient system on BDiff(Wg, D2n) given

by the action of diffeomorphisms on Hn(Wg;Q), a key step in the proof

of this theorem is to completely describe the bigraded cohomology ring

H ∗(BDiff(Wg, D2n);H(g)⊗•) in a stable range, together with its behaviour

in the variable • as a functor on the (signed) Brauer category. We do this in

Section 3.8. This description is valid in all dimensions 2n 6= 4.

2. Some background on representation theory

2.1. Arithmetic groups and their representations. Let ε ∈ {−1, 1} and let

H(g) be a 2g-dimensional rational vector space equipped with a nonsingular ε-

symmetric pairing λ : H(g)⊗ H(g)→ Q, of signature 0 if ε = 1. We denote the

group of automorphisms of H(g) which preserve this pairing Oε(H(g)); this is
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usually denoted by Og,g(Q) if ε = 1, and by Sp2g(Q) if ε = −1. These are the Q-

points of algebraic groups Og,g and Sp2g, respectively. As Og,g is not Zariski

connected we shall occasionally have to work with its index two connected

subgroup SOg,g 6 Og,g, and in this case we will write SG for Sp2g or SOg,g.

We shall need to consider arithmetic subgroups G of the algebraic groups G ∈

{Sp2g,Og,g} defined over Q, which we shall take to mean: a subgroup G 6 G(Q)
which is commensurable to G(Z) and which, in the case G = Og,g, is not entirely

contained in SOg,g(Q). The latter condition is nonstandard, but holds for us and

ensures that G is Zariski dense in G(Q), as we now explain.

2.1.1. Zariski density. Given an arithmetic subgroup G of G as above, write

SG :=

{
G if G = Sp2g,

G ∩ SOg,g(Q) if G = Og,g.

As Sp2g and SOg,g are connected semisimple algebraic groups defined over Q,

it follows from a theorem of Borel–Harish-Chandra [BHC62, Theorem 7.8] that

SG is a lattice in SG(R), and hence by the Borel Density Theorem [Bor60] that

SG is Zariski dense in SG(R), so also in SG(Q). As we have assumed in the

case G = Og,g that G does not lie entirely inside SOg,g(Q), it follows that G is

Zariski dense in G(Q).

2.1.2. Algebraic and almost algebraic representations. We consider an

arithmetic group G associated to G ∈ {Sp2g,Og,g} as defined above.

DEFINITION 2.1. A representation φ : G → GL(V ) on an n-dimensional Q-

vector space V is algebraic if it is the restriction of a finite-dimensional

representation of the algebraic group G, that is, there is a morphism of algebraic

groups ϕ : G → GL(V ) which on taking Q-points and restricting to G yields φ.

More generally the representation (φ, V ) is almost algebraic if there is a finite

index subgroup G ′ 6 G such that the restriction of φ to G ′ is algebraic.

We usually denote a representation (φ, V ) by V , leaving the action of G on V

implicit.

If V is an algebraic representation of G and W 6 V is a G-subrepresentation,

then, as G is Zariski dense in G(Q), the subspace W is also G(Q)-invariant so

W is again an algebraic representation. Similarly, V/W is again algebraic. If V

is a (not necessarily finite-dimensional) G-representation, we let V alg 6 V be

the union of its algebraic subrepresentations; this need not be itself algebraic,

but it is if it is finite-dimensional: in any case we call it the maximal algebraic

subrepresentation of V .
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The following appears in [Ser79, page 109] and is a consequence of a theorem

of Margulis [Mar91, Theorem (2)]; see Raghunathan [Rag67] for a special case.

THEOREM 2.2. If G is a simple algebraic group of Q-rank > 2 defined over Q,

G is an arithmetic subgroup of G and V is a finite-dimensional representation

of G, then V is almost algebraic.

This for example applies to G = Sp2g or SOg,g for g > 2, but the conclusion

then easily follows for G = Og,g too, as this contains SOg,g with finite index.

For the algebraic groups under consideration Borel [Bor74, Bor81] proved a

cohomological vanishing result, the following strong version of which we shall

use:

THEOREM 2.3. Let G be an arithmetic subgroup of G ∈ {Sp2g,Og,g}, and set

e = 0 if G = Sp2g and e = 1 if G = Og,g. Then for g > 3 + e and V an almost

algebraic representation of G, the natural maps

H ∗(G∞;Q)⊗ V G −→ H ∗(G;Q)⊗ V G −·−
−−→ H ∗(G; V )

are both isomorphisms for ∗ < g − e, where

H ∗(G∞;Q) :=

{
Q[σ2, σ6, . . .] if G = Sp2g,

Q[σ4, σ8, . . .] if G = Og,g.

Here H ∗(G∞;Q) is simply notation for the graded ring indicated in the

statement, and the classes σi ∈ H i(G;Q) are to be interpreted as described in

Section 1.1.

Proof. The groups Sp2g and SOg,g are connected and simple, so the claim

for arithmetic subgroups of these groups and algebraic V follows in some

range of degrees by combining [Bor81, Theorem 4.4(i)] and the main result

of [Bor74], with H ∗((SOg,g)∞;Q) = Q[σ4, σ8, . . .]. The ranges we have stated

are improvements of those given by Borel, and were stated in [Hai97] without

proofs, and proven in [Tsh19], Theorem 17 for SOg,g and Theorem 29 for Sp2g.

To deal with the case that V is almost algebraic, suppose that G ′
� G is a

finite index normal subgroup such that the restriction of V to G ′ is algebraic.

Then there is a commutative diagram

H ∗(G;Q)⊗ V G H ∗(G; V )

(H ∗(G ′;Q)⊗ V G ′

)G/G ′

H ∗(G ′; V )G/G ′

,

∼= ∼=

∼=
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with bottom map an isomorphism by the previous case, and the vertical maps

isomorphisms by a transfer argument.

To deduce the result for Og,g from that for SOg,g, we observe that if G is

an arithmetic subgroup of Og,g(Q) then by our slightly nonstandard definition

SG := G ∩ SOg,g(Q) is a proper subgroup and there is an extension

1 −→ SG −→ G −→ C2 −→ 1.

The spectral sequence for this extension collapses to H ∗(SG; V )C2 ∼= H ∗(G; V ).

Using the result for SG, we find that the maps

H ∗((SOg,g)∞;Q)⊗ V SG −→ H ∗(SG;Q)⊗ V SG −·−
−−→ H ∗(SG; V )

are isomorphisms in the given range. But C2 acts trivially on H ∗((SOg,g)∞;Q)=

Q[σ4, σ8, . . .], by considering Borel’s proof of this identity, so taking C2-

invariants therefore gives the required conclusion.

A consequence of this theorem is that as long as g > 3+e taking G-invariants

is exact on the category of almost algebraic representations of G. However,

by [Rag68] this is in fact true for g > 2 already (see also [Mar91, Theorem

(3)]). More generally, if V and W are almost algebraic representations then so is

W ∨ ⊗ V , so

Ext1
G(W, V ) ∼= H 1(G; W ∨ ⊗ V ) = 0

for g > 2, and hence every short exact sequence of almost algebraic

representations splits.

2.1.3. Orthogonal and symplectic representation theory. The nonsingular ε-

symmetric pairing λ is dual to an ε-symmetric form ω : Q → H(g) ⊗ H(g),

which is characterized by (λ ⊗ id)(− ⊗ ω) = id(−). If {ai} is a basis of H(g)

and {a#
i } is the dual basis determined by λ(a#

i ⊗ a j) = δi j , then

ω =
∑

i

ai ⊗ a#
i .

For each i and j in {1, 2, . . . , q} there is a map

λi, j : H(g)⊗q −→ H(g)⊗q−2

given by applying the pairing to the i th and j th factors, and dually a map

ωi, j : H(g)⊗q−2 −→ H(g)⊗q

which inserts the form ω at the i th and j th factors.
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A. Kupers and O. Randal-Williams 12

Weyl constructed irreducible representations of Oε(H(g)) as follows. Let us

write

H(g)[q] := Ker

(
H(g)⊗q

λi, j

−→
⊕

i, j

H(g)⊗q−2

)
,

H(g)[q] := Cok

(⊕

i, j

H(g)⊗q−2
ωi, j

→ H(g)⊗q

)
.

These have an action of the symmetric group Σq by permuting factors, and the

composition H(g)[q] → H(g)⊗q → H(g)[q] is an isomorphism. Furthermore,

the self-duality x 7→ λ(x,−) : H(g)
∼
→ H(g)∨ induces an isomorphism

(H(g)[q])
∨ ∼= H(g)[q].

The irreducible Q-representations of the symmetric group Σq are in bijection

with partitions of λ of the number q; the construction sends each partition λ to

an irreducible module Sλ given by the image of the Young symmetrizer acting

on Q[Σq], see [Pro07, Section 9.2.4]. For each partition λ of q we then define a

Oε(H(g))-representation

Vλ(H(g)) := [Sλ ⊗ H(g)[q]]Σq ,

which we shall usually shorten to Vλ. In particular, we have a decomposition

H(g)[q] ∼=
⊕

λ`q

Sλ ⊗ Vλ(H(g)) (2.1)

as a Σq × Oε(H(g))-representation, cf. [Pro07, Section 9.9.2].

The following theorems are consequences of the representation theory of the

Lie groups Sp2g(C) and Og,g(C) (note that Og,g(C) ∼= O2g(C)), which may be

extracted from [Pro07, Section 11.6.4 and 11.6.5], and of the Zariski density of

Sp2g(Q) and Og,g(Q) inside these groups.

THEOREM 2.4. The representation Vλ(H(g)) of Oε(H(g)) is zero or irreducible.

If 2|λ| 6 dim(H(g)) = 2g then it is irreducible, and such irreducibles are all

distinct.

The Vλ(H(g)) are representations of the algebraic groups Og,g or Sp2g, so their

restrictions to an arithmetic subgroup G of Og,g(Q) or Sp2g(Q) are by definition

algebraic representations.

THEOREM 2.5. Every algebraic representation of an arithmetic subgroup G of

Og,g(Q) or Sp2g(Q) is a sum of Vλ(H(g))’s.
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On the cohomology of Torelli groups 13

2.1.4. Invariant theory. The map ω : Q → H(g) ⊗ H(g) gives an invariant

ω ∈ (H(g)⊗ H(g))Oε (H(g)), which is sent to ε ·ω under swapping the two factors.

More generally, to each perfect ordered matching m = ((a1, b1), . . . , (ap, bp))

of a set S = {a1, b1, a2, . . . , ap, bp} there is an associated invariant

ωm :=

p⊗

i=1

ωai ,bi
∈ (H(g)⊗S)Oε (H(g))

and if m ′ differs from m by changing the order of k pairs, then ωm′ = εk · ωm .

This observation provides a linear map

Q{perfect ordered matchings on S}

〈m ′ − εk · m〉
−→ (H(g)⊗S)Oε (H(g)). (2.2)

We may summarize the first and second fundamental theorems of invariant

theory for Oε(H(g)) as follows.

THEOREM 2.6. The map (2.2) is surjective, and is injective as long as 2g > |S|.

For a proof see [Pro07, Section 11.6.3], apply −⊗QC, use Zariski density and

again that Og,g(C) ∼= O2g(C). The range for injectivity we have given is coarser

than what is known to hold, see Section 9.4 for a discussion.

2.2. Representations of categories. Our strategy for approaching the

cohomology of Torelli groups as G ′
g-representations will be via symplectic

or orthogonal Schur–Weyl duality. However, as we wish to recover the

ring structure too it is not enough to simply obtain the characters of these

representations, or what is the same, their isomorphism class: one must work

in a more categorified way. In this section we describe the required background

on categorical representation theory. We were influenced, as is this exposition,

by the treatment of Sam–Snowden [SS15], which we shall attempt to follow

closely, adapting slightly to fit our needs.

We shall often work in the category Gr(Q-mod) of nonnegatively graded

Q-vector spaces, equipped with the monoidal structure given by graded tensor

product, and with symmetry given by the Koszul sign rule.

We let A be a Q-linear abelian symmetric monoidal category (in our

applications it will usually be the category of finite-dimensional representations

of a fixed arithmetic group G). We shall assume A has all finite enriched

colimits. We often impose one of the following two finiteness conditions on

objects of A:
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A. Kupers and O. Randal-Williams 14

DEFINITION 2.7. An object X of abelian category has finite length if it admits

a finite filtration with simple filtration quotients, that is, there exists a finite

sequence of monomorphisms 0 ↪→ X1 ↪→ X2 ↪→ · · · ↪→ X such that each

cokernel X i+1/X i only has 0 and itself as quotients. We let (−) f ⊂ (−) denote

the full subcategory of finite length objects.

DEFINITION 2.8. An object X of a symmetric monoidal category is a dualizable

object if there exists an object X∨ with a map η : 1 → X ⊗ X∨ called

coevaluation and a map ε : X∨ ⊗ X → 1 called evaluation, satisfying the

triangle identities. If it exists, the dual X∨ is unique up to isomorphism. We

let (−)d ⊂ (−) denote the full subcategory of dualizable objects.

The category A is tensored over (Q-mod) f , the category of finite-dimensional

vector spaces: for V ∈ (Q-mod) f and A ∈ A there is an object A � V ∈

A characterized by a natural isomorphism HomA(A � V,−) ∼= HomQ(V,

HomA(A,−)). In particular we have a functor V 7→ 1A�V : (Q-mod) f → A f ,

which has a right adjoint A 7→ HomA(1A, A) : A f → (Q-mod) f .

DEFINITION 2.9. LetΛ denote a Q-linear category such that all vector spaces of

morphisms are finite-dimensional, such that the relation [x] 6 [y] ⇔ HomΛ(x,

y) 6= 0 on the set of isomorphism classes of objects ofΛ is a well-defined partial

order, and for which each object only admits nonzero morphisms to finitely many

other objects up to isomorphism.

We shall consider the categories AΛ and (Q-mod)Λ of Q-linear functors.

Objectwise tensor product gives a pairing −⊗−: AΛ ×A → AΛ. In particular,

we may fix a K ∈ AΛ to get a functor K ⊗ −: A → AΛ. When K has

dualizable values, this has an enriched right adjoint. We call such an object

K ∈ (Ad)Λ with dualizable values a kernel; taking the objectwise duals defines

a functor K ∨ : Λop → Ad , which we may also consider as a functor to A. For

any M ∈ (AΛ) f we may therefore form the coend

K ∨ ⊗Λ M :=

∫ x∈Λ

K ∨(x)⊗ M(x) ∈ A.

This coend is formed in the enriched sense, and exists because it may be

expressed as the coequalizer of

⊕
x,y∈Λ(K (y)

∨ ⊗ M(x))� HomΛ(x, y)
⊕

x∈Λ K (x)∨ ⊗ M(x),

which is equivalent to a finite colimit by the assumption that M has finite length

(so in particular M(x) = 0 for all but finitely many isomorphism classes of
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x ∈ Λ; this is a simple consequence of the second assumption of Definition 2.9)

and that objects x admit morphisms only to finitely many isomorphism classes

of objects.

PROPOSITION 2.10. The functors K ∨⊗Λ−: (AΛ) f → A and K ⊗−: A → AΛ

participate in a natural isomorphism

HomAΛ(K ⊗ −,−) ∼= HomA(−, K ∨ ⊗Λ −) : A × (AΛ) f −→ Q-mod.

Proof. The collection of evaluation maps K (x)∨ ⊗ K (x) → 1A coequalizes the

two maps expressing K ∨⊗ΛK as a coequalizer, so determine a map K ∨⊗ΛK →

1A. For V ∈ A we have K ∨ ⊗Λ (K ⊗ V ) ∼= (K ∨ ⊗Λ K ) ⊗ V , and using the

morphism K ∨ ⊗Λ K → 1A constructed above gives a morphism εV : (K ∨ ⊗Λ

K )⊗ V → V natural in V .

As each K (x) is dualizable, there are coevaluation maps ηx : 1A → K (x) ⊗

K (x)∨ expressing this duality. This gives morphisms

M(x)
ηx ⊗M(x)
−−−−→ K (x)⊗ K (x)∨ ⊗ M(x) −→ K (x)⊗ (K ∨ ⊗Λ M)

natural in x , and hence a natural transformation ηM : M → K ⊗ (K ∨ ⊗Λ M).

One can verify that the compositions

K ∨ ⊗Λ M
K ∨⊗ΛηM
−−−−→ K ∨ ⊗Λ K ⊗ (K ∨ ⊗Λ M)

ε
K∨⊗ΛM

−−−−→ K ∨ ⊗Λ M

and

K ⊗ V
ηK⊗V

−−→ K ⊗ (K ∨ ⊗Λ (K ⊗ V )) = K ⊗ (K ∨ ⊗Λ K )⊗ V
K⊗εV
−−−→ K ⊗ V

are the identity, which gives the required natural isomorphism.

2.2.1. Multiplicativity. We shall now suppose that Λ is equipped with a

symmetric monoidal structure ⊕, in which case (AΛ) f and ((Q-mod)Λ) f have

symmetric monoidal structures − ⊗Λ − given by Day convolution. That is, we

first form the external product M � N : Λ×Λ → A, and then take its left Kan

extension M ⊗Λ N = ⊕∗(M � N ) along ⊕: Λ×Λ → Λ. Concretely, we have

(M ⊗Λ N )(x) = colim
f : a⊕b→x

M(a)⊗ N (b),

which again exists because it is equivalent to a finite colimit.

There are several equivalent conditions we can impose on a K ∈ (Ad)Λ so that

the above defined transformations ε and η have good multiplicativity properties.

The condition which is simplest to state and which we shall usually verify, is that
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A. Kupers and O. Randal-Williams 16

K : Λ→ A is a strong symmetric monoidal functor. This is equivalent to asking

for a natural isomorphism ⊕∗K
∼
→ K�K : Λ×Λ→ A which is associative and

commutative in the evident sense. We call a K satisfying any of these equivalent

conditions a tensor kernel.

PROPOSITION 2.11. If K ∈ (Ad)Λ has the structure of a tensor kernel, then the

functor K ∨ ⊗Λ −: (AΛ) f → A has a strong symmetric monoidality.

Proof. Note that

(K ∨ ⊗Λ A)⊗ (K ∨ ⊗Λ B) ∼=

∫ x∈Λ,y∈Λ

K (x)∨ ⊗ A(x)⊗ K (y)∨ ⊗ B(y)

∼= (K ∨
� K ∨)⊗Λ×Λ (A � B).

By dualising we obtain an isomorphism K ∨ � K ∨ ∼
→ ⊕∗K ∨, so write the above

as

(⊕∗K ∨)⊗Λ×Λ (A � B) ∼= K ∨ ⊗Λ ⊕∗(A � B) = K ∨ ⊗Λ (A ⊗Λ B).

This gives a strong monoidality, and it is routine to check that it is symmetric.

2.2.2. Detecting isomorphisms. For a kernel K we shall be interested in using

the composition

∆ : A
K⊗−
−−→ AΛ HomA(1A,−)

−−−−−−−→ (Q-mod)Λ

to test whether morphisms in A are isomorphisms. As each K (x) is a dualizable

object, the functor K (x)⊗ −: A → A has K (x)∨ ⊗ − as both a left and a right

adjoint, and so is exact; thus K ⊗ −: A → AΛ is an exact functor. The functor

HomA(1A,−) is left exact, but will not typically be right exact.

Let AK ⊂ A be the subcategory of those objects which occur as sums of

summands of K (x)∨’s. Let A◦
K ⊂ A be the subcategory of those objects X such

that HomA(1A, X ⊗ K (x)) = 0 for all x ∈ Λ. Note that if Y is a summand of

some K (x)∨ then it is also dualizable, and its dual Y ∨ is a summand of K (x):

then HomA(1A, Y ⊗ K (x)) 6= 0, as it contains the nonzero morphism 1A

ηY
→

Y ⊗ Y ∨ → Y ⊗ K (x), so AK ∩ A◦
K = {0}.

LEMMA 2.12. Let f : A → B be a morphism in A.

(i) If ∆( f ) is injective, then Ker( f ) ∈ A◦
K .

(ii) If A ∈ AK , Ext1
A
(K (x)∨, K (y)∨)= 0 for all x, y ∈Λ, and∆( f ) is bijective,

then Cok( f ) ∈ A◦
K .
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Proof. Consider the left exact sequence 0 → Ker( f )→ A
f

→ B, which remains

left exact after applying ∆. As ∆( f ) is injective it follows that ∆(Ker( f )) = 0,

that is, that HomA(1A, K (x)⊗ Ker( f )) = 0 for all x ∈ Λ. This is the definition

of being in A◦
K .

Consider the exact sequence 0 → A
f

→ B → Cok( f ) → 0. This remains

exact after applying K ⊗ −, so gives a long exact sequence

0 →∆(A)(x)
∆( f )(x)
−−−−→∆(B)(x)→∆(Cok( f ))(x)

∂
→ Ext1

A
(1A, K (x)⊗A)→ · · ·

where the morphism ∆( f )(x) is surjective, so the connecting map is injective.

But

Ext1
A
(1A, K (x)⊗ A) ∼= Ext1

A
(K (x)∨, A)

and as A is a sum of summands of K (y)∨’s this group vanishes by assumption.

2.3. The representation theory of Brauer categories.

2.3.1. The orthogonal group. Let G ⊂ Og,g(Q) be an arithmetic subgroup (and

recall that we write SG = G ∩ SOg,g(Q), which by our definition of arithmetic

group is an index 2 subgroup of G). Let A = Rep(G) denote the category of

finite-dimensional representations of G, which is easily seen to have all finite Q-

enriched colimits. We shall assume that g > 2 so that the functor [−]G is exact

on this category and all extensions split, as discussed after Theorem 2.3.

Let us write H(g) ∈ Rep(G) for the standard 2g-dimensional representation,

which is isomorphic to V1 as defined in Section 2.1.3. It is equipped with a

symmetric pairing λ : H(g) ⊗ H(g) → Q and, dual to this, a symmetric form

ω : Q → H(g)⊗ H(g).

DEFINITION 2.13. A matching of a finite set S is a partition of S into disjoint

ordered pairs. If (a, b) is such a pair, its reverse is the pair (b, a).

DEFINITION 2.14. The Brauer category Brd of charge d ∈ Q is the following

Q-linear category:

• The objects of Brd are the finite sets.

• The morphisms Brd(S, T ) are given by the following Q-vector space. First,

let Brd(S, T )′ be the vector space with basis given by triples ( f,mS,mT ) of

a bijection f from a subset of S◦ ⊂ S to a subset of T ◦ ⊂ T , a matching mS

of S \ S◦, and a matching mT of T \ T ◦. Let Brd(S, T ) be the quotient vector
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Figure 2. A morphism ( f,mS,mT ) in Brd(S, T ) from a 6-element set S to an

8-element set T . Here f is a bijection between 4-element subsets of S and T , mS

is a matching on two elements of S and mT is a matching on four elements of T .

This is not the downward Brauer category, as the bottom pairing mT is not ∅.

space by the subspace generated by ( f,mS,mT )− ( f,m ′
S,m ′

T ) where m ′
S and

m ′
T differ from mS and mT by reversing some pairs. We consider it as being

spanned by pictures as in Figure 2.

• Composition Brd(S, T ) ⊗ Brd(T,U ) → Brd(S,U ) is given in terms of

such pictures by concatenating, then removing the closed components and

multiplying by dnumber of closed components.

DEFINITION 2.15. The downward Brauer category dBr ⊂ Brd contains all

objects but only those morphisms with mT = ∅. We consider it as being

spanned by pictures as in Figure 1. In this case concatenation can never form

closed components, so this category is independent of the charge d. We write

i : dBr → Brd for the inclusion.

Both of these categories are symmetric monoidal under disjoint union. It is dBr
that will serve the role of Λ in the general framework discussed in Section 2.2;

it is easily seen to satisfy the assumptions of Definition 2.9.

Consider the functor K : Br2g → Rep(G) given on objects by K (S) =

H(g)⊗S . On a morphism ( f,mS,mT ) : S → T , with bijection f : S◦ → T ◦

between the complement of the matchings, it is given by

H(g)⊗S mS
−→ H(g)⊗S◦ H(g)⊗ f

−−−→ H(g)⊗T ◦ mT
−→ H(g)⊗T

where the first map applies λ to the pairs in mS , and the last map applies ω

to create the pairs in mT . This functor has an evident symmetric monoidality.

By taking linear duals of the values of K on objects as well as its value of

morphisms, we get a functor K ∨ : (Br2g)
op → Rep(G). Restricting this functor
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along i : dBr → Brd gives a functor i∗K ∨ : dBrop
→ Rep(G), which is a tensor

kernel.

PROPOSITION 2.16. Let B ∈ Rep(G), A ∈ (Q-mod)dBr have finite length, and

there be given a map

φBr2g : i∗(A) −→ [K ⊗ B]G ∈ (Q-mod)Br2g .

Then there is an induced map

φ : i∗(K ∨)⊗dBr (1Rep(G) � A) −→ B ∈ Rep(G)

which is an isomorphism onto the maximal algebraic subrepresentation of B if

φBr2g an isomorphism, and is a monomorphism if φBr2g is a monomorphism.

If φBr2g is an isomorphism, then for a partition λ of q the multiplicity of the

irreducible G-representation Vλ(H(g)) in B is the same as the multiplicity of the

irreducibleΣq-representation Sλ in A({1, 2, . . . , q}). (Part of the claim is that if

Vλ(H(g)) is not irreducible, so is zero by Theorem 2.4, then Sλ does not occur

in A({1, 2, . . . , q}).)

Proof. The map φBr2g is adjoint to a map

φdBr : A −→ i∗([K ⊗ B]G) = [i∗(K ⊗ B)]G,

and as HomRep(G)(1Rep(G),−) = [−]G this is adjoint to a map 1Rep(G) � A →

i∗(K ⊗ B) in Rep(G)dBr, whose adjoint is the map φ in the statement.

We apply the criterion of Lemma 2.12 to φ. As discussed above, we will take

A = Rep(G) the category of finite-dimensional representations of G, and Λ =

dBr the downward Brauer category. The functor∆will be given by [i∗(K )⊗−]G ,

and hence we must verify that the morphism

[i∗(K )⊗ φ]G : [i∗(K )⊗ (i∗(K ∨)⊗dBr (1Rep(G) � A))]G

−→ [i∗(K )⊗ B]G ∈ (Q-mod)dBr

is an isomorphism or monomorphism. We will do this by relating it to φBr2g ,

which is an isomorphism or monomorphism by assumption. Using the coend

formula for (i∗(K ∨) ⊗dBr (1Rep(G) � A)), we can write the source evaluated at

S ∈ dBr as [∫ T ∈dBr

K (S)⊗ K (T )∨ � A(T )

]G

,

and as [−]G is an exact functor on Rep(G) we can evaluate this as

∫ T ∈dBr [
K (S)⊗ K (T )∨

]G
⊗Q A(T ).
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Now there is a natural transformation of two variables

κ : Br2g(T, S) −→
[
K (S)⊗ K (T )∨

]G

given by the functoriality of K , which is surjective by Theorem 2.6. This gives a

surjection

κ : i∗(A)(S) =

∫ T ∈dBr

Br2g(T, S)⊗Q A(T )

−→

∫ T ∈dBr [
K (S)⊗ K (T )∨

]G
⊗Q A(T ).

As the composition

φBr2g (S) : i∗(A)(S)
κ

−→

∫ T ∈dBr [
K (S)⊗ K (T )∨

]G
⊗Q A(T )

[K (S)⊗φ]G

−−−−−→ [K (S)⊗ B]G

is a monomorphism by assumption, this shows that the first map is also injective

and so in fact an isomorphism, from which it follows that [K (S) ⊗ φ]G an

isomorphism or monomorphism whenever φBr2g (S) is.

It then follows from Lemma 2.12 that if φBr2g is a monomorphism then the

kernel of φ lies in Rep(G)◦K , and if it is an isomorphism then the cokernel of φ

does too. Unwrapping the definition, Rep(G)◦K is precisely the category of finite-

dimensional G-representations V which contain no algebraic subrepresentation

(by Theorem 2.5). The kernel of φ is a subrepresentation of i∗(K ∨) ⊗dBr

(1Rep(G) � A), which is algebraic, so Ker(φ) is also algebraic: if it lies in

Rep(G)◦K it is therefore zero, so φ is injective. If the cokernel of φ lies in

Rep(G)◦K then it contains no algebraic subrepresentations, so the image of φ

is the maximal algebraic subrepresentation of B.

For the last part, we use the isomorphism

φBr2g : i∗(A)({1, 2, . . . , q}) −→ [H(g)⊗q ⊗ B]G

of Σq-representations. Taking the kernels of all the maps induced by (inc : S →

S′,mS,∅) with mS nontrivial, we get an isomorphism of Σq-representations

A({1, 2, . . . , q}) −→ [H(g)[q] ⊗ B]G .

By (2.1) we may write the right-hand side as
⊕

λ`q Sλ ⊗ [Vλ(H(g)) ⊗ B]G , so

as the Sλ are distinct irreducible Σq-representations we have

dimQ[Sλ ⊗ A({1, 2, . . . , q})]Σq = dimQ[Vλ(H(g))⊗ B]G

as required.
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PROPOSITION 2.17. For A ∈ (Q-mod)dBr of finite length there is a morphism

ψBr2g : i∗(A) −→ [K ⊗ (i∗(K ∨)⊗dBr (1Rep(G) � A))]G ∈ (Q-mod)Br2g

which is an epimorphism and, if A satisfies A(T ) = 0 for all finite sets T with

|T | > N, is an isomorphism when evaluated on sets S with |S| 6 2g − N + 1.

Proof. We define ψBr2g by declaring its adjoint to be the map

ψdBr : A −→ [i∗(K )⊗ (i∗(K ∨)⊗dBr (1Rep(G) � A))]G ∈ (Q-mod)dBr

which at the object S ∈ dBr is

A(S)
coev⊗A(S)
−−−−−→ [K (S)⊗K (S)∨]G ⊗A(S)

inc
−→

[∫ T ∈dBr

K (S)⊗K (T )∨⊗A(T )

]G

.

One may verify that these form the components of a natural transformation of

functors, that is, a morphism in (Q-mod)dBr.

As in the proof of Proposition 2.16, there is a natural transformation of two

variables

κ : Br2g(T, S) −→
[
K (S)⊗ K (T )∨

]G

given by the functoriality of K , which is an epimorphism by Theorem 2.6 and is

an isomorphism if 2g > |S| + |T |. Evaluating the map ψBr2g at S ∈ dBr, using

the coend formula for left Kan extension, gives

i∗(A)(S) =

∫ T ∈dBr

Br2g(T, S)⊗ A(T ) −→

∫ T ∈dBr [
K (S)⊗ K (T )∨

]G
⊗ A(T )

and this is identified with the map on coends induced by the bifunctor κ . As κ is

an epimorphism, so is ψBr2g . The map

Br2g(T, S)⊗ A(T ) −→
[
K (S)⊗ K (T )∨

]G
⊗ A(T )

is an isomorphism if |T | > N , as then both sides are zero because A(T ) = 0. It

is also an isomorphism if 2g > |S| + |T |. Thus it is an isomorphism for all sets

T as long as |S| 6 2g − N + 1, and so ψBr2g(S) is also an isomorphism under

this condition.

COROLLARY 2.18. If A ∈ (Q-mod)dBr is such that A(T ) = 0 for all finite sets

T with |T | > g + 1, then A = 0 if and only if i∗(K ∨)⊗dBr (1Rep(G) � A) = 0.

More generally, if φ is a map between such objects, then it is an epimorphism

(respectively monomorphism) if and only if (i∗(K ∨)⊗dBr (1Rep(G) � φ)) is.
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Proof. The implication ⇒ is obvious, so we prove ⇐ and therefore suppose

i∗(K ∨)⊗dBr (1Rep(G) � A) = 0. Under the given condition, by Proposition 2.17

the map

ψBr2g : i∗(A) −→ [K ⊗ (i∗(K ∨)⊗dBr (1Rep(G) � A))]G ∈ (Q-mod)Br2g

is an isomorphism when evaluated on sets S with |S| 6 g, and so i∗(A)(S) = 0

for such sets. But as every morphism in Br2g factors uniquely as a morphism in

the downward Brauer category followed by a morphism in the analogous upward

Brauer category uBr, up to isomorphisms of the intermediate object, we have

i∗(A)([n]) ∼=
⊕

2k6n

uBr([n − 2k], [n])⊗Sn−2k
A([n − 2k])

and in particular A(S) injects into i∗(A)(S), so A vanishes on sets of size at most

g. But by assumption it also vanish on sets of size at least g + 1, so A = 0.

For the more general case, apply the above to the kernel and cokernel of φ.

2.3.2. The symplectic group. The discussion in the previous section goes

through for symplectic groups rather than orthogonal groups with some minor

changes, which we record here. Let G ⊂ Sp2g(Q) be an arithmetic subgroup

and A = Rep(G) its category of finite-dimensional representations. We shall

suppose that g > 2 so that the functor [−]G is exact and all extensions split.

The standard 2n-dimensional representation H(g) ∈ Rep(G) is equipped with

an antisymmetric pairing λ, and dually an alternating form ω (characterized by

(λ⊗ id)(− ⊗ ω) = id(−)).

DEFINITION 2.19. The signed Brauer category sBrd of charge d ∈ Q is the

following Q-linear category.

• The objects of sBrd are the finite sets.

• The morphisms of sBrd(S, T ) are given by the following Q-vector space. First,

let sBrd(S, T )′ be the vector space with basis given by triples ( f,mS,mT ) of a

bijection f from a subset S◦ ⊂ S to a subset T ◦ ⊂ T , a matching mS of S \ S◦,

and a matching mT of T \ T ◦. Let sBrd(S, T ) be the quotient vector space by

the subspace generated by ( f,mS,mT )− (−1)r ( f,m ′
S,m ′

T ) where m ′
S and m ′

T

differ from mS and mT by reversing precisely r pairs. We consider it as being

spanned by pictures as in Figure 3, where reversing a matched edge changes

the picture by a sign.

• Composition sBrd(S, T ) ⊗ sBrd(T,U ) → sBrd(S,U ) is given in terms

of such pictures by concatenating (arranging that any matched edges that

are concatenated have compatible orientations), then removing the closed

components and multiplying by dc with c the number of closed components.
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Figure 3. A morphism ( f,mS,mT ) in sBrd(S, T ) from a 6-element set S to a

8-element set T . Here f is a bijection between 4-element subsets of S and T , mS

is a matching on two elements of S and mT is a matching on four elements of T .

DEFINITION 2.20. The downward signed Brauer category dsBr ⊂ sBrd

contains all objects but only those morphisms with mT = ∅. In this case

concatenation can never form closed components, so this category is independent

of the charge d . We write i : dsBr → sBrd for the inclusion.

Both of these categories are symmetric monoidal under disjoint union. Just

as in the orthogonal case, there is a symmetric monoidal functor K : sBr2g →

Rep(G) given by the same formula. Using this object, the statements of

Propositions 2.16, 2.17, and Corollary 2.18 hold verbatim, and are proved

completely analogously.

3. Twisted Miller–Morita–Mumford classes

Recall that Wg denotes the manifold #g Sn × Sn . Fix a fibration θ : B →

BSO(2n). In this section we wish to attach characteristic classes in twisted

cohomology to the following data: a smooth oriented Wg-bundle π : E → X

with section s : X → E , and a choice of lift ` : E → B of the map τπ : E →

BSO(2n) classifying the oriented vertical tangent bundle Tπ E → E . We can

summarize this data in the following diagram:

Wg B

E BSO(2n)

X.

i θ
`

π

τπ

s

(3.1)
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We will write H(g) for the local coefficient system on X with H(g)x =

Hn(π
−1(x);Z), which is equipped with a (−1)n-symmetric nondegenerate

pairing λ : H(g) ⊗ H(g) → Z given by the intersection form (with respect

to the given orientations of the fibres). For a commutative ring k we write

H(g)k := H(g)⊗Z k for the associated local system of k-modules.

We shall explain how to construct certain characteristic classes with

coefficients in tensor powers of H(g), following Kawazumi [Kaw98, Kaw08]

(see also Kawazumi–Morita [KM96, KM01]) who considered this situation for

2n = 2. Our goal is to associate to the data above and to any partition {Pi}i∈I of

a finite set S and label ci ∈ H 2di (B;k) of each part Pi , an element

κ({Pi}, {ci}) ∈ H ∗(X;H(g)⊗S
k
)⊗ (detkS)⊗n

of degree
∑

i∈I n(|Pi | − 2)+ 2di , which transforms under the symmetric group

of S in the expected way. Here and later for a finitely generated free k-module

M we write det M for its top exterior power.

3.1. Gysin homomorphism. For any local coefficient system of k-modules

M on X , the fibration sequence

Wg −→ E
π

−→ X

has an associated cohomological Serre spectral sequence

E
p,q

2 = H p(X;Hq(Wg;k)⊗k M) H⇒ H p+q(E;π∗M) (3.2)

with three nonzero rows, the 0th, nth and 2nth.

The map

π∗ : H ∗(X;M) −→ H ∗(E, π∗M)

is split injective, as s∗ gives a one-sided inverse for it. This splits off the q = 0

row of the spectral sequence.

The local coefficient system H2n(Wg;k) is trivial, because we have assumed

that the bundle π : E → X is oriented. It follows that the Serre spectral sequence

has E
p,2n

2 = H p(X;H2n(Wg;k)⊗kM) canonically identified with H p(X;M),

and so as usual projection to the 2nth row defines a Gysin homomorphism

π! : H ∗(E;π∗M) −→ H ∗−2n(X;M),

which is a homomorphism of right H ∗(X;k)-modules.

LEMMA 3.1. There is a class v ∈ H 2n(E;k) which restricts to a generator of

the top cohomology of each fibre.
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Proof. The homotopy cofibre of the inclusion E \ s(X) → E is identified with

the Thom space of the normal bundle of s(X) ⊂ E , which is the restriction of

Tπ E to s(X). This yields a map

E −→ Th(s∗Tπ E → X),

and the pullback of the Thom class—which exists because Tπ E is oriented—

along this map defines a class v ∈ H 2n(E;k). This restricts to the Poincaré dual

of a point in any fibre, which is a generator of the top cohomology.

By pulling back to each point ∗ ∈ X , we see that this class satisfies

π!(v) = 1 ∈ H 0(X;k),

so for any x ∈ H ∗−2n(X;M) we have

π!(v · π∗(x)) = π!(v) · x = x,

and hence v · π∗(−) shows that π!(−) is split surjective.

Using the above two splittings we see that the Serre spectral sequence

(3.2) collapses, and under the identification Hn(Wg;k) = H(g)∨ we obtain a

preferred decomposition

H ∗(E;π∗M) = H ∗(X;M)⊕ H ∗−n(X;H(g)∨ ⊗M)⊕ H ∗−2n(X;M). (3.3)

3.2. A twisted cohomology class. The Serre spectral sequence (3.2) with

coefficients in the local coefficient system H(g)k on X has the form

E
p,q

2 = H p(X;Hq(Wg;k)⊗ H(g)k) H⇒ H p+q(E;π∗H(g)k).

As Hn(Wg,1;k) = H(g)∨
k

we have E
0,n
2 = H 0(X;H(g)∨

k
⊗ H(g)k), which

contains a canonical element given by coevaluation; that is, the adjoint to the

identity map of H(g)k. Using the decomposition (3.3) for this spectral sequence,

the coevaluation defines a unique class

ε ∈ H n(E;π∗H(g)k).

(This extends to higher dimensions a class constructed by Morita [Mor89,

Section 6].) By construction, ε is characterized by its restriction to any fibre

and the properties s∗(ε) = 0 and π!(ε) = 0.
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3.3. Defining twisted Miller–Morita–Mumford classes. Given the data in

(3.1) and a class c ∈ H 2d(B;k), we can define

π!(ε
k · `∗c) ∈ H n(k−2)+2d(X;H(g)⊗k

k
).

This will be an example of a twisted Mumford–Morita–Miller class. More

generally, to a partition (p1, p2, . . . , pr ) of the number k with pi > pi+1, in

which pi = 0 is allowed, we associate the standard partition Pstd(p1, p2, . . . , pr )

of the set {1, 2, . . . , k} given by

{{1, 2, . . . , p1}, {p1+1, . . . , p1+p2}, . . . , {p1+· · ·+pr−1+1, . . . , p1+· · ·+pr }},

where the i th subset is taken to be empty if pi = 0. Given classes ci ∈ H 2di (B;k)

for i = 1, 2, . . . , r , we assign the class κ((pi); (ci)) of degree
∑r

i=1 n(pi − 2)+

2di defined as

π!(ε
p1 · `∗c1) · · ·π!(ε

pr · `∗cr )

⊗ (e1 ∧ · · · ∧ ek)
⊗n ∈ H ∗(X;H(g)⊗k

k
)⊗ (detkk)⊗n.

For a set S of cardinality k and a partition {P1, . . . , Pr } of S into parts of

sizes p1, . . . , pr with pi > pi+1 and where empty parts are allowed, we may

choose a bijection φ : [k]
∼
→ X sending each Pi to {p1 + · · · + pi−1 + 1, . . . ,

p1 +· · ·+ pi}, and hence sending the partition {P1, . . . , Pr } of X to the standard

partition Pstd(p1, p2, . . . , pr ) of [k]; there is an induced isomorphism

φ∗ : H ∗(X;H(g)⊗k
k
)⊗ (detkk)⊗n ∼

−→ H ∗(X;H(g)⊗S
k
)⊗ (detkS)⊗n.

We wish to define

κ({Pi}, {ci}) := φ∗(κ((pi); (ci))) ∈ H ∗(X;H(g)⊗S
k
)⊗ (detkS)⊗n.

LEMMA 3.2. This is well defined.

Proof. If ψ is another such bijection, then ψ−1 ◦ φ : [k] → [k] is a bijection

which preserves the partition Pstd(p1, p2, . . . , pr ). If s j := |{1 6 i 6 r | pi = j}|

denotes the number of parts of size j , then the subgroup of Σk of permutations

which preserve the partition Pstd(p1, p2, . . . , pr ) may be identified with

k∏

j=1

Σ j oΣs j
6 Σk .

Thus it is generated by arbitrary permutations of the elements of the parts

Qi := {p1 + · · · + pi−1 + 1, . . . , p1 + · · · + pi},

as well as permutations of nonempty parts Qi having the same cardinality.
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A permutation σ of Qi acts on ε pi by permuting the factors, and as ε has

degree n it therefore acts by sign(σ )n . Hence it acts on π!(ε
pi · `∗ci) by sign(σ )n

too, so acts on κ((pi); (ci)) trivially.

A permutation of the set {Qi | |Qi | = j} acts on π!(ε
p1 · `∗c1) · π!(ε

p2 ·

`∗c2) · · ·π!(ε
pr ·`∗cr ) by permuting the terms, and the group of such permutations

is generated by transpositions of adjacent parts. A transposition σ of adjacent

Qi ’s involves j 2 transpositions in Σk , so has sign(σ ) = (−1) j . On the other

hand |π!(ε
j · `∗c)| = n( j − 2) + |c|, so transposing two copies incurs a sign

of (−1)n( j−2)+|c| = ((−1) j)n , as |c| = |ci | is even by assumption. Hence the

subgroup of Σk which preserves the standard partition acts trivially on the class

κ((pi); (ci)).

We have thus defined for each bundle as in (3.1), and each partition {Pi}i∈I of

a finite set S and labels ci ∈ H 2di (B;k) of each part Pi , a twisted Miller–Morita–

Mumford class

κ({Pi}, {ci}) ∈ H ∗(X;H(g)⊗S
k
)⊗ (detkS)⊗n

of degree
∑

i∈I n(|Pi | − 2)+ 2di .

For the remainder of this section we will write

V := H ∗(B;k),

for the graded k-module of labels, and suppose that it is concentrated in even

degrees.

DEFINITION 3.3. For a finite set S, let P(S,V) be the graded k-module

generated by partitions of S (recall from Definition 1.3 that partitions may have

empty parts) with a labelling of each part by a homogeneous element of V ,

modulo k-linearity with respect to the labels. This module is graded by declaring

a labelled partition ({Pi}, {ci}) to have degree
∑

i∈I n(|Pi | − 2)+ |ci |.

REMARK 3.4. It is sometimes useful (when k is a field) to choose a

homogeneous basis B of V , which gives a homogeneous basis of P(S,V)

given by those partitions of S where each part is labelled by an element of B.

The above construction defines a ΣS-equivariant map

Φ ′′
S : P(S,V) −→ H ∗(X;H(g)⊗S

k
)⊗ (detkS)⊗n,

and hence by adjunction a ΣS-equivariant map

Φ ′
S : P(S,V)⊗ (detkS)⊗n −→ H ∗(X;H(g)⊗S

k
).
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(The map Φ ′′
∅ sends the empty partition of the empty set to 1 ⊗ 1 ∈ H 0(X;k)

⊗ k.)

By definition κ({Pi}, {ci}) is a cup product of classes, one for each part Pi

which up to the symmetric group action can be taken to be π!(ε
pi ·`∗ci). This has

degree n(pi − 2)+ |ci |, so if pi = 0 and |ci | < 2n, or pi = 1 and |ci | < n, then

it gives a cohomology class of negative degree and so vanishes. Furthermore if

pi = 0 and |ci | = 2n it gives a degree zero cohomology class with k-coefficients,

that is, a scalar.

DEFINITION 3.5. Writing ϕ : V2n

`∗

→ H 2n(E;k)
i∗

−→ H 2n(Wg;k) = k, we let

P(S,V)>0 be the quotient of P(S,V) by the submodule generated by those

labelled partitions having some part of size 0 and label of degree < 2n, or some

part of size 1 and label of degree < n, as well as by the differences

({Pi}i∈I , {ci}i∈I )− ({Pi}i∈I\ j , {ci}i∈I\ j) · ϕ(c j)

whenever Pj = {∅} and c j has degree 2n.

REMARK 3.6. As in Remark 3.4, if we choose a homogeneous basis B for V

then we obtain a homogeneous basis for P(S,V)>0 given by those partitions of

S where each part is labelled by elements of B, having no parts (i) of size 0 with

label of degree 6 2n, or (ii) of size 1 with label of degree < n. This description

presents P(S,V)>0 as a subspace of P(S,V).

By the discussion above the map Φ ′
S factors over a map

ΦS : P(S,V)>0 ⊗ (detkS)⊗n −→ H ∗(X;H(g)⊗S
k
).

REMARK 3.7. The construction of the twisted Miller–Morita–Mumford classes

can be done with weaker input than (3.1). All that is required is a family π : E →

X with general fibre Wg and section, regular enough to have a Serre spectral

sequence, and a source of cohomology classes on E .

For example, we may take PL or topological Wg-bundles with section instead

of smooth Wg-bundles at the cost of replacing BSO(2n) with BSPL(2n) or

BSTop(2n), respectively and (vertical) tangent bundles with (vertical) tangent

microbundles. More generally, we may take (smooth, PL, or topological) block

Wg-bundles with section: in [ERW14, Proposition 2.8] it is shown that a block

bundle is a weak quasifibration so has a Serre spectral sequence; in [ERW14,

Proposition 3.2] it is shown that a smooth block bundle has a stable vertical

tangent bundle, and in [HLLRW17, Section 2] this is extended to PL or

topological block bundles; finally, in [HLLRW17, Section 3] it is shown that
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a block bundle (and even a fibration with Poincaré fibre) has a fibrewise Euler

class. Then the construction of κεk c with c a monomial in Euler and Pontrjagin

classes can be made.

3.4. Functoriality with respect to bijections. Let FB denote the category of

finite sets and bijections. Define a functor

P(−,V)>0 : FB −→ Gr(k-mod)

by sending a finite set S to the k-module P(S,V)>0, and sending a bijection

f : S → T to the k-linear map induced by relabelling elements. Taking the

objectwise tensor product with the nth power of the sign functor gives a functor

P(−,V)>0 ⊗ det⊗n : FB −→ Gr(k-mod).

It follows from Lemma 3.2 that the ΦS determine a natural transformation of

functors

Φ : P(−,V)>0 ⊗ det⊗n H⇒ H ∗(B;H(g)⊗−
k
) : FB −→ Gr(k-mod).

3.5. Functoriality on the Brauer category. We now wish to determine

how the maps ΦS , the pairing λ : H(g)k ⊗ H(g)k → k, and its dual, the

form ω : k → H(g)k ⊗ H(g)k, interact. More precisely, for ordered elements

x, y ∈ S there is a map

λx,y : H(g)⊗S
k

−→ H(g)
⊗S\{x,y}

k

of local coefficient systems on X given by applying λ to the x th and yth factors,

and a map

ωx,y : H(g)
⊗S\{x,y}

k
−→ H(g)⊗S

k

given by inserting ω in these factors, and we wish to determine the induced maps

λx,y : H ∗(X;H(g)⊗S
k
) −→ H ∗(X;H(g)

⊗S\{x,y}

k
)

ωx,y : H ∗(X;H(g)
⊗S\{x,y}

k
) −→ H ∗(X;H(g)⊗S

k
)

on the classes we have just defined. By the equivariance and multiplicativity

results we have already established, it is enough to

(i) consider only the case S = {1, 2, . . . , k};

(ii) determine ω1,2(1);

(iii) determine λ1,2(π!(ε
k · `∗c));

(iv) determine λa,a+1(π!(ε
a · `∗c) · π!(ε

k−a · `∗c′)).
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In the following we will make use of the cap product. For the avoidance of

doubt we emphasize that we adopt sign conventions such that the cap product

makes homology into a left module over the cohomology ring.

PROPOSITION 3.8. We have ω1,2(1) = π!(ε
2) ∈ H 0(X;H(g)⊗2

k
).

Proof. By naturality, we can test this identity by restricting to a point ∗ ∈ X , that

is, considering the fibre bundle π : Wg → ∗. In this case π!(ε
2) is 〈ε · ε, [Wg]〉.

Writing {bi} for a basis of Hn(Wg;k), and {b∗
i } for the dual basis of H n(Wg;k),

the class ε ∈ H n(Wg;k) ⊗ Hn(Wg;k) may be written as
∑

i b∗
i ⊗ bi . Let ai ∈

H n(Wg;k) be Poincaré dual to bi , so that bi = ai _ [Wg], and {a∗
i } be the

corresponding dual basis for Hn(Wg;k). Then ε may also be written as
∑

i ai ⊗

a∗
i . Thus

〈ε · ε, [Wg]〉 =
∑

i, j

〈b∗
i · a j , [Wg]〉 · bi ⊗ a∗

j .

Now 〈b∗
i · a j , [Wg]〉 = 〈b∗

i , a j _ [Wg]〉 = 〈b∗
i , b j 〉 = δi j , so

〈ε · ε, [Wg]〉 =
∑

i

bi ⊗ a∗
i ∈ Hn(Wg;k)⊗ Hn(Wg;k).

On the other hand ω1,2(1) = ω ∈ Hn(Wg;k)⊗ Hn(Wg;k). Let {b#
i } be the λ-dual

basis of Hn(Wg;k), characterized by λ(b#
i , b j) = δi j . Then

(λ⊗ id)

(
b#

j ⊗
∑

i

bi ⊗ a∗
i

)
=

∑

i

λ(b#
j , bi)a

∗
i = a∗

j .

However, as bi = ai _ [Wg] we have λ(a∗
j , bi) = 〈a∗

j , ai 〉 = δi j , so a∗
j = b#

j .

Hence (λ ⊗ id)(b#
j ⊗

∑
i bi ⊗ a∗

i ) = b#
j and so

∑
i bi ⊗ a∗

i = ω by the

characterization (λ⊗ id)(− ⊗ ω) = id(−) of ω.

In order to state the following lemma, recall that v ∈ H 2n(E;k) is the class

constructed in Lemma 3.1, which is fibrewise Poincaré dual to the section

s : X → E . In particular, if Tπ E → E denotes the vertical tangent bundle, then

s∗(v) = s∗(e(Tπ E)). Write p : E ×X E → X for the projection map of the fibre

product of π : E → X with itself.

LEMMA 3.9. We have

λ1,2(ε × ε) = ∆!(1)− 1 × v − v × 1 + p∗s∗(e(Tπ E)) ∈ H 2n(E ×X E;k).
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Proof. The class ε satisfies s∗(ε) = 0, by definition, so we may choose a lift to

a class ρ ∈ H n(E, s(X);H(g)k). Thus the class ε × ε lifts to the class

ρ × ρ ∈ H 2n(E ×X E, (E ×X s(X)) ∪ (s(X)×X E);H(g)⊗2
k
).

The Serre spectral sequence for the relative fibration

(Wg × Wg,Wg ∨ Wg) −→ (E ×B E, (E ×X s(X)) ∪ (s(X)×X E))
p

−→ X

has lowest row the 2nth, so there is an isomorphism

H 0(X;Hn(Wg, ∗;k)⊗ Hn(Wg, ∗;k))
∼

−→ H 2n(E ×X E, (E ×X s(X)) ∪ (s(X)×X E);k),

and hence the class λ1,2(ρ×ρ) is characterized by its restriction to a single fibre.

Thus the class λ1,2(ε × ε) is characterized by its restriction to a single fibre and

the fact that it lifts to a class in H 2n(E ×X E, (E ×X s(X)) ∪ (s(X)×X E);k).

By definition, the restriction of ε to a fibre of π corresponds, under the

universal coefficient isomorphism

H n(Wg; Hn(Wg;k)) ∼= Hom(Hn(Wg;k), Hn(Wg;k)),

to the identity map id. Thus the restriction of ε × ε to a fibre of p corresponds,

under the universal coefficient isomorphism

H n(Wg × Wg; Hn(Wg;k)
⊗2) ∼= Hom(Hn(Wg;k)

⊗2, Hn(Wg;k)
⊗2),

to id ⊗ id, and so the restriction of λ1,2(ε × ε) to a fibre of p corresponds, under

the universal coefficient isomorphism

H n(Wg × Wg;k) ∼= Hom(Hn(Wg;k)
⊗2,k),

to the map λ. Concretely for classes x, y ∈ Hn(Wg;k) we evaluate this by

writing x = X _ [Wg] and y = Y _ [Wg] and then

λ(x, y) = 〈X · Y, [Wg]〉. (3.4)

Our strategy will now be to show that ∆!(1) − 1 × v − v × 1 + p∗s∗(v) also

lifts to a class in H 2n(E ×X E, (E ×X s(X)) ∪ (s(X) ×X E);k), and that its

restriction to a single fibre is also, under the universal coefficient isomorphism,

the map λ.

The map∆ : E → E ×X E has oriented normal bundle and so a normal Thom

class which may be extended to a class∆!(1) ∈ H 2n(E×X E;k). Let x1 :=∆!(1).

Pulled back along

f1 := s ◦ π × id : E
∼=

−→ s(X)×X E ⊂ E ×X E
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the class x1 is v, the fibrewise Poincaré dual to s(X) ⊂ E , and so the class

x2 := x1 − 1 × v vanishes when pulled back along f1. Pulled back along

f2 := id × s ◦ π : E
∼=

−→ E ×X s(X) ⊂ E ×X E

the class x2 is v−π∗s∗(v), and so the class x3 := x2 − v× 1 + p∗s∗(v) vanishes

when pulled back along f2. Pulling x3 back along f1 again the term x2 vanishes,

and −v × 1 + p∗s∗(v) becomes −π∗s∗(v) + π∗s∗π∗s∗(v) = 0 (as s∗π∗ = id).

Thus

∆!(1)− v × 1 − 1 × v + p∗s∗(v)

vanishes on (E ×X s(X)) ∪ (s(X)×X E).

If we restrict to a single fibre Wg × Wg we may use the usual formula for

the decomposition of the diagonal. Write {ai} for a basis for H n(Wg;k) and

{a#
i } for the dual basis, characterized by 〈ai · a#

j , [Wg]〉 = δi j . Then, by [MS74,

Theorem 11.11] the class ∆!(1) restricts to

v ⊗ 1 + 1 ⊗ v +
∑

i

(−1)nai ⊗ a#
i

on the fibre Wg × Wg. Thus the class ∆!(1)− 1 × v − v × 1 + p∗s∗(v) restricts

to
∑

i(−1)nai ⊗ a#
i ∈ H n(Wg;k)⊗ H n(Wg;k). Evaluating this on classes x =

X _ [Wg] and y = Y _ [Wg] as above gives

〈∑

i

(−1)nai ⊗ a#
i , x ⊗ y

〉
=

∑

i

〈ai , x〉〈a#
i , y〉

=
∑

i

〈ai · X, [Wg]〉〈a
#
i · Y, [Wg]〉.

Evaluated at X = a#
k and Y = al this gives

〈∑

i

(−1)nai ⊗ a#
i , x ⊗ y

〉
=

∑

i

δik(−1)nδil = (−1)nδkl

which is the same as (3.4) evaluated on these elements. As {a#
k ⊗al} form a basis

of H n(Wg;k)
⊗2 it follows that the restriction of∆!(1)−1×v−v×1+ p∗s∗(v)

to a single fibre also corresponds, under the universal coefficient isomorphism,

to the map λ.

By the characterization of λ1,2(ε × ε) above, we therefore have

λ1,2(ε × ε) = ∆!(1)− 1 × v − v × 1 + p∗s∗(v).

Finally, we have s∗(v) = s∗(e(Tπ E)).
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The following proposition generalizes the Contraction Formula of Kawazumi

and Morita [KM01, Theorem 6.23] to higher dimensions. (There is an overall

difference of sign from [KM01]. This seems to be due to identification

µ′ : Hn(Wg;k)
∼
→ Hn(Wg;k)

∨ used by Kawazumi and Morita (pages 16–

17), which in our notation is given by the formula µ′(v)(u) = λ(u, v). Under

the universal coefficient isomorphism Hn(Wg;k)
∨ ∼= H n(Wg;k) this is not the

inverse Poincaré duality isomorphism, but rather is (−1)n times it. We instead

use the more natural identification given by Poincaré duality.)

PROPOSITION 3.10. For k > 2 and |c| + n(k − 2) > 0 we have

λ1,2(π!(ε
k · `∗c)) = π!(ε

k−2 · e(Tπ E) · `∗c)+ s∗e(Tπ E) · π!(ε
k−2 · `∗c)

−

{
2s∗(`∗c) if k = 2,

0 else.

For a > 1 and |c|+ n(a − 2) > 0, and b > 1 and |c′|+ n(b − 2) > 0, we have

λa,a+1(π!(ε
a · `∗c) · π!(ε

b · `∗c′)) = π!(ε
{1,2,...,a−1} · ε{a+2,...,a+b} · `∗(c · c′))

+ s∗e(Tπ E) · π!(ε
a−1 · `∗c) · π!(ε

b−1 · `∗c′)

−

{
s∗(`∗c) · π!(ε

b−1 · `∗c′) if a = 1,

0 else,

−

{
π!(ε

a−1 · `∗c) · s∗(`∗c′) if b = 1,

0 else.

Proof. The class λ1,2(ε · ε) is obtained from λ1,2(ε × ε) by pulling back along

∆ : E → E ×X E . As∆∗∆!(1) = e(Tπ E), the Euler class of the vertical tangent

bundle of π , by Lemma 3.9 it is given by

λ1,2(ε
2) = e(Tπ E)+ π∗s∗e(Tπ E)− 2v ∈ H 2n(E;k).

Thus we have

λ1,2(π!(ε
k · `∗c)) = π!((e(Tπ E)+ π∗s∗e(Tπ E)− 2v) · εk−2 · `∗c).

Expanding this out, the first two terms give (using the projection formula), the

first two claimed terms, and we also obtain a term −π!(2v · εk−2 · `∗c). As v is

the fibrewise Poincaré dual of s : X → E , we have

−π!(2v · εk−2 · `∗c) = −s∗(2 · εk−2 · `∗x).
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As s∗(ε) = 0, if k > 2 this vanishes, and if k = 2 it is −2s∗(`∗c). This leads to

the formula stated above.

For the second part, there are projection maps π1, π2 : E ×X E → E and hence

classes

ε1 = π∗
1 (ε) ∈ H n(E ×X E;H(g)k) and ε2 = π∗

2 (ε) ∈ H n(E ×X E;H(g)k),

and if we write p : E ×X E → X then we have

π!(ε
a · `∗c) · π!(ε

b · `∗c′) = p!(ε
a
1 · εb

2 · π∗
1 (`

∗c) · π∗
2 (`

∗c′))

so we must calculate

λ1,2(ε1 · ε2) ∈ H 2n(E ×X E;Q).

But this is precisely what was called λ1,2(ε × ε) in Lemma 3.9, and was shown

there to be ∆!(1)− v × 1 − 1 × v + p∗s∗(v), so we get

λa,a+1(π!(ε
a · `∗c) · π!(ε

b · `∗c′)) =

p!(ε
a−1
1 · (∆!(1)− v × 1 − 1 × v + p∗s∗(v)) · εb−1

2 · π∗
1 (`

∗c) · π∗
2 (`

∗c′)).

When we expand this, the first term simplifies to π!(ε
a−1 · εb−1 · `∗(c · c′)) =

π!(ε
{1,2,...,a−1} ·ε{a+2,...,a+b} ·`∗(c ·c′)), and the last term, using the identity s∗(v) =

s∗e(Tπ E), simplifies to s∗e(Tπ E) · π!(ε
a−1 · `∗c) · π!(ε

b−1 · `∗c′), so it remains to

analyse the other two terms.

We can write the second term as

p!((ε
a−1 · `∗c · v)× (εb−1 · `∗c′)) = π!(ε

a−1 · `∗c · v) · π!(ε
b−1 · `∗c′)

and we can evaluate the first factor, as v is the fibrewise Poincaré dual of s : X →

E so

π!(ε
a−1 · `∗c · v) = s∗(εa−1 · `∗c).

As s∗(ε) = 0 this vanishes for a > 1, and is s∗(`∗c) for a = 1, in which case the

second term is

p!((`
∗c · v)× (εb−1 · `∗c′)) = s∗(`∗c) · π!(ε

b−1 · `∗c′).

The third term can be analysed analogously.

At this point we add a further assumption to our bundle (3.1), namely that

the composition ` ◦ s : X → B is nullhomotopic. This means that the terms

in Proposition 3.10 involving s∗e(Tπ E) vanish, and the terms involving s∗(`∗c)
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vanish (if |c| + n(1 − 2) > 0 then |c| > n and so s∗(`∗c) = 0). Under this

assumption, we define an extension

P(−,V)
2g

>0 ⊗ det⊗n : (s)Br2g −→ Gr(k-mod)

of the functor P(−,V)>0 ⊗ det⊗n defined on FB, in the following way. We first

extend det by

(i) sending (idS\{x,y},∅, (x, y)) : S \ {x, y} → S to the map x ∧ y ∧ −;

(ii) sending (idS\{x,y}, (x, y),∅) : S → S \ {x, y} to the inverse of the map in

(i);

(iii) extending to general morphisms in (s)Br2g by writing them as the

composition of bijections and morphisms of the above two types.

We next extend P(−,V)>0 to P(−,V)
2g

>0 by

(i) sending (idS\{x,y},∅, (x, y)) : S \ {x, y} → S to the map which adds the

labelled part ({x, y}, 1);

(ii) sending (idS\{x,y}, (x, y),∅) : S → S \ {x, y} to the map which sends

({Pi}, {ci}) to

(a) if some Pi is {x, y} and |ci | = 0, so ci = λ · 1, then we remove this

part and multiply by the scalar λ · (−1)n · 2g;

(b) if some Pi contains {x, y} (and |ci | > 0 if Pi = {x, y}) then we change

the part to Pi \ {x, y} and change the label to e · ci ;

(c) if x and y lie in different parts Pi and Pj , then we merge these into a

new part (Pi \ {x}) ∪ (Pj \ {y}) labelled by ci · c j .

(iii) extending to general morphisms in (s)Br2g by writing them as the

composition of bijections and morphisms of the above two types.

PROPOSITION 3.11. The ΦS determine a natural transformation of functors

Φ : P(−,V)
2g

>0 ⊗ det⊗n H⇒ H ∗(X;H(g)⊗−
k
) : (s)Br2g −→ Gr(k-mod).

Proof. This follows almost tautologically from Proposition 3.10, because we

have defined the functor P(−,V)
2g

>0 to transform in the way the twisted Miller–

Morita–Mumford classes do. The only subtle point is the scalar in (ii) (a) above,

but that this is correct comes from the following calculation, when ci = λ · 1:

λx,y(π!(ε
{x,y}·`∗ci))= π!(e(Tπ E)·`∗ci)−2s∗`∗ci = λ(χ(Wg)−2)= λ·(−1)n ·2g.
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Finally, we recognize that P(−,V)
2g

>0 ⊗ det⊗n is the left Kan extension to

(s)Br2g of the completely analogous functor

P(−,V)′>0 ⊗ det⊗n : d(s)Br −→ Gr(k-mod),

where P(S,V)′>0 is the submodule of P(S,V)>0 generated by those labelled

partitions of S having no part of size 2 labelled by the multiplicative unit 1 ∈ V .

Note that by this condition the scalar 2g no longer arises when applying structure

map, so is neglected from the notation.

REMARK 3.12. As in Remarks 3.4 and 3.6, if we choose a homogeneous basis

B of V containing the multiplicative unit 1 ∈ V as an element, then P(S,V)′>0

has a homogeneous basis given by partitions of S labelled by elements of B,

having no parts (i) of size 0 with label of degree 6 2n, (ii) of size 1 with label of

degree < n, or (iii) of size 2 labelled by 1 ∈ B. These remarks show that the ΣS-

action on P(S,V), P(S,V)>0, and P(S,V)′>0 makes them all into permutation

modules.

3.6. Multiplication. The functor

H ∗(X;H(g)⊗−
k
) : (s)Br2g −→ Gr(k-mod)

has the structure of a commutative ring object in this category of functors, under

the Day convolution product. This is equivalent to saying that it may be equipped

with a lax symmetric monoidality. To do so, for S, T ∈ (s)Br2g we let

H ∗(X;H(g)⊗S
k
)⊗ H ∗(X;H(g)⊗T

k
) −→ H ∗(X;H(g)⊗StT

k
)

be given by the cup product. It is an elementary verification that this defines

a symmetric lax monoidality, recalling that the symmetry for the monoidal

structure on Gr(k-mod) includes the Koszul sign rule.

The functor P(−,V)
2g

>0 ⊗ det⊗n may also be equipped with the structure of

a commutative ring object, making Φ a morphism of commutative rings. It is

easiest to describe commutative ring structures on P(−,V)
2g

>0 and det separately,

and then take their product. For S, T ∈ (s)Br2g we let

P(S,V)
2g

>0 ⊗ P(T,V)
2g

>0 −→ P(S t T,V)
2g

>0

be given by disjoint union of partitions, and we let

(detkS)⊗ (detkT ) −→ detkStT
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be given by exterior product of volume forms. It is again elementary to verify

that these define symmetric lax monoidalities. By our description of Φ it

commutes with these symmetric lax monoidalities, and hence is a morphism

of commutative ring objects.

Finally, the analogous discussion provides

P(−,V)′>0 ⊗ det⊗n : d(s)Br −→ Gr(k-mod)

with a commutative ring structure.

3.7. Stabilization. If we have a smooth Wg-bundle π : E → X with section

s : X → E , and this section has an extension to a fibrewise embedding d : X ×

D2n → E , then we can form the fibrewise connected sum of E and X × W1

to obtain a smooth Wg+1-bundle π ′ : E ′ → X , which is again equipped with a

fibrewise embedding d ′ : X × D2n ⊂ X × W1,1 → E ′. In this situation we may

ask if the twisted Miller–Morita–Mumford classes of π and π ′ can be compared,

and we will now show how.

There is an identification of coefficient systems H′(g + 1)k = H(g)k ⊕ k
2

and so a projection map r : H′(g + 1)k → H(g)k and an inclusion map

i : H(g)k → H′(g + 1)k. Recall that s∗(ε) = 0, so we may lift ε to a class

ρ ∈ H n(E, X × D2n;H(g)k), which is in fact unique. Now under the maps

ρ ∈ H n(E, X × D2n;H(g)k) H n(E ′, X × W1,1;H(g)k)

ρ ′ ∈ H n(E ′, X × D2n;H′(g + 1)k) H n(E ′, X × D2n;H(g)k)

(id,d ′)∗

∼

exc

r∗

the classes ρ and ρ ′ correspond, because just as in the proof of Lemma 3.9 these

classes are determined by their restriction to a fibre and

(idH′ ⊗ r)(ω′) = (i ⊗ idH)(ω) ∈ H 0(B;H′(g + 1)k ⊗ H(g)k).

Now if there are lifts `′ : E ′ → B and ` : E → B of the maps classifying the

respective vertical tangent bundles of these two fibre bundles, which agree when

restricted to the common subspace

E ′ ⊃ E \ X × D2n ⊂ E,
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then for k > 0 and c ∈ H 2∗(B;k) we may calculate

r∗

(
π ′

! ((ε
′)k · (`′)∗c)

)
= π ′

! (r∗(ρ
′)k · (`′)∗c)

= π ′
!

(
((id, d ′)∗ ◦ exc−1(ρ))k · (`′)∗c

)

= π ′
!

(
(exc−1(ρ))k · (`′)∗c

)

= π!

(
ρk · `∗c

)

= π!

(
εk · `∗c

)
.

For k = 0 these are the standard Miller–Morita–Mumford classes, and their

behaviour under fibrewise stabilization is well understood.

3.8. The isomorphism theorem. We will now apply the constructions of the

previous sections to certain universal bundles. See [GRW14, Definition 1.5] for

more details on the following construction. To define these bundles, note that the

fibration θ : B → BSO(2n) classifies an oriented vector bundle θ∗γ2n → B, and

a θ -structure on a 2n-dimensional vector bundle is a bundle map to θ∗γ2n (that is,

a continuous map which is a linear isomorphism on each fibre). Fix a θ -structure
ˆ̀

D2n : T D2n → θ∗γ2n , and let

Bunθ (T Wg, D2n; ˆ̀
D2n )

denote the space of all θ -structures ˆ̀ : T Wg → θ∗γ which are equal to ˆ̀
D2n when

restricted to D2n ⊂ Wg. This space has an action of the group Diff(Wg, D2n) of

diffeomorphisms which are the identity on D2n ⊂ Wg, and we define

BDiffθ (Wg, D2n; ˆ̀
D2n ) := Bunθ (T Wg, D2n; ˆ̀

D2n ) //Diff(Wg, D2n).

This space carries a smooth Wg-bundle given by

E θ := (Bunθ (T Wg, D2n; ˆ̀
D2n )× Wg) //Diff(Wg, D2n)

with π : E θ → BDiffθ (Wg, D2n; ˆ̀
D2n ) given by projection to the first factor. This

has a section s given by the Diff(Wg, D2n)-equivariant map {∗} ⊂ D2n ⊂ Wg.

The bundle π has a vertical tangent bundle, which may be described as

Tπ E θ := (Bunθ (T Wg, D2n; ˆ̀
D2n )× T Wg) //Diff(Wg, D2n)

using the action of Diff(Wg, D2n) on T Wg via the derivative. Evaluation defines

a bundle map ˆ̀ : Tπ E θ → θ∗γ2n , which has an underlying map ` : E θ → B. The

composition ` ◦ s : BDiffθ (Wg, D2n; ˆ̀
D2n ) → B is constant, as it underlies the
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θ -structure on the bundle s∗Tπ E θ , but this is trivial by our definition of the space

of bundle maps.

This discussion shows that we are in the position to apply the constructions of

the previous sections, giving maps

ΦS : P(S,V)
2g

>0 ⊗ (detkS)⊗n −→ H ∗(BDiffθ (Wg, D2n; ˆ̀
D2n );H(g)⊗S

k
) (3.5)

for each finite set S. The goal of this section is to show that these maps are

isomorphisms in a range of degrees when k = Q, we restrict to a certain path

component of BDiffθ (Wg, D2n; ˆ̀
D2n ), and the following technical assumptions

on θ : B → BSO(2n) are made:

ASSUMPTION 3.13. B is n-connected, H ∗(B;Q) is concentrated in even

degrees and is finite-dimensional in each degree, and any θ -structure on D2n

extends to one on S2n .

REMARK 3.14. One can reduce to the case that B is n-connected without loss

of generality, as in [GRW14, Lemma 7.16]; allowing B to have cohomology

in odd degrees is surely possible, but will require a more careful discussion of

signs when defining twisted Miller–Morita–Mumford classes; the last condition

is called being spherical in [GRW14, GRW18, GRW17], and is standard.

We let ˆ̀
g ∈ Bunθ (Wg, D2n; ˆ̀

D2n ) be a θ -structure which is standard (in the

sense of [GRW18, Definition 7.2]) when restricted to Wg,1 = Wg \ int(D2n) ⊂

Wg. Under the assumption that θ is spherical such a ˆ̀
g exists, by the evident

generalization of [GRW18, Lemma 7.9] to arbitrary genus. We let

BDiffθ (Wg, D2n; ˆ̀
D2n ) ˆ̀

g
⊂ BDiffθ (Wg, D2n; ˆ̀

D2n )

denote the path component of ˆ̀
g.

THEOREM 3.15. Let 2n > 0 and 2n 6= 4, and suppose that θ : B → BSO(2n)

is a tangential structure satisfying Assumption 3.13. For any finite set S the map

P(S,V)>0 ⊗ (detQS)⊗n −→ H ∗(BDiffθ (Wg, D2n; ˆ̀
D2n ) ˆ̀

g
;H(g)⊗S

Q ),

induced by ΦS , is an isomorphism in a range of cohomological degrees tending

to infinity with g. (If 2n = 4 then the argument we will give shows that map is

an isomorphism after taking the limit as g → ∞. That one can sensibly form an

induced map between limits depends on the discussion in Section 3.7.)

In the rest of this paper we will be interested in the case where

θ : BSO(2n)〈n〉 → BSO(2n) is the n-connected cover, in which case it follows
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from obstruction theory that BDiffθ (Wg, D2n; ˆ̀
D2n ) ˆ̀

g
' BDiff(Wg, D2n), as

we shall explain in Section 4. In this case Theorem 3.15 may be considered

as the analogue of the Madsen–Weiss theorem (for 2n = 2) or [GRW14,

Theorem 1.1] for twisted coefficients. In the case 2n = 2 this result is due

to Kawazumi [Kaw08], though phrased a little differently. As the left-hand

term is independent of g, it in particular recovers homological stability for the

right-hand term: this was already known to hold by [Bol12, Iva93] for 2n = 2,

and by [Kra19] for 2n > 6.

Proof of Theorem 3.15. We apply the method introduced in [RW18]. Suppose

for concreteness that n is odd. Let W be a finite-dimensional rational vector

space and Y = K (W ∨, n +1) be a functorial model for the associated Eilenberg–

MacLane space. Then θ × Y := θ ◦ prB : B × Y → BSO(2n) is a new tangential

structure, and we may consider the moduli space BDiff θ×Y (Wg, D2n; ˆ̀Y
D2n ) of

manifolds equipped with a θ -structure satisfying the boundary condition ˆ̀
D2n

and a map to Y which sends D2n to the basepoint y0 ∈ Y . Forgetting the map to

Y gives a fibration sequence

map∗((Wg, D2n), (Y, y0))
i

−→ BDiff θ×Y (Wg, D2n; ˆ̀Y
D2n )

−→ BDiff θ (Wg, D2n; ˆ̀
D2n ) (3.6)

and the fibre is path-connected, so BDiff θ×Y (Wg, D2n; ˆ̀Y
D2n ) has the same path

components as BDiff θ (Wg, D2n; ˆ̀
D2n ). In fact there is a canonical isomorphism

π1(map∗((Wg, D2n), (Y, y0)), ∗) ∼= H̃ n+1(S1 ∧ Wg/D2n; W ∨)

∼= H n(Wg, D2n;Q)⊗ W ∨

which induced a canonical map

Λ∗(H(g)⊗ W [1]) −→ H ∗(map∗((Wg, D2n), (Y, y0));Q).

This map is easily checked to be an isomorphism, as this mapping space is

a K (π, 1). The identification is one of π1(BDiff θ (Wg, D2n; ˆ̀
D2n ), ˆ̀

g)-modules,

and we have used Poincaré duality to identify H(g)∨ with H(g).

When 2n 6= 4, by the main theorems of [Bol12, RW16, GRW14, GRW18]

there is a map

α : BDiff θ×Y (Wg, D2n; ˆ̀Y
D2n ) ˆ̀

g
−→ Ω∞

0 (MTθ ∧ Y+)

which is an isomorphism on cohomology in a range of degrees tending to infinity

with g. (For 2n = 4 it is an isomorphism on homology upon taking the colimit
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as g → ∞, by [GRW17, Theorem 1.5].) By our finite type assumption on

H ∗(B;Q), and the fact that W is finite-dimensional, we have that

H ∗(MTθ ∧ Y+;Q) = H ∗(MTθ;Q)⊗ Sym∗(W [n + 1])

has finite type, and so the natural map

Sym∗
(
[H ∗(MTθ;Q)⊗ Sym∗(W [n + 1])]>0

)
−→ H ∗(Ω∞

0 (MTθ ∧ Y+);Q)

is an isomorphism.

Thus the Serre spectral sequence for (3.6) is a spectral sequence of GL(W )-

modules, of the form

E
p,q

2 = H p

(
BDiffθ (Wg, D2n; ˆ̀

D2n ) ˆ̀
g
;Λq(H(g)Q ⊗ W [1])

)

Sym∗
(
[H ∗(MTθ;Q)⊗ Sym∗(W [n + 1])]>0

)
,

(3.7)

where the target is as indicated only in a range of degrees. Different rows of this

spectral sequence are GL(W )-representations of different weights, so it collapses.

Giving W on the target q-grading 1, this is an isomorphism of bigraded rings in

a range of degrees.

We now wish to apply Schur–Weyl duality for the general linear group. For

further details on the following we refer to Sam–Snowden [SS15], particularly

Section 2.2. In the setting described in our Section 2.2 this may be done

as follows. We let Λ := FB be the (Q-linearization of the) category of

finite sets and bijections. We let GL := colimn→∞ GLn(Q), let Rep(GL) be

the Q-linear abelian symmetric monoidal category of all representations of

the group GL, and let A := Reppol(GL) be the Q-linear abelian symmetric

monoidal category of polynomial representations of the group GL, that is, those

representations arising as finite direct sums of summands of tensor powers

of the standard representation W := colimn→∞ Qn . Similarly, we let Ŵ∗ :=

limn→∞ Hom(Qn,Q), a pro-algebraic representation of GL, and let R̂eppol(GL)

denote the category of polynomial pro-algebraic representations of GL, equipped

with the completed tensor product. Continuous dual gives an identification

R̂eppol(GL)op ∼= Reppol(GL).

We let K : FB → R̂eppol(GL) be defined as K (S) = Ŵ ⊗S
∗ , with its evident

symmetric monoidality, which has the structure of a tensor kernel. Taking the

continuous dual gives the functor K ∨ : FBop
→ Reppol(GL)with K ∨(S) = W ⊗S .

It follows from [SS15, Section 2.2.9] that the functor

K ∨ ⊗FB −: (Q-modFB) f −→ Reppol(GL)
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is a symmetric monoidal equivalence of categories, with inverse given by

Reppol(GL) −→ (Q-modFB) f

U 7−→ (S 7→ [Ŵ ⊗S
∗ ⊗ U ]GL).

(3.8)

We apply this discussion as follows. Taking the limit as dim(W ) → ∞, the

collapsing spectral sequence (3.7) gives an identification of (bi)graded objects in

Reppol(GL), and hence of (bi)graded objects in Q-modFB, which we now identify.

Recall that we have

H ∗(MTθ;Q) ∼= H ∗(B;Q)[−2n] = V[−2n].

We may write the abutment of (3.7) as

Sym∗([H ∗(MTθ;Q)]>0)⊗ Sym∗
(
[H ∗(MTθ;Q)⊗ Sym∗>0(W [n + 1])]>0

)
.

The transformation (3.8) of the second term is P>0(−,V)>0 : FB → Gr(Q-mod),

by [RW18, Proposition 5.1], and the first term is P(∅,V)>0. Thus the

transformation (3.8) of the right-hand side is the functor

P(−,V)>0 : FB −→ Gr(Q-mod)

in a range of degrees. We recognize the E2-page of (3.7) as

E
p,q

2 =
[

H p(BDiffθ (Wg, D2n; ˆ̀
D2n ) ˆ̀

g
;H(g)

⊗q

Q )⊗ det(Qq)⊗ W ⊗q
]Σq

,

so its transformation under (3.8) is

H ∗(BDiffθ (Wg, D2n; `D2n ) ˆ̀
g
;H(g)⊗−

Q )⊗ det : FB → Gr(Q-mod).

Carrying the factor det to the other side, this shows that there is a natural

isomorphism

P(−,V)>0 ⊗ det ∼= H ∗(BDiffθ (Wg, D2n; ˆ̀
D2n ) ˆ̀

g
;H(g)⊗−

Q )

in a range of degrees.

Unfortunately it is not yet clear that it is the map we have constructed

which yields this isomorphism. To see that it is, we go into the construction

in more detail. Let us denote by E θ → BDiffθ (Wg, D2n; ˆ̀
D2n ) ˆ̀

g
and

E θ×Y → BDiff θ×Y (Wg, D2n; ˆ̀Y
D2n ) ˆ̀

g
the Wg-bundles over these spaces. There is

a fibration sequence

map∗((Wg, D2n), (Y, y0))
i

−→ E θ×Y −→ E θ
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and hence a spectral sequence of GL(W )-representations

E
p,q

2 = H p(E θ ;Λq(H(g)Q ⊗ W [1])) H⇒ H p+q(E θ×Y ;Q),

which again collapses and splits as different rows are GL(W )-representations of

different weights. Taking weight 1 pieces gives a canonical identification

H p(E θ ;H(g)Q)⊗ W ∼= H p(E θ ;H(g)Q ⊗ W ) ∼= H p+1(E θ×Y ;Q)(1). (3.9)

Evaluation defines a map

ev : E θ×Y −→ Y

and so determines a GL(W )-equivariant map

ρ : W = H n+1(Y ;Q) −→ H n+1(E θ×Y ;Q)(1)

landing in the weight 1 piece. In terms of the identification (3.9) above the map

ρ must be given by ρ(w) = χ ⊗ w ∈ H n(E θ ;H(g)Q) ⊗ W for some class

χ ∈ H n(E θ ;H(g)Q).

CLAIM 3.16. The class χ is the class ε defined in Section 3.2.

Proof of Claim. By naturality we may restrict to the trivial tangential structure

θ = id : BSO(2n) → BSO(2n) to prove this. The decomposition (3.3) in this

case is

H n(E;H(g)Q) = H n(BDiff(Wg, D2n);H(g)Q)

⊕ H 0(BDiff(Wg, D2n);H(g)⊗2
Q ).

The component of χ in the first factor is given by pulling back along the section

s, but the composition BDiff(Wg, D2n)
s

→ EY ev
→ Y is constant, and the section

lands in the disc D2n ⊂ Wg on which the maps to Y are constantly y0. It remains

to determine the component of χ in the second factor.

The restriction map to a single fibre

H 0(BDiff(Wg, D2n);H(g)Q ⊗ H(g)Q) −→ Hn(Wg;Q)⊗ Hn(Wg;Q)

is injective and has image Q{ω}, and under the identification above ε maps to

the class ω by definition.

Restricting the previous discussion to a single fibre, we are considering the

spectral sequence of the (trivial) fibration

map∗(Wg/D2n, Y ) −→ Wg × map∗(Wg/D2n, Y ) −→ Wg.
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The evaluation map gives

ρ : W −→ H n+1(Wg × map∗(Wg/D2n, Y );Q)

∼= H n(Wg;Q)⊗ H 1(map∗(Wg/D2n, Y );Q)

which is the map

W −→ H(g)⊗ (H(g)⊗ W )

given by ω ⊗ −. This shows that χ restricts to ω, so χ = ε.

Consider the commutative diagram

H 2d(E θ×Y ;Q)⊗ W ⊗k H 2d(B;Q)⊗ W ⊗k

H k(n+1)+2d(E θ×Y ;Q)(k) H k(n+1)+2d−2n(BDiffθ×Y (Wg, D2n; ˆ̀Y
D2n ) ˆ̀

g
;Q)(k)

H kn+2d(E θ ;Λk(H(g)Q ⊗ W )) H kn+2d−2n(BDiffθ (Wg, D2n; ˆ̀
D2n ) ˆ̀

g
;Λk(H(g)Q ⊗ W ))

ρ⊗k

`∗⊗W ⊗k

πY
!

π!

If x ∈ H 2d(B;Q), going along the top sends x ⊗ w1 ⊗ · · · ⊗ wk to

πY
! (ρ(w1) · · · ρ(wk) · `∗x) ∈ H k(n+1)+2d−2n(BDiff θ×Y (Wg, D2n; ˆ̀Y

D2n ) ˆ̀
g
;Q)(k).

On the other hand, as ρ(wi) = ε ⊗ wi this corresponds to

π!((ε ⊗ w1) ∧ · · · ∧ (ε ⊗ wk) · `∗x)

∈ H kn+2d−2n(BDiffθ (Wg, D2n; ˆ̀
D2n ) ˆ̀

g
;Λk(H(g)Q ⊗ W )),

the result of antisymmetrizing the class

π!(ε
k · `∗x)⊗ w1 ⊗ · · · ⊗ wk ∈ H ∗(BDiffθ (Wg, D2n; ˆ̀

D2n ) ˆ̀
g
;H(g)⊗k

Q )⊗ W ⊗k .

That is, the result may be expressed in terms of our twisted Miller–Morita–

Mumford classes π!(ε
k · `∗x), showing that the map we have constructed is

surjective in the stable range: as the source and target are graded vector spaces

having the same finite dimension in each degree, it follows that the map in the

statement of the theorem is an isomorphism.

Finally, if n is even then we take instead Y = K (W ∨, n + 2). Then there is an

equivalence map((Wg, D2n), (Y, y0)) ' K (H(g) ⊗ W ∨, 2) and so the relevant

spectral sequence of GL(W )-modules has the form

E
p,q

2 = H p(BDiffθ (Wg, D2n; ˆ̀
D2n ) ˆ̀

g
; Symq(H(g)Q ⊗ W [2]))

Sym∗([H ∗(MTθ;Q)⊗ Sym∗(W [n + 2])]>0),
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The discussion then goes through as above, except that we now recognize the

E2-page as

E
p,q

2 = [H p(BDiffθ∂(Wg, D2n; ˆ̀
D2n ) ˆ̀

g
;H(g)

⊗q

Q )⊗ W ⊗q]Σq ,

so that its transform is now given by H ∗(BDiffθ∂(Wg, D2n; ˆ̀
D2n ) ˆ̀

g
;H(g)⊗−

Q ),

without the sign representation. We then proceed as above.

4. The cohomology of the Torelli space

In this section we work with the tangential structure θ : BSO(2n)〈n〉 →

BSO(2n), in which case the forgetful map

BDiffθ (Wg, D2n; ˆ̀
D2n ) −→ BDiff(Wg, D2n)

is a weak equivalence, because the space Bunθ (T Wg, D2n; ˆ̀
D2n ) is equivalent to

the space of relative lifts

D2n BSO(2n)〈n〉

Wg BO(2n),

`
D2n

σ◦θ

T Wg

where σ : BSO(2n) → BO(2n) is the double cover, and this space of lifts is

easily seen to be contractible by obstruction theory. We will therefore write

BDiff(Wg, D2n) instead of BDiffθ (Wg, D2n; ˆ̀
D2n ), for simplicity.

As stated in the introduction, the action of diffeomorphisms on the middle-

dimensional homology gives a homomorphism

αg : Diff(Wg, D2n) −→ Gg :=

{
Sp2g(Z) if n is odd,

Og,g(Z) if n is even.

We denote its image G ′
g. It is often surjective, but further restrictions can arise

from a quadratic refinement of the intersection form. A result of Kreck [Kre79]

tells us that

G ′
g =

{
Gg if n = 1, 3, 7 or n is even,

Sp
q

2g(Z) otherwise,

where Sp
q

2g(Z) 6 Sp2g(Z) is the proper subgroup of those symplectic matrices

which preserve the quadratic refinement q : Z2g → Z/2 of the bilinear form
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determined in terms of the standard symplectic basis by q(ei) = q( fi) = 0. In

particular G ′
g always has finite index in Gg, so is an arithmetic group.

The classifying space of the Torelli group Tor(Wg, D2n) := Ker(αg) therefore

fits into a fibration sequence

BTor(Wg, D2n)
i

−→ BDiff(Wg, D2n) −→ BG ′
g, (4.1)

so there is an action (up to homotopy) of G ′
g on BTor(Wg, D2n). Hence the

cohomology groups H ∗(BTor(Wg, D2n);Q) form a commutative ring object in

the category of graded G ′
g-representations (with the Koszul sign rule).

The local coefficient system H(g)Q on BDiff(Wg, D2n) is equipped with a

canonical trivialization i∗H(g)Q
∼
→ H(g) when pulled back to BTor(Wg, D2n),

where we recall that H(g) denotes the standard 2g-dimensional representation

of G ′
g. For any finite set S the edge homomorphism for the spectral sequence of

the fibration (4.1) with H(g)⊗S
Q -coefficients is then

H ∗(BDiff(Wg, D2n);H(g)⊗S
Q ) −→

[
H ∗(BTor(Wg, D2n);Q)⊗ H(g)⊗S

]G ′
g .

Composing this with the maps ΦS given in (3.5), and writing as usual

V = H ∗(BSO(2n)〈n〉;Q) = Q[e, pd n+1
4

e, . . . , pn−1]

with homogeneous basis of monomials B, we obtain maps

Φ t
S : P(S,V)>0 ⊗ (detQS)⊗n −→ [H ∗(BTor(Wg, D2n);Q)⊗ H(g)⊗S]G ′

g

and hence, by adjunction, G ′
g-equivariant maps

Ψ t
S : (H(g)⊗S)∨ ⊗ P(S,V)>0 ⊗ (detQS)⊗n −→ H ∗(BTor(Wg, D2n);Q).

We now adopt the functorial perspective of Sections 2.2 and 2.3. As the Φ t
S are

the components of a natural transformation of functors (s)Br2g → Gr(Q-mod),

the Ψ t
S extend to a map

Ψ t : K ∨ ⊗(s)Br2g (P(−,V)
2g

>0 ⊗ det⊗n) −→ H ∗(BTor(Wg, D2n);Q).

As in Section 3.5 we recognize the term P(−,V)
2g

>0 ⊗ det⊗n as being left Kan

extended along i : d(s)Br → (s)Br2g, and we can rewrite the domain to get

Ψ t : i∗(K ∨)⊗d(s)Br (P(−,V)′>0 ⊗ det⊗n) −→ H ∗(BTor(Wg, D2n);Q).

Recall that P(−,V)′ is distinguished from P(−,V) by not allowing parts of size

2 labelled by 1 ∈ V .
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Restricting to S = ∅ gives a ring homomorphism

P(∅,V)′>0 = (H(g)⊗∅)∨ ⊗ P(∅,V)′>0 ⊗ (detQ∅)⊗n

i∗(K ∨)⊗d(s)Br (P(−,V)′>0 ⊗ det⊗n)

which sends the labelled partition (∅, c) of ∅ to a class we shall call κc, as it

maps to the Miller–Morita–Mumford class of this name under Ψ t . In particular,

taking the labels to be the Hirzebruch L-classes Li defines classes

κLi
∈ i∗(K ∨)⊗d(s)Br (P(−,V)′>0 ⊗ det⊗n)

of degree 4i − 2n. These lie in the kernel of Ψ t , as they are defined on the

space BDiff(Wg, D2n) and are pulled back from BG ′
g by a theorem of Atiyah

[Ati69], so vanish on BTor(Wg, D2n) by the fibration sequence (4.1). Thus the

ideal generated by these classes also lies in the kernel of Ψ t .

THEOREM 4.1. If 2n > 6 the ring homomorphism

i∗(K ∨)⊗d(s)Br
(
P(−,V)′>0 ⊗ det⊗n

)

(κLi
| 4i − 2n > 0)

−→ H ∗(BTor(Wg, D2n);Q)

induced by Ψ t is an isomorphism onto the maximal algebraic G ′
g-

subrepresentation of H ∗(BTor(Wg, D2n);Q) in a range of degrees tending

to infinity with g.

If 2n = 2 and H ∗(BTor(Wg, D2);Q) is finite-dimensional in degrees ∗ <

N for all large enough g, then this homomorphism is an isomorphism onto

the maximal algebraic G ′
g-subrepresentation in degrees ∗ 6 N, and is a

monomorphism in degree N + 1, for all large enough g.

REMARK 4.2. In [KRW19] we shall prove that H ∗(BTor(Wg, D2n);Q) is an

algebraic G ′
g-representation when 2n > 6, so this theorem identifies the target

completely in a stable range.

As part of the proof of this theorem, we will need the following condition

guaranteeing collapse of a Serre spectral sequence in a range of degrees.

LEMMA 4.3. Let F → E → X be a Serre fibration with X path-connected, M

a local system of Q-module coefficients on E, and suppose that

(i) H ∗(E;M) is a free H ∗(X;Q)-module in degrees ∗ 6 N + 1;
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(ii) the Serre spectral sequence has a product structure in a range, in the sense

that the cup-product map

H p(X;Q)⊗ H 0(X;Hq(F;M)) −→ H p(X;Hq(F;M)) = E
p,q

2

is an isomorphism when q < N and p + q 6 N + 1.

Then there are no differentials out of E p,q
r for p + q 6 N and any r > 2.

Proof. Suppose that dr : E p,q
r → E p+r,q−r+1

r is nonzero, with p + q 6 N . Then,

by the product structure, the differential dr : E0,q
r → E r,q−r+1

r is also nonzero.

Without loss of generality we may suppose that q is minimal with this property.

Let {b̄i} be free H ∗(X;Q)-module generators for H ∗(E;M) in degrees 6 N +1.

As E
0,∗
2 = H 0(X;H∗(F;M)) consists of permanent cycles for ∗ < q, the map

Q ⊗H∗(X;Q) H ∗(E;M) −→ H 0(X;H∗(F;M))

is surjective in degrees ∗ < q, and so the restrictions bi of the b̄i to

H 0(X;H∗(F;M)) generate it in degrees ∗ < q. A nonzero differential

dr : E0,q
r → E r,q−r+1

r would hit some

∑
xi ⊗ bi ∈ E r,q−r+1

r = H r (X;Q)⊗ H 0(X;Hq−r+1(F;M))

in total degree q + 1 6 N + 1, which would say that
∑

xi · b̄i ∈ H q+1(E;M)

is zero modulo elements of Serre filtration > r . But in total degree (q + 1) all

such elements are contained in the submodule H ∗(X;Q){b̄i | |b̄i | 6 q − r} 6

H ∗(E;M), so there would be a nontrivial linear dependence
∑

yi · b̄i = 0 ∈

H ∗(X;Q){b̄i}, a contradiction.

Proof of Theorem 4.1. To give a unified treatment of the cases 2n = 2 and

2n > 6, we proceed under the assumption that H ∗(BTor(Wg, D2n);Q) is finite-

dimensional in degrees ∗ < N for all g large enough, and we shall establish

the conclusion in degrees ∗ 6 N . The first author has shown [Kup19, Corollary

5.5] that H ∗(BTor(Wg, D2n);Q) is finite-dimensional in all degrees for 2n > 6,

giving the claimed conclusion in this case.

Consider the Serre spectral sequence with H(g)⊗S
Q -coefficients for the

fibration (4.1), which takes the form

E
p,q

2 = H p(BG ′
g;H

q(BTor(Wg, D2n);Q)⊗ H(g)⊗S
Q )

H⇒ H p+q(BDiff(Wg, D2n);H(g)⊗S
Q ).

We wish to apply Lemma 4.3 to this spectral sequence, so must verify its

hypotheses.
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As H q(BTor(Wg, D2n);Q) ⊗ H(g)⊗S is finite-dimensional for q < N and g

large enough, by assumption, Theorem 2.2 implies that it is an almost algebraic

representation of G ′
g. Hence by Theorem 2.3 the cup-product map

H p(BG ′
g;Q)⊗ [H q(BTor(Wg, D2n);Q)⊗ H(g)⊗S]G ′

g

H p(BG ′
g;H

q(BTor(Wg, D2n);Q)⊗ H(g)⊗S
Q )

(4.2)

is an isomorphism if both q < N and p + q 6 N + 1, for g sufficiently large.

This shows that the Serre spectral sequence has the required product structure.

(This map is also clearly an isomorphism for (p, q) = (0, N ), so it is an

isomorphism in total degrees p + q 6 N . Furthermore, Theorem 2.3 also says

H 1(G ′
g;Q) = 0, so it is also a monomorphism in total degrees p + q 6 N + 1.)

On the other hand we have computed H ∗(BDiff(Wg, D2n);H(g)⊗S
Q ) for

2n 6= 4 in a range of degrees in Theorem 3.15. We saw there that it is a

free H ∗(BDiff(Wg, D2n);Q)-module in a range of degrees tending to ∞ with

g. The first hypothesis of Lemma 4.3 will therefore be fulfilled as long as

H ∗(BDiff(Wg, D2n);Q) is a free H ∗(BG ′
g;Q)-module in a range of degrees

tending to ∞ with g.

Stably we have

lim
g→∞

H ∗(BDiff(Wg, D2n);Q) ∼= H ∗(Ω∞
0 MTθn;Q) = Q[κc | c ∈ B>2n]

and by Theorem 2.3 we have

lim
g→∞

H ∗(BG ′
g;Q)

∼= H ∗(BG ′
∞;Q) ∼=

{
Q[σ2, σ6, . . .] if n is odd,

Q[σ4, σ8, . . .] if n is even.

In both cases these are Q-cohomologies of infinite loop spaces, so have the

structure of primitively generated Hopf algebras. As we described in Section 1.1,

the class σ4i−2n is chosen so that it pulls back under αg to κLi
, the Miller–Morita–

Mumford class associated to the i th Hirzebruch L-class (this choice is possible

by a theorem of Atiyah [Ati69]). The pullback defines a map of commutative

and cocommutative connected Hopf algebras of finite type, so by Borel’s

structure theorem [MM65, Theorem 7.11] these are free graded-commutative

algebras freely generated their sets of primitive elements [MM65, Corollary

4.18(2)]. Thus limg→∞ H ∗(BDiff(Wg, D2n);Q) is a free limg→∞ H ∗(BG ′
g;Q)-

module if each κLi
∈ Q{κc | c ∈ B} is nonzero, or in other words if Li ∈

H 4i(BSO(2n)〈n〉;Q) is nonzero for each i > n/2.
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When n 6 3 this is easy, as then BSO(2n)〈n〉 = BSO(2n) and Li contains pi
1

with nonzero coefficient and p1 ∈ H 4(BSO(2n);Q) is a nonzero polynomial

generator. For the general case we rely on the recent theorem of Berglund–

Bergström [BB18] that Li has every possible coefficient nonzero. As there is

a monomial in pd n+1
4

e, . . . , pn having degree 4i for every 4i > 2n, it follows that

Li 6= 0 ∈ H 4i(BSO(2n)〈n〉;Q) for each i > n/2.

We have verified the hypotheses of Lemma 4.3, so for large enough g the

spectral sequence has no differentials starting in total degree p + q 6 N . The

spectral sequence is one of H ∗(BG ′
g;Q)-modules, and tensoring down gives a

map

Q ⊗Q[κLi
| 4i−2n>0] H ∗(BDiff(Wg, D2n);H(g)⊗S

Q )

−→ [H ∗(BTor(Wg, D2n);Q)⊗ H(g)⊗S]G ′
g

which is an isomorphism in degrees ∗ 6 N and a monomorphism in degree N+1.

Using Theorem 3.15 this shows that the natural map

Q ⊗Q[κLi
| 4i−2n>0] P(S,V)>0 ⊗ (detQS)⊗n

−→ [H ∗(BTor(Wg, D2n);Q)⊗ H(g)⊗S]G ′
g

is an isomorphism in degrees ∗ 6 N and a monomorphism in degree N + 1.

Tracing through the maps involved shows that this map is induced by Φ t
S . In

particular it shows that the natural transformation

Q ⊗Q[κLi
|4i−2n>0] (P(−,V)

2g

>0 ⊗ det⊗n)

H⇒ [H ∗(BTor(Wg, D2n);Q)⊗ H(g)⊗−]G ′
g

of functors (s)Br2g → Gr(Q-mod) is an isomorphism in degrees ∗ 6 N and a

monomorphism in degree N + 1. The left-hand side is the Kan extension from

d(s)Br to (s)Br2g of the functor

Q ⊗Q[κLi
|4i−2n>0]

(
P(−,V)′>0 ⊗ det⊗n

)
: d(s)Br −→ Gr(Q-mod).

To finish the argument we apply Proposition 2.16 to the representation

B = H i(BTor(Wg, D2n);Q) for any i 6 N , A the degree i part of

Q ⊗Q[κLi
|4i−2n>0]

(
P(−,V)′>0 ⊗ det⊗n

)
, and φBr2g given by the natural

isomorphism above.

There is a final consequence of the proof of this theorem which it is useful to

record.

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fmp.2020.5
Downloaded from https://www.cambridge.org/core. IP address: 24.91.38.35, on 09 Jun 2020 at 03:44:17, subject to the Cambridge Core



On the cohomology of Torelli groups 51

PROPOSITION 4.4. The sequence {κLi
}i> 2n

4
acts regularly on the ring

i∗(K ∨) ⊗d(s)Br
(
P(−,V)′>0 ⊗ det⊗n

)
in a range of degrees tending to infinity

with g.

Proof. As discussed in the proof of Theorem 4.1, Q[κc |B>2n] is a free module

over Q[κLi
| 4i − 2n > 0]. In addition, each P(S,V)′>0 is a free module over the

subring P(∅,V)>0 = Q[κc |B>2n], so the sequence {κLi
}i> 2n

4
acts regularly on

each P(S,V)′>0, so also on each P(S,V)′>0 ⊗ (detQS)⊗n .

By Corollary 2.18, the functor

i∗(K ∨)⊗d(s)Br −: ((Q-mod)d(s)Br) f −→ Rep(G ′
g)

detects whether a morphism between objects which are supported on finite sets of

cardinality 6 g is a monomorphism. In a range of homological degrees tending

to infinity with g the object P(S,V)′>0 ⊗ (detQS)⊗n has such support (see

Section 9.5 for a quantitative discussion of this), so the claim follows.

5. Ring structure

We may abstract some of the constructions made so far as follows. Let V

be a graded Q-algebra of finite type and concentrated in even degrees, and let

e ∈ V2n . Using this data we may construct a lax symmetric monoidal functor

P(−,V)′>0 : d(s)Br → Gr(Q-mod) by analogy with Sections 3.4, 3.5, and 3.6,

and hence form the ring

RV := K ∨ ⊗d(s)Br
(
P(−,V)′>0 ⊗ det⊗n

)
.

One may rephrase Theorem 4.1 as saying that for V = H ∗(BSO(2n)〈n〉;Q)with

e ∈ H 2n(BSO(2n)〈n〉;Q) the Euler class there is a ring homomorphism

RV

(κLi
| 4i − 2n > 0)

∼=
−→ H ∗(BTor(Wg, D2n);Q)

which is an isomorphism in a range of degrees tending to infinity with g. Here the

element κLi
corresponds to the part of size 0 labelled by Li ; these form a regular

sequence in a stable range by Proposition 4.4. In order to make computational

use of Theorem 4.1 it is useful to identify the ring RV with something more

palatable.

This is a purely algebraic question which can be asked for any V : in this

section we will provide a generators and relations description of the ring RV .
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5.1. Generators. In this section we will freely identify H(g)∨ with H(g)

using Poincaré duality. We have been considering H(g) as Hn(Wg;Q), so the

identification

H(g)∨ = Hn(Wg;Q)
∨ = H n(Wg;Q)

−_[Wg ]
−−−−→ Hn(Wg;Q) = H(g)

is inverse to v 7→ λ(v,−) : H(g)
∼

−→ H(g)∨.

By the universal property of coends, for any finite set S there are ΣS × G ′
g-

equivariant maps

H(g)⊗S ⊗ P(S,V)′>0 ⊗ (detQS)⊗n −→ RV ,

where the target has the trivialΣS-action. If c ∈ V is an allowed label for parts of

size k, the labelled partition {({1, 2, . . . , k}; c)} of {1, 2, . . . , k} gives aΣk × G ′
g-

equivariant map H(g)⊗k ⊗ (detQk)⊗n → RV and so, forgetting the Σk-action, a

G ′
g-equivariant map

κc : H(g)⊗k −→ RV .

This construction is linear in c. We may record the Σk-equivariance of the

original map by the identity

κc(vσ(1) ⊗ · · · ⊗ vσ(k)) = sign(σ )n · κc(v1 ⊗ · · · ⊗ vk) (5.1)

for any σ ∈ Σk . Recall that the labelled partition {({1, 2, . . . , k}; c)} is given

degree |c| + n(k − 2), so κc(v1 ⊗ · · · ⊗ vk) lies in this degree.

5.2. Relations. We find relations between the κc(v1 ⊗ · · · ⊗ vk) by giving

pairs of classes which map to the same element in RV .

Let ai for 1 6 i 6 2g be a basis of H(g) and a#
i for 1 6 i 6 2g be the

dual basis characterized by λ(a#
i , a j) = δi j , then the form ω dual to the pairing λ,

determined by (λ⊗ id)(−⊗ω) = id(−), is given by ω =
∑2g

i=1 ai ⊗a#
i ∈ H(g)⊗2.

Let S = {s1, . . . , sp} and T = {t1, . . . , tq} be finite sets, and consider enlarged

sets S′ = S t {s} and T ′ = {t} t T . Let v ∈ H(g)⊗S and w ∈ H(g)⊗T . In the

coend defining RV , the class

2g∑

i=1

(v ⊗ ai ⊗ a#
i ⊗ w)⊗ {(S′, x), (T ′, y)} ⊗ (s1 ∧ · · · ∧ s ∧ t ∧ · · · ∧ tq)

⊗n

∈ H(g)⊗S′tT ′

⊗ P(S′ t T ′,V)′>0 ⊗ (detQS′tT ′

)⊗n

is identified with the class

(v ⊗ w)⊗ {(S t T, x · y)} ⊗ (s1 ∧ · · · ∧ sp ∧ t1 ∧ · · · ∧ tq)
⊗n

∈ H(g)⊗StT ⊗ P(S t T,V)′>0 ⊗ (detQStT )⊗n,
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which gives the identity

∑

i

κx(v ⊗ ai) · κy(a
#
i ⊗ w) = κx ·y(v ⊗ w). (5.2)

Similarly, the class

∑

i

(v ⊗ ai ⊗ a#
i )⊗ {(S t {s, t}, x)} ⊗ (s1 ∧ · · · ∧ sp ∧ s ∧ t)⊗n

∈ H(g)⊗St{s,t} ⊗ P(S t {s, t},V)′>0 ⊗ (detQSt{s,t})⊗n

is identified with the class

v ⊗ {(S, e · x)} ⊗ (s1 ∧ · · · ∧ sp)
⊗n ∈ H(g)⊗S ⊗ P(S,V)′>0 ⊗ (detQS)⊗n,

which gives the identity

∑

i

κx(v ⊗ ai ⊗ a#
i ) = κe·x(v). (5.3)

5.3. The ring presentation. Our main result describing the ring RV is that

the above gives a complete set of generators and relations for it in a stable range,

as follows.

THEOREM 5.1. In a range of degrees tending to infinity with g, the graded-

commutative ring RV is generated by the classes κc(v1 ⊗ · · · ⊗ vr ) with c a

homogeneous element of V , r > 0, and |c| + n(r − 2) > 0, subject to

(i) linearity in c and in each vi ;

(ii) the symmetry relation (5.1);

(iii) the contraction relations (5.2) and (5.3).

The details of the proof of this theorem are somewhat technical, but the

underlying idea is quite simple: here is a synopsis. Letting RV
pres be the

commutative ring given by the presentation in the statement of the theorem,

the fact that these relations indeed hold in RV gives a morphism φ : RV
pres → RV .

Both source and target are graded algebraic representations of finite type, so in

any finite range of degrees only finitely many isomorphism types of irreducible

representations appear, which may be described independently of g. As each

irreducible is detected by applying [− ⊗ H(g)⊗S]G ′
g for some S, it is enough to
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Figure 4. A corolla with 7 ordered incident edges, and vertex labelled by c.

show that for each S the map [φ ⊗ H(g)⊗S]G ′
g is an isomorphism in a range of

degrees tending to infinity with g.

Using an idea introduced by Morita [Mor96], and developed by Kawazumi–

Morita [KM96], Garoufalidis–Nakamura [GN98], and Akazawa [Aka05], we

will describe a certain space G(S,V) of graphs with legs S and with internal

vertices labelled by elements of V , up to a certain rule for contracting internal

edges and contracting loops, and we will construct a map

G(S,V) −→ [RV

pres ⊗ H(g)⊗S]G ′
g

which will be shown to be an epimorphism using Theorem 2.6. This is to be

interpreted as κc(v1 ⊗· · ·⊗vr ) representing an r -valent corolla labelled by c with

an ordering of the incident half-edges (see Figure 4), (5.1) says that the effect of

reordering these half-edges, (5.2) says that an edge between two labelled corollas

may be contracted to form a new corolla labelled by the product of the previous

labels, and (5.3) says that a loop at a labelled corolla may be contracted to give

a new corolla with its label multiplied by e.

On the other hand by Proposition 2.17 there is a map

ψ (s)Br2g : P(S,V)>0 ⊗ (detQS)⊗n = i∗(P(S,V)
′
>0 ⊗ (detQS)⊗n)

−→ [RV ⊗ H(g)⊗S]G ′
g

which is an isomorphism in a range of homological degrees tending to infinity

with g. Contracting all internal edges will show that G(S,V) is isomorphic to

P(S,V)>0 ⊗ (detQS)⊗n and the following diagram commutes

G(S,V) [RV
pres ⊗ H(g)⊗S]G ′

g

P(S,V)>0 ⊗ (detQS)⊗n [RV ⊗ H(g)⊗S]G ′
g .

∼= [φ⊗H(g)⊗S ]
G′

g

ψ
(s)Br2g

Hence [φ ⊗ H(g)⊗S]G ′
g is an isomorphism in a range of homological degrees

tending to infinity with g.
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Proof of Theorem 5.1. Let us suppose that the graded vector space V has finite

type (that is, is finite-dimensional in each degree); the general case follows from

this by taking colimits over all finite type subspaces.

A marked oriented graph with legs S and vertices labelled by V consists of

the following data:

(i) a totally ordered finite set V (of vertices), a totally ordered finite set H (of

half-edges), and a monotone function a : H → V (encoding that a half-

edge h is incident to the vertex a(h)); (given the monotonicity of a, the total

orders of V and H are equivalent to ordering first the vertices and then the

half-edges incident to each vertex)

(ii) an ordered matching m = {(ai , bi)}i∈I of the set H t S (encoding the

oriented edges of the graph);

(iii) a function c : V → V with homogeneous values, such that |c(v)| +

n(|a−1(v)| − 2) > 0.

We assign to a graph Γ = (V, H, a,m, c) the degree

deg(Γ ) :=
∏

v∈V

(
|c(v)| + n(|a−1(v)| − 2)

)
.

Two graphs Γ = (V, H, a,m, c) and Γ ′ = (V ′, H ′, a′,m ′, c′) are isomorphic if

there are order-preserving bijections V ∼= V ′ and H ∼= H ′ which intertwine the

functions a and a′ and c and c′, and send the matching m to m ′. An oriented

graph (with legs S and vertices labelled by V) is an isomorphism class of

marked oriented graphs. We let Cor,pre(S,V) denote the vector space with basis

the oriented graphs with legs S and vertices labelled by V , and Cor(S,V) denote

the quotient vector space given by imposing linearity in the label c(v) at each

vertex v ∈ v. We consider these as graded vector spaces, with [Γ ] placed in

degree deg(Γ ).

If [Γ ] and [Γ ′] are oriented graphs as above, and there are not necessarily

order-preserving bijections f : H → H ′ and g : V → V ′ such that a′ ◦ f = g ◦a

and c′ ◦ g = c′, and such that the matching m ′ of H ′ t S differs from f (m) by

reversing k pairs, then we wish to declare such graphs equivalent up to a sign.

Specifically we want to enforce

[Γ ] = (−1)nksign( f ) · sign(g)[Γ ′]

where sign(g) and sign( f ) are as follows:

(i) Let the degree of a vertex v ∈ V be |c(v)|+n(|a−1(v)|−2), and let Vδ ⊂ V

be the subset of vertices of degree δ. The bijection g : V → V ′ preserves
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degree, so induces bijections gδ : Vδ → V ′
δ . These sets are totally ordered,

by restricting the total order from V and V ′, and so there is an associated

sign sign(gδ) of this permutation. Then

sign(g) :=
∏

δ odd

sign(gδ).

(ii) For each v ∈ V the function f gives a bijection a−1(v) → (a′)−1(g(v)).

These sets are totally ordered, by restricting the total order from H and H ′,

and so there is an associated sign sign( f ; v) of this permutation. Then

sign( f ) :=
∏

v∈V

sign( f ; v)n.

We let the graded vector space C(S,V) be the quotient of the graded vector

space Cor(S,V) by the subspace generated by the homogeneous differences

[Γ ] − (−1)nksign( f ) · sign(g)[Γ ′] for all such [Γ ]’s and [Γ ′]’s. We further let

G(S,V) be the quotient of the graded vector space C(S,V) by the space spanned

by the differences [Γ ] − [Γ ′′] when Γ = (V, H, a,m, c) and Γ ′′ = (V ′′, H ′′,

a′′,m ′′, c′′) are related by the following moves:

(i) an edge contraction; that is, there are x, y ∈ H which are adjacent with

respect to the total order on H and have a(x) 6= a(y), such that H ′′ = H\{x,

y} with the induced order, V ′′ = V/(a(x) ∼ a(y)) with the induced order

(as a(x) and a(y) must be adjacent with respect to the total order on V ),

a′′ : H ′′ inc
−→ H

a
−→ V

quot
−−→ V ′′,

which is again monotone with respect to these orders, m = {x, y} t m ′′, and

c′′([a(x)]) = c(x) · c(y).

(ii) a loop contraction; that is, there are x, y ∈ H which are adjacent with

respect to the total order on H and have a(x)= a(y), such that H ′′ = H\{x,

y} with the induced order, V ′′ = V with the same order,

a′′ : H ′′ inc
−→ H

a
−→ V

=
−→ V ′′,

which is again monotone with respect to these orders, m = {x, y} t m ′′, and

c′′(a(x)) = c(x) · e.

We now construct a map α : G(S,V) −→ [RV
pres ⊗ H(g)⊗S]G ′

g . We do so by

first associating to a graph Γ = (V, H, a,m, c) the map
⊗

v∈V

κc ⊗ H(g)⊗S :
⊗

v∈V

H(g)⊗a−1(v) ⊗ H(g)⊗S −→ RV

pres ⊗ H(g)⊗S
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and then applying this map to the G ′
g-invariant vector given by

⊗

(a,b)∈m

ωa,b ∈
⊗

v∈V

H(g)⊗a−1(v) ⊗ H(g)⊗S,

to obtain α([Γ ]) ∈ [RV
pres ⊗ H(g)⊗S]G ′

g . This descends to a map from G(S,V) by

construction, because the relations in RV
pres allow for the symmetry, and edge and

loop contraction relations we imposed on graphs.

Write RV
gen for the graded-commutative ring generated by the κc(v1 ⊗· · ·⊗vr )

for |c| + n(r − 2) > 0, modulo linearity in each vi . We may write this as

RV

gen = S∗




⊕

r>0,

δ>−n(r−2)

Vδ ⊗ H(g)⊗r [δ + n(r − 2)]


 ,

and the construction above gives a map

Cor(S,V) −→ [RV

gen ⊗ H(g)⊗S]G ′
g .

By Theorem 2.6 this is an epimorphism. Imposing the symmetry relation (5.1)

and the contraction relations (5.2) and (5.3) corresponds to allowing local moves

on graphs which correspond to the successive quotients C(S,V) and G(S,V),

and so the map α : G(S,V) → [RV
pres ⊗ H(g)⊗S]G ′

g is obtained by taking the

quotient of the above, and so is also an epimorphism.

In each homological degree the functor P(−,V)′>0 ⊗ det⊗n is nonzero only

on sets of bounded cardinality, as each allowed part in the definition of

P(−,V)′>0 has strictly positive homological degree (we discuss this more

quantitatively in Section 9.5). Thus by Proposition 2.17 there is a map

ψ (s)Br2g : P(S,V)>0 ⊗ (detQS)⊗n = i∗(P(S,V)
′
>0 ⊗ (detQS)⊗n)

−→ [RV ⊗ H(g)⊗S]G ′
g

which is an epimorphism, and is an isomorphism in a range of homological

degrees tending to infinity with g. The composition

G(S,V)
α

−→ [RV

pres ⊗ H(g)⊗S]G ′
g

φ∗
−→ [RV ⊗ H(g)⊗S]G ′

g

is easily described in terms of the map ψ (s)Br2g . Using the contraction formulae,

any graph is equivalent in G(S,V) to a graph having no internal edges: such a

graph has the form (V, H, a,m, c) with m a matching of H t S having no pairs

in H . In other words, m is the data of an injection ι : H ↪→ S and an ordered
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matching m ′ = {(ai , bi)} of the complement S \ ι(H). Such a graph determines

a labelled partition of S, with parts {ai , bi} labelled by 1, and parts ι(a−1(v))

labelled by c(v). It also determines an orientation of QS as

ι(h1) ∧ · · · ∧ ι(hr ) ∧ a1 ∧ b1 ∧ · · · ∧ as ∧ bs ∈ det(QS).

This describes the composition φ∗ ◦ α. It clearly shows that φ∗ ◦ α is an

epimorphism, as ψ (s)Br2g is and every labelled partition is realized by a graph,

namely a disjoint union of corollas.

To show that φ∗ ◦ α is a monomorphism, we now use our assumption that V

has finite type: then the vector spaces G(S,V) and P(S,V)>0 ⊗ (detQS)⊗n do

too, and so to see that φ∗ ◦ α is a monomorphism it is enough to show that

the dimension of G(S,V) it at most that of P(S,V)>0 in each homological

degree. To see this, contract all internal edges of each graph in G(S,V): the

result is a disjoint union of corollas with vertices with (certain) labels in V , and

the dimension of this space in each degree is precisely the dimension of P(S,

V)>0 in that degree. Thus even if certain disjoint unions of labelled corollas are

equivalent in G(S,V), its dimension is most that of P(S,V)>0 ⊗ (detQS)⊗n .

Thus φ∗ ◦ α is an isomorphism in a range of degrees tending to infinity with g.

Finally, as α is an epimorphism it then follows that both α and φ∗ are

isomorphisms in a range of degrees tending to infinity with g. That is, for each

finite set S the map

φ∗ : [RV

pres ⊗ H(g)⊗S]G ′
g −→ [RV ⊗ H(g)⊗S]G ′

g

is an epimorphism, and is an isomorphism in a range of degrees tending to

infinity with g. The algebraic representation RV
pres is generated by the classes

κc(H(g)
⊗r ) of degree |c| + n(r − 2) > 0, which can be detected by applying

[−⊗ H(g)⊗r ]G ′
g . Thus in degrees ∗ 6 d there is a finite list, independent of g, of

irreducible representations Vλ appearing in RV
pres, and hence which could appear

in Ker(φ). Thus if φ were not an isomorphism in degrees ∗ 6 d then this would

be detected by applying [− ⊗ H(g)⊗S]G ′
g for a fixed finite collection of sets S,

but by taking g large enough this does not happen.

5.4. A smaller ring presentation. Having understood the proof of

Theorem 5.1, one can hope to simplify the presentation of the ring RV given

there by manipulating labelled graphs. At the level of generators a simplification

is quite obvious: graphically we may first replace an r -valent corolla labelled by

x by an (r + 1)-valent corolla labelled by 1 joined to a univalent corolla labelled

by x , and then by iterated expansions replace the (r + 1)-valent vertex labelled

by 1 by a trivalent tree with each vertex labelled by 1, see Figure 5.
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Figure 5. Replacing an r -valent corolla labelled by x by an (r +1)-valent corolla

labelled by 1 connected to a univalent corolla labelled by x , and then expanding

the (r + 1)-valent vertex to a trivalent tree. We have suppressed the labels 1 for

clarity.

For this to be possible we need to know that if x is a label of some corolla,

and |x | > 0, then the univalent vertex labelled by x exists, that is, |x | + n(1 −

2) > 0, or in other words |x | > n. In this section we will therefore suppose that

V = Q{1} ⊕ V>n . In this case we see that the classes

(a) κc = κc(1) for c ∈ V>2n , of degree |c| − 2n;

(b) κc(v1) for c ∈ V>n , of degree |c| − n; and

(c) κ1(v1 ⊗ v2 ⊗ v3) of degree n;

are sufficient to generate RV . The price to be paid for this smaller generating

set is, as is to be expected, a somewhat more complicated set of relations. The

reader will easily deduce from (5.1), (5.2) and (5.3) that along with linearity in c

and each vi the following relations hold among the generators listed above:

(α) κ1(vσ(1) ⊗ vσ(2) ⊗ vσ(3)) = sign(σ )n · κ1(v1 ⊗ v2 ⊗ v3)

(β) κx ·y =
∑

i κx(ai) · κy(a
#
i )

(γ ) κx ·y(v1) =
∑

i, j κ1(v1 ⊗ a j ⊗ ai) · κx(a
#
i ) · κy(a

#
j )

(δ)
∑

i κ1(v1 ⊗ ai ⊗ a#
i ) = κe(v1)

(ε)
∑

i κ1(v1 ⊗v2 ⊗ai) ·κ1(a
#
i ⊗v5 ⊗v6) =

∑
i κ1(v1 ⊗v5 ⊗ai) ·κ1(a

#
i ⊗v6 ⊗v2).

THEOREM 5.2. Suppose that V = Q{1} ⊕ V>n . In a range of degrees tending to

infinity with g, the graded-commutative ring RV is generated by the classes (a)–

(c), with relations given by linearity in c and each vi and the relations (α)–(ε).
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Figure 6. The relations (α)-(ε) in graphical form.

Proof. As in the proof of Theorem 5.1, let R̄V
pres be the graded-commutative ring

given by the presentation in the statement of this theorem. Let C̄(S,V) denote

the vector space of graphs analogous to C(S,V), but starting with the subspace

C̄or,pre(S,V) ⊂ Cor,pre(S,V) spanned by those graphs which

(a) may have nilvalent vertices;

(b) may have univalent vertices;

(c) may have trivalent vertices labelled by 1;

but have no higher-valent vertices. Let Ḡ(S,V) denote the quotient of C̄(S,V)

by the subspace spanned by differences [Γ ] − [Γ ′′] where Γ ′′ is obtained from

Γ by one of the local moves shown in Figure 6.

As in the proof of Theorem 5.1 there is a map

ᾱ : Ḡ(S,V) −→ [R̄V

pres ⊗ H(g)⊗S]G ′
g ,
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Figure 7. Standard labelled trees for (i) i > 3, (ii) i > 2, (iii) i = 2, (iv) i = 1,

(v) i = 0.

and it is again an epimorphism. Using the commutative diagram

Ḡ(S,V)
[
R̄V

pres ⊗ H(g)⊗S
]G ′

g

G(S,V)
[
RV

pres ⊗ H(g)⊗S
]G ′

g ,

ᾱ

β

∼

ᾱ

to finish the argument we must show that β is an isomorphism, and to do so we

may use the identification G(S,V)
∼

−→P(S,V)>0 ⊗(detQS)⊗n . We have already

explained at the beginning of Section 5.4 why β is an epimorphism, using the

assumption V = Q{1} ⊕ V>n .

To finish the argument, as in the proof of Theorem 5.1 we may suppose that

V has finite type; then it is enough to show that in each homological degree the

dimension of Ḡ(S,V) is at most the dimension of G(S,V).

First observe that any labelled graph in Ḡ(S,V) is equivalent to a labelled

forest, as follows. If a connected graph has a cycle then it has an embedded

cycle, in which case the relation (ε) can be used to shorten the length of this

embedded cycle, and this can be done until the graph has an embedded cycle of

length 1: but then the relation (δ) can be used to replace this loop with a leaf

labelled by e. This reduces the first Betti number of the graph. Continuing in this

way, we can eliminate all cycles. Furthermore, by applying relations (ε), (γ ),

and (β) each labelled forest is equivalent to a disjoint union of labelled trees of

the forms shown in Figure 7(i)–(v). This means that in each homological degree
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the dimension of Ḡ(S,V) is at most that of P(S,V)>0, which completes the

argument. The case of general V follows by taking colimits.

REMARK 5.3. We may phrase relation (ε) as saying that the compositions

H(g)⊗{1,2,5,6} H(g)⊗3 ⊗ H(g)⊗3 RV
f I

fH

κ1⊗κ1

are equal, where

f I (v1 ⊗ v2 ⊗ v5 ⊗ v6) =
∑

i

(v1 ⊗ v2 ⊗ ai)⊗ (a#
i ⊗ v5 ⊗ v6),

fH (v1 ⊗ v2 ⊗ v5 ⊗ v6) =
∑

i

(v1 ⊗ v5 ⊗ ai)⊗ (a#
i ⊗ v6 ⊗ v2).

Graphically this corresponds to ‘I = H ’: it is somewhat complicated because we

are trying to express the fact that edges may be contracted, while only allowing

ourselves to consider trivalent graphs.

The class κ1(v1 ⊗ v2 ⊗ v3) has degree n, so the map κ1 ⊗ κ1 : H(g)⊗3 ⊗

H(g)⊗3 → RV factors through Λ2(H(g)⊗3) if n is odd and through

Sym2(H(g)⊗3) is n is even. Furthermore, by relation (5.1) the map

κ1 : H(g)⊗3 → RV factors through Λ3(H(g)) if n is odd and Sym3(H(g))

if n is even. In total it factors through Λ2(Λ3(H(g))) or Sym2(Sym3(H(g))).

The following lemma describes the image of the composition

H(g)⊗{1,2,5,6} f I − fH
−−−→ H(g)⊗3 ⊗ H(g)⊗3 κ1⊗κ1

−−−→

{
Λ2(Λ3(H(g))),

Sym2(Sym3(H(g))),

as a G(Q)-representation; the first case is due to Garoufalidis–Nakamura

[GN98], and the second case can be proved by the same method.

LEMMA 5.4. If n is odd thenΛ2(Λ3(H(g))) = V16 +2V14 +3V12 +2V0+V22,12 +

V22 + V2,12 and

Im
[

f I − fH : H(g)⊗4 → Λ2(Λ3(H(g)))
]

∼= V22 + V12 + V0.

If n is even then Sym2(Sym3(H(g))) = 3V0 + 4V2 + 2V22 + V23 + V3,1 + 2V4 +

V4,2 + V6 and

Im
[

f I − fH : H(g)⊗4 → Sym2(Sym3(H(g)))
]

∼= V2 + V3,1.
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5.5. Example: calculation in low degrees. Above we gave a presentation of

RV ; this ring is related to Torelli spaces by a ring homomorphism

RV

(κLi
| 4i − 2n > 0)

∼=
−→ H ∗(BTor(Wg, D2n);Q),

which is an isomorphism in a range of degrees tending to infinity with g, for

V = H ∗(BSO(2n)〈n〉;Q). In this section we use the arguments of Theorem 5.1

to compute RV explicitly in degrees ∗ < 2n and relate it to pseudoisotopy theory

and surgery theory. As usual we give V its basis B of monomials in Euler and

Pontrjagin classes.

Let us define a graded vector space P := (π∗(BO) ⊗ Q)∨>n , with basis

PB given by all Pontrjagin classes. If c ∈ PB ∩ B>n , we have defined earlier

elements κc(v) ∈ RV of degree |c| − n. We extend this to c ∈ PB \ B>n

by declaring κc(v) = 0 if |c| > 4n (these classes will play no role in this

computation, as their degree exceeds the range ∗< 2n). Together with the classes

κ1(v1 ⊗ v2 ⊗ v3) in RV of degree n, these provide a homomorphism

ψ : (Q⊕Y [n])⊗ S∗(H(g)[−n]⊗P) −→ RV −→
RV

(κLi
| 4i − 2n > 0)

, (5.4)

where

Y [n] :=

{
Λ3(H(g))[n] n odd

Sym3(H(g))[n] n even.

The following extends the computation of the cohomology of Torelli spaces in

the range ∗ < n − 1 by the second author and Ebert using pseudoisotopy theory

[ERW15].

PROPOSITION 5.5. For ∗ < 2n and g sufficiently large, ψ is an isomorphism.

Proof. That ψ is an isomorphism for ∗ < 2n and g sufficiently large can be

detected by tensoring with H(g)⊗S and taking G ′
g-invariants, for all finite sets S:

[
(Q ⊕ Y [n])⊗ S∗(H(g)[−n] ⊗ P)⊗ H(g)⊗S

]G ′
g

−→

[
RV

(κLi
| 4i − 2n > 0)

⊗ H(g)⊗S

]G ′
g

.

Let Ḡ(S,P)(1) denote the vector space of graphs analogous to G(S,V) or Ḡ(S,

V) given as follows: we start with the subspace C̄or(S,P)(1) ⊂ Cor(S,P) spanned

by those graphs which (a) may have univalent vertices, (b) may have a single
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Figure 8. The graphs that appear in the proof of Proposition 5.5, suppressing the

labels on univalent vertices.

trivalent vertex labelled by 1, but (c) have no other vertices. Then Ḡ(S,P)(1) is

the quotient of C̄or(S,P)(1) by the differences [Γ ] − [Γ ′′] where Γ ′′ differs from

Γ only by the local move (α) of Figure 6. The only connected components that

occur in such graphs are as in Figure 8:

(i) a single edge with vertices labelled by S or P ;

(ii) a trivalent vertex and univalent vertices labelled by S or P ;

(iii) a ‘lollipop’ with univalent vertex labelled by S or P .

As in the proof of Theorem 5.1, there is a map

Ḡ(S,P)(1) −→
[
(Q ⊕ Y [n])⊗ S∗(H(g)[−n] ⊗ P)⊗ H(g)⊗S

]G ′
g

which is an isomorphism in a range of degree increasing with g.

Sending pi for |pi | > 4n to 0 gives a map P → V , which induces the left

vertical map in the commutative diagram

Ḡ(S,P)(1)
[
(Q ⊕ Y [n])⊗ S∗(H(g)[−n] ⊗ P)⊗ H(g)⊗S

]G ′
g

G(S,V)
[
RV ⊗ H(g)⊗S

]G ′
g .

In the proof of Theorem 5.1, we identified the left-bottom corner with the vector

space P(S,V)>0 ⊗ (detQS)⊗n of partitions of S with parts labelled by elements

of V , subject to certain conditions on the degrees of allowed labels. In the range

∗ < 2n, any labelled partition ({Pi}, {ci}) of degree
∑

n(|Pi | − 2) + |ci | is a

disjoint union of the following indiscrete labelled partitions:

(i′) parts of size 0 with label of degree > 2n;

(ii′) parts of size 1 with label of degree > n;
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(iii′) parts of size 2 with label of degree > 0;

(iv′) parts of size 3 with label of degree > 0.

The passage to the further quotient

[
RV ⊗ H(g)⊗S

]G ′
g −→

[
RV

(κLi
| 4i − 2n > 0)

⊗ H(g)⊗S

]G ′
g

imposes the relation that a part of size 0 with label Li is 0.

The map Ḡ(S,P)(1) → G(S,V)
∼

−→ P(S,V)>0 ⊗ (detQS)⊗n sends a graph

to the partition of S induced by the connected components of the graph, each with

label given by the product of the labels in V of its legs. In the range ∗ < 2n and

for g sufficiently large. this map provides a bijective correspondence between

connected components and indiscrete partitions as long as we set parts of size 0

with label Li to 0:

• The parts of type (i′) arise as follows: those with label pi p j come from graphs

of type (i) with labels pi , p j ∈ P , those with label pi p j pk come from graphs

of type (ii) with labels pi , p j , pk ∈ P , and those with label epi come graphs

of type (iii) with label pi ∈ P . Because for 2n < 4i < 4n the monomial pi has

nonzero coefficient in Li , these are all nonzero parts of type (i′) in the range

∗ < 2n.

• A part of type (ii′) comes from a graph of type (i) if its label is pi , from a graph

of type (ii) if its label is pi p j , and from a graph of type (iii) if its label is e.

• A part of type (iii′) comes from either from a graph of type (i) with both labels

in S, or a graph of type (ii) with two labels in S and one in P .

• A part of type (iv′) comes from a graph of type (iii) with all labels in S.

In degrees ∗ < 2n, a graph can contain at most a single connected component

of type (ii) or (iii) and a partition can contain at most one part corresponding

to such a connected component. Hence this bijective correspondence between

connected components and indiscrete partitions gives rise to one between graphs

and partitions.

REMARK 5.6. This computation is related to work of Berglund and Madsen

on block diffeomorphisms [BM20]. Let D̃iff(Wg, D2n) denote the simplicial

group of block diffeomorphisms of Wg fixing D2n ⊂ Wg pointwise, which

can be identified with block diffeomorphisms of Wg,1 := Wg \ int(D2n) fixing

∂Wg,1 pointwise. This has a map to the path components of the homotopy
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automorphisms of Wg,1 fixing ∂Wg,1 pointwise, whose kernel we shall denote

by D̃iffJ (Wg, D2n).

The action of a homotopy automorphism of Wg,1 on H(g) preserves

both the intersection form and its quadratic refinement, so there is a further

map π0(haut∂(Wg,1)) → G ′
g. Berglund and Madsen prove that the action of

π0(haut∂(Wg,1)) on H ∗(BD̃iffJ (Wg, D2n);Q) factors over G ′
g. Since the map

π0(haut∂(Wg,1)) → G ′
g has finite kernel, it follows from a Serre spectral

argument that the inclusion induces an isomorphism of G ′
g-representations

H ∗(BT̃or(Wg, D2n);Q)
∼=

−→ H ∗(BD̃iffJ (Wg, D2n);Q)

if we let T̃or(Wg, D2n) be the subgroup of the block diffeomorphisms of those

components that map to the identity in G ′
g. Furthermore, Berglund and Madsen

prove there is an isomorphism of G ′
g-representations

H ∗(BD̃iffJ (Wg, D2n);Q) ∼= H ∗
CE(gg)⊗ S∗(H(g)⊗ P),

where H ∗
CE(gg) denotes Chevalley–Eilenberg cohomology of a certain graded

Lie algebra gg and P is (π∗(G/O) ⊗ Q)∨[−n]>0, which can be identified with

(π∗(BO) ⊗ Q)∨[−n]>0 using the rational homotopy equivalence G/O → BO.

As H ∗
CE(gg)⊗ S∗(H(g)⊗ P) is an algebraic representation of G ′

g, the map

H ∗(BT̃or(Wg, D2n);Q) −→ H ∗(BTor(Wg, D2n);Q)

factors over H ∗(BTor(Wg, D2n);Q)alg.

Since we can define twisted Miller–Morita–Mumford classes on block

bundles, cf. Remark 3.7, the homomorphism

H ∗(BT̃or(Wg, D2n);Q) −→ H ∗(BTor(Wg, D2n);Q)alg (5.5)

is surjective for g sufficiently large. In degrees ∗ < 2n, the groups H ∗
CE(gg) are

concentrated in total degrees 0 and n, and given by Q and Y [n], respectively.

Using Proposition 5.5, we see that in this range the map (5.5) is a surjection

between vector spaces of the same dimension and hence an isomorphism.

6. Additive structure

Given Theorem 4.1 it is reasonable to ask for an explicit description of the

multiplicities in H ∗(BTor(Wg, D2n);Q) of the various irreducible algebraic

G ′
g-representations, which by Theorem 2.5 are the Vλ(H(g))’s. This can be

reduced to a manipulation of Schur functions: by Theorem 4.1 and the final
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part of Proposition 2.16, in the stable range the multiplicity of Vλ(H(g))

in H ∗(BTor(Wg, D2n);Q) is the same as the multiplicity of Sλ in the Σq-

representation

Q ⊗Q[κLi
|4i−2n>0] P([q],V)′>0 ⊗ (detQ[q])⊗n,

and this can be analysed quite effectively with the theory of symmetric functions.

6.1. Recollection on symmetric functions. We follow the exposition of

Garoufalidis–Getzler [GG17, Section 2]. Let Λ denote the ring of symmetric

functions, the inverse limit limk Z[x1, . . . , xk]
Σk formed in the category of graded

rings where the xi are placed in grading 1. Write Λq for the piece of grading q .

Let Λ̂ =
∏

q Λq denote the completion ofΛwith respect to the filtration induced

by this grading. As usual denote by ek the kth elementary symmetric function, by

hk the kth complete symmetric function, and by pk the kth power sum function.

For example, e2 =
∑

i< j xi x j , h2 =
∑

i6 j xi x j and p2 =
∑

i x2
i . Both the ek and

the hk provide a set of polynomial generators for Λ, and the pk form a set of

polynomial generators for Λ⊗ Q.

6.1.1. Symmetric groups. For a group G, let R(G) denote the group-

completion of the monoid of isomorphism classes of finite-dimensional

G-representations under direct sum. Similarly, let R(FB) denote the group-

completion of the monoid of isomorphism classes of objects of (Q-modd)FB,

that is, representations of the category FB into finite-dimensional (which is the

same as dualizable) vector spaces, under objectwise direct sum. This has the

structure of a commutative ring given by Day convolution of functors. There are

restriction maps R(FB) → R(Σq) for each q , and taking them all together gives

an isomorphism

R(FB) −→
∏

q>0

R(Σq).

The preimage of
⊕

q>0 R(Σq) under this map consists of (differences of) finite

length representations of FB. As a Day convolution of finite length functors

again has finite length, there is an induced multiplication.

There are homomorphisms of abelian groups

chq : R(Σq) −→ Λq

V 7−→ chq(V ) :=
∑

|λ|=q

χV (Oλ)
pλ1

· · · pλ`

1λ1λ1!2λ2λ2! · · · `λ`λ`!
,
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where χV (Oλ) is the value of the character of V on the conjugacy class Oλ of

cycle type λ. For example, given a partition λ of q the irreducible representation

Sλ of Σq is sent by chq to the Schur function sλ. In particular, the trivial

representation is sent to hq and the sign representation det to eq .

These homomorphisms are in fact isomorphisms and combine to give a ring

isomorphism

ch :
⊕

q

R(Σq) −→ Λ

when the domain is given the product by Day convolution. Similarly, they

combine to give a ring isomorphism

ch : R(FB) =
∏

q>0

R(Σq) −→ Λ̂.

As the Sλ give a Z-basis for
⊕

q R(Σq), the sλ give a Z-basis for Λ.

More generally, if gR(FB) denotes the group-completion of the monoid

of isomorphism classes of objects of Gr(Q-modd)FB, that is, representations

of the category FB into nonnegatively graded vector spaces which are finite-

dimensional in each degree, then we have a ring isomorphism gR(FB) ∼=
R(FB)[[t]] by extracting homogeneous pieces. This gives an isomorphism

ch : gR(FB)
∼
→ Λ̂[[t]].

The category Gr(Q-modd)FB has another monoidal structure, the composition

product ◦, given by

(F ◦ G)(q) =

∞⊕

n=0

F(n)⊗Σn

( ⊕

k1,...,kn>0,
∑

ki =q

Ind
Σq

Σk1
×···×Σkn

G(k1)⊗· · ·⊗ G(kn)

)
.

This construction is formed in the symmetric monoidal category Gr(Q-modd),

whose symmetry includes a sign given by the Koszul sign rule. Under the

isomorphism above, this induces an associative product ◦ on Λ̂[[t]]. On Λ̂ this

is given by plethysm of symmetric functions, and its extension to Λ̂[[t]] is

characterized by pk ◦ x = x k for all x , and t-linearity in the first variable.

6.1.2. An involution. There is an involution ω : Λ→Λ given by ω(ek)= hk . It

is easy to see that this satisfies ω(pk) = (−1)k−1 pk for all k, and hence that under

the isomorphisms chq it corresponds to tensoring with the sign representation of

Σq .

6.1.3. Representations of G ′
g. Recall that H(g) denotes 2g-dimensional

rational vector space equipped with an ε-symmetric form λ : H(g)⊗ H(g)→ Q,
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for ε ∈ {−1, 1}, and Oε(H(g)) ⊂ GL(H(g)) denotes the subgroup of

those linear isomorphisms which preserve λ. In the branching rule for

Oε(H(g)) ⊂ GL(H(g)), the irreducible GL(H(g))-representation Sλ(H(g))

restricted to Oε(H(g)) decomposes as

Res
GL(H(g))

Oε (H(g))
(Sλ(H(g))) ∼= Vλ(H(g))⊕

⊕

µ
|µ|<|λ|

aλ,µVλ(H(g))

for certain multiplicities aλ,µ (and which may be given in terms of Littlewood–

Richardson coefficients). We may recursively define elements s〈λ〉 of Λ by

s〈λ〉 := sλ −
∑

µ
|µ|<|λ|

aλ,µs〈µ〉.

By the upper-triangularity of this definition, the s〈λ〉 also form a Z-basis for Λ,

and there is therefore an automorphism of abelian groups

D : Λ −→ Λ

sλ 7−→ s〈λ〉.

There are ring homomorphismsΛ→ R(G ′
g) given by sending ek toΛk(H(g)),

which therefore send s〈λ〉 to Vλ(H(g)).

6.2. Evaluating the character. We can obtain the Poincaré series in Λ[[t]]

(and hence in R(G ′
g)[[t]]) of the graded G ′

g-representation H ∗(BTor(Wg,

D2n);Q)alg as g → ∞ as follows. By interpreting the calculation in Theorem 4.1

using the last part of Proposition 2.16 we see that this Poincaré series is given

by applying D to the character of

⊕

q>0

(
Q ⊗Q[κLi

|4i−2n>0] (P([q],V)′>0 ⊗ (detQq)⊗n)
)

∈
⊕

q>0

R(Σq).

Using the fact that ch is a ring homomorphism and sends the operation of

tensoring with det to the involution ω, we see that the Poincaré series is obtained

by applying D to

ωn

(∑

q>0

chq

(
Q ⊗Q[κLi

|4i−2n>0] P([q],V)′>0

))
∈ Λ[[t]]. (6.1)

To evaluate this, note that P([q],V)′>0 is a free P(∅,V)>0 = Q[κc | c ∈ B>2n]-

module, and so by the proof of Theorem 4.1 it is a free Q[κLi
| 4i − 2n > 0]-

module (we already used this observation in the proof of Proposition 4.4). Thus
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we have
∑

q>0

chq

(
Q ⊗Q[κLi

|4i−2n>0] P([q],V)′>0

)

=

( ∏

4i>2n

(1 − t4i−2n)

)
·
∑

q>0

chq

(
P([q],V)′>0

)
.

To understand the second factor, we observe that the graded representation

⊕

q>0

P([q],V)′>0 ∈

(⊕

q>0

R(Σq)

)
[[t]]

may be expressed, in the larger ring R(FB)[[t]], in terms of a composition

product Q ◦ B, where Q and B are as follows:

(i) Q denotes the graded representation whose qth component of is the trivial

1-dimensional representation (in degree 0) for all q .

(ii) B denotes the graded representation whose qth component is the trivial Σq-

representation with basis the set of allowed labels in B for parts of size q,

where a label c is given degree |c|+n(q−2). A labelling of a partition of the

finite set [q] by elements of B is allowed here if each part of size 0 has label

of degree > 2n, each part of size 1 has label of degree > n, and no parts of

size 2 are labelled by 1 ∈ B. That is, B(q) is the graded vector space with

basis B if q > 2 and with smaller basis according to the aforementioned

conditions for q = 0, 1, 2.

Recall that chq of the trivial representation is hq , so we get that

ch(Q) =

∞∑

q=0

hq ∈ Λ̂[[t]]

and (writing P(V ) ∈ Z[[t]] for the Poincaré series of a graded vector space V )

ch(B) = h0 P(V>2n)t
−2n + h1 P(V>n)t

−n + h2 P(V>0)

+

∞∑

q=3

hq P(V)tn(q−2) ∈ tΛ[[t]].

We may easily analyse these Poincaré series, as V = Q[e, p
d

n+1

4
e
, . . . , pn−1] so

we have

P(V) =
1

1 − t2n
·

n−1∏

i=d
n+1

4
e

1

1 − t4i
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so we can write

P(V>2n) = P(V)− (1 + t2n + t
4d

n+1

4
e + · · · + t

4b
n

2
c
),

P(V>n) = P(V)− 1 and P(V>0) = P(V)− 1.

Thus we may write ch(B) as

ch(B) =
1

t2n

(
P(V)

( ∞∑

q=0

hq tnq

)

− (h0(1 + t2n + t
4d

n+1

4
e + · · · + t

4b
n

2
c
)+ h1tn + h2t2n)

)
.

As the composition product is sent to plethysm by ch, we have

∑

q>0

chq(P([q],V)′>0) =

( ∞∑

q=0

hq

)
◦ ch(B).

(Note that as hq ◦ − sends tΛ[[t]] into tqΛ[[t]], and ch(B) ∈ tΛ[[t]], this

plethysm does actually land in Λ[[t]].)

6.3. Example: dimension 6. As an example consider the case 2n = 6, and

compute the character of H ∗(BTor(Wg, D6);Q)alg for g � 0 by evaluating (6.1)

and applying D. In this case, we have

V = H ∗(BSO(6)〈3〉;Q) = Q[p1, p2, e],

and so P(V) = 1

1−t6 · 1

1−t4 · 1

1−t8 = 1 + t4 + t6 + 2t8 + t10 + 3t12 + O(t14). Thus

we have

ch(B) =
1

t6

(
1

1 − t6
·

1

1 − t4
·

1

1 − t8

( ∞∑

q=0

hq t3q

)

− (h0(1 + t6 + t4)+ h1t3 + h2t6)

)

= h1t + 2h0t2 + (h3 + h1)t
3 + (h2 + h0)t

4 + O(t5).

(The following calculations were performed in Sage [Sag19].) Applying∑∞

q=0 hq ◦ − to this, then expressing the answer in terms of sλ’s gives

1 + s1t + (2 + s2)t
2 + (3s1 + 2s3)t

3 + (4 + s12 + 4s2 + s3,1 + 2s4)t
4 + O(t5).
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Applying ω and then D sends sλ to s〈λ′〉, so transforms this to

1+s〈1〉t+(2+s〈12〉)t
2+(3s〈1〉+2s〈13〉)t

3+(4+s〈2〉+4s〈12〉+s〈2,12〉+2s〈14〉)t
4+O(t5).

Multiplying by
∏

4i>6(1 − t4i−2n) = 1 − t2 + O(t5) gives the result,

1+s〈1〉t+(1+s〈12〉)t
2+(2s〈1〉+2s〈13〉)t

3+(2+s〈2〉+3s〈12〉+s〈2,12〉+2s〈14〉)t
4+O(t5),

so for 2n = 6 and large enough g we can read off

H 1(BTor(Wg, D6);Q)alg ∼= V1,

H 2(BTor(Wg, D6);Q)alg ∼= V12 + V0,

H 3(BTor(Wg, D6);Q)alg ∼= 2V13 + 2V1,

H 4(BTor(Wg, D6);Q)alg ∼= 2V14 + V2,12 + 3V12 + V2 + 2V0.

7. Variants

There are two close variants of Diff(Wg, D2n), namely the group Diff+(Wg, ∗)

of those orientation-preserving diffeomorphisms of Wg which preserve a point

∗ ∈ Wg, and the group Diff+(Wg) of all orientation-preserving diffeomorphisms.

Each of these has its associated Torelli subgroup, denoted in the evident way, and

we will briefly explain how the cohomology of BTor+(Wg, ∗) and BTor+(Wg)

may be deduced from our previous calculations.

Firstly, there is a fibration sequence

BTor(Wg, D2n) −→ BTor+(Wg, ∗) −→ BGL2n(R) ' BSO(2n) (7.1)

where the right-hand map is given by taking the derivative at the marked

point. This is a fibration of spaces with G ′
g-action, giving an induced action on

rational cohomology. The statement of the following result is best understood by

consulting its proof.

LEMMA 7.1. The fibration (7.1) satisfies the Leray–Hirsch property on maximal

algebraic subrepresentations in the stable range.

Proof. Consider the Serre spectral sequence {E p,q
r } for the fibration sequence

BDiff(Wg, D2n) −→ BDiff+(Wg, ∗) −→ BGL2n(R) ' BSO(2n)

with H(g)⊗S
Q -coefficients. By Theorem 3.15 H ∗(BDiff(Wg, D2n);H(g)⊗S

Q ) is

generated by twisted Miller–Morita–Mumford classes, and by construction these
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are defined in H ∗(BDiff+(Wg, ∗);H(g)
⊗S
Q ), so this spectral sequence satisfies

the Leray–Hirsch property and collapses at E2. This gives an isomorphism

H ∗(BDiff+(Wg, ∗);H(g)
⊗S
Q )

∼= H ∗(BSO(2n);Q)⊗ P(S,V)>0 ⊗ (detQS)⊗n

(7.2)

of H ∗(BSO(2n);Q)-modules.

If the cohomology of BTor(Wg, D2n) is finite-dimensional in degrees ∗ <

N then by the Serre spectral sequence for (7.1) that of BTor+(Wg, ∗) is too.

Repeating the argument of Theorem 4.1 with the input (7.2) shows that there is

a map

H ∗(BSO(2n);Q)⊗
i∗(K ∨)⊗d(s)Br

(
P(−,V)′>0 ⊗ det⊗n

)

(κLi
| 4i − 2n > 0)

−→ H ∗(BTor+(Wg, ∗);Q)
alg

of H ∗(BSO(2n);Q)-modules which is an isomorphism in degrees ∗ 6 N and a

monomorphism in degree N + 1.

Secondly, there is a fibration sequence

Wg −→ BTor+(Wg, ∗)
π

−→ BTor+(Wg), (7.3)

which may be identified with the universal Wg-bundle over BTor+(Wg).

LEMMA 7.2. The fibration (7.3) satisfies the Leray–Hirsch property, as long as

n is even or g 6= 1.

Proof. This spectral sequence has three rows, the 0th, nth, and 2nth. The

fundamental group of BTor+(Wg) acts trivially on the cohomology of the fibre

Wg, by definition of the Torelli group, so this spectral sequence has a product

structure. To show that the Leray–Hirsch property is satisfied we must show that

it collapses at the E2-page. The Euler class e(Tπ ) of the vertical tangent bundle

of this fibre bundle restricts to a nonzero class in H 2n(Wg;Q) under the stated

conditions, meaning that there can be no differentials out of the 2nth row. On the

other hand, we have

π!(e(Tπ ) · π∗(x)) = χ(Wg) · x

showing that π∗ is injective under the stated conditions, meaning that there can

be no differentials into the 0th row.

Combining these two results with the method described in Section 6.2,

one can extract the Poincaré series in Λ[[t]] of H ∗(BTor+(Wg, ∗);Q)
alg or
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H ∗(BTor+(Wg);Q)
alg, in the stable range. Describing these as rings seems to

be an interesting problem: the ring H ∗(BTor+(Wg, ∗);Q)
alg can be addressed

with the methods of this paper, but the ring H ∗(BTor+(Wg);Q)
alg seems to be

difficult to describe well.

8. Discussion of the case 2n = 2

Above we gave two techniques to make our computation of the cohomology

of Torelli spaces more explicit: Section 5 gives a presentation of cohomology

ring and Section 6 tells us how to compute the characters of the cohomology

groups. We shall now apply both to the case 2n = 2.

8.1. Additive structure. Johnson has shown [Joh85] that

H 1(BTor∂(Wg, D2);Q) ∼= Λ3(H(g))

for g > 3, which is finite- dimensional, so Theorem 4.1 gives an isomorphism

in degrees ∗ 6 2 and a monomorphism in degree ∗ = 3. We may therefore use

this result to calculate H 2(BTor(Wg, D2);Q)alg as a Sp2g(Z)-representation for

g � 0, and to estimate H 3(BTor(Wg, D2);Q)alg from below.

THEOREM 8.1. For g � 0 we have

H 2(BTor(Wg, D2);Q)alg ∼= 2V12 + V2,12 + 2V14 + V22,12 + V16 .

For g � 0 we have

H 3(BTor(Wg, D2);Q)alg
> V1 + V2,1 + 3V13 + 2V22,1 + 3V2,13 + V3,2,12

+ 2V23,1 + V3,23 + 4V15 + 2V22,13 + V32,13

+ 2V2,15 + V23,13 + 2V17 + V22,15 + V19,

with equality if H 2(BTor(Wg, D2);Q) is finite-dimensional for g � 0.

Proof. We use the method described in Section 6.2, in the case 2n = 2, and rely

on the notation from that section. In this case we have

V = H ∗(BSO(2n);Q) = Q[e]

and so P(V) = 1

1−t2 = 1 + t2 + O(t4). Thus we have

ch(B) =
1

t2

(
1

1 − t2

( ∞∑

q=0

hq tq

)
− (h0(1 + t2)+ h1t + h2t2)

)

= (h3 + h1)t + (h2 + h4 + 1)t2 + (h5 + h3 + h1)t
3 + O(t4).
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(The following calculations were again performed in Sage [Sag19].) Applying∑∞

q=0 hq ◦ − to this, then expressing the answer in terms of sλ’s gives

1 + (s3 + s1)t + (2s4 + s4,2 + s3,1 + 1 + 2s2 + s6)t
2

+ (s9 + 3s4,1 + s4,2,1 + s7,2 + 2s3,2 + 4s3 + 2s7 + 2s1 + 2s5,2

+ s6,3 + 4s5 + s5,2,2 + 2s6,1 + s2,1 + 2s4,3 + s4,4,1)t
3 + O(t4).

Applying ω and then D sends sλ to s〈λ′〉 so transforms this to

1 + (s〈13〉 + s〈1〉)t + (2s〈14〉 + s〈22,12〉 + s〈2,12〉 + 1 + 2s〈12〉 + s〈16〉)t
2

+ (s〈19〉 + 3s〈2,13〉 + s〈3,2,12〉 + s〈22,15〉

+ 2s〈22,1〉 + 4s〈13〉 + 2s〈17〉 + 2s〈1〉 + 2s〈22,13〉

+ s〈23,13〉 + 4s〈15〉 + s〈32,13〉 + 2s〈2,15〉 + s〈2,1〉 + 2s〈23,1〉 + s〈3,23〉)t
3 + O(t4).

Multiplying by
∏

4i>2(1 − t4i−2n) = 1 − t2 + O(t4) gives the result,

1 + (s〈13〉 + s〈1〉)t + (2s〈14〉 + s〈22,12〉 + s〈2,12〉 + 2s〈12〉 + s〈16〉)t
2

+ (s〈19〉 + 3s〈2,13〉 + s〈3,2,12〉 + s〈22,15〉

+ 2s〈22,1〉 + 3s〈13〉 + 2s〈17〉 + s〈1〉 + 2s〈22,13〉

+ s〈23,13〉 + 4s〈15〉 + s〈32,13〉 + 2s〈2,15〉 + s〈2,1〉 + 2s〈23,1〉 + s〈3,23〉)t
3 + O(t4).

Extracting the coefficient of t we obtain

H 1(BTor∂(Wg, D2);Q)alg ∼= V1 + V13
∼= Λ3(H(g)),

compatible with Johnson’s theorem. Extracting the coefficients of t2 and t3 gives

the two claimed calculations.

By Lemma 7.1, in the stable range the Poincaré series for BTor+(Wg, ∗)

is obtained by multiplying that for BTor(Wg, D2) by the Poincaré series for

BSO(2), namely 1

1−t2 = 1 + t2 + O(t4), so it is

1 + (s〈13〉 + s〈1〉)t + (1 + s〈16〉 + s〈22,12〉 + 2s〈14〉 + s〈2,12〉 + 2s〈12〉)t
2

+ (s〈19〉 + s〈22,15〉 + 2s〈17〉 + 2s〈23,13〉 + 2s〈2,15〉 + s〈32,13〉 + 2s〈22,13〉 + 4s〈15〉

+ s〈3,23〉 + 2s〈23,1〉 + s〈3,2,12〉 + 3s〈2,13〉

+ 2s〈22,1〉 + 4s〈13〉 + s〈2,1〉 + 2s〈1〉)t
3 + O(t4).

Considering the proof of Lemma 7.1 carefully, it is possible to deduce that

H 3(BTor+(Wg, ∗);Q)
alg contains the indicated Sp2g(Z)-representation.

By Lemma 7.2, in the stable range the Poincaré series for BTor+(Wg) is

obtained by dividing that for BTor+(Wg, ∗) by the Poincaré series for Wg,
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namely 1 + s〈1〉t + t2. The inverse of this series is 1 − s〈1〉t + (s〈12〉 + s〈2〉)t
2 −

(s〈1〉 + s〈13〉 + 2s〈2,1〉 + s〈3〉)t
3 + O(t4), so in the stable range the Poincaré series

for BTor+(Wg) is

1 + s〈13〉t + (s〈12〉 + s〈14〉 + s〈16〉 + s〈22,12〉)t
2

+ (s〈13〉 + s〈1〉 + 2s〈15〉 + s〈17〉 + s〈19〉 + s〈2,13〉 + s〈2,15〉 + s〈22,1〉

+ s〈22,13〉 + s〈22,15〉 + s〈23,1〉 + 2s〈23,13〉 + s〈3,23〉 + s〈32,13〉)t
3 + O(t4).

Considering the proof of Lemma 7.2, it follows that H 3(BTor+(Wg);Q)
alg

contains the indicated Sp2g(Z)-representation.

It is interesting to compare these results with the literature. The work of

Johnson [Joh85] (or our theory) provides a Sp2g(Z)-equivariant isomorphism

τ : H1(BTor+(Wg);Q) −→ V13,

the Johnson homomorphism. This provides a Sp2g(Z)-equivariant ring

homomorphism τ ∗ : Λ∗V13 → H ∗(BTor+(Wg);Q). Hain has shown in [Hai97]

that its image in degree 2 is precisely V12 + V14 + V16 + V22,12 , and this may

be recovered from our calculation above along with the discussion of the ring

structure in the following section. Sakasai has shown in [Sak05] that its image

in degree 3 is either

V13 + 2V15 + V17 + V19 + V2,13 + V2,15 + V22,1

+ V22,13 + V22,15 + V23,1 + V23,13 + V3,23 + V32,13

or the same with V1 added on. Furthermore, he shows that the V1-term is present

if and only if

κe3 − (2 − 2g)e2 6= 0 ∈ H 4(BTor+(Wg, ∗);Q). (8.1)

REMARK 8.2. Sakasai’s expression has one fewer copies of V23,13 than our

expression, and in fact the decomposition of Λ3(V13) into irreducibles contains

a single V23,13 . However, there is no contradiction: this simply expresses the fact

that the ring H ∗(BTor+(Wg);Q)
alg is not generated by the image of the Johnson

homomorphism.

Using our results we are able to resolve the ambiguity in Sakasai’s result, and

hence show that the inequation (8.1) holds. By our graphical interpretation, the

image of the composition

Λ3(V13)
τ∗

−→ H 3(BTor+(Wg);Q) −→ H 3(BTor(Wg, D2);Q)

after applying [− ⊗ V1]
Sp2g(Z) is the subspace of those elements which can be

represented by trivalent graphs with one leg, three internal vertices, and no loops.
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Figure 9. A trivalent graph with one leg, three internal vertices, and no loops.

There is such a graph, displayed in Figure 9, which gives a map V1 → Λ3(V13)

which when composed with the above and contracting all internal edges and

loops is seen to be ±κe2 : V1 → H 3(BTor(Wg, D2);Q) which we have shown

to be nonzero. It follows that τ ∗(Λ3(V13)) does indeed contain a copy of V1,

resolving the ambiguity in Sakasai’s result.

One of the referees has pointed out a further conclusion implicit in the above

argument:

COROLLARY 8.3. On the universal Wg-bundle π : E → BTor(Wg, D2) the

class e(Tπ E)2 is nonzero.

Proof. For a nonzero v ∈ V1 the class κe2(v) ∈ H 3(BTor(Wg, D2);Q) is nonzero:

by construction this is given by applying the Gysin map to the class e(Tπ E)2·ι(v),

so in particular e(Tπ E)2 6= 0.

8.2. Ring structure. Let us now use the results of Section 5 to compute

the algebraic part of H ∗(BTor(Wg, D2);Q) in the stable range, assuming the

conjecture that these cohomology groups are finite-dimensional in a range of

degrees tending to infinity with g.

In this case H ∗(B;Q) = H ∗(BSO(2);Q) = Q[e]. Combining Theorem 4.1

and Theorem 5.2 we see that the ring H ∗(BTor(Wg, D2);Q)alg is generated by

κei for i > 2, κei (v1) for i > 1, and κ1(v1 ⊗ v2 ⊗ v3). By relation (β), κei is

decomposable for i > 2 so can be eliminated from the generators. By relation

(γ ), κei (v1) is decomposable for i > 2, so can be eliminated from the generators.

By relation (δ), κe(v1) = κ1(v1 ⊗ ω) so this can also be eliminated from the

generators. This leaves just the classes κ1(v1 ⊗v2 ⊗v3) as generators. By relation

(α) these provide a copy of the graded representation Λ3V1[1], so there is a

surjection

Λ∗[Λ3V1[1]] −→ H ∗(BTor(Wg, D2);Q)alg.

The relations (ε) span a certain subspace

V22 + V12 + V0 6 Λ2(Λ3V1) = V16 + 2V14 + 3V12 + 2V0 + V22,12 + V22 + V2,12
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described in Lemma 5.4. The induced map

Λ∗[Λ3V1[1]]

(the relations (ε), κL1
, κL2

, . . .)
−→ H ∗(BTor(Wg, D2);Q)alg

is an isomorphism, which may be seen as follows:

As in the proof of Proposition 5.5, injectivity may be checked by tensoring

with V ⊗S
1 and taking Sp2g(Z)-invariants for all finite sets S. Note that κLi

=

ciκe2i for a nonzero scalar ci . Using the graphical formalism of the proof of

Theorems 5.1 and 5.2 the left-hand side is given by the space of trivalent graphs

with orientation data, and legs in bijection with S, modulo (ε) and the graphs

containing a connected component with no legs and even first Betti number

(these are the κe2i ’s). The right-hand side is given by partitions of S with parts

labelled by ei ’s, where parts of size zero cannot be labelled by a ei for i even

or 1, and parts of size 1 cannot be labelled by e0. The map is given by sending

a graph to the induced partition of S given by connected components of the

graph, and a part is given label ei if the first Betti number of the connected graph

corresponding to that part is i . Given these descriptions it is easy to see the map

is injective as in the profs of Theorems 5.1 and 5.2.

REMARK 8.4. Adding κL1
to the relations (ε) gives a certain subspace V22 +

V12 + 2V0 6 Λ2(Λ3V1) where all summands apart from V12 are unambiguous,

and under the decomposition Λ3V1 = V13 ⊕ V1 the copy of V12 is such that it

has nontrivial projection to both Λ2(V13) and Λ2(V1). The quadratic (graded)

commutative algebra
Λ∗[Λ3V1[1]]

(2V0 + V12 + V22)
(8.2)

is precisely the quadratic dual of the quadratic presentation obtained by Hain

[Hai97] (see Habegger–Sorger [HS00] for this case) of the Mal’cev Lie algebra

tg,1 associated to the group Tg,1 := π0(Tor(Wg, D2)). If the Lie algebra tg,1 is

Koszul, its continuous Lie algebra cohomology is given by (8.2), and this is also

the cohomology of the Mal’cev completion T̂ g,1. Thus the natural map

H ∗(T̂g,1;Q) −→ H ∗(Tg,1;Q)
alg

would be surjective with kernel the ideal (κL2
, κL3

, . . .), in a stable range.

9. Explicit ranges

The ranges of cohomological degrees in which our results apply come from

three places:
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(i) homological stability results for the BDiff(Wg, D2n);

(ii) the Borel vanishing theorem, that is, Theorem 2.3;

(iii) the stability range for the invariant theory of Sp2g(C) and O2g(C).

We expect that the currently known ranges for (i) are likely not optimal, so we

have preferred not to state a particular range in our results. In this section we

explain the ranges which can be deduced from the current state of the art.

9.1. Ranges for Theorem 3.15. In the proof of Theorem 3.15,

homological stability results and stable homology computation for the space

BDiff θ×Y (Wg, D2n; `D2n )`g
are used. In particular, we used that there is a map

α : BDiff θ×Y (Wg, D2n; `D2n )`g
−→ Ω∞

0 (MTθ ∧ Y+)

which is an isomorphism on cohomology in range of degrees tending to

infinity with g, which can be found in [GRW18, GRW17] for 2n > 6 and

[Bol12, RW16] for 2n = 2. The case that is used in the remainder of the paper is

that of θ : BSO(2n)〈n〉 → BSO(2n). In this case, the known ranges are ∗ 6
g−3

2

when 2n > 6 and ∗ 6
2g−2

3
when 2n = 2; these will also be the ranges for

Theorem 3.15.

9.2. Ranges for Theorem 4.1. The Borel vanishing theorem and its

consequences are used in the proof of Theorem 4.1, which also relies on

Theorem 3.15. Explicit ranges for Theorem 2.3 already appeared in Borel’s

original papers, but in Theorem 2.3 we have given an improved version which

was stated in [Hai97] without proofs, and proven in [Tsh19] (this is likely

optimal [Tsh17]). This range is linear of slope 1 in g, which is larger than the

range for Theorem 3.15. Thus the range in Theorem 4.1 is ∗ 6
g−3

2
for 2n > 6

(and ∗ 6
2g−2

3
for 2n = 2 in the range in which it applies).

9.3. Ranges for Theorem 8.1. The first part of Theorem 8.1 relies on

Theorem 4.1, and also uses Johnson’s computation of H 1 of the Torelli group

as input. To get the maximal algebraic subrepresentation of H 2, in addition to

requiring g > 3 for Johnson’s result we also need g > 3 for Borel vanishing in

degrees 6 2, and g > 4 to get the input from Theorem 3.15. The conclusion is

that the first part of Theorem 8.1 holds for g > 4.

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fmp.2020.5
Downloaded from https://www.cambridge.org/core. IP address: 24.91.38.35, on 09 Jun 2020 at 03:44:17, subject to the Cambridge Core



A. Kupers and O. Randal-Williams 80

9.4. Ranges for Proposition 2.17 and Corollary 2.18. The range in

Proposition 2.17 has a slightly different source, namely the range given by

the first and second fundamental theorems of invariant theory for Og,g and Sp2g

as we have encoded in Theorem 2.6. In fact, the range in Theorem 2.6 for Sp2g

is 2g > |S| as we have stated, but can be improved to 4g > |S| for Og,g. This

may be deduced from a careful reading of [Pro07, Section 11.6.3]. Thus when

n is even the conclusion of Proposition 2.17 can be relaxed to ‘when evaluated

on sets S with |S| 6 4g − N + 1’. There is a similar modest improvement to

Corollary 2.18.

9.5. Ranges for Theorem 5.1. The source of the map φ : RV
pres → RV is

generated by the classes κc(v1 ⊗ · · · ⊗ vr ) of degree |c| + n(r − 2) > 0. Such

classes are detected by applying [− ⊗ H(g)⊗r ]G ′
g : let us say they have weight r .

In the cases of interest the space of labels has the form V = Q{1} ⊕ V>n . The

smallest homological degree for such classes of weight 6 1 is therefore 1, for

weight 2 is n, and for weight r > 3 is n(r − 2). As n > 3, it follows that in

homological degree d the kernel Ker(φ) has weight 6 d, that is, it vanishes if

and only if in this degree [φ ⊗ H(g)⊗S]G ′
g is injective for all sets S with |S| 6 d.

The proof of Theorem 5.1 uses Proposition 2.17 to determine the range of S’s

and homological degrees in which

P(S,V)>0 ⊗ det(QS)
⊗n

−→ [RV ⊗ H(g)⊗S]G ′
g ,

is an isomorphism. By a similar count to the above, the functor P(−,V)′>0 in

degree d vanishes on sets T with |T | > d + 1, and so by Proposition 2.17 this

map is an isomorphism in degree d as long as |S| 6 2g − d. By the discussion

in the previous paragraph we only need it to be an isomorphism for |S| 6 d , so

in total need d 6 g.

Thus for Theorem 5.1 to hold in degrees ∗ 6 d it is enough that g > d.

Combining it with the discussion in Section 9.4, if n is even it is enough that

2g > d.

This discussion also makes explicit the range in Proposition 4.4.
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