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Abstract

We completely describe the algebraic part of the rational cohomology of the Torelli groups of
the manifolds #¢S" x S”" relative to a disc in a stable range, for 2n > 6. Our calculation is also
valid for 2n = 2 assuming that the rational cohomology groups of these Torelli groups are finite-
dimensional in a stable range.
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(secondary)

1. Introduction

In the study of the cohomology of the mapping class group I, of the genus g
surface X,, an important role is played by its normal subgroup 7, the Torelli
group, consisting of those diffeomorphisms which act trivially on H;(X,; Z).
This is the kernel of the (surjective) homomorphism /I, — Sp,,(Z) which sends
a diffeomorphism to the induced map on H,(X,; Z), and so is equipped with an
outer action of Sp,,(Z). It is a fundamental problem to study the cohomology
H*(T,; Q) and its structure as a Sp,, (Z)-representation, cf. [Joh85, Mor93,
Hai97, Sak05, BHD12, CF12, MPW19].

In this paper we will study the generalization of this problem to all even
dimensions 2n, replacing the surface of genus g by its 2n-dimensional analogue
W, = #55" x §". Most of our results will be for 2n > 6, though our results
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A. Kupers and O. Randal-Williams 2

are also valid in the classical case 2n = 2 conditional on the conjecture that
H*(T,; Q) is finite-dimensional in a range of degrees for large enough g.

Let us explain the variant of the Torelli group we consider and the form of our
main result. Let Diff(W,, D>") denote the topological group of diffeomorphisms
of W, which are equal to the identity near a specified disc D*" C W,, equipped
with the C*°-topology. This acts on the middle homology group H,(W,; Z), and
the Torelli group

Tor(W,, D*") < Diff(W,, D*")
is the normal subgroup of those diffeomorphisms which act trivially on
H,(W,; Z). In the case 2n = 2 this differs from the Torelli group 7, described
above, as we only consider those diffeomorphisms fixing a disc. However, the
difference between the cohomology of these two groups is mild (and described
in Section 7) and it is convenient to work with a fixed disc.

The automorphisms of the middle homology of W, which may be realized by
diffeomorphisms are constrained: they must at least respect the intersection form,
which is (—1)"-symmetric and nondegenerate, giving a homomorphism

Sp,,(Z) if nis odd,

a,: Diff(W,, D*) — G, 1= 0,.(Z) ifniseven
2.8 ’

The image of «, is a certain finite index subgroup G’g < G,, which is an
arithmetic subgroup associated to the algebraic group G € {Sp,,, O, ,}. This
subgroup acts by outer automorphisms on Tor(W,, D**), and so the cohomology
ring H*(BTor(W,, D?); Q) has the structure both of a Q-algebra and of a
G -representation. Writing

H'(BTor(W,, D*); Q)** C H'(BTor(W,, D*); Q)

for the sum of all finite-dimensional G/,-subrepresentations which extend to
representations of G, the goal of this paper is to determine the cohomology ring
H*(BTor(W,, D*"); Q)¢ as a Q-algebra and a G -representation in a range of
degrees tending to infinity with g.

1.1. Some stable cohomology. Before describing H*(BTor(W,, D*"); Q)“¢,
let us recall the description of the stable cohomology of the spaces BG, and
BDiff(W,, D*") for 2n # 4.

The rational cohomology of G, has been determined by Borel [Bor74] in a
range of degrees tending to infinity with g. In this range it is given by
Qlos, 06, 010, . ..] if nis odd,

H*(BG; Q) =
( Q) Q[U4, 03,012, .. ] if nis cven,

for certain classes o,; of degree |0, | = 2i.
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On the cohomology of Torelli groups 3

The rational cohomology of BDiff(W,, D*") in a stable range has been
determined by a combination of work by Harer and Madsen—Weiss [Har85,
MWO07] for 2n = 2 and by Galatius—Randal-Williams [GRW14, GRW18] for
2n > 6. To give a uniform description, let us write ) for the polynomial algebra
in the Euler class e of degree 2n, and the Pontrjagin classes p; of degree 4i, for
i = (%], ...,n—2,n—1, and B for the set of monomials in these generators.
Ifc € B,

W, — E > BDiff(W,, D™

denotes the universal W,-bundle over BDiff(W,, D), and T, E — E denotes
its vertical tangent bundle, then we define the Miller—Morita—Mumford class

= / o(T, E) € H"I">(BDff(W,, D); Q).

Then as long as 2n # 4 the natural map
Ql. | ¢ € Booy] — H*(BDiff(W,, D*); Q)

is an isomorphism in a range of degrees tending to infinity with g.

The interaction between these two calculations is easy to describe. The
Hirzebruch L-classes L£; are certain polynomials in the Pontrjagin classes p;,
and we may write k. for the associated linear combination of «,.’s, which is a
class of degree 4i — 2n. We choose the classes o; in Borel’s theorem to satisfy
kr, = (0g)*(0202i—n)), Which is possible by a theorem of Atiyah [Ati69].

From this discussion we see that the Miller—-Morita—Mumford classes «,
vanish in the rational cohomology of BTor(W,, D**), so there is an induced map

Q[Kc | (&S B>2n]
(kg, |4i —2n > 0)

—> H*(BTor(W,, D*"); Q).

This will give the G/ -invariant part of the cohomology of BTor(W,, D) in a
stable range—as was already shown in the pseudoisotopy stable range by Ebert—
Randal-Williams [ERW15]—but the full cohomology will be much larger.

1.2. Twisted Miller-Morita—Mumford classes. Our description of (the
algebraic part of) the cohomology of BTor(W,, D*") will be in terms of certain
variants of the Miller—Morita—Mumford classes. To describe them, now let

W, — E -~ BTor(W,, D*")

denote the universal W,-bundle over BTor(W,, D), and s : BTor(W,, D) —
E denote the section determined by the centre of the disc D*" C W,. The Serre
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A. Kupers and O. Randal-Williams 4

spectral sequence for = degenerates at £;, and the section s determines a splitting
of the short exact sequence

0 — H"(BTor(W,, D*): Q) = H"(E; Q) —> H"(W,; Q) —> 0,

and hence amap t: H"(W,; Q) — H"(E; Q). Thenfor vy, ..., v, € H"(W,; Q)
and ¢ € B we define

k(U1 ®---®v,) := / (T E)-t(v) -+~ 1(v,) € H "2 (BTor(W,, D*); Q).

These classes generalize the Miller—-Morita—Mumford classes, in the sense that
k(1) =« for1 € Q = H"(W,; Q)®°. Under the action of G, on the cohomology
ring H*(BTor(W,, D*"); Q) these classes transform via the action of G; on the
v; € H"(W,; Q), which is identified with the dual H,(W,; Q)" of the standard
representation of G,.

1.3. The ring presentation. The easiest formulation of our results is as a
presentation of the ring H*(BTor(W,, D*'); Q)¢ in a stable range of degrees,
generated by the classes k.(v; ® --- ® v,) and subject to an explicit collection
of relations. To formulate this theorem we write a,, a, ..., ay, for a basis of
H"(W,; Q), and af, df, ..., agg for the Poincaré dual basis characterized by
(@l -a;, [W,]) = 6.

THEOREM A. If2n > 6 then in a range of degrees tending to infinity with g the
graded-commutative ring H*(BTor(W,, D*); Q)¢ is generated by the classes

k(W ®---®uv,) withr 20,c€B,and|c| +n(r —2) > 0.
A complete set of relations in this range is given by
(i) linearity in each v;;
(1) k(o) @ +++ @ Vo)) = 8IgN(0)" - ke (V1 @ -+ - @ Vy);
(i) Y, k(0 ® Qv Qa;) ky(d QU1 ® - ® V) = kpy(V) ® - V),
iv) Yk ® - ®v, ®a; ®al) = ke (v ® -+ ®V,);
W) &z,(1) =0,

In the case 2n = 2, if H*(BTor(W,, D*); Q) is finite-dimensional for x < N and
g > 0, then this description is valid in degrees x < N for g > O.
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REMARK 1.1.

(i) The presentation in Theorem A is not supposed to be efficient. In Theorem
5.2 we give a smaller but somewhat more complicated presentation, in
which the generators are just the classes «.(1), k.(vy), and x1(v; ® v, ® v3).

(i1)) We describe explicit stability ranges for all the results of this paper in
Section 9.

(iii) No assumption about the finiteness of the cohomology of BTor(W,, D) is
required in the case 2n > 6 because it is indeed finite-dimensional in each
degree: this has been recently proved by the first author [Kup19].

(iv) In a companion paper [KRW19] we prove that for 2n > 6 the G-
representations H' (BTor(W,, D>"); Q) are in fact algebraic. Thus in this
case Theorem A in fact computes the whole cohomology ring in a stable
range.

(v) In dimension 2n = 2 the homology of BTor(W,, D*) cannot be finite-
dimensional in every degree [AkiO1]. However, it is a folk conjecture (see
for example, [Hai06, p. 71]) that the cohomology of BTor(W,, D?) is finite-
dimensional in a range of degrees tending to infinity with g; assuming
this conjecture, Theorem A gives a complete description of the algebraic
subrepresentation of the cohomology of BTor(W,, D?) in a stable range.
We explain further consequences for the case 2n = 2 in Section 8.

1.4. The categorical description. While Theorem A is the most easily
formulated of our results, it is often difficult to answer questions about an
object described by a presentation. Our main result is a different description
of H*(BTor(W,, D*"); Q)¢ in the stable range, of a categorical nature, which
we shall explain in this section.

Theorem A will be deduced from this categorical description, but using
this description it is also mechanical to calculate the character of each G-
representation H'(BTor(W,, D*"); Q)™¢ in the stable range (whereas it is not
clear how to extract this from Theorem A). We will explain how to calculate
such characters in Section 6, and give several examples.

Our categorical description will be in terms of Brauer categories, a notion
which we learnt from Sam-Snowden [SS15]. The description we will give
depends of course on the value of n, but its form also depends on the parity
of n. In this introduction for simplicity we describe the case n even; the case n
odd is similar in spirit but requires a substantial discussion of signs, which we
defer to the body of the text.
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A. Kupers and O. Randal-Williams 6

DEFINITION 1.2. An unordered matching of a finite set is a decomposition of
that set into disjoint pairs. The downward Brauer category dBr has objects finite
sets. A morphism in dBr from S to T is a pair (f, my) of an injection f: T — §
along with an unordered matching mg of S\ f(7T). The composition of such a
morphism with (g, mr): T — U is given by the injection f o g: U < S along
with the unordered matching mg U f(my) of S\ (f o g)(U). Disjoint union
endows dBr with a symmetric monoidal structure.

N

Figure 1. A graphical representation of a morphism (f, mg) in dBr(S, T) from a
6-element set S to a 4-element set 7. The order of crossings is irrelevant.

As we have supposed that n is even for now, the fundamental representation
H(g) of G, is equipped with a nondegenerate symmetric bilinear form
A H(g) ® H(g) — Q. Using it, we may define a functor

K : dBr —> Rep(G,)

to the category of Q-representations of G, given on objects by K (S) = H (g)®5
and on a morphism (f, mg): S — T by

m ®f—l
K(f.ms): H(®)® 25 H(g)® D 28 H(g)®T,

where the first map applies the symmetric pairing A to the matched pairs of S.
Taking Q-linear duals defines a functor KV : dBr** — Rep(Ggf).

Both Rep(G;) and the category Gr(Q-mod) of graded Q-modules may
be considered as subcategories of the category Gr(Rep(G,)) of graded Q-
representations of G, as those graded representations which are concentrated
in degree zero or are trivial, respectively. We can thus use coends to define a
functor

KY ®% —: Gr(Q-mod)®™ — Gr(Rep(G))).

As K is strong symmetric monoidal, KV ®%" — is also strong symmetric
monoidal when the functor category Gr(Q-mod)®" is equipped with the
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On the cohomology of Torelli groups 7

symmetric monoidal structure given by Day convolution. The categorical
formulation of our main result for n even is an identification of the commutative
ring object

H*(BTor(W,, D*); Q)"¢ € Gr(Rep(G,))

with the value of the functor K¥ ®%" — on a certain commutative ring object in
Gr(Q-mod)®®", which we now define. Recall that 3 denotes the set of monomials
in the Euler class e and the Pontrjagin classes p; fori = (%], ..,n—2,n—1,
including the trivial monomial 1.

DEFINITION 1.3. A partition of a finite set S is a finite collection of (possibly
empty) subsets {S,},c; of S which are pairwise disjoint and whose union is S.

We write P(—; B): dBr — Gr(Q-mod) for the functor which assigns to a
finite set S the vector space with basis the set of partitions {S,},c; of S equipped
with a labelling of each part S, by an element ¢, € B, such that

(i) each part of size 0 has label of degree > 2n;
(i1) each part of size 1 has label of degree > n;
(iii) each part of size 2 has label of degree > 0.

We make this a graded vector space by declaring a part S, labelled by ¢, to have
degree |c,| + n(|Ss| — 2), and a labelled partition to have degree the sum of the
degrees of its parts.

The linear map P(S; B);o — P(T; B);O induced by a bijection ( f, @): § —
T in dBr is simply given by relabelling. The linear map induced by (inc, (x,
y)): S — S\{x, y} sends alabelled partition ({S,}, {c,}) to the labelled partition
given as follows:

(i") if some S, contains {x, y} (and |c,| > 0if S, = {x, ¥}) then we change the
partto S, \ {x, y}, and change the label to e - c,;

(ii") if x and y lie in different parts S, and Sz, then we merge these into a new
part (S, \ {x}) U (Sg \ {y}) labelled by ¢, - cp.

On a more general morphism in dBr the effect of the functor P(—; B)%, is
determined by the above and functoriality.

The functor P(—; B);o has a lax symmetric monoidality given by disjoint
union, making it into a commutative ring object in Gr(Q-mod)%®'.

When r is odd we must instead consider a variant dsBr, the downwards signed
Brauer category, and the analogue of the functor of Definition 1.3 must be twisted
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by a certain determinant line functor. Allowing for these differences, for all n the
categorical formulation of our result is as follows, where we identify an empty
part labelled by ¢ € B.,, with the Miller—-Morita-Mumford class «..

THEOREM B. There is a morphism

KV ®d(s)Br (fp(_; B);O ® det®")
(ke |4i —2n > 0)

—> H*(BTor(W,, D™); Q)"

of commutative ring objects in Gr(Rep(Gé)), which if 2n > 6 is an isomorphism
in a range of degrees tending to infinity with g.

If2n =2 and H*(BTor(W,, D?); Q) is finite-dimensional for + < N and g >
0, then this map is an isomorphism in degrees * < N, and is a monomorphism
in degree N + 1, for g > 0.

REMARK 1.4.
(i) Many of the remarks after the statement of Theorem A apply here too.

(i1) Irreducible representations of the symmetric groups and of the algebraic
groups {Sp,,, O} are both indexed by partitions. In the stable range we
will show that the multiplicity in H*(BTor(W,, D?); Q) of the irreducible
algebraic G -representation corresponding to a partition A = g is the same
as the multiplicity in

Q ®aqix, 14i-20-01 PdL2,...,q} B);o ® det(Q1)®"

of the irreducible X,-representation corresponding to the partition A. We
explain how to calculate these multiplicities in Section 6.

(iii) Letting H(g) denote the local coefficient system on BDiff(W,, D*") given
by the action of diffeomorphisms on H,(W,; Q), a key step in the proof
of this theorem is to completely describe the bigraded cohomology ring
H*(BDiff(W,, D*"); H(g)®*) in a stable range, together with its behaviour
in the variable e as a functor on the (signed) Brauer category. We do this in
Section 3.8. This description is valid in all dimensions 2n # 4.

2. Some background on representation theory

2.1. Arithmetic groups and their representations. Lete € {—1, 1} and let
H(g) be a 2g-dimensional rational vector space equipped with a nonsingular e-
symmetric pairing »: H(g) ® H(g) — Q, of signature 0 if ¢ = 1. We denote the
group of automorphisms of H (g) which preserve this pairing O.(H (g)); this is
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On the cohomology of Torelli groups 9

usually denoted by O, ,(Q) if € = 1, and by Sp,, (Q) if € = —1. These are the Q-
points of algebraic groups O, , and Sp,,, respectively. As O, , is not Zariski
connected we shall occasionally have to work with its index two connected
subgroup SO, , < O, ,, and in this case we will write SG for Sp,, or SO, ,.

We shall need to consider arithmetic subgroups G of the algebraic groups G €
{Spy,» Oy} defined over Q, which we shall take to mean: a subgroup G < G(Q)
which is commensurable to G(Z) and which, in the case G = O, ,, is not entirely
contained in SO, ,(Q). The latter condition is nonstandard, but holds for us and
ensures that G is Zariski dense in G(Q), as we now explain.

2.1.1. Zariski density. Given an arithmetic subgroup G of G as above, write

G if G = Sp,,,

SG = .
G NSO, (Q) ifG=0,,.

As Sp,, and SO, , are connected semisimple algebraic groups defined over Q,
it follows from a theorem of Borel-Harish-Chandra [BHC62, Theorem 7.8] that
SG is alattice in SG(R), and hence by the Borel Density Theorem [Bor60] that
SG is Zariski dense in SG(R), so also in SG(Q). As we have assumed in the
case G = O, , that G does not lie entirely inside SO, ,(Q), it follows that G is
Zariski dense in G(Q).

2.1.2. Algebraic and almost algebraic representations. We consider an
arithmetic group G associated to G € {Sp,,, O, .} as defined above.

DEFINITION 2.1. A representation ¢: G — GL(V) on an n-dimensional Q-
vector space V is algebraic if it is the restriction of a finite-dimensional
representation of the algebraic group G, that is, there is a morphism of algebraic
groups ¢ : G — GL(V) which on taking Q-points and restricting to G yields ¢.

More generally the representation (¢, V) is almost algebraic if there is a finite
index subgroup G’ < G such that the restriction of ¢ to G’ is algebraic.

We usually denote a representation (¢, V) by V, leaving the action of G on V
implicit.

If V is an algebraic representation of G and W < V is a G-subrepresentation,
then, as G is Zariski dense in G(Q), the subspace W is also G(Q)-invariant so
W is again an algebraic representation. Similarly, V/ W is again algebraic. If V
is a (not necessarily finite-dimensional) G-representation, we let V3¢ < V be
the union of its algebraic subrepresentations; this need not be itself algebraic,
but it is if it is finite-dimensional: in any case we call it the maximal algebraic
subrepresentation of V.
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The following appears in [Ser79, page 109] and is a consequence of a theorem
of Margulis [Mar91, Theorem (2)]; see Raghunathan [Rag67] for a special case.

THEOREM 2.2. If G is a simple algebraic group of Q-rank > 2 defined over Q,
G is an arithmetic subgroup of G and V is a finite-dimensional representation
of G, then V is almost algebraic.

This for example applies to G = Sp,, or SO, , for g > 2, but the conclusion
then easily follows for G = O, , too, as this contains SO, , with finite index.

For the algebraic groups under consideration Borel [Bor74, Bor81] proved a
cohomological vanishing result, the following strong version of which we shall
use:

THEOREM 2.3. Let G be an arithmetic subgroup of G € {Sp,,, O, .}, and set
e=0ifG =Sp,, ande = 1if G = O, ;. Then for g > 3 + e and V an almost
algebraic representation of G, the natural maps

H*Go; Q@ Ve — H*(G; Q) ® VY — H*(G; V)
are both isomorphisms for x < g — e, where

H* (G Q) = | Ao 060l TG =5y,
Qloy, 03,...] ifG= O,
Here H*(Go; Q) is simply notation for the graded ring indicated in the
statement, and the classes o; € H'(G; Q) are to be interpreted as described in
Section 1.1.

Proof. The groups Sp,, and SO, , are connected and simple, so the claim
for arithmetic subgroups of these groups and algebraic V follows in some
range of degrees by combining [Bor81, Theorem 4.4(i)] and the main result
of [Bor74], with H*((SOy ¢)o0; Q) = Q[oy, 03, . . .]. The ranges we have stated
are improvements of those given by Borel, and were stated in [Hai97] without
proofs, and proven in [Tsh19], Theorem 17 for SO, , and Theorem 29 for Sp,,.

To deal with the case that V is almost algebraic, suppose that G’ < G is a
finite index normal subgroup such that the restriction of V to G’ is algebraic.
Then there is a commutative diagram

H (G, Q®V?S ———— H*(G; V)

E E

(H*(G; Q) ® V)6 = H*(G'; V)99,
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with bottom map an isomorphism by the previous case, and the vertical maps
isomorphisms by a transfer argument.

To deduce the result for O, , from that for SO, ,, we observe that if G is
an arithmetic subgroup of O, ,(Q) then by our slightly nonstandard definition
SG := G NSO, ,(Q) is a proper subgroup and there is an extension

1—SG—G— C, — 1.

The spectral sequence for this extension collapses to H*(SG; V) = H*(G; V).
Using the result for SG, we find that the maps

H*((SO; ¢)o0; Q) ® V¢ — H*(SG; Q) ® V3¢ — H*(SG; V)

are isomorphisms in the given range. But C, acts trivially on H*((SOy ¢)o; Q) =
Qloy, s, . ..], by considering Borel’s proof of this identity, so taking C,-
invariants therefore gives the required conclusion. 0

A consequence of this theorem is that as long as g > 3 + e taking G-invariants
is exact on the category of almost algebraic representations of G. However,
by [Rag68] this is in fact true for g > 2 already (see also [Mar91, Theorem
(3)])- More generally, if V and W are almost algebraic representations then so is
WY ®V,so

Ext;(W, V) = H'(G;WY®V) =0

for g > 2, and hence every short exact sequence of almost algebraic
representations splits.

2.1.3. Orthogonal and symplectic representation theory. The nonsingular e-
symmetric pairing A is dual to an e-symmetric form w: Q — H(g) ® H(g),
which is characterized by (A ® id)(— ® w) = id(—). If {a;} is a basis of H(g)
and {a!} is the dual basis determined by A(a’ ® a;) = §;;, then

w= E ai®af.
i

Foreachi and j in {1, 2, ..., g} there is a map
i H(@)® — H(9)®™?

given by applying the pairing to the ith and jth factors, and dually a map
wj: H@Q®™? — H(g)™

which inserts the form w at the ith and jth factors.
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Weyl constructed irreducible representations of O.(H (g)) as follows. Let us
write

H(g)" = Ker(H(g)®q - P H(g)®q-2>,
ij

H(g)y = COk(@ H(g)®" 2% H(g)®q)-
L]
These have an action of the symmetric group X, by permuting factors, and the
composition H(g)¥' — H(g)® — H(g)}, is an isomorphism. Furthermore,
the self-duality x — A(x,—): H(g) > H (g)Y induces an isomorphism
(H(g))" = H()¥.

The irreducible Q-representations of the symmetric group X, are in bijection
with partitions of A of the number ¢g; the construction sends each partition A to
an irreducible module S* given by the image of the Young symmetrizer acting
on Q[ X, ], see [Pro07, Section 9.2.4]. For each partition A of g we then define a
O.(H (g))-representation

Vi(H(g)) := [S* ® H(g)"']*,

which we shall usually shorten to V;. In particular, we have a decomposition

H(@)' =S @ Vi(H(g) 2.1)

AM-q

as a X, x O.(H (g))-representation, cf. [Pro07, Section 9.9.2].

The following theorems are consequences of the representation theory of the
Lie groups Sp,,(C) and O, ,(C) (note that O, ,(C) = O,,(C)), which may be
extracted from [Pro07, Section 11.6.4 and 11.6.5], and of the Zariski density of
Sp,, (Q) and O, ,(Q) inside these groups.

THEOREM 2.4. The representation V, (H(g)) of O.(H (g)) is zero or irreducible.
If 2|1 < dim(H(g)) = 2g then it is irreducible, and such irreducibles are all
distinct.

The V. (H (g)) are representations of the algebraic groups O, . or Sp,,, so their
restrictions to an arithmetic subgroup G of O, ,(Q) or Sp,,(Q) are by definition
algebraic representations.

THEOREM 2.5. Every algebraic representation of an arithmetic subgroup G of
O, (Q) or szg (Q) is a sum of V,,(H(g))’s.
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On the cohomology of Torelli groups 13

2.1.4. Invariant theory. The map w: Q — H(g) ® H(g) gives an invariant
w € (H(g)® H(g))%<"®) which is sent to € - w under swapping the two factors.
More generally, to each perfect ordered matching m = ((ay, by), ..., (ap, b))
of aset S ={ai, b, as,...,ap, b,} there is an associated invariant

P
. S\Oc (H
o = Q) wa5, € (H(g)®*) O
i=1

and if m’ differs from m by changing the order of k pairs, then w,, = €* - w,.
This observation provides a linear map

Qf{perfect ordered matchings on S}
: S (HEPY. @)

(m' — ek - m)

We may summarize the first and second fundamental theorems of invariant
theory for O.(H (g)) as follows.

THEOREM 2.6. The map (2.2) is surjective, and is injective as long as 2g > |S|.

For a proof see [Pro07, Section 11.6.3], apply —®qC, use Zariski density and
again that O, ,(C) = O,,(C). The range for injectivity we have given is coarser
than what is known to hold, see Section 9.4 for a discussion.

2.2. Representations of categories. Our strategy for approaching the
cohomology of Torelli groups as G/ -representations will be via symplectic
or orthogonal Schur—Weyl duality. However, as we wish to recover the
ring structure too it is not enough to simply obtain the characters of these
representations, or what is the same, their isomorphism class: one must work
in a more categorified way. In this section we describe the required background
on categorical representation theory. We were influenced, as is this exposition,
by the treatment of Sam—Snowden [SS15], which we shall attempt to follow
closely, adapting slightly to fit our needs.

We shall often work in the category Gr(Q-mod) of nonnegatively graded
Q-vector spaces, equipped with the monoidal structure given by graded tensor
product, and with symmetry given by the Koszul sign rule.

We let A be a Q-linear abelian symmetric monoidal category (in our
applications it will usually be the category of finite-dimensional representations
of a fixed arithmetic group G). We shall assume A has all finite enriched
colimits. We often impose one of the following two finiteness conditions on
objects of A:
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A. Kupers and O. Randal-Williams 14

DEFINITION 2.7. An object X of abelian category has finite length if it admits
a finite filtration with simple filtration quotients, that is, there exists a finite
sequence of monomorphisms 0 < X; < X, <> --- < X such that each
cokernel X;,,/X; only has 0 and itself as quotients. We let (—)/ C (—) denote
the full subcategory of finite length objects.

DEFINITION 2.8. An object X of a symmetric monoidal category is a dualizable
object if there exists an object XV with a map n: 1 — X ® XV called
coevaluation and a map €: XV ® X — 1 called evaluation, satisfying the
triangle identities. If it exists, the dual X" is unique up to isomorphism. We
let (—)? C (—) denote the full subcategory of dualizable objects.

The category A is tensored over (Q-mod)”, the category of finite-dimensional
vector spaces: for V € (Q-mod)’ and A € A there is an object A ©® V €
A characterized by a natural isomorphism Hom4(A © V,—) = Homg(V,
Hom 4 (A, —)). In particular we have a functor V > 1,0V : (Q-mod)/ — A/,
which has a right adjoint A — Hom4(1 4, A): A’ — (Q-mod)’.

DEFINITION 2.9. Let A denote a Q-linear category such that all vector spaces of
morphisms are finite-dimensional, such that the relation [x] < [y] <& Homj, (x,
y) # 0 on the set of isomorphism classes of objects of A is a well-defined partial
order, and for which each object only admits nonzero morphisms to finitely many
other objects up to isomorphism.

We shall consider the categories A% and (Q-mod)” of Q-linear functors.
Objectwise tensor product gives a pairing — ® —: A4 x A — A4, In particular,
we may fix a K € A% to get a functor K ® —: A — A%. When K has
dualizable values, this has an enriched right adjoint. We call such an object
K € (A%)4 with dualizable values a kernel; taking the objectwise duals defines
a functor KV: A® — A?, which we may also consider as a functor to 4. For
any M € (A*)/ we may therefore form the coend

xXeA
KY®*M := / KY(x) @ M(x) € A.

This coend is formed in the enriched sense, and exists because it may be
expressed as the coequalizer of

D, s (K3 ® M(x)) ©Homy(x, y) —= P,y K(x)" @ M(x),

which is equivalent to a finite colimit by the assumption that M has finite length
(so in particular M(x) = O for all but finitely many isomorphism classes of
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On the cohomology of Torelli groups 15

x € Aj; this is a simple consequence of the second assumption of Definition 2.9)
and that objects x admit morphisms only to finitely many isomorphism classes
of objects.

PROPOSITION 2.10. The functors K¥®4—: (A" - Aand K®—: A — A"
participate in a natural isomorphism

Hom 44 (K ® —, —) = Hom(—, K¥Y " —): A x (A — Q-mod.

Proof. The collection of evaluation maps K (x)¥ ® K (x) — 1 4 coequalizes the
two maps expressing K ¥ ®4 K as a coequalizer, so determine amap K ®“ K —
14.For V. e Awehave K¥ @4 (K ® V) = (KY ®" K) ® V, and using the
morphism KY ®4 K — 14 constructed above gives a morphism €y : (KV ®4
K)® V — Vnaturalin V.

As each K (x) is dualizable, there are coevaluation maps n,: 1 4 — K(x) ®
K (x)Y expressing this duality. This gives morphisms

1Nx®@M (x)

M(x) KX)@KX)@Mkx) — K(x)® (KY Q" M)

natural in x, and hence a natural transformation ny,: M — K ® (KY @ M).
One can verify that the compositions

KY®iny
-

K'Y @' M KY @K ® (K¥ @4 M) X2 kv i m

and

NKeVv. K®ey

K@V —-—"S5KQK'®"(K®V)=K®K'®"K)V —> K®V

are the identity, which gives the required natural isomorphism. O

2.2.1. Multiplicativity. We shall now suppose that A is equipped with a
symmetric monoidal structure @, in which case (A%)/ and ((Q-mod)4)’/ have
symmetric monoidal structures — ® 4 — given by Day convolution. That is, we
first form the external product M X N: A x A — A, and then take its left Kan
extension M @ 4 N = &, (M K N) along &: A x A — A. Concretely, we have

(M @, N)(x) = colim M(a) ® N(b),

which again exists because it is equivalent to a finite colimit.

There are several equivalent conditions we can impose on a K € (A%)4 so that
the above defined transformations € and n have good multiplicativity properties.
The condition which is simplest to state and which we shall usually verify, is that
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A. Kupers and O. Randal-Williams 16

K: A — Aisastrong symmetric monoidal functor. This is equivalent to asking

for a natural isomorphism ®*K — KXK: Ax A — A which is associative and
commutative in the evident sense. We call a K satisfying any of these equivalent
conditions a fensor kernel.

PROPOSITION 2.11. If K € (A%)* has the structure of a tensor kernel, then the
functor K¥ @ —: (A% — A has a strong symmetric monoidality.

Proof. Note that
xeA,yeA

(KY®" A)® (K'Y ®" B) = / K(x)" ® A(x) @ K(y)" ® B(y)
~(KYKKY) @4 (AKX B).

By dualising we obtain an isomorphism K X K¥ — @*K", so write the above
as
@K@ (ARB) =K' ® " ®.(AKB) =K' ®" (A®, B).
This gives a strong monoidality, and it is routine to check that it is symmetric.
O

2.2.2. Detecting isomorphisms. For a kernel K we shall be interested in using
the composition

A A K ga Homala) (Q-mod)*

to test whether morphisms in .4 are isomorphisms. As each K (x) is a dualizable
object, the functor K (x) ® —: A — A has K(x)” ® — as both a left and a right
adjoint, and so is exact; thus K ® —: A — A“ is an exact functor. The functor
Hom 4 (1 4, —) is left exact, but will not typically be right exact.

Let Ax C A be the subcategory of those objects which occur as sums of
summands of K (x)"’s. Let A3 C A be the subcategory of those objects X such
that Hom 4 (1 4, X ® K(x)) = O for all x € A. Note that if Y is a summand of
some K (x)V then it is also dualizable, and its dual YV is a summand of K (x):
then Hom4(1 4, Y ® K(x)) # 0, as it contains the nonzero morphism 1 4 n
YYY — Y ®K(x),so Ax N Ay = {0}.

LEMMA 2.12. Let f: A — B be a morphism in A.
(i) If A(f) is injective, then Ker(f) € A%.
(i) If A € Ak, Extl‘t(K(x)v, K()Y)=0forallx,y € A, and A(f) is bijective,
then Cok(f) € A%.
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On the cohomology of Torelli groups 17

Proof. Consider the left exact sequence 0 — Ker(f) — A A B, which remains
left exact after applying A. As A(f) is injective it follows that A(Ker(f)) = 0,
that is, that Hom 4 (1 4, K (x) ® Ker(f)) = 0 for all x € A. This is the definition
of being in Aj%.

Consider the exact sequence 0 — A A IR Cok(f) — 0. This remains
exact after applying K ® —, so gives a long exact sequence
0= AA)(x) 229 A(B) (x) > ACO(f))(x) > Exty (14, K (x)®A) — - --
where the morphism A(f)(x) is surjective, so the connecting map is injective.
But

Exty (14, K(x) ® A) = ExtY (K(x)", A)

and as A is a sum of summands of K (y)"’s this group vanishes by assumption.
O

2.3. The representation theory of Brauer categories.

2.3.1. The orthogonal group. Let G C O, ,(Q) be an arithmetic subgroup (and
recall that we write SG = G N SO, ,(Q), which by our definition of arithmetic
group is an index 2 subgroup of G). Let A = Rep(G) denote the category of
finite-dimensional representations of G, which is easily seen to have all finite Q-
enriched colimits. We shall assume that g > 2 so that the functor [—]¢ is exact
on this category and all extensions split, as discussed after Theorem 2.3.

Let us write H(g) € Rep(G) for the standard 2g-dimensional representation,
which is isomorphic to V; as defined in Section 2.1.3. It is equipped with a
symmetric pairing A: H(g) ® H(g) — Q and, dual to this, a symmetric form
w: Q— H(g)® H(g).

DEFINITION 2.13. A matching of a finite set S is a partition of S into disjoint
ordered pairs. If (a, b) is such a pair, its reverse is the pair (b, a).

DEFINITION 2.14. The Brauer category Br, of charge d € Q is the following
Q-linear category:

e The objects of Br, are the finite sets.

e The morphisms Br,(S, T) are given by the following Q-vector space. First,
let Br, (S, T)' be the vector space with basis given by triples (f, ms, my) of
a bijection f from a subset of S° C § to a subset of 7° C T, a matching m
of S\ §°, and a matching mr of T \ T°. Let Br,(S, T) be the quotient vector
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A. Kupers and O. Randal-Williams 18

AR AN

Figure 2. A morphism (f, mg, mr) in Br,(S, T) from a 6-element set S to an
8-element set 7. Here f is a bijection between 4-element subsets of S and 7', m g
is a matching on two elements of S and my is a matching on four elements of 7'.
This is not the downward Brauer category, as the bottom pairing mr is not &.

space by the subspace generated by (f, mg, mr) — (f, m';, m%) where m’; and
m7. differ from mg and my by reversing some pairs. We consider it as being
spanned by pictures as in Figure 2.

e Composition Br,(S,T) ® Br,(T,U) — Br,(S,U) is given in terms of
such pictures by concatenating, then removing the closed components and
multlplylng by dnumber of closed components

DEFINITION 2.15. The downward Brauer category dBr C Br, contains all
objects but only those morphisms with m;y; = &. We consider it as being
spanned by pictures as in Figure 1. In this case concatenation can never form
closed components, so this category is independent of the charge d. We write
i : dBr — Br, for the inclusion.

Both of these categories are symmetric monoidal under disjoint union. It is dBr
that will serve the role of A in the general framework discussed in Section 2.2;
it is easily seen to satisfy the assumptions of Definition 2.9.

Consider the functor K: Br,, — Rep(G) given on objects by K(S) =
H(g)®5. On a morphism (f, mg,my): S — T, with bijection f: S§° — T°
between the complement of the matchings, it is given by

ms o H(g)®/ o m
H(©® ™ H(@® == H(®" 5 H(g)®"

where the first map applies A to the pairs in mg, and the last map applies w
to create the pairs in my. This functor has an evident symmetric monoidality.
By taking linear duals of the values of K on objects as well as its value of
morphisms, we get a functor K" : (Bry,)® — Rep(G). Restricting this functor
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On the cohomology of Torelli groups 19

along i : dBr — Br, gives a functor i* K~ : dBr** — Rep(G), which is a tensor
kernel.

PROPOSITION 2.16. Let B € Rep(G), A € (Q-mod)®® have finite length, and
there be given a map

$52: i.(A) — [K ® B € (Q-mod)®".
Then there is an induced map
¢:i"(KY) @ (Ipepi) @ A) —> B € Rep(G)

which is an isomorphism onto the maximal algebraic subrepresentation of B if
B2 an isomorphism, and is a monomorphism if B is a monomorphism.

If 9B is an isomorphism, then for a partition ) of q the multiplicity of the
irreducible G-representation V, (H(g)) in B is the same as the multiplicity of the
irreducible X, -representation S*in A({1,2,...,q}). (Part of the claim is that if
Vi.(H (g)) is not irreducible, so is zero by Theorem 2.4, then S* does not occur
inA({1,2,...,49}).)

Proof. The map ¢ is adjoint to a map
¢®: A — i"(IK ® B]°) = [i*(K ® B)]°,

and as Hompep(g) (1Rep(s), —) = [—]¢ this is adjoint to a map IRepc) © A —
i*(K ® B) in Rep(G)“", whose adjoint is the map ¢ in the statement.

We apply the criterion of Lemma 2.12 to ¢. As discussed above, we will take
A = Rep(G) the category of finite-dimensional representations of G, and A =
dBr the downward Brauer category. The functor A will be given by [i*(K)®—]1¢,
and hence we must verify that the morphism

[*(K) ®¢1° @ [i"(K) ® (*(KY) @ (1Rrepc) © A))1°
— [i*(K) ® B]° € (Q-mod)®®

is an isomorphism or monomorphism. We will do this by relating it to ¢5",
which is an isomorphism or monomorphism by assumption. Using the coend
formula for (i*(K") Q%" (Irepcy © A)), we can write the source evaluated at
S € dBr as

T edBr G
[/ K(S)®K(T)VQA(T)} ,
and as [—]Y is an exact functor on Rep(G) we can evaluate this as
T edBr G
/ [K($)® K(T)"]" ®q A(T).
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A. Kupers and O. Randal-Williams 20

Now there is a natural transformation of two variables
K2 By (T, S) — [K () ® K(T)"]°

given by the functoriality of K, which is surjective by Theorem 2.6. This gives a
surjection

T edBr
i (AYS) = / Br,y (T, S) ®q A(T)

TedBr G
—>/ [K(S) @ K(T)']" ®q A(T).

As the composition

T edBr
5 (8): L(A)S) - / [K($)® K(T)']" @ AT)

[K(5)®¢1° [K(S)® BI°
is a monomorphism by assumption, this shows that the first map is also injective
and so in fact an isomorphism, from which it follows that [K(S) ® ¢]° an
isomorphism or monomorphism whenever ¢5% (S) is.

It then follows from Lemma 2.12 that if ¢B” is a monomorphism then the
kernel of ¢ lies in Rep(G)%, and if it is an isomorphism then the cokernel of ¢
does too. Unwrapping the definition, Rep(G)$ is precisely the category of finite-
dimensional G-representations V which contain no algebraic subrepresentation
(by Theorem 2.5). The kernel of ¢ is a subrepresentation of i*(K") ®9%
(1Rrepey © A), which is algebraic, so Ker(¢) is also algebraic: if it lies in
Rep(G)% it is therefore zero, so ¢ is injective. If the cokernel of ¢ lies in
Rep(G)% then it contains no algebraic subrepresentations, so the image of ¢
is the maximal algebraic subrepresentation of B.

For the last part, we use the isomorphism

¢B i, (A)({1.2,....q) — [H(g)® & BI°

of X,-representations. Taking the kernels of all the maps induced by (inc: § —
S’, mg, @) with m¢ nontrivial, we get an isomorphism of X, -representations

A{L2,...,q) — [H(®" ® BI°.

By (2.1) we may write the right-hand side as @, , $* ® [Vi(H(g)) ® B], so
as the S* are distinct irreducible X, -representations we have

dimg[S* ® A({1,2,...,q})]* = dimg[V,(H(g)) ® BI°

as required. O
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PROPOSITION 2.17. For A € (Q-mod)®®" of finite length there is a morphism
PP i (A) — [K @ (i*(K") @ (Irepc) © A))]° € (Q-mod)®s

which is an epimorphism and, if A satisfies A(T) = 0 for all finite sets T with
|T| > N, is an isomorphism when evaluated on sets S with |S| < 2g — N + 1.

Proof. We define 8™ by declaring its adjoint to be the map
YB A — [I7(K) ® (*(KY) 8 (Inepi) © A1 € (Q-mod)™
which at the object S € dBris

G
inc

T edBr
[K(S)QK(S)'I°@A(S) ™5 [/ K(S)®K(T)V®A(T)] .

CoevRA(S)
e

A(S)

One may verify that these form the components of a natural transformation of
functors, that is, a morphism in (Q-mod)?®".
As in the proof of Proposition 2.16, there is a natural transformation of two
variables
K Bro (T, §) — [K(S) ® K(T)*]°

given by the functoriality of K, which is an epimorphism by Theorem 2.6 and is
an isomorphism if 2g > |S| + |T|. Evaluating the map /%2 at § € dBr, using
the coend formula for left Kan extension, gives

TedBr TedBr G
i.(A)(S) = f By, (T ) ® A(T) — f [K($)® K(T)']" ® A(T)

and this is identified with the map on coends induced by the bifunctor k. As k is
an epimorphism, so is /2. The map

Bryy (T, $) ® A(T) — [K(S) @ K(1)"]” ® A(T)

is an isomorphism if |T| > N, as then both sides are zero because A(T) = 0. It
is also an isomorphism if 2g > |S| + |T'|. Thus it is an isomorphism for all sets
T as long as |S| < 2g — N + 1, and so ¥B(S) is also an isomorphism under
this condition. O]

COROLLARY 2.18. If A € (Q-mod)®" is such that A(T) = O for all finite sets

T with |T| > g + 1, then A = 0 if and only if i*(K") @' (IRepcy © A) = 0.
More generally, if ¢ is a map between such objects, then it is an epimorphism

(respectively monomorphism) if and only if (i*(K") ®%" (1 Rep(G) © @)) is.
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Proof. The implication = is obvious, so we prove < and therefore suppose
i*(KY) @ (Irep() © A) = 0. Under the given condition, by Proposition 2.17
the map

Y82 i (A) — [K ® (i*(KY) @ (1rep)y © A))1¢ € (Q-mod)®=

is an isomorphism when evaluated on sets S with | S| < g, and so i,(A)(S) =0
for such sets. But as every morphism in Br,, factors uniquely as a morphism in
the downward Brauer category followed by a morphism in the analogous upward
Brauer category UBF, up to isomorphisms of the intermediate object, we have

L, (A)([n]) = @ uBr([n — 2k, [n]) ®s, ., Alln — 2k])

2k<n

and in particular A(S) injects into i, (A)(S), so A vanishes on sets of size at most
g. But by assumption it also vanish on sets of size at least g + 1, s0 A = 0.
For the more general case, apply the above to the kernel and cokernel of ¢. [J

2.3.2.  The symplectic group. The discussion in the previous section goes
through for symplectic groups rather than orthogonal groups with some minor
changes, which we record here. Let G C Sp,,(Q) be an arithmetic subgroup
and A = Rep(G) its category of finite-dimensional representations. We shall
suppose that ¢ > 2 so that the functor [—]“ is exact and all extensions split.
The standard 2n-dimensional representation H(g) € Rep(G) is equipped with
an antisymmetric pairing A, and dually an alternating form w (characterized by
A ®id)(— ® w) =id(—)).

DEFINITION 2.19. The signed Brauer category SBr, of charge d € Q is the
following Q-linear category.

e The objects of SBr, are the finite sets.

e The morphisms of SBr, (S, T) are given by the following Q-vector space. First,
let sSBr, (S, T)' be the vector space with basis given by triples ( f, mg, my) of a
bijection f from a subset S° C S to asubset 7° C T, a matching mg of S\ S°,
and a matching mr of T '\ T°. Let sBr,(S, T) be the quotient vector space by
the subspace generated by ( f, ms, mr) — (=1)"(f, m'y, m}.) where m’s and m’;
differ from mg and my by reversing precisely r pairs. We consider it as being
spanned by pictures as in Figure 3, where reversing a matched edge changes
the picture by a sign.

e Composition sBr,(S, T) ® sBr,(T,U) — sBr,(S,U) is given in terms
of such pictures by concatenating (arranging that any matched edges that
are concatenated have compatible orientations), then removing the closed
components and multiplying by d¢ with ¢ the number of closed components.
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o

Figure 3. A morphism (f, mg, mr) in sBr, (S, T) from a 6-element set S to a
8-element set 7. Here f is a bijection between 4-element subsets of S and T', m g
is a matching on two elements of S and my is a matching on four elements of 7'.

DEFINITION 2.20. The downward signed Brauer category dsBr c sBry,
contains all objects but only those morphisms with my = &. In this case
concatenation can never form closed components, so this category is independent
of the charge d. We write i : dsBr — sBr, for the inclusion.

Both of these categories are symmetric monoidal under disjoint union. Just
as in the orthogonal case, there is a symmetric monoidal functor K : sBr,, —
Rep(G) given by the same formula. Using this object, the statements of
Propositions 2.16, 2.17, and Corollary 2.18 hold verbatim, and are proved
completely analogously.

3. Twisted Miller-Morita—-Mumford classes

Recall that W, denotes the manifold #4S§" x §". Fix a fibration 6: B —
BSO(2n). In this section we wish to attach characteristic classes in twisted
cohomology to the following data: a smooth oriented W,-bundle 7: £ — X
with section s: X — E, and a choice of lift £: E — B of the map t,: E —
BSO(2n) classifying the oriented vertical tangent bundle 7, E — E. We can
summarize this data in the following diagram:

W, B

l,./lg

( E “— BSO(Qn) 3.1)
X.
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We will write H(g) for the local coefficient system on X with H(g), =
H,(7r~'(x); Z), which is equipped with a (—1)"-symmetric nondegenerate
pairing A: H(g) ® H(g) — Z given by the intersection form (with respect
to the given orientations of the fibres). For a commutative ring k we write
H(g)x := H(g) ®z k for the associated local system of k-modules.

We shall explain how to construct certain characteristic classes with
coefficients in tensor powers of H(g), following Kawazumi [Kaw98, Kaw(8]
(see also Kawazumi—Morita [KM96, KM01]) who considered this situation for
2n = 2. Our goal is to associate to the data above and to any partition {P;};c; of
a finite set S and label ¢; € H?? (B; k) of each part P;, an element

k({P} {ci}) € H(X: H(9)F) ® (det k*)®"

of degree ) ,_, n(|P;| — 2) + 2d;, which transforms under the symmetric group
of S in the expected way. Here and later for a finitely generated free k-module
M we write det M for its top exterior power.

3.1. Gysin homomorphism. For any local coefficient system of k-modules
M on X, the fibration sequence

W, — E X
has an associated cohomological Serre spectral sequence
EYT = HP(X; HI (W k) @ M) = H"™(E; n* M) (3.2)

with three nonzero rows, the Oth, nth and 2nth.
The map
a* H*(X; M) — H*(E,n*M)
is split injective, as s* gives a one-sided inverse for it. This splits off the g = 0
row of the spectral sequence.

The local coefficient system ’Hz”(Wg; k) is trivial, because we have assumed
that the bundle 7 : E — X is oriented. It follows that the Serre spectral sequence
has E/*" = H?(X; H> (Wy; k) @1 M) canonically identified with H?(X; M),
and so as usual projection to the 2nth row defines a Gysin homomorphism

m: HY(E; 7 M) — H*"(X; M),

which is a homomorphism of right H*(X; k)-modules.

LEMMA 3.1. There is a class v € H*(E; k) which restricts to a generator of
the top cohomology of each fibre.
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Proof. The homotopy cofibre of the inclusion E \ s(X) — E is identified with
the Thom space of the normal bundle of s(X) C E, which is the restriction of
T, E to s(X). This yields a map

E — Th(s*T, E — X),

and the pullback of the Thom class—which exists because T, E is oriented—
along this map defines a class v € H**(E; k). This restricts to the Poincaré dual
of a point in any fibre, which is a generator of the top cohomology. O

By pulling back to each point *« € X, we see that this class satisfies
mv) = 1€ H(X; k),
so for any x € H* 2"(X; M) we have
m -7 (x) =m@) - x =x,

and hence v - 7*(—) shows that m,(—) is split surjective.

Using the above two splittings we see that the Serre spectral sequence
(3.2) collapses, and under the identification H"(W,; k) = H(g)" we obtain a
preferred decomposition

H*(E; 7*M) = H*(X; M)® H* " (X; H(g)' @ M) ® H* " (X; M). (3.3)

3.2. A twisted cohomology class. The Serre spectral sequence (3.2) with
coefficients in the local coefficient system 7/ (g)y on X has the form

E)" = H"(X; HU (W, k) @ H(g)) = H'M(E; m*H(g))-

As H"(W, 15 k) = H(g)), we have EY" = HY(X; H(g)) ® H(g)w), which
contains a canonical element given by coevaluation; that is, the adjoint to the
identity map of H(g)x. Using the decomposition (3.3) for this spectral sequence,
the coevaluation defines a unique class

€€ H'(E; m"H(g)w)-

(This extends to higher dimensions a class constructed by Morita [Mor89,
Section 6].) By construction, € is characterized by its restriction to any fibre
and the properties s*(¢) = 0 and m,(¢) = 0.
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3.3. Defining twisted Miller-Morita—Mumford classes. Given the data in
(3.1) and a class ¢ € H**(B; k), we can define

(k- 0*c) € H"EDF2 (X H(g)T).

This will be an example of a twisted Mumford—Morita—Miller class. More
generally, to a partition (py, ps, ..., p,) of the number k with p; > p;.q, in
which p; = 0 is allowed, we associate the standard partition Pyqy(p1, p2, - .., pr)
of the set {1, 2, ..., k} given by

{{1927 . "apl}a {p1+17 ey p1+p2}$ ceey {p1+ "+pr—l+1’ . "apl+" +pr}}9

where the ith subset is taken to be empty if p; = 0. Given classes ¢; € H*% (B; k)
fori =1,2,...,r, weassign the class k ((p;); (¢;)) of degree Y i, n(p; —2) +
2d; defined as

m(e? - £¥cy) - --m(e? - L¥c,)
Qer A+ Ne)® € H(X; H(g)ﬁk) ® (det k“)®".

For a set S of cardinality k and a partition {P;, ..., P,} of S into parts of
sizes py,..., pr with p; > p;;, and where empty parts are allowed, we may
choose a bijection ¢ : [k] S5 X sending each P, to {py +---+ pi.y +1,...,
p1+-- -+ p;}, and hence sending the partition { Py, ..., P,} of X to the standard
partition Py (p1, pa, . .., pr) of [k]; there is an induced isomorphism

¢.: H*(X; H(9)P) ® (detkH)®" — H*(X; H(9)T®) ® (detk)®".
We wish to define
K({P}, {ciD) = ¢k ((p); () € H*(X; H()E) ® (det k*)®".

LEMMA 3.2. This is well defined.

Proof. If v is another such bijection, then ¥~ o ¢: [k] — [k] is a bijection
which preserves the partition Pya(p1, p2, ..., pr). Ifs; = {1 <i <r | p; = j}
denotes the number of parts of size j, then the subgroup of X of permutations
which preserve the partition Pyq(pi, p2, - . ., p,) may be identified with

k
[[z 2, <=
j=1

Thus it is generated by arbitrary permutations of the elements of the parts
Qi={p+-+pa+tLl....opp+-+pi}

as well as permutations of nonempty parts Q; having the same cardinality.
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A permutation o of Q; acts on €” by permuting the factors, and as € has
degree n it therefore acts by sign(o')”. Hence it acts on m,(e” - £*c;) by sign(c)”"
too, so acts on « ((p;); (c;)) trivially.

A permutation of the set {Q;||Q;| = j} acts on m(e”" - £*cy) - m(eP> -
£*cy) - - - m(ePr-£*c,) by permuting the terms, and the group of such permutations
is generated by transpositions of adjacent parts. A transposition o of adjacent
Q;’s involves j? transpositions in X}, so has sign(o) = (—1)/. On the other
hand |m(e/ - €*¢)| = n(j — 2) + |c|, so transposing two copies incurs a sign

of (—=1)"U=2+el = ((=1)7)", as |c| = |c;| is even by assumption. Hence the
subgroup of X, which preserves the standard partition acts trivially on the class
k((pi); (ci)). O

We have thus defined for each bundle as in (3.1), and each partition {P;};c; of
a finite set S and labels ¢; € H?? (B; k) of each part P;, a twisted Miller—Morita—
Mumford class

K({Pi}, {ei}) € H*(X; H()E") ® (det*)®"

of degree ) ,_, n(|P;| —2) + 2d;.
For the remainder of this section we will write

V .= H*(B; k),

for the graded k-module of labels, and suppose that it is concentrated in even
degrees.

DEFINITION 3.3. For a finite set S, let P(S,V) be the graded k-module
generated by partitions of S (recall from Definition 1.3 that partitions may have
empty parts) with a labelling of each part by a homogeneous element of V),
modulo k-linearity with respect to the labels. This module is graded by declaring
a labelled partition ({ P;}, {c;}) to have degree ) ,_, n(|P;| —2) + |c;|.

REMARK 3.4. It is sometimes useful (when k is a field) to choose a
homogeneous basis B of V, which gives a homogeneous basis of P(S, V)
given by those partitions of S where each part is labelled by an element of .

The above construction defines a X's-equivariant map
@7 P(S, V) — H*(X; H(9)P) @ (det k5)®",
and hence by adjunction a X's-equivariant map
@y P(S,V) ® (detk%)®" — H*(X; H(g)®).
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(The map @}, sends the empty partition of the empty set to 1 ® 1 € H*(X; k)
® k)

By definition x ({ P;}, {c;}) is a cup product of classes, one for each part P;
which up to the symmetric group action can be taken to be m,(€” - £*c;). This has
degree n(p; — 2) + |ci|, soif p; = 0 and |c;| < 2n, or p; = 1 and |¢;| < n, then
it gives a cohomology class of negative degree and so vanishes. Furthermore if
pi = 0and |c;| = 2n it gives a degree zero cohomology class with k-coefficients,
that is, a scalar.

DEFINITION 3.5. Writing ¢: V,, AN H>(E; k) AN H"(Wg; k) = k, we let
P(S, V)0 be the quotient of P(S, V) by the submodule generated by those
labelled partitions having some part of size 0 and label of degree < 2n, or some
part of size 1 and label of degree < n, as well as by the differences

{Pitier, {citier) — U P }ienj, {citien;) - @(cj)

whenever P; = {@} and c; has degree 2n.

REMARK 3.6. As in Remark 3.4, if we choose a homogeneous basis B for V
then we obtain a homogeneous basis for P (S, V), given by those partitions of
S where each part is labelled by elements of B, having no parts (i) of size 0 with
label of degree < 2n, or (ii) of size 1 with label of degree < n. This description
presents P (S, V) as a subspace of P(S, V).

By the discussion above the map @ factors over a map
Ds5: P(S, V)50 ® (detk®)®" — H*(X; H(g)2®).

REMARK 3.7. The construction of the twisted Miller—Morita—Mumford classes
can be done with weaker input than (3.1). All that is required is a family 7 : E —
X with general fibre W, and section, regular enough to have a Serre spectral
sequence, and a source of cohomology classes on E.

For example, we may take PL or topological W,-bundles with section instead
of smooth W,-bundles at the cost of replacing BSO(2n) with BSPL(2n) or
BSTop(2n), respectively and (vertical) tangent bundles with (vertical) tangent
microbundles. More generally, we may take (smooth, PL, or topological) block
W,-bundles with section: in [ERW14, Proposition 2.8] it is shown that a block
bundle is a weak quasifibration so has a Serre spectral sequence; in [ERW14,
Proposition 3.2] it is shown that a smooth block bundle has a stable vertical
tangent bundle, and in [HLLRW17, Section 2] this is extended to PL or
topological block bundles; finally, in [HLLRW17, Section 3] it is shown that
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a block bundle (and even a fibration with Poincaré fibre) has a fibrewise Euler
class. Then the construction of k.. with ¢ a monomial in Euler and Pontrjagin
classes can be made.

3.4. Functoriality with respect to bijections. Let FB denote the category of
finite sets and bijections. Define a functor

P(—,V)so: FB — Gr(k-mod)

by sending a finite set S to the k-module P(S, V)0, and sending a bijection
f: S — T to the k-linear map induced by relabelling elements. Taking the
objectwise tensor product with the nth power of the sign functor gives a functor

P(—, V)50 ® det® : FB — Gr(k-mod).

It follows from Lemma 3.2 that the @ determine a natural transformation of
functors

@: P(—, V)50 ®det™ = H*(B; H(g)¥): FB —> Gr(k-mod).

3.5. Functoriality on the Brauer category. We now wish to determine
how the maps @y, the pairing : H(g)k ® H(g)x — Lk, and its dual, the
form w: k - H(g)x ® H(g)k, interact. More precisely, for ordered elements
x,y € S there is a map

Aoyt H(QP — H(P ™

of local coefficient systems on X given by applying A to the xth and yth factors,
and a map

D HEQPY — H(9)P*
given by inserting w in these factors, and we wish to determine the induced maps
eyt H'(X; H(QES) — H*(X: H(g)g ™)
D HY (X H(Q ™) — HY (X H()ES)

on the classes we have just defined. By the equivariance and multiplicativity
results we have already established, it is enough to

(i) consider only the case S = {1, 2, ..., k};
(i1) determine w;,(1);
(iii) determine A;,(m (e* - £*¢));

(iv) determine A, o4 ((€ - £%¢) - m(ek79 - £*C')).
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In the following we will make use of the cap product. For the avoidance of
doubt we emphasize that we adopt sign conventions such that the cap product
makes homology into a left module over the cohomology ring.

PROPOSITION 3.8. We have w; 5(1) = m(€?) € H(X; H()T?).

Proof. By naturality, we can test this identity by restricting to a point % € X, that
is, considering the fibre bundle 7 : W, — . In this case m, (€2) is (€ - €, [W,]).
Writing {b;} for a basis of H,(W,; k), and {b}} for the dual basis of H"(W,; k),
the class € € H"(W,; k) ® H,(W,; k) may be written as ) . b @ b;. Let a; €
H"(W,; k) be Poincaré dual to b;, so that b; = a; ~ [W,], and {a}} be the
corresponding dual basis for H,(W,; k). Then € may also be written as ) . ¢; ®
a;. Thus

(€ €. (W)=Y (b} -a;. [W,]) - bi ®a.

iJj

Now (b} - a;, [W¢]) = (b}, a; ~ [W,]) = (b}, b;) = §;j, s0

(€ €. (W) =) b ®a] € H,(Wy: k) ® H,(W,: k).

On the other hand w; »(1) = w € H,(W,; k) ® H,(W,; k). Let {b}} be the A-dual
basis of H,(W,; k), characterized by A(b}, b ;) = &;. Then

0. ®id) (bj ®Y bh® a,.*) =Y Mbl b)a; =aj.

However, as b; = a; ~ [W,] we have A(a}, b;) = (a},a;) = 8, 50 a} = bf.
Hence (A ® id)(b% ® Y ;b ® af) = b and so Y, b; ® aj = w by the
characterization (A ® id)(— ® w) = id(—) of w. O

In order to state the following lemma, recall that v € H?*'(E; k) is the class
constructed in Lemma 3.1, which is fibrewise Poincaré dual to the section
s: X — E.In particular, if T, E — E denotes the vertical tangent bundle, then
s*(v) = s*(e(T, E)). Write p: E xx E — X for the projection map of the fibre
product of m: E — X with itself.

LEMMA 3.9. We have
Malexe)=A()—1xv—vx1+p's*e(T,E)) € H"(E xx E; k).
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Proof. The class € satisfies s*(¢) = 0, by definition, so we may choose a lift to
aclass p € H"(E, s(X); H(g)x). Thus the class € x € lifts to the class

pxp€H"E xxE,(Exxs(X)U(s(X) xx E); H(g)ﬁz)-
The Serre spectral sequence for the relative fibration
(Wy x Wy, Wy v W,) — (E xp E, (E xx s(X))U(s(X) xx E)) L x
has lowest row the 2nth, so there is an isomorphism
HO(X: H' (W, #: k) @ H' (W, *: k)
— HY(E xx E, (E xx s(X)) U (s(X) xx E); k),

and hence the class A ;(p x p) is characterized by its restriction to a single fibre.
Thus the class A (e X €) is characterized by its restriction to a single fibre and
the fact that it lifts to a class in H*'(E xyx E, (E xx s(X)) U (s(X) xx E); k).

By definition, the restriction of € to a fibre of m corresponds, under the
universal coefficient isomorphism

H"(Wy; H,(W,; k)) = Hom(H,(W,; k), H,(W,; k)),

to the identity map id. Thus the restriction of € X € to a fibre of p corresponds,
under the universal coefficient isomorphism

H"(W, x W; H,(W,; k)®*) = Hom(H, (W,; k)®*, H,(W,; k)®?),

to id ® id, and so the restriction of A, (€ x €) to a fibre of p corresponds, under
the universal coefficient isomorphism

H"(W, x W,; k) = Hom(H,(W,; k)**, k),

to the map A. Concretely for classes x,y € H,(W,; k) we evaluate this by
writingx = X ~ [W,]and y =Y —~ [W,] and then

Alx,y) = (XY, [W,]). (3.4)

Our strategy will now be to show that Aj(1) — 1 x v — v x 1 4+ p*s*(v) also
lifts to a class in H*(E xx E, (E xx s(X)) U (s(X) xx E); k), and that its
restriction to a single fibre is also, under the universal coefficient isomorphism,
the map A.

The map A: E — E Xy E has oriented normal bundle and so a normal Thom
class which may be extended to a class A,(1) € H*'(E xx E; k). Let x; :== A,(1).
Pulled back along

fir=sonm xid: E —> s(X) xx E C E xyx E
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the class x; is v, the fibrewise Poincaré dual to s(X) C E, and so the class
X, := x; — 1 x v vanishes when pulled back along f;. Pulled back along

fri=idxson: E—> E xxs(X) CE xx E

the class x, is v — w*s*(v), and so the class x; := x, — v x 1 4+ p*s*(v) vanishes
when pulled back along f,. Pulling x; back along f| again the term x, vanishes,
and —v x 1 4 p*s*(v) becomes —m*s*(v) 4+ w*s*7*s*(v) = 0 (as s*7* = id).
Thus

A(l)—vx1—1xv+ p*s*(v)

vanishes on (E Xy s(X)) U (s(X) xx E).

If we restrict to a single fibre W, x W, we may use the usual formula for
the decomposition of the diagonal. Write {a;} for a basis for H"(W,; k) and
{af'} for the dual basis, characterized by (a; - a¥, [W,]) = §;;. Then, by [MS74,
Theorem 11.11] the class A,(1) restricts to

v®1+1®v+2(—1)"ai®af

on the fibre W, x W,. Thus the class A\(1) — 1 x v — v x 1 4 p*s*(v) restricts
to >, (—1)"a; ® af € H"(W,; k) ® H"(W,; k). Evaluating this on classes x =
X ~[W,]and y =Y —~ [W,] as above gives

<Z( 1>"a,®a,,x®y> Z<a,~,x><a?,y>

—Z X, (W) af - Y, [W,]).

Evaluated at X = af and Y = g, this gives

<Z<—1)"a,- ®af x® y> = Su(=1)"8s = (—=1)"8y

which is the same as (3.4) evaluated on these elements. As {a ® a;} form a basis
of H"(W,; k)®? it follows that the restriction of A,(1) — 1 x v —v x 1 + p*s*(v)
to a single fibre also corresponds, under the universal coefficient isomorphism,
to the map A.

By the characterization of A, ,(¢ x €) above, we therefore have

Aalexe)=A (1) —1 xv—vx1+4 p*s*(v).
Finally, we have s*(v) = s*(e(T, E)). O
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The following proposition generalizes the Contraction Formula of Kawazumi
and Morita [KMO01, Theorem 6.23] to higher dimensions. (There is an overall
difference of sign from [KMO1]. This seems to be due to identification
W H,(W,; k) - H,(W,; k)" used by Kawazumi and Morita (pages 16—
17), which in our notation is given by the formula u'(v)(#) = A(u, v). Under
the universal coefficient isomorphism H,(W,; k)¥ = H"(W,; k) this is not the
inverse Poincaré duality isomorphism, but rather is (—1)" times it. We instead
use the more natural identification given by Poincaré duality.)

PROPOSITION 3.10. Fork > 2 and |c| +n(k —2) > 0 we have
o (m(e - €% ¢)) = m(e? - e(TLE) - £*c) + s*e(T,E) - m(e* - £*c)
{2s*(z*c) ifk =2,

0 else.

Fora>1land|c|+n(a—2) > 0,andb > 1and |c'| +n(b—2) > 0, we have

+5*e(TE) - m(e*™" - £¥¢) - m(e”™ " - £*¢))
- {s*(e*c) (e ey ifa=1,

0 else,

m(e* L) - s*(LC) ifb =1,
0 else.

Proof. The class A (¢ - €) is obtained from A; (e x €) by pulling back along
A E— E xx E. As A*A((1) = e(T, E), the Euler class of the vertical tangent
bundle of 7, by Lemma 3.9 it is given by

ro(€)) = e(TLE) + n*s*e(T,E) — 2v € H"(E; k).
Thus we have
Aa(m(eh - €% 0)) = m((e(TLE) + w*s*e(T E) — 2v) - €% - £*¢).

Expanding this out, the first two terms give (using the projection formula), the
first two claimed terms, and we also obtain a term —m,(2v - €72 - £*¢). As v is
the fibrewise Poincaré dual of s: X — FE, we have

—mQu - €2 %) = —s* (2 - €572 ).
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As s*(e) = 0, if k > 2 this vanishes, and if £k = 2 it is —2s*(£*c). This leads to
the formula stated above.

For the second part, there are projection maps my, 7, : E Xy E — E and hence
classes

€ =mj(e) € H'(E xx E; H(g)x) and & =m)(e) € H"(E xyx E; H(g)w),
and if we write p: E xy E — X then we have
(e - £¥c) - (e’ - 7)) = pi(ef - € - i (LFc) - T (LFCT))
so we must calculate
A€l - €) € H(E xx E; Q).

But this is precisely what was called A, (e x €) in Lemma 3.9, and was shown
there to be A;(1) —v x 1 — 1 x v 4+ p*s*(v), so we get

Maar1 (e - €%¢) - m(e” - £*¢')) =
P (A —vx 1 =1 x v+ p's*(v) - €' - (L¥c) - 5 (£*C)).
When we expand this, the first term simplifies to m,(e*~' - €~ - £*(c - ¢')) =
(el 2mal . glat2eatbh px(c. ")), and the last term, using the identity s*(v) =
s*e(T, E), simplifies to s*e(T, E) - (€~ - £*¢) - (=" - £*¢’), so it remains to

analyse the other two terms.
‘We can write the second term as

Pt v) x (€271 ) = (e e ) - m(eb T el

and we can evaluate the first factor, as v is the fibrewise Poincaré dual of s : X —
E so
m(e e v) = 5T (€ LFe).

As 5*(€) = 0 this vanishes for a > 1, and is s*(£*c) for a = 1, in which case the
second term is

pi((lFc-v) x (€271 0%¢)) = s*(0¥¢) - (P - r ).
The third term can be analysed analogously. O

At this point we add a further assumption to our bundle (3.1), namely that
the composition £ o s: X — B is nullhomotopic. This means that the terms
in Proposition 3.10 involving s*e(T, E) vanish, and the terms involving s*(£*c)
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vanish (if |c| + n(1 — 2) > 0 then |c| > n and so s*(£*c) = 0). Under this
assumption, we define an extension

P(—. V)% ® det®: (8)Br,, —> Gr(k-mod)

of the functor P(—, V)5 ® det®” defined on FB, in the following way. We first
extend det by

(1) sending (idg\(x,y}, &, (x, y)): S\ {x,y} = Stothemapx A y A —;
(i1) sending (idg\(x,y}, (X, ¥), @): S — S\ {x, y} to the inverse of the map in
(1);
(iii) extending to general morphisms in (8)Br,, by writing them as the
composition of bijections and morphisms of the above two types.
We next extend P(—, V)¢ to P(—, V)Q;O by

() sending (idg\(x,yy, @, (x, ¥)): S\ {x, y} — S to the map which adds the
labelled part ({x, y}, 1);

(ii) sending (idg\(x,yy, (x,¥),@): S — S\ {x, y} to the map which sends
(P}, {ci}) to
(a) if some P; is {x, y} and |¢;| = 0, so ¢; = A - 1, then we remove this
part and multiply by the scalar A - (—1)" - 2g;
(b) if some P; contains {x, y} (and |¢;| > 0if P; = {x, y}) then we change
the part to P; \ {x, y} and change the label to e - ¢;;
(c) if x and y lie in different parts P; and P;, then we merge these into a
new part (P; \ {x}) U (P; \ {y}) labelled by ¢; - c;.
(iii) extending to general morphisms in (8)Br,, by writing them as the
composition of bijections and morphisms of the above two types.

PROPOSITION 3.11. The @g determine a natural transformation of functors

®: P(—, V)% @ det™ = H*(X; H(g)¥): (s)Br,, —> Gr(k-mod).

Proof. This follows almost tautologically from Proposition 3.10, because we
have defined the functor P(—, V)go to transform in the way the twisted Miller—
Morita—Mumford classes do. The only subtle point is the scalar in (ii) (a) above,
but that this is correct comes from the following calculation, when ¢; = A - 1:

Aoy (X )-07¢;)) = i (e(Tr E)-£F¢)) =250 ¢c; = h(x (Wg)=2) = A-(—=1)" 2g.
O
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Finally, we recognize that P(—, V)zs0 ® det®" is the left Kan extension to
(8)Br,, of the completely analogous functor

P V)5, ® det®": d(s)Br — Gr(k-mod),

where P(S, V), is the submodule of P(S, V)¢ generated by those labelled
partitions of S having no part of size 2 labelled by the multiplicative unit 1 € V.
Note that by this condition the scalar 2g no longer arises when applying structure
map, so is neglected from the notation.

REMARK 3.12. As in Remarks 3.4 and 3.6, if we choose a homogeneous basis
B of V containing the multiplicative unit 1 € ) as an element, then P(S, V),
has a homogeneous basis given by partitions of S labelled by elements of 15,
having no parts (i) of size 0 with label of degree < 2n, (ii) of size 1 with label of
degree < n, or (iii) of size 2 labelled by 1 € 5. These remarks show that the X'g-
action on P(S, V), P(S, V)0, and P(S, V)',, makes them all into permutation
modules.

3.6. Multiplication. The functor
H*(X; H(g)y )+ (5)Bry, — Gr(k-mod)

has the structure of a commutative ring object in this category of functors, under
the Day convolution product. This is equivalent to saying that it may be equipped
with a lax symmetric monoidality. To do so, for S, T € (s)Br,, we let

H*(X; H(9)P) @ H* (X; H(g)E") — H*(X; H()P™)

be given by the cup product. It is an elementary verification that this defines
a symmetric lax monoidality, recalling that the symmetry for the monoidal
structure on Gr(k-mod) includes the Koszul sign rule.

The functor P(—, V)zf0 ® det® may also be equipped with the structure of
a commutative ring object, making @ a morphism of commutative rings. It is
easiest to describe commutative ring structures on P (—, V);g0 and det separately,
and then take their product. For S, T' € (8)Br,, we let

P, V)% @ P(T, V)% — P(SUT, V)%
be given by disjoint union of partitions, and we let
(detk®) ® (detk”) —> det k™"
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be given by exterior product of volume forms. It is again elementary to verify
that these define symmetric lax monoidalities. By our description of @ it
commutes with these symmetric lax monoidalities, and hence is a morphism
of commutative ring objects.

Finally, the analogous discussion provides

P(=. V)5, ® det®: d(8)Br —> Gr(k-mod)

with a commutative ring structure.

3.7. Stabilization. If we have a smooth W,-bundle 7 : E — X with section
s: X — E, and this section has an extension to a fibrewise embedding d: X x
D?* — E, then we can form the fibrewise connected sum of E and X x W,
to obtain a smooth W, -bundle n’: E’ — X, which is again equipped with a
fibrewise embedding d’': X x D** C X x W, — E'. In this situation we may
ask if the twisted Miller—-Morita—Mumford classes of 7 and 7’ can be compared,
and we will now show how.

There is an identification of coefficient systems H'(g + 1)1 = H(g)x ® k?
and so a projection map r: H'(g + 1)x — H(g)x and an inclusion map
i: H(g)x — H' (g + Di. Recall that s*(¢) = 0, so we may lift € to a class
p € H'(E, X x D*; H(g)w), which is in fact unique. Now under the maps

p € H'(E,X x D™, H(gh) +——=— H"(E', X x W, 1;; H(g)w)

l(id,d’)*

p € H'(E', X x D*; H'(g + D)) —— H"(E', X x D*; H(g)x)

the classes p and p’ correspond, because just as in the proof of Lemma 3.9 these
classes are determined by their restriction to a fibre and

(idy ® r)(@) = (i ® idy)(w) € H*(B; H'(g + i ® H(g)w)-
Now if there are lifts £': E' — B and £: E — B of the maps classifying the
respective vertical tangent bundles of these two fibre bundles, which agree when

restricted to the common subspace

E'DE\XxD"CE,
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then for k > 0 and ¢ € H**(B; k) we may calculate

re () ((€)* - () ) = 7/ (r (0" - (€)*0)
=/ (((id, d)* oexc ' (p))* - (6/)*0)
=/ ((exc™ ' (p)* - (£)*c)
=m (pk . E*c)
= (ek . E*c) .

For k = 0 these are the standard Miller-Morita—Mumford classes, and their
behaviour under fibrewise stabilization is well understood.

3.8. The isomorphism theorem. We will now apply the constructions of the
previous sections to certain universal bundles. See [GRW14, Definition 1.5] for
more details on the following construction. To define these bundles, note that the
fibration 6 : B — BSO(2n) classifies an oriented vector bundle 8*y,, — B, and
a 6-structure on a 2n-dimensional vector bundle is a bundle map to 6*y», (that is,
a continuous map which is a linear isomorphism on each fibre). Fix a 6-structure
£pow: TD* — 0%y, and let

Bun’ (T W,, D*; £ o)

denote the space of all 8-structures i TW, — 6*y which are equal to i p» when
restricted to D** C W,. This space has an action of the group Diff(W,, D*") of
diffeomorphisms which are the identity on D> C W,, and we define

BDiff’ (W,, D*;  px) := Bun’ (T W,, D**; € p») /) Diff(W,, D™).
This space carries a smooth W,-bundle given by
E? := Bun’ (T W,, D*"; {pm) x W,) /) Diff(W,, D*")

with 7 : E? — BDiff’ (W,, D™, i p) given by projection to the first factor. This
has a section s given by the Diff(W,, D>")-equivariant map {*} C D> C Ww,.
The bundle 7 has a vertical tangent bundle, which may be described as

T, E® := Bun’(TW,, D*; £ o) x TW,) /J Diff(W,, D*)

using the action of Diff(W,, D*") on T W, via the derivative. Evaluation defines
abundle map £: T, EY — 6%y, which has an underlying map £: E — B. The
composition £ o s: BDiff’ (W, D?; ¢pum) — B is constant, as it underlies the
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6-structure on the bundle s* 7, E?, but this is trivial by our definition of the space
of bundle maps.

This discussion shows that we are in the position to apply the constructions of
the previous sections, giving maps

®s5: P(S. V)%, @ (detk*)®" — H*(BDft’ (W,, D™; {pu); H(9)E®) (3.5)

for each finite set S. The goal of this section is to show that these maps are
isomorphisms in a range of degrees when k = (Q, we restrict to a certain path
component of BDiff’ (W, D2 0 px), and the following technical assumptions
onf: B — BSO(2n) are made:

ASSUMPTION 3.13. B is n-connected, H*(B; Q) is concentrated in even
degrees and is finite-dimensional in each degree, and any #-structure on D*"
extends to one on §?".

REMARK 3.14. One can reduce to the case that B is n-connected without loss
of generality, as in [GRW14, Lemma 7.16]; allowing B to have cohomology
in odd degrees is surely possible, but will require a more careful discussion of
signs when defining twisted Miller—-Morita—Mumford classes; the last condition
is called being spherical in [GRW14, GRW18, GRW17], and is standard.

We let @g € Bun'g(Wg, D, 0 px) be a @-structure which is standard (in the
sense of [GRW18, Definition 7.2]) when restricted to W, | = W, \ int(D*") C

W,. Under the assumption that 6 is spherical such a ‘ ¢ exists, by the evident
generalization of [GRW18, Lemma 7.9] to arbitrary genus. We let

BDiff’ (W,, D*; £2); C BDiff’ (W, D™ £ p)
denote the path component of 1 e

THEOREM 3.15. Let 2n > 0 and 2n # 4, and suppose that 6: B — BSO(2n)
is a tangential structure satisfying Assumption 3.13. For any finite set S the map

P(S. V)20 ® (det Q5)®" —> H*(BDIft’ (W, D™ £pn); : H()E).

induced by @, is an isomorphism in a range of cohomological degrees tending
to infinity with g. (If 2n = 4 then the argument we will give shows that map is
an isomorphism after taking the limit as g — o0o. That one can sensibly form an
induced map between limits depends on the discussion in Section 3.7.)

In the rest of this paper we will be interested in the case where
0: BSO(2n)(n) — BSO(2n) is the n-connected cover, in which case it follows
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from obstruction theory that BDiff’(W,, D**; { pm)g, = BDIff(W,, D), as
we shall explain in Section 4. In this case Theorem 3.15 may be considered
as the analogue of the Madsen—Weiss theorem (for 2n = 2) or [GRW14,
Theorem 1.1] for twisted coefficients. In the case 2n = 2 this result is due
to Kawazumi [Kaw08], though phrased a little differently. As the left-hand
term is independent of g, it in particular recovers homological stability for the
right-hand term: this was already known to hold by [Boll12, Iva93] for 2n = 2,
and by [Kral9] for 2n > 6.

Proof of Theorem 3.15. We apply the method introduced in [RW18]. Suppose
for concreteness that n is odd. Let W be a finite-dimensional rational vector
space and Y = K(W", n+ 1) be a functorial model for the associated Eilenberg—
MacLane space. Then 6 x Y :=60 opry: B x Y — BSO(2n) is a new tangential
structure, and we may consider the moduli space BDiff Oy (W, D™ Egz,,) of
manifolds equipped with a 8-structure satisfying the boundary condition ‘ Dy
and a map to Y which sends D?" to the basepoint y, € Y. Forgetting the map to

Y gives a fibration sequence

map, (W, D), (Y, y5)) — BDift"" (W,, D*; £},
— BDIff? (W,, D*; { ) (3.6)

and the fibre is path-connected, so BDiff QXY( , D™ Z};z,,) has the same path

components as BDiff o (W, D, 0 p). In fact there is a canonical isomorphism
1 (map, (W, D), (Y, y0)), %) = H"™'(S' A W,/D*; W")
o~ Hn(Wg, D2n; Q) ® W\/

which induced a canonical map
A*(H(g) ® W[1]) — H*(map,(W,, D™), (Y, y0)); Q).

This map is easily checked to be an isomorphism, as this mapping space is
a K (s, 1). The identification is one of 7, (Blef"( , D™ { D), ‘ ¢)-modules,
and we have used Poincaré duality to identify H(g)" w1th H(g).

When 2n # 4, by the main theorems of [Bol12, RW16, GRW14, GRW18]
there is a map

o BDiff”" (W,, D*; EDzn)lg — Q2 (MTI AY,)

which is an isomorphism on cohomology in a range of degrees tending to infinity
with g. (For 2n = 4 it is an isomorphism on homology upon taking the colimit
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as g — oo, by [GRW17, Theorem 1.5].) By our finite type assumption on
H*(B; QQ), and the fact that W is finite-dimensional, we have that

H*(MTO A Y, ; Q) = H*MTEO; Q) ® Sym* (W[n + 1])
has finite type, and so the natural map
Sym* ([H*(MT0; Q) ® Sym*(W[n + 1])].0) — H*(£25°(MTO A Y,); Q)

is an isomorphism.
Thus the Serre spectral sequence for (3.6) is a spectral sequence of GL(W)-
modules, of the form

EPY = HP (BDifﬁ(Wg, D¥; £pn); s AT(H(g)g ® WUD)
ﬂ 3.7)

Sym* ([H*(MT6; Q) ® Sym*(Win + 11)].0) ,

where the target is as indicated only in a range of degrees. Different rows of this
spectral sequence are GL(W)-representations of different weights, so it collapses.
Giving W on the target g-grading 1, this is an isomorphism of bigraded rings in
arange of degrees.

We now wish to apply Schur—Weyl duality for the general linear group. For
further details on the following we refer to Sam—Snowden [SS15], particularly
Section 2.2. In the setting described in our Section 2.2 this may be done
as follows. We let A := FB be the (Q-linearization of the) category of
finite sets and bijections. We let GL := colim,_,,, GL,(Q), let Rep(GL) be
the Q-linear abelian symmetric monoidal category of all representations of
the group GL, and let A := RepP(GL) be the Q-linear abelian symmetric
monoidal category of polynomial representations of the group GL, that is, those
representations arising as finite direct sums of summands of tensor powers
of the standard representation W := colim,_, ., Q". Similarly, wew* =
lim,_, . Hom(Q", Q), a pro-algebraic representation of GL, and let RepP°/(GL)
denote the category of polynomial pro-algebraic representations of GL, equipped
w/ith\the completed tensor product. Continuous dual gives an identification
Repro/(GL)* = RepﬂG\L).

We let K : FB — RepP(GL) be defined as K(S) = WE’S , with its evident
symmetric monoidality, which has the structure of a tensor kernel. Taking the
continuous dual gives the functor K : FB® — RepP°(GL) with KV (S) = W&,
It follows from [SS15, Section 2.2.9] that the functor

KY ®™® —: (Q-mod™)’ — Rep”(GL)
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is a symmetric monoidal equivalence of categories, with inverse given by

Rep™ (GL) —> (Q-mod™®)/
. (3.8)
Ur— (S [W® @ U]™).

We apply this discussion as follows. Taking the limit as dim(W) — oo, the
collapsing spectral sequence (3.7) gives an identification of (bi)graded objects in
RepP?(GL), and hence of (bi)graded objects in Q-mod™®, which we now identify.
Recall that we have

H*(MTO; Q) = H*(B; Q)[—2n] = V[—2n].
We may write the abutment of (3.7) as
Sym* ([H*(MT8; Q)1.0) ® Sym” ([H*(MT0; Q) ® Sym™*(W[n + 11)1.0) .

The transformation (3.8) of the second term is P-o(—, V)>o: FB — Gr(Q-mod),
by [RW18, Proposition 5.1], and the first term is P(&, V)so. Thus the
transformation (3.8) of the right-hand side is the functor

P(—, V)so: FB — Gr(Q-mod)

in a range of degrees. We recognize the E,-page of (3.7) as

o

ELY = [ HP (BDIff! (W, D™; £pn); s H(@)S) @ der@) @ W |,
so its transformation under (3.8) is
H*(BDift’(W,, D*; Epm) s H(g)G ) ® det: FB — Gr(Q-mod).

Carrying the factor det to the other side, this shows that there is a natural
isomorphism

P(—, V)0 ® det = H*(BDift’ (W, D™; Lp2); s H(8)§)

in a range of degrees.

Unfortunately it is not yet clear that it is the map we have constructed
which yields this isomorphism. To see that it is, we go into the construction
in more detail. Let us denote by E’ — BDiff’(W,, D*; O po) i, and
E?Y — BDiff”*Y(W,, D*; é{,z,,)gg the W,-bundles over these spaces. There is
a fibration sequence

map, (W,, D™, (Y, yp)) — E”*" — E*
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and hence a spectral sequence of GL(W)-representations
EJ" = HP(E’; A"(H(g)q ® WD) = H'M(E™"; Q),

which again collapses and splits as different rows are GL(W)-representations of
different weights. Taking weight 1 pieces gives a canonical identification

HP(E"; H(g)g) @ W = HP(E*; H(g)g ® W) = HIHETT; V. (3.9)
Evaluation defines a map
ev: E”Y — v
and so determines a GL(W)-equivariant map
p: W=H""(Y;Q — H"'(E™; Q"

landing in the weight 1 piece. In terms of the identification (3.9) above the map
p must be given by p(w) = x ® w € H"(E?; H(g)g) ® W for some class
x € H"(E*; H(8)q)-

CLAIM 3.16. The class yx is the class € defined in Section 3.2.

Proof of Claim. By naturality we may restrict to the trivial tangential structure
0 = id: BSO(2n) — BSO(2n) to prove this. The decomposition (3.3) in this
case is

H"(E; H(8)q) = H"(BDIff(W,, D*"); H(g)q)
® H"(BDiff(W,, D*"); H(g)§).

The component of x in the first factor is given by pulling back along the section
s, but the composition BDiff(W,, D*") 2 EY 5 Y is constant, and the section
lands in the disc D** C W, on which the maps to Y are constantly yo. It remains
to determine the component of x in the second factor.

The restriction map to a single fibre

H°(BDiff(W,, D*"); H(g)o ® H(g)g) —> H"(W,; Q) @ H"(W,; Q)

is injective and has image Q{w}, and under the identification above € maps to
the class w by definition.

Restricting the previous discussion to a single fibre, we are considering the
spectral sequence of the (trivial) fibration

map, (W,/D*,Y) — W, x map,(W,/D*,Y) — W,.
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The evaluation map gives
p: W — H" ™ (W, x map,(W,/D*,Y); Q)
= H"(W,: Q) ® H'(map,(W,/D™. Y); Q)

which is the map
W-— HQHE W)

given by w ® —. This shows that x restricts to w, so x = €. O

Consider the commutative diagram

H™(EY; Q) @ W Cowst H*(B; Q) @ W&

[

L . s e X n. p k
Hk(n+1)+2d(E9><Y; Q)(k) ! , Hk(n+l)+2d—2n(BDlﬁ(') Y(wg’ DZ ;KZZH)ZK; Q)(L)

H"2(E"; A (H(g)g ® W) T HA" 2421 (BDIff’ (W, D L)y AH(H(8)g ® W)

If x € H*(B; Q), going along the top sends x @ w; ® - - - @ wy to
7 (p(wn) -+ pwe) - €'x) € H D2 (DY (W, D*; 8,0, Q).
On the other hand, as p(w;) = € ® w; this corresponds to

T((e@ W) A A (€@ wy)-£5x)
e H " 272 (BDIff’ (W,, D™; £ pu); : A*(H(g)g ® W),

the result of antisymmetrizing the class
m(e - ) @ w ® -+ ® wy € H'(BDIff (W, D™; £p2); ; H(g)E) @ W

That is, the result may be expressed in terms of our twisted Miller—Morita—
Mumford classes (e* - £*x), showing that the map we have constructed is
surjective in the stable range: as the source and target are graded vector spaces
having the same finite dimension in each degree, it follows that the map in the
statement of the theorem is an isomorphism.

Finally, if  is even then we take instead Y = K (W", n 4 2). Then there is an
equivalence map((W,, D), (Y, o)) ~ K(H(g) ® WY, 2) and so the relevant
spectral sequence of GL(W)-modules has the form

EY? = H?(BDff’ (W, D*; {pn); : Sym? (H(g)q ® WI2]))

!

Sym*([H*(MT6; Q) ® Sym"(W[n + 2D)].0),
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The discussion then goes through as above, except that we now recognize the
E,-page as

EY" = [HP(BDiff)(W,, D™ {pm); : H(g)g") & W1,

so that its transform is now given by H*(BDiff)(W,, D*; ZDzn)ge; ’H(g)g_),
without the sign representation. We then proceed as above. ‘ (|

4. The cohomology of the Torelli space

In this section we work with the tangential structure 6: BSO(2n)(n) —
BSO(2n), in which case the forgetful map

BDiff’(W,, D*'; £ ) —> BDiff(W,, D*")

is a weak equivalence, because the space Bun’(T W, D?: 0 p2) 18 equivalent to
the space of relative lifts

D 2y BSO(2n)(n)

//7
-7 l{roQ

W, ’—>ng BO(2n),

where o : BSO(2n) — BO(2n) is the double cover, and this space of lifts is
easily seen to be contractible by obstruction theory. We will therefore write
BDiff(W,, D*) instead of BDiff’ (W,, D*; £ pn), for simplicity.

As stated in the introduction, the action of diffeomorphisms on the middle-
dimensional homology gives a homomorphism

SP,(Z) if nis odd,

oy Diff(W,, D) — G, := {O (Z) ifniseven
3.8 )

We denote its image G . It is often surjective, but further restrictions can arise
from a quadratic refinement of the intersection form. A result of Kreck [Kre79]
tells us that

8

;]G ifn=1,3,7orniseven,
- Sp3,(Z) otherwise,

where Spgg (Z) < Sp,,(Z) is the proper subgroup of those symplectic matrices
which preserve the quadratic refinement g: Z*¢ — 7/2 of the bilinear form
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A. Kupers and O. Randal-Williams 46

determined in terms of the standard symplectic basis by g(e;) = q(f;) = 0. In
particular G, always has finite index in Gg, so is an arithmetic group.

The classifying space of the Torelli group Tor(W,, D*') := Ker(a,) therefore
fits into a fibration sequence

BTor(W,, D*) —> BDiff(W,, D*) — BG., (4.1)

so there is an action (up to homotopy) of G, on BTor(Wy, D?"). Hence the
cohomology groups H*(BTor(W,, D*"); Q) form a commutative ring object in
the category of graded G/, -representations (with the Koszul sign rule).

The local coefficient system H(g)g on BDiff(W,, D*") is equipped with a

canonical trivialization i*H(g)g - H(g) when pulled back to BTor(W,, D*"),
where we recall that H(g) denotes the standard 2g-dimensional representation
of G,. For any finite set S the edge homomorphism for the spectral sequence of

the fibration (4.1) with H(g)gs—coefﬁcients is then

H*(BDIff(W,, D™); H(g)2%) —> [H*(BTor(W,, D*); Q) ® H()®]* .
Composing this with the maps @ given in (3.5), and writing as usual
V = H*(BSOQn)(n): Q) = Qle. ppusiy. ..., puci]
with homogeneous basis of monomials B, we obtain maps
@5 P(S. V)20 ® (det Q)®" —> [H*(BTor(W,, D™); Q) ® H (g)®]%
and hence, by adjunction, G;-equivariant maps
Wi (H()®)Y @ P(S, V)zo ® (detQ*)®" — H*(BTor(W,, D*); Q).

We now adopt the functorial perspective of Sections 2.2 and 2.3. As the @§ are
the components of a natural transformation of functors (8)Br,, — Gr(Q-mod),
the ¥{ extend to a map

P KY @98 (P(—, V)% ® det®) — H*(BTor(W,, D*); Q).

As in Section 3.5 we recognize the term P(—, V)Z;’O ® det® as being left Kan
extended along i : d(S)Br — (8)Br,,, and we can rewrite the domain to get

W' it (KY) @ (P(—, V)L, ® det®™) —> H*(BTor(W,, D™); Q).

Recall that P(—, V)’ is distinguished from P(—, V) by not allowing parts of size
2 labelled by 1 € V.
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On the cohomology of Torelli groups 47

Restricting to § = & gives a ring homomorphism

P@, VYoo = (H(@)%?)" @ P(3, V)5, ® (det Q)"

!

l*(KV) ®d(s)Br (7)(_’ V);O ® det®n)

which sends the labelled partition (&, ¢) of @ to a class we shall call k., as it
maps to the Miller—Morita—Mumford class of this name under ¥’. In particular,
taking the labels to be the Hirzebruch L-classes £; defines classes

ke, € I°(KY) @Y% (P(=, V)L, ® det™)

of degree 4i — 2n. These lie in the kernel of ¥', as they are defined on the
space BDiff(W,, D*") and are pulled back from BG|, by a theorem of Atiyah
[Ati69], so vanish on BTor(W,, D*") by the fibration sequence (4.1). Thus the
ideal generated by these classes also lies in the kernel of ¥'.

THEOREM 4.1. If2n > 6 the ring homomorphism

i*(K¥) @ (P(=, V), ® det™)
(kg |4i —2n > 0)

—> H*(BTor(W,, D*"); Q)

induced by W' is an isomorphism onto the maximal algebraic G;—
subrepresentation of H*(BTor(W,, D*"); Q) in a range of degrees tending
to infinity with g.

If 2n = 2 and H*(BTor(W,, D?); Q) is finite-dimensional in degrees * <
N for all large enough g, then this homomorphism is an isomorphism onto
the maximal algebraic G;-subrepresentation in degrees x < N, and is a
monomorphism in degree N + 1, for all large enough g.

REMARK 4.2. In [KRW19] we shall prove that H*(BTor(W,, D?): Q) is an
algebraic G;-representation when 2n > 6, so this theorem identifies the target
completely in a stable range.

As part of the proof of this theorem, we will need the following condition
guaranteeing collapse of a Serre spectral sequence in a range of degrees.

LEMMA 4.3. Let F — E — X be a Serre fibration with X path-connected, M
a local system of Q-module coefficients on E, and suppose that

(1) H*(E; M) is a free H*(X; Q)-module in degrees x < N + 1;
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A. Kupers and O. Randal-Williams 48

(1) the Serre spectral sequence has a product structure in a range, in the sense
that the cup-product map

H"(X: Q) @ H(X; HI(F; M)) — H?(X; HI(F; M)) = E}*
is an isomorphism whenqg < N and p +q < N + 1.

Then there are no differentials out of E? for p+q < N and anyr > 2.

Proof. Suppose thatd, : EP4 — EPT4~"*1 jg nonzero, with p + ¢ < N. Then,
by the product structure, the differential d,: E*¢ — E"7~*1 is also nonzero.
Without loss of generality we may suppose that ¢ is minimal with this property.
Let {b;} be free H*(X; Q)-module generators for H*(E; M) in degrees < N +1.
As Eg* = H%(X; H*(F; M)) consists of permanent cycles for * < ¢, the map

Q®urx:0) H(E; M) —> H(X; H*(F; M))

is surjective in degrees * < ¢, and so the restrictions b; of the b; to
H(X; H*(F; M)) generate it in degrees * < ¢q. A nonzero differential
d,: E* — E™~"*1 would hit some

Zx,- ®b; € EF = H'(X; Q) @ H'(X; HI T (F; M)

in total degree ¢ + 1 < N + 1, which would say that ) _ x; - b; € HIM'(E; M)
is zero modulo elements of Serre filtration > r. But in total degree (¢ + 1) all
such elements are contained in the submodule H*(X; Q){b; | |b;| < qg —r} <
H*(E; M), so there would be a nontrivial linear dependence »_ y; - b =0¢
H*(X; Q){b;}, a contradiction. O

Proof of Theorem 4.1. To give a unified treatment of the cases 2n = 2 and
2n = 6, we proceed under the assumption that H*(BTor(W,, D™); Q) is finite-
dimensional in degrees * < N for all g large enough, and we shall establish
the conclusion in degrees * < N. The first author has shown [Kup19, Corollary
5.5] that H*(BTor(W,, D?); Q) is finite-dimensional in all degrees for 2n > 6,
giving the claimed conclusion in this case.

Consider the Serre spectral sequence with H(g)gs-coefﬁcients for the
fibration (4.1), which takes the form

E}" = H?(BG;; H'(BTor(W,, D*"); Q) @ H(8)5?)
—> H”**(BDiff(W,, D*); H(8)5").

We wish to apply Lemma 4.3 to this spectral sequence, so must verify its
hypotheses.
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On the cohomology of Torelli groups 49

As Hi(BTor(W,, D™); Q) ® H(g)®" is finite-dimensional for ¢ < N and g
large enough, by assumption, Theorem 2.2 implies that it is an almost algebraic
representation of G,. Hence by Theorem 2.3 the cup-product map

H(BG,; Q) ® [H'(BTor(W,, D); Q) ® H(g)®*]%

l 4.2)

H"(BG';; H*(BTor(W,, D"); Q) ® H(2)§")

is an isomorphism if both ¢ < N and p + g < N + 1, for g sufficiently large.
This shows that the Serre spectral sequence has the required product structure.
(This map is also clearly an isomorphism for (p,g) = (0, N), so it is an
isomorphism in total degrees p + g < N. Furthermore, Theorem 2.3 also says
H'(G'; Q) = 0, so it is also a monomorphism in total degrees p +¢q < N + 1.)

On the other hand we have computed H*(BDiff(W,, D™); H(g)gs) for
2n # 4 in a range of degrees in Theorem 3.15. We saw there that it is a
free H*(BDiff(W,, D*"); Q)-module in a range of degrees tending to co with
g. The first hypothesis of Lemma 4.3 will therefore be fulfilled as long as
H*(BDiff(W,, D*"); Q) is a free H*(BG.; Q)-module in a range of degrees
tending to oo with g.

Stably we have

lim H*(BDiff(W,, D*); Q) = H*(£20°MT6,; Q) = Qlk. | ¢ € B.2,]

8§—>00

and by Theorem 2.3 we have

lim H*(BG.: Q) = H*(BG.,: Q) = Qlos, os, - - -] ?fn %s odd,
§—>00 Qloy, 03, ...] ifniseven.

In both cases these are (Q-cohomologies of infinite loop spaces, so have the
structure of primitively generated Hopf algebras. As we described in Section 1.1,
the class 04;_», is chosen so that it pulls back under «, to x,, the Miller-Morita—
Mumford class associated to the ith Hirzebruch L-class (this choice is possible
by a theorem of Atiyah [Ati69]). The pullback defines a map of commutative
and cocommutative connected Hopf algebras of finite type, so by Borel’s
structure theorem [MM65, Theorem 7.11] these are free graded-commutative
algebras freely generated their sets of primitive elements [MMG65, Corollary
4.18(2)]. Thus lim,_, ., H*(BDiff(W,, D*"); Q) is a free lim,_, ., H*(BG'; Q)-
module if each x;, € Q{«x. | ¢ € B} is nonzero, or in other words if £; €
H*(BSO(2n)(n); Q) is nonzero for each i > n/2.
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A. Kupers and O. Randal-Williams 50

When n < 3 this is easy, as then BSO(2n)(n) = BSO(2n) and L; contains p|
with nonzero coefficient and p; € H*(BSO(2n); Q) is a nonzero polynomial
generator. For the general case we rely on the recent theorem of Berglund—
Bergstrom [BB18] that £; has every possible coefficient nonzero. As there is
a monomial in Pruiys s Pn having degree 4i for every 4i > 2n, it follows that
L; #0 e H¥(BSO(2n)(n); Q) for eachi > n/2.

We have verified the hypotheses of Lemma 4.3, so for large enough g the
spectral sequence has no differentials starting in total degree p + ¢ < N. The
spectral sequence is one of H*(BG',; Q)-modules, and tensoring down gives a
map

Q ®aqiig, 14i-20-01 H* (BDIff(Wy, D H(g)SS)
— [H*(BTor(W,, D); Q) ® H(g)**]%
which is an isomorphism in degrees * < N and a monomorphism in degree N +-1.
Using Theorem 3.15 this shows that the natural map
Q ®qixe, 14i-20-00 P(S, V)20 ® (det Q*)*"
—> [H*(BTor(W,, D*); Q) ® H(g)**]%
is an isomorphism in degrees * < N and a monomorphism in degree N + 1.
Tracing through the maps involved shows that this map is induced by @g. In
particular it shows that the natural transformation
Q ®aqi, 14i—20-01 (P(—, V)Z;O ® det®)
= [H*(BTor(W,, D); Q) ® H(g)* 1%
of functors (s)Br,, — Gr(Q-mod) is an isomorphism in degrees * < N and a

monomorphism in degree N 4 1. The left-hand side is the Kan extension from
d(s)Br to (s)Br,, of the functor

@ ®Q[KL,~|4i*2">0] (P(—, V)/>0 X det®”) : d(S)BI’ — Gr((@-mod).

To finish the argument we apply Proposition 2.16 to the representation
B = H"(BTor(Wg,Dz");(@) for any i < N, A the degree i part of
Q ®qic, i—20>0) (P(=. V) ®det™), and ¢P2 given by the natural
isomorphism above. O

There is a final consequence of the proof of this theorem which it is useful to
record.
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On the cohomology of Torelli groups 51

PROPOSITION 4.4. The sequence {Kﬁi}i>27n acts regularly on the ring
i*(KY) @B (P(—, V)so ® det®™) in a range of degrees tending to infinity
with g.

Proof. As discussed in the proof of Theorem 4.1, Q[«. | B-,,] is a free module
over Q[k,, | 4i —2n > 0]. In addition, each P(S, V)/>o is a free module over the
subring P(2, V)¢ = Qlk. | B-2,], so the sequence {K'[/i}i>% acts regularly on
each P (S, V)%, so also on each P(S, V)5, ® (det Q¥)*".

By Corollary 2.18, the functor

(KY) @ —: (Qmod)*®™)” — Rep(G))

detects whether a morphism between objects which are supported on finite sets of
cardinality < g is a monomorphism. In a range of homological degrees tending
to infinity with g the object P(S, V), ® (detQ*)®" has such support (see
Section 9.5 for a quantitative discussion of this), so the claim follows. O

5. Ring structure

We may abstract some of the constructions made so far as follows. Let VV
be a graded Q-algebra of finite type and concentrated in even degrees, and let
e € V,,. Using this data we may construct a lax symmetric monoidal functor
P(=,V)5,: d(s)Br — Gr(Q-mod) by analogy with Sections 3.4, 3.5, and 3.6,
and hence form the ring

RV = K\/ ®d(s)Br (P(—, V);O ® det®”) )

One may rephrase Theorem 4.1 as saying that for V = H*(BSO(2n)(n); Q) with
e € H*(BSO(2n)(n); Q) the Euler class there is a ring homomorphism

RV

=, H*(BTor(W,, D*);
(e di—m=q) 1 (BTor(We, DT): Q)

which is an isomorphism in a range of degrees tending to infinity with g. Here the
element « ., corresponds to the part of size 0 labelled by L;; these form a regular
sequence in a stable range by Proposition 4.4. In order to make computational
use of Theorem 4.1 it is useful to identify the ring RY with something more
palatable.

This is a purely algebraic question which can be asked for any V: in this
section we will provide a generators and relations description of the ring RY .
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A. Kupers and O. Randal-Williams 52

5.1. Generators. In this section we will freely identify H(g)" with H(g)
using Poincaré duality. We have been considering H(g) as H,(W,; Q), so the
identification

H(9)' = H,(Wy; Q)" = H"(Wy; Q) — 5 H,(W,; Q) = H(g)

isinverse to v — A(v, —): H(g) SN H(g)".
By the universal property of coends, for any finite set S there are X5 x G-
equivariant maps

H(Q)® @ P(S. V)5, ® (detQ*)®" —> RV,
where the target has the trivial X's-action. If ¢ € V is an allowed label for parts of
size k, the labelled partition {({1, 2, ..., k}; c)} of {1,2, ..., k} givesa X} x G/g—
equivariant map H(g)% ® (det Q“)®" — RV and so, forgetting the X;-action, a
G;,—equivariant map
k.1 H(g)®* — RY.

This construction is linear in ¢. We may record the Xj-equivariance of the
original map by the identity

Ke(Uo() @ -+ ® VUgy) = sign(o)" - k. (V) ® -+ - @ ) (5.1

for any o € X. Recall that the labelled partition {({1, 2, ..., k}; c)} is given
degree |c| + n(k —2), so k.(v; ® - - - ® vy) lies in this degree.

5.2. Relations. We find relations between the «.(v; ® --- ® v;) by giving
pairs of classes which map to the same element in RY.

Let a; for 1 < i < 2g be a basis of H(g) and af for 1 < i < 2g be the
dual basis characterized by A(af, a;) = &;;, then the form w dual to the pairing 2,
determined by (A ®id)(— @ w) = id(—), is given by w = izil a;®al € H(g)®%.

LetS={si,...,s,}and T = {z, ..., t,} be finite sets, and consider enlarged
sets ' =SuU{sjand T' = {f}uT.Letv € H(g)® and w € H(g)®". In the
coend defining RY, the class

2g
D w®a®af @w) (S, x), (T, MI® (1A ASALAAL)

i=1
e H(®)®"" @ P(S'UT", V)5, ® (det Q57"
is identified with the class
WRW)R{SUT, x M1 A Asy Aty A= A1,)"
e H(@® @ P(SUT, V)l ® (det QS-T)®",
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which gives the identity

Z (0 ® @) - ky(a! @ w) = Kyy (v @ W). (5.2)

Similarly, the class
Y wRa®a)@{(Suls, 1} )} (s A As, AsAD

c H(g)®Su[A‘,t} ® P(S L {S, t}, V)/;O ® (det QSLI{.Y,[])@I’[
is identified with the class
VR{(S. e DI® (51 A+ A8, € H(Q)® @ P(S, V), ® (det Q)"

which gives the identity

Y0 ®a ®al) = k.. (v). (5.3)

5.3. The ring presentation. Our main result describing the ring RY is that
the above gives a complete set of generators and relations for it in a stable range,
as follows.

THEOREM 5.1. In a range of degrees tending to infinity with g, the graded-
commutative ring RY is generated by the classes k.(v; ® --- ® v,) with ¢ a
homogeneous element of V, r > 0, and |c| + n(r — 2) > 0, subject to

(1) linearity in c and in each v;;
(1) the symmetry relation (5.1);

(iii) the contraction relations (5.2) and (5.3).

The details of the proof of this theorem are somewhat technical, but the
underlying idea is quite simple: here is a synopsis. Letting R;ﬁes be the
commutative ring given by the presentation in the statement of the theorem,
the fact that these relations indeed hold in R gives a morphism ¢: R;ies — RY.
Both source and target are graded algebraic representations of finite type, so in
any finite range of degrees only finitely many isomorphism types of irreducible
representations appear, which may be described independently of g. As each

irreducible is detected by applying [— ® H (g)®5]1% for some S, it is enough to
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Ke(V1,. .. 07) ——

Figure 4. A corolla with 7 ordered incident edges, and vertex labelled by c.

show that for each S the map [¢ ® H(g)®* 1% is an isomorphism in a range of
degrees tending to infinity with g.

Using an idea introduced by Morita [Mor96], and developed by Kawazumi—
Morita [KM96], Garoufalidis—Nakamura [GN98], and Akazawa [Aka05], we
will describe a certain space G(S, V) of graphs with legs S and with internal
vertices labelled by elements of V), up to a certain rule for contracting internal
edges and contracting loops, and we will construct a map

G(S.V) — [RY.. ® H(g)®*]%

which will be shown to be an epimorphism using Theorem 2.6. This is to be
interpreted as «.(v; ® - - - @ v,) representing an r-valent corolla labelled by ¢ with
an ordering of the incident half-edges (see Figure 4), (5.1) says that the effect of
reordering these half-edges, (5.2) says that an edge between two labelled corollas
may be contracted to form a new corolla labelled by the product of the previous
labels, and (5.3) says that a loop at a labelled corolla may be contracted to give
a new corolla with its label multiplied by e.
On the other hand by Proposition 2.17 there is a map

Y OB PS, V)20 ® (det Q)®" = i, (P(S, V)%, ® (detQ*)®")
— [RY ® H(g)®%]%

which is an isomorphism in a range of homological degrees tending to infinity
with g. Contracting all internal edges will show that G(S, V) is isomorphic to
P(S,V)so ® (detQ%)®" and the following diagram commutes

G, V) % [RY,, ® H(g)®5]%

;l lw@H(g)@S]G’g

w(S)BVZg

P(S, V)s0 ® (det Q%)®" —"——— [RY @ H(g)®5]%.

Hence [¢ ® H(g)®%]% is an isomorphism in a range of homological degrees
tending to infinity with g.
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Proof of Theorem 5.1. Let us suppose that the graded vector space V has finite
type (that is, is finite-dimensional in each degree); the general case follows from
this by taking colimits over all finite type subspaces.

A marked oriented graph with legs S and vertices labelled by V consists of
the following data:

(i) a totally ordered finite set V (of vertices), a totally ordered finite set H (of
half-edges), and a monotone function a: H — V (encoding that a half-
edge h is incident to the vertex a(h)); (given the monotonicity of a, the total
orders of V and H are equivalent to ordering first the vertices and then the
half-edges incident to each vertex)

(i1) an ordered matching m = {(a;, b;)};c; of the set H U S (encoding the
oriented edges of the graph);

(iii) a function ¢: V — )V with homogeneous values, such that |c(v)| +
n(la '(v)| =2) > 0.

We assign to a graph I' = (V, H, a, m, c) the degree
deg(I") =[] (le@)| + nla™" )| = 2)).

veV

Two graphs I' = (V, H,a,m,c) and I'' = (V', H', a’, m’, ¢’) are isomorphic if
there are order-preserving bijections V = V' and H = H’ which intertwine the
functions a and @’ and ¢ and ¢/, and send the matching m to m’. An oriented
graph (with legs S and vertices labelled by V) is an isomorphism class of
marked oriented graphs. We let C°P*(§, V) denote the vector space with basis
the oriented graphs with legs S and vertices labelled by V), and C*'(S, V) denote
the quotient vector space given by imposing linearity in the label c(v) at each
vertex v € v. We consider these as graded vector spaces, with [I"] placed in
degree deg(I").

If [I"] and [I"'] are oriented graphs as above, and there are not necessarily
order-preserving bijections f: H — H'and g: V — V'suchthata’o f = goa
and ¢’ o g = ¢/, and such that the matching m’ of H' L § differs from f(m) by
reversing k pairs, then we wish to declare such graphs equivalent up to a sign.
Specifically we want to enforce

[I'] = (=1)"sign(f) - sign(g)[I"']
where sign(g) and sign(f) are as follows:

(i) Let the degree of a vertex v € V be |c(v)|+n(la~'(v)| —2),and let Vs C V
be the subset of vertices of degree 5. The bijection g: V — V' preserves
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degree, so induces bijections gs: V5 — Vj. These sets are totally ordered,
by restricting the total order from V and V’, and so there is an associated
sign sign(g;) of this permutation. Then

sign(g) := [ [ sign(g»).

& odd

(ii) For each v € V the function f gives a bijection a~'(v) — (a’)~'(g(v)).
These sets are totally ordered, by restricting the total order from H and H’,
and so there is an associated sign sign(f; v) of this permutation. Then

sign(f) = [ [ sign(f:v)".

veV

We let the graded vector space C(S,)) be the quotient of the graded vector
space C”(S,V) by the subspace generated by the homogeneous differences
[I'] — (—=1)"*sign( f) - sign(g)[I"'] for all such [I"]’s and [I"']’s. We further let
G(S, V) be the quotient of the graded vector space C(S, V) by the space spanned
by the differences [I"'] — [I""] when I" = (V, H,a,m,c) and I'" = (V", H",
a”, m", c¢”) are related by the following moves:

(i) an edge contraction; that is, there are x, y € H which are adjacent with
respect to the total order on H and have a(x) # a(y), suchthat H” = H\{x,
y} with the induced order, V” = V/(a(x) ~ a(y)) with the induced order
(as a(x) and a(y) must be adjacent with respect to the total order on V),

inc a quot
ad':H — H—V —YV

which is again monotone with respect to these orders, m = {x, y} Um”, and

"([a(x)]) = c(x) - e(y).

(i) a loop contraction; that is, there are x, y € H which are adjacent with
respect to the total order on H and have a(x) = a(y), such that H” = H\{x,
v} with the induced order, V” = V with the same order,

a H'S H-S v v
which is again monotone with respect to these orders, m = {x, y} Um”, and
"(a(x)) =c(x)-e.

We now construct a map «: G(S,V) — [RY. ® H(g)®%]1%. We do so by

pres

first associating to a graph I" = (V, H, a, m, c¢) the map

Qe ® H(e)®: (R H (™ V@ H()® — R, ® H(2)®*

veV veV
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and then applying this map to the G,-invariant vector given by

® Wap € ®H(g)®a’l(v) ® H(g)®S’

(a,b)em veV

to obtain a([I"]) € [RI‘;eS ® H (g)®%1%. This descends to a map from G(S, V) by

construction, because the relations in R;ﬁes allow for the symmetry, and edge and
loop contraction relations we imposed on graphs.
Write R;’en for the graded-commutative ring generated by the k. (v; ® - - - Q@ v,)

for |c| + n(r —2) > 0, modulo linearity in each v;. We may write this as

RL,=5| P VioHE@B+n0r—-21].
r=0,
§>—n(r—2)
and the construction above gives a map

C(S,V) — [RY, ® H(g)®*]%.

By Theorem 2.6 this is an epimorphism. Imposing the symmetry relation (5.1)
and the contraction relations (5.2) and (5.3) corresponds to allowing local moves
on graphs which correspond to the successive quotients C(S, V) and G(S, V),
and so the map «a: G(S,V) — [R;ﬁes ® H(g)®51% is obtained by taking the
quotient of the above, and so is also an epimorphism.

In each homological degree the functor P(—, V)%, ® det®" is nonzero only
on sets of bounded cardinality, as each allowed part in the definition of
P(=, V)5, has strictly positive homological degree (we discuss this more
quantitatively in Section 9.5). Thus by Proposition 2.17 there is a map

P82 P(S, V)5 ® (det Q)" =i, (P(S, V)5, ® (det Q*)®")
— [RY ® H(g)®*1%

which is an epimorphism, and is an isomorphism in a range of homological
degrees tending to infinity with g. The composition

G(S,V) =5 [RY,, ® H(g)®1% 25 [RY @ H(g)®5]%

pres
is easily described in terms of the map B, Using the contraction formulae,
any graph is equivalent in G(S, V) to a graph having no internal edges: such a
graph has the form (V, H, a, m, c¢) with m a matching of H LI S having no pairs
in H. In other words, m is the data of an injection t: H < S and an ordered
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matching m’ = {(a;, b;)} of the complement S \ ¢(H). Such a graph determines
a labelled partition of S, with parts {g;, b;} labelled by 1, and parts t(a~'(v))
labelled by c(v). It also determines an orientation of Q5 as

th) A---ALh) Aay Aby A -+ Aag A b, € det(Q5).

This describes the composition ¢, o «. It clearly shows that ¢, o @ is an
epimorphism, as 5" is and every labelled partition is realized by a graph,
namely a disjoint union of corollas.

To show that ¢, o « is a monomorphism, we now use our assumption that V
has finite type: then the vector spaces G(S, V) and P(S, V)5 ® (detQ%)®" do
too, and so to see that ¢, o « is a monomorphism it is enough to show that
the dimension of G(S,V) it at most that of P(S,V)>, in each homological
degree. To see this, contract all internal edges of each graph in G(S, V): the
result is a disjoint union of corollas with vertices with (certain) labels in ), and
the dimension of this space in each degree is precisely the dimension of P(S,
V)0 in that degree. Thus even if certain disjoint unions of labelled corollas are
equivalent in G(S, V), its dimension is most that of P(S, V)so ® (det Q5)®".
Thus ¢, o « is an isomorphism in a range of degrees tending to infinity with g.

Finally, as « is an epimorphism it then follows that both « and ¢, are
isomorphisms in a range of degrees tending to infinity with g. That is, for each
finite set S the map

.1 [RY., ® H(g)®1% —> [RY ® H(g)®°]%

is an epimorphism, and is an isomorphism in a range of degrees tending to
infinity with g. The algebraic representation R;ﬁes is generated by the classes
k. (H(g)®") of degree |c| + n(r — 2) > 0, which can be detected by applying
[—® H(g)®1%. Thus in degrees % < d there is a finite list, independent of g, of
irreducible representations V, appearing in R;ﬁes, and hence which could appear
in Ker(¢). Thus if ¢ were not an isomorphism in degrees * < d then this would
be detected by applying [— ® H(g)®%]% for a fixed finite collection of sets S,

but by taking g large enough this does not happen. O

54. A smaller ring presentation. Having understood the proof of
Theorem 5.1, one can hope to simplify the presentation of the ring RY given
there by manipulating labelled graphs. At the level of generators a simplification
is quite obvious: graphically we may first replace an r-valent corolla labelled by
x by an (r + 1)-valent corolla labelled by 1 joined to a univalent corolla labelled
by x, and then by iterated expansions replace the (r + 1)-valent vertex labelled
by 1 by a trivalent tree with each vertex labelled by 1, see Figure 5.

Downloaded from https://www.cambridge.org/core. IP address: 24.91.38.35, on 09 Jun 2020 at 03:44:17, subject to the Cambridge Core
terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fmp.2020.5



On the cohomology of Torelli groups 59

v
A

Figure 5. Replacing an r-valent corolla labelled by x by an (r 4 1)-valent corolla
labelled by 1 connected to a univalent corolla labelled by x, and then expanding
the (r 4+ 1)-valent vertex to a trivalent tree. We have suppressed the labels 1 for
clarity.

For this to be possible we need to know that if x is a label of some corolla,
and |x| > 0, then the univalent vertex labelled by x exists, that is, |x| + n(1 —
2) > 0, or in other words |x| > n. In this section we will therefore suppose that
YV = Q{1} ® V.,. In this case we see that the classes

(@) k. = k(1) for ¢ € V.,,, of degree |c| — 2n;
(b) k.(vy) for ¢ € V., of degree |c| — n; and
() k1(v1 ® v, ® v3) of degree n;

are sufficient to generate RY. The price to be paid for this smaller generating
set is, as is to be expected, a somewhat more complicated set of relations. The
reader will easily deduce from (5.1), (5.2) and (5.3) that along with linearity in ¢
and each v; the following relations hold among the generators listed above:

(@) k1 (Vo) @ Vo2) ® Vo3)) = sign(0)" - k1 (V) @ V2 ® v3)

(B) Ky =2 kul@) - &y (af)

(V) key(ui) =3, k(v ®a; ®a;) ko (al) 'Ky(af)

8) Y k(v ®a; @af) = k. (v1)

(€) Y. ki(vi®u®a;) -ki(al ®@us®ug) = D, k1(V1 ®VsQa;) ki (af @V R vy).

THEOREM 5.2. Suppose that V = Q{1} & V... In a range of degrees tending to
infinity with g, the graded-commutative ring RY is generated by the classes (a)—
(c), with relations given by linearity in c and each v; and the relations (o )—(€).
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‘ o ‘

Relation («).

Relation (53). Relation (7).
Relation ( Relation (e)

Figure 6. The relations («)-(¢) in graphical form.

Proof. As in the proof of Theorem 5.1, let Rpreg be the graded-commutative ring
given by the presentation in the statement of this theorem. Let C(S, V) denote
the vector space of graphs analogous to C(S, V), but starting with the subspace
corrre(S, V) c CoPe(S, V) spanned by those graphs which

(a) may have nilvalent vertices;
(b) may have univalent vertices;

(c) may have trivalent vertices labelled by 1;

but have no higher-valent vertices. Let G(S, V) denote the quotient of C(S,V)
by the subspace spanned by differences [I"] — [I""] where I"” is obtained from
I' by one of the local moves shown in Figure 6.

As in the proof of Theorem 5.1 there is a map

&@: G(S,V) — [RY, ® H(g)**|%,
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a &€ B>n
m k 11 m I—I—‘
T T3 TgTi—1 2 T3 T4 Ti-1 T4
a € Vsy
(iii) (iv) (v)
a € Vsop

m .

T To T
Figure 7. Standard labelled trees for (i) i > 3, (i) i > 2, (i) i =2, (iv)i =1,
W)i=0.

and it is again an epimorphism. Using the commutative diagram

(5. V) —» [RY, ® H(g)*]™

| !

G(S,V) —— [R., ® H(e)*]™

to finish the argument we must show that § is an isomorphism, and to do so we
may use the identification G(S, V)—>P(S, V)50 ® (det Q%)®". We have already
explained at the beginning of Section 5.4 why S is an epimorphism, using the
assumption V = Q{1} & V..

To finish the argument, as in the proof of Theorem 5.1 we may suppose that
V has finite type; then it is enough to show that in each homological degree the
dimension of G(S, V) is at most the dimension of G(S, V).

First observe that any labelled graph in G(S,)) is equivalent to a labelled
forest, as follows. If a connected graph has a cycle then it has an embedded
cycle, in which case the relation (¢) can be used to shorten the length of this
embedded cycle, and this can be done until the graph has an embedded cycle of
length 1: but then the relation (8) can be used to replace this loop with a leaf
labelled by e. This reduces the first Betti number of the graph. Continuing in this
way, we can eliminate all cycles. Furthermore, by applying relations (¢), (),
and (B) each labelled forest is equivalent to a disjoint union of labelled trees of
the forms shown in Figure 7(i)—(v). This means that in each homological degree
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the dimension of G(S, V) is at most that of P(S, V)>o, which completes the
argument. The case of general V follows by taking colimits. O

REMARK 5.3. We may phrase relation (€) as saying that the compositions
f K K
H(g)®1:256) :’; H()® @ H(g)® 29 RV
fu

are equal, where

[0 @1 ®vs@ve) =) (11 ® vy ®a) ® (af ® vs @ vg),

fru (v ® v2 @ vs ® V) = Z(vl ® s ®a;) ® (af ® vs ® v,).

i

Graphically this corresponds to ‘/ = H’: it is somewhat complicated because we
are trying to express the fact that edges may be contracted, while only allowing
ourselves to consider trivalent graphs.

The class k;(v; ® v, ® v3) has degree n, so the map k| ® «;: H(g)®® ®
H(g)® — RY factors through A?(H(g)®%) if n is odd and through
Symz(H (g)®®) is n is even. Furthermore, by relation (5.1) the map
ki: H(g)® — RY factors through A3(H(g)) if n is odd and Sym3(H(g))
if n is even. In total it factors through A*(A3(H(g))) or Symz(SymS(H(g))).
The following lemma describes the image of the composition

AN (A (H(9)),

. fr—rfu 3 ®3 KiI®K|
H(g)®“‘2’5'6} — H(g)® ® H(g) E—

as a G(Q)-representation; the first case is due to Garoufalidis—Nakamura

[GN98], and the second case can be proved by the same method.

LEMMA 5.4. Ifn is odd then A*(A*(H(g))) = Vie+2Via +3V2+2Vy+ Vo 2+
V22 + V2,12 and

Im[f; — fu: H@Q® — A*(A(H(@))] = Ve + Viz + V.

If n is even then Sym*(Sym® (H (g))) = 3Vy + 4V, 4+ 2V + Vs + V3| + 2V, +
Vao + Ve and

Im[f; — fu: H(®)® — Sym>(Sym*(H ()] = Vo + V3. O
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5.5. Example: calculation in low degrees. Above we gave a presentation of
RY; this ring is related to Torelli spaces by a ring homomorphism

RV

=, H*(BTor(W,, D*"): Q),
(kr, | 4i —2n > 0) ( (We Q)

which is an isomorphism in a range of degrees tending to infinity with g, for
V = H*(BSO(2n)(n); Q). In this section we use the arguments of Theorem 5.1
to compute RY explicitly in degrees * < 2n and relate it to pseudoisotopy theory
and surgery theory. As usual we give V its basis BB of monomials in Euler and
Pontrjagin classes.

Let us define a graded vector space P := (w.(BO) ® Q)Y,, with basis
‘PB given by all Pontrjagin classes. If ¢ € PB N B.,, we have defined earlier
elements k.(v) € RY of degree |c| — n. We extend this to ¢ € PB \ B.,
by declaring «.(v) = 0 if |c| > 4n (these classes will play no role in this
computation, as their degree exceeds the range * < 2n). Together with the classes
k1(v; ® v, ® v3) in RY of degree n, these provide a homomorphism

RV

. * — v
v: (QaY[n])®S*(H(g)[-nl®P) — RV — (g, | 4i —2n > 0)’

(5.4)

where
| A(H ()N n odd

Y[n]:= 3
Sym’(H(g))[n] n even.

The following extends the computation of the cohomology of Torelli spaces in
the range * < n — 1 by the second author and Ebert using pseudoisotopy theory
[ERW15].

PROPOSITION 5.5. For x < 2n and g sufficiently large, V is an isomorphism.

Proof. That ¢ is an isomorphism for * < 2n and g sufficiently large can be
detected by tensoring with H (g)®5 and taking G -invariants, for all finite sets S:

[(Q@ Yin) ® S*(H(9)[-n] ® P) ® H(g)*]*

v G,
- R ® H(g)®S ¢
(g, | 4i —2n > 0) '

Let G(S, P)® denote the vector space of graphs analogous to G (S, V) or Gg(s,
V) given as follows: we start with the subspace C*'(S, P)" C C (S, P) spanned
by those graphs which (a) may have univalent vertices, (b) may have a single
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(i) (i) (iif)

Figure 8. The graphs that appear in the proof of Proposition 5.5, suppressing the
labels on univalent vertices.

trivalent vertex labelled by 1, but (c) have no other vertices. Then G(S, P)D is
the quotient of C*' (S, P)V by the differences [I"] — [I""] where I'” differs from
I' only by the local move («) of Figure 6. The only connected components that
occur in such graphs are as in Figure 8:

(i) a single edge with vertices labelled by S or P;
(ii) a trivalent vertex and univalent vertices labelled by S or P;
(iii) a ‘lollipop’ with univalent vertex labelled by S or P.

As in the proof of Theorem 5.1, there is a map

G(S. P)V — [@& YInD) ® S*(H()[—n] & P) ® H(g)**]

which is an isomorphism in a range of degree increasing with g.
Sending p; for |p;| > 4n to 0 gives a map P — V), which induces the left
vertical map in the commutative diagram

G(S, P)V — [Q@ Yn) ® §*(H(g)[—n] ® P) @ H(g)*]™

| !

G(S. V) > [RY ® H()®5]%.

In the proof of Theorem 5.1, we identified the left-bottom corner with the vector
space P(S, V)>o ® (det Q%)®" of partitions of S with parts labelled by elements
of V), subject to certain conditions on the degrees of allowed labels. In the range
x < 2n, any labelled partition ({P;}, {c;}) of degree Y n(|P;| —2) + |c;| is a
disjoint union of the following indiscrete labelled partitions:

(") parts of size 0 with label of degree > 2n;

(i) parts of size 1 with label of degree > n;
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’

(iii") parts of size 2 with label of degree > 0
(iv') parts of size 3 with label of degree > 0

The passage to the further quotient

% ®5706. RY ®S %
R H f H
(R ® H(o)™] [(Kﬁi|4i—2n>0)® &) }
imposes the relation that a part of size 0 with label £; is 0.

The map G(S, P)V — G(S,V) —> P(S,V)so ® (detQ%)®" sends a graph
to the partition of S induced by the connected components of the graph, each with
label given by the product of the labels in V of its legs. In the range * < 2n and
for g sufficiently large. this map provides a bijective correspondence between

connected components and indiscrete partitions as long as we set parts of size 0
with label £; to O:

e The parts of type (i') arise as follows: those with label p; p; come from graphs
of type (i) with labels p;, p; € P, those with label p; p; p, come from graphs
of type (ii) with labels p;, p;, px € P, and those with label ep; come graphs
of type (iii) with label p; € P. Because for 2n < 4i < 4n the monomial p; has
nonzero coefficient in £;, these are all nonzero parts of type (i’) in the range
* < 2n.

e A part of type (ii’) comes from a graph of type (i) if its label is p;, from a graph
of type (ii) if its label is p; p;, and from a graph of type (iii) if its label is e.

e A part of type (iii’) comes from either from a graph of type (i) with both labels
in S, or a graph of type (ii) with two labels in S and one in P.

e A part of type (iv') comes from a graph of type (iii) with all labels in S.

In degrees * < 2n, a graph can contain at most a single connected component
of type (ii) or (iii) and a partition can contain at most one part corresponding
to such a connected component. Hence this bijective correspondence between
connected components and indiscrete partitions gives rise to one between graphs
and partitions. O

REMARK 5.6. This computation is related to work of Berglund and Madsen
on block diffeomorphisms [BM20]. Let Diff(W,, D?") denote the simplicial
group of block diffeomorphisms of W, fixing D** C W, pointwise, which
can be identified with block diffeomorphisms of W, ; := W, \ int(D*") fixing
oW, 1 pointwise. This has a map to the path components of the homotopy
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automorphisms of W, fixing dW,  pointwise, whose kernel we shall denote
by Diff, (W,, D*").

The action of a homotopy automorphism of W,; on H(g) preserves
both the intersection form and its quadratic refinement, so there is a further
map 7o(haut(W, 1)) — G,. Berglund and Madsen prove that the action of

mo(hauty (W, 1)) on H*(BIS\iff](W , D™); Q) factors over G;. Since the map
mo(hauty (W, 1)) — G:g has finite kernel, it follows from a Serre spectral
argument that the inclusion induces an isomorphism of G, -representations

H*(BTor(W,, D*); Q) —> H*(BDift,(W,, D*); Q)

if we let Tor( W,, D*") be the subgroup of the block diffeomorphisms of those
components that map to the identity in G . Furthermore, Berglund and Madsen
prove there is an isomorphism of G/ -representations

H*(BDiff,;(W,, D*); Q) = Hl(g,) ® S*(H(g) ® P),

where H(;(g,) denotes Chevalley—Eilenberg cohomology of a certain graded
Lie algebra g, and P is (7,.(G/0) ® Q)"[—n].(, which can be identified with
(7.(BO) ® Q)[—n].¢ using the rational homotopy equivalence G/O — BO.
As Hi(ge) ® S*(H(g) ® P) is an algebraic representation of G/, the map

H*(BTor(W,, D*); Q) —> H*(BTor(W,, D*"); Q)

factors over H*(BTor(W,, D*"); Q)"e.
Since we can define twisted Miller—Morita—Mumford classes on block
bundles, cf. Remark 3.7, the homomorphism

H*(BTor(W,, D*'); Q) —> H*(BTor(W,, D*); Q)™ (5.5)

is surjective for g sufficiently large. In degrees * < 2n, the groups Hp(g,) are
concentrated in total degrees 0 and n, and given by Q and Y[n], respectively.
Using Proposition 5.5, we see that in this range the map (5.5) is a surjection
between vector spaces of the same dimension and hence an isomorphism.

6. Additive structure

Given Theorem 4.1 it is reasonable to ask for an explicit description of the
multiplicities in H*(BTor(W,, D?); Q) of the various irreducible algebraic
G;—representations, which by Theorem 2.5 are the V,(H(g))’s. This can be
reduced to a manipulation of Schur functions: by Theorem 4.1 and the final
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part of Proposition 2.16, in the stable range the multiplicity of V,(H(g))
in H*(BTor(W,, D?); Q) is the same as the multiplicity of S* in the 2,-
representation

Q ®Qli, [4i—2n>0] Pq]l. V);o ® (detQU)®",

and this can be analysed quite effectively with the theory of symmetric functions.

6.1. Recollection on symmetric functions. We follow the exposition of
Garoufalidis—Getzler [GG17, Section 2]. Let A denote the ring of symmetric
functions, the inverse limit lim; Z[x, . .., x;]** formed in the category of graded
rings where the x; are placed in grading 1. Write A, for the piece of grading g.
Let A = I1 4 Aq denote the completion of A with respect to the filtration induced
by this grading. As usual denote by ¢, the kth elementary symmetric function, by
hy the kth complete symmetric function, and by p; the kth power sum function.
For example, ¢, = ij xixj, hy = ngj x;x; and p, = Y, x?. Both the ¢; and
the h; provide a set of polynomial generators for A, and the p, form a set of
polynomial generators for A ® Q.

6.1.1. Symmetric groups. For a group G, let R(G) denote the group-
completion of the monoid of isomorphism classes of finite-dimensional
G-representations under direct sum. Similarly, let R(FB) denote the group-
completion of the monoid of isomorphism classes of objects of (Q-mod?)FB,
that is, representations of the category FB into finite-dimensional (which is the
same as dualizable) vector spaces, under objectwise direct sum. This has the
structure of a commutative ring given by Day convolution of functors. There are
restriction maps R(FB) — R(X,) for each ¢, and taking them all together gives
an isomorphism
R(FB) — [[R(Z)).

q20

The preimage of ) >0 R(X;) under this map consists of (differences of) finite
length representations of FB. As a Day convolution of finite length functors
again has finite length, there is an induced multiplication.

There are homomorphisms of abelian groups

ch,: R(X,)) — A,
V> chy (V) := Z xv(Oy)

[Al=q

p)»[ e p)»[
1)‘1)\,1!2)‘2)\2! .. 'EM)\(!,
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where xy (0,) is the value of the character of V on the conjugacy class O, of
cycle type A. For example, given a partition A of g the irreducible representation
§* of X, is sent by ch, to the Schur function s;. In particular, the trivial
representation is sent to s, and the sign representation det to e,.
These homomorphisms are in fact isomorphisms and combine to give a ring
isomorphism
ch: PR(Z,) — A

q

when the domain is given the product by Day convolution. Similarly, they
combine to give a ring isomorphism

ch: R(FB) =[[R(Z,) — A.

q20

As the S* give a Z-basis for P s R(Xy), the s, give a Z-basis for A.

More generally, if gR(FB) denotes the group-completion of the monoid
of isomorphism classes of objects of Gr(Q-mod?)F8, that is, representations
of the category FB into nonnegatively graded vector spaces which are finite-
dimensional in each degree, then we have a ring isomorphism gR(FB) =
R(FB)[[#]] by extracting homogeneous pieces. This gives an isomorphism
ch: gR(FB) > A[[1]].

The category Gr(Q-mod‘)™ has another monoidal structure, the composition
product o, given by

D Ind?ZI x5, GRD® - ® G(k,,)).

1yeeeskn 20,3 ki=q

(FoG)(q)=EP Fn) &y, (
n=0 k

This construction is formed in the symmetric monoidal category Gr(Q-mod?),
whose symmetry includes a sign given by the Koszul sign rule. Under the
isomorphism above, this induces an associative product o on /i[[t]]. On A this
is given by plethysm of symmetric functions, and its extension to A[[z]] is
characterized by p; o x = x* for all x, and ¢-linearity in the first variable.

6.1.2. Aninvolution. Thereis aninvolutionw: A — A givenby w(e;) = h;. It
is easy to see that this satisfies @ (p;) = (—1)*~! p; for all k, and hence that under
the isomorphisms ch, it corresponds to tensoring with the sign representation of
X,
6.1.3.  Representations of G,. Recall that H(g) denotes 2g-dimensional
rational vector space equipped with an e-symmetric form A: H(g)® H(g) — Q,
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for € € {—1,1}, and O.(H(g)) C GL(H(g)) denotes the subgroup of
those linear isomorphisms which preserve A. In the branching rule for
O.(H(g)) C GL(H(g)), the irreducible GL(H (g))-representation S, (H(g))
restricted to O, (H (g)) decomposes as

Reso, 115 (S,(H(8)) = Vi(H () © €D a1, Vi(H ()
yzi
[l <|A]

for certain multiplicities a, , (and which may be given in terms of Littlewood—
Richardson coefficients). We may recursively define elements s,y of A by

() = Sa— Z Ay S -

IMI<IM

By the upper-triangularity of this definition, the s, also form a Z-basis for A,
and there is therefore an automorphism of abelian groups

D: A — A

S > MR

There are ring homomorphisms A — R(G’g) given by sending e to A*(H (g)),
which therefore send s;y to Vi (H(g)).

6.2. Evaluating the character. We can obtain the Poincaré series in A[[¢]]
(and hence in R(G;)[[t]]) of the graded G;,-representation H*(BTor(W,
D); Q)¢ as g — oo as follows. By interpreting the calculation in Theorem 4. 1
using the last part of Proposition 2.16 we see that this Poincaré series is given
by applying D to the character of

P (Q ®aer, 1si-20-01 (P(Ug). V) ® (det Q)")) € P R(Z,).

20 q20

Using the fact that ch is a ring homomorphism and sends the operation of
tensoring with det to the involution w, we see that the Poincaré series is obtained
by applying D to

" <Z ch, (Q ®Qike, 14i-2a>01 P (g1, V);o)) € A[[r]]. (6.1)

q20

To evaluate this, note that P ([¢], V);O isafree P(&, V)0 = Qlk, | ¢ € B-2,]-
module, and so by the proof of Theorem 4.1 it is a free Q[«x., | 4i — 2n > 0]-
module (we already used this observation in the proof of Proposition 4.4). Thus
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we have

Z ch, (@ BQlc, 14i—2n>0] Pq]l. V);o)

920
=(TTa=r=)- Len, (P vy).

4i>2n q=20

To understand the second factor, we observe that the graded representation

P Pdagl. V), € (EB R(Eq))[m]

q20 q20

may be expressed, in the larger ring R(FB)[[¢]], in terms of a composition
product Q o B, where Q and B are as follows:

(i) Q denotes the graded representation whose gth component of is the trivial
1-dimensional representation (in degree 0) for all g.

(ii) B denotes the graded representation whose gth component is the trivial X,-
representation with basis the set of allowed labels in B for parts of size ¢,
where a label ¢ is given degree |c|+n(q —2). A labelling of a partition of the
finite set [¢] by elements of 3 is allowed here if each part of size 0 has label
of degree > 2n, each part of size 1 has label of degree > n, and no parts of
size 2 are labelled by 1 € B. That is, B(q) is the graded vector space with
basis B if ¢ > 2 and with smaller basis according to the aforementioned
conditions for g = 0, 1, 2.

Recall that ch, of the trivial representation is 4, so we get that
o0
ch(Q) = > h, € A[lt]]
q=0
and (writing P (V) € Z[[¢t]] for the Poincaré series of a graded vector space V)

ch(B) = hoP(Vor )t + i PVs,)t ™" + ha P(V-p)

+ ) h PO e tA[[]].

q=3
We may easily analyse these Poincaré series, as V = Q[e, Pontls-ees Pn—1] s0O
4
we have
1 L
PYV)=———" .
) L —¢2 l:L 1 —r4

=1
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SO we can write

n+1 n
POV.a) = PO) = (L 2 70 43,
PVs)=PWV)—1 and P(V.0)=P(V) - 1.
Thus we may write ch(B) as
1 =, .
ch(B) = IE<P(V)(X(; hyt q)
q=

n+1 n
—(ho(L+ "+ o Ry e hﬂ)).

As the composition product is sent to plethysm by ch, we have

> chy(P(gl, V)sg) = (Z hq) o ch(B).

q20 q=0

(Note that as h, o — sends t A[[¢]] into 7 A[[¢]], and ch(B) € rA[[¢]], this
plethysm does actually land in A[[#]].)

6.3. Example: dimension 6. As an example consider the case 2n = 6, and
compute the character of H*(BTor(W,, D®); Q)" for g > 0 by evaluating (6.1)
and applying D. In this case, we have

VYV = H*(BSO(6)(3); Q) = Q[p1, p», el,

andso P(V) = 5 - 2 - s = 14+ + 14+ 20% + 1104+ 312 + O ('), Thus
we have

1/ 1 1 1 =
ch(B) t_6<1 —6 1= 148 (Zh"t q)
q=0

— (ho(1 +* + 1% + hy* + h2t6)>
= ht 4 2hot* + (hs + h)E + (hy + ho)t* + O ().

(The following calculations were performed in Sage [Sagl9].) Applying
Z;io h, o — to this, then expressing the answer in terms of s,’s gives

1451t 4+ 24 5)t% 4+ Bsy + 283)1° + (4 + 512 + 4sy + 531 + 25)t* + O(2).
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Applying @ and then D sends s, to s, so transforms this to
L5yt 4+ 245022+ By +2503) 1 + (G450 4502 +5 0,12+ 2508+ O ().
Multiplying by [],._c(1 — t%72") = 1 — 1> + O(¢°) gives the result,
Tsyt+ (1822 + sy +250) 8 + 245y +3502) +5 0,12y +2504)t + O (),
so for 2n = 6 and large enough g we can read off

H'(BTor(W,, D°; Q)" = V,,

H*(BTor(W,, D%); Q)" = V2 + V,,

H?(BTor(W,, D°); Q)" = 2Vs + 2V,
H*(BTor(W,, D%); Q)" = 2Vis + Vy 12 + 3V + Vo + 2V,

7. Variants

There are two close variants of Diff(W,, D), namely the group Diff" (W,, %)
of those orientation-preserving diffeomorphisms of W, which preserve a point
* € W,, and the group Diff" (W,) of all orientation-preserving diffeomorphisms.
Each of these has its associated Torelli subgroup, denoted in the evident way, and
we will briefly explain how the cohomology of BTor" (W,, *) and BTor" (W,)
may be deduced from our previous calculations.

Firstly, there is a fibration sequence

BTor(W,, D) —> BTor*(W,, x) —> BGL,,(R) ~ BSO2n)  (7.1)

where the right-hand map is given by taking the derivative at the marked
point. This is a fibration of spaces with G/, -action, giving an induced action on
rational cohomology. The statement of the following result is best understood by
consulting its proof.

LEMMA 7.1. The fibration (7.1) satisfies the Leray—Hirsch property on maximal
algebraic subrepresentations in the stable range.

Proof. Consider the Serre spectral sequence { £/} for the fibration sequence
BDiff(W,, D*") —> BDiff" (W,, ¥*) — BGL,,(R) ~ BSO(2n)

with 7 (g)$°-coefficients. By Theorem 3.15 H*(BDiff(W,, D*"); H(g)§’) is
generated by twisted Miller—Morita—Mumford classes, and by construction these
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are defined in H*(BDiff" (We, *); ’H(g)gs ), so this spectral sequence satisfies
the Leray—Hirsch property and collapses at E,. This gives an isomorphism

H*(BDIff" (W, %); H(g)§") = H*(BSO2n); Q) ® P(S, V)> ® (det Q*)*"
(7.2)
of H*(BSO(2n); Q)-modules.

If the cohomology of BTor(W,, D*") is finite-dimensional in degrees * <
N then by the Serre spectral sequence for (7.1) that of BTor*(Wg, *) 1S too.
Repeating the argument of Theorem 4.1 with the input (7.2) shows that there is
a map

l'*(K\/) ®d(s)Br (fp(_’ V)/}() ® det®”)
(kr, | 4i —2n > 0)
— H*(BTor" (W,, ¥); Q)"¢

H*(BSO(2n); Q) ®

of H*(BSO(2n); Q)-modules which is an isomorphism in degrees * < N and a
monomorphism in degree N + 1. 0

Secondly, there is a fibration sequence
W, —> BTor™(W,, *) —> BTor"(W,), (7.3)

which may be identified with the universal W,-bundle over BTor" (W,).

LEMMA 7.2. The fibration (7.3) satisfies the Leray—Hirsch property, as long as
nisevenorg # 1.

Proof. This spectral sequence has three rows, the Oth, nth, and 2nth. The
fundamental group of BTor"(W,) acts trivially on the cohomology of the fibre
W,, by definition of the Torelli group, so this spectral sequence has a product
structure. To show that the Leray—Hirsch property is satisfied we must show that
it collapses at the E,-page. The Euler class e(7,) of the vertical tangent bundle
of this fibre bundle restricts to a nonzero class in H 2”(Wg; Q) under the stated
conditions, meaning that there can be no differentials out of the 2nth row. On the
other hand, we have

m(e(Ty) - (x)) = x (W) - x

showing that 7* is injective under the stated conditions, meaning that there can
be no differentials into the Oth row. O

Combining these two results with the method described in Section 6.2,
one can extract the Poincaré series in A[[z]] of H *(BTor’“(Wg, %); Q)¢ or

Downloaded from https://www.cambridge.org/core. IP address: 24.91.38.35, on 09 Jun 2020 at 03:44:17, subject to the Cambridge Core
terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fmp.2020.5



A. Kupers and O. Randal-Williams 74

H *(BTor+(Wg); Q)2, in the stable range. Describing these as rings seems to
be an interesting problem: the ring H *(BTOI'+(Wg, *); Q)¢ can be addressed
with the methods of this paper, but the ring H*(BTor" (W,); Q)¢ seems to be
difficult to describe well.

8. Discussion of the case 2n = 2

Above we gave two techniques to make our computation of the cohomology
of Torelli spaces more explicit: Section 5 gives a presentation of cohomology
ring and Section 6 tells us how to compute the characters of the cohomology
groups. We shall now apply both to the case 2n = 2.

8.1. Additive structure. Johnson has shown [Joh85] that
H'(BTory(W,, D*); Q) = A’(H(g))

for g > 3, which is finite- dimensional, so Theorem 4.1 gives an isomorphism
in degrees * < 2 and a monomorphism in degree « = 3. We may therefore use
this result to calculate H>(BTor(W,, D*); Q)¢ as a Sp,, (Z)-representation for
g > 0, and to estimate H*(BTor(W,, D?); Q)¢ from below.
THEOREM 8.1. For g > 0 we have

H*(BTor(W,, D*); Q)" = 2V2 + Vy 12 + 2Vis + Va2 12 + Vis.
For g > 0 we have

H?(BTor(W,, D*); Q)" >V, + Vo +3Vis + 2V +3Va s + Va2
+2V23’1 + V3,23 + 4V15 + 2V22,13 + V32’13
+2V2,15 + V23’13 + 2V17 + V22,15 + V19,

with equality if H*(BTor(W,, D?); Q) is finite-dimensional for g >> 0.

Proof. We use the method described in Section 6.2, in the case 2n = 2, and rely
on the notation from that section. In this case we have

V = H*(BSO(2n); Q) = Q[e]
and so P(V) = =5 = 1 4+ 1> 4+ O(t*). Thus we have
1 1 d
ch(B) = 72(1 — <q2=; hqtq) — (ho(1 +1>) + hyt + hzﬁ))

= (hy + h)t + (hy + ha + D> + (hs + by + b)) + 0.
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(The following calculations were again performed in Sage [Sagl9].) Applying
Z;ozo h, o — to this, then expressing the answer in terms of s,’s gives

1+ (53 + 501 + 254+ su0 + 531 + 1+ 255 + 56)1°
+ (o + 3541+ Sap1 + 8572 + 2535 + 4s3 + 257 + 2851 + 2555
+ 6.3 + 455 + 5500 + 2561 + 521 + 2543 + S44)t” + O(tY).

Applying o and then D sends s, to s, so transforms this to

L4 () + 50Dt 4+ 2sasy + 5@y + 5@z + 1+ 25y + 50617
+ (59 + 352, + 53212 + 5215
+ 25020 + 45y + 2spn) + 2y + 250203
+ sps3y + Assy + sy 4 250,15 + Sey + 2501 + 53031 + O ().

Multiplying by [,;_,(1 — t%72") = 1 — > + O(¢*) gives the result,

1+ (s + )t + 2spey + S22y + Sy + 2502 + a6t
+ (spo) + 3502, + 53212 + 5215
+ 2520) + 353, + 2507 4 sy + 2521
+ S8 3y + Asqsy + sy + 250,15 + Sey + 2501 + s + O@?).

Extracting the coefficient of ¢+ we obtain
H'(BTory(W,, D*); Q)" = V; + Vis = A*(H(g)),

compatible with Johnson’s theorem. Extracting the coefficients of #> and ¢* gives
the two claimed calculations. O

By Lemma 7.1, in the stable range the Poincaré series for BTor" (W,, *)
is obtained by multiplying that for BTor(W,, D*) by the Poincaré series for
BSO(2), namely ﬁ =147+ 0", soitis

L+ (s + 50t + (1 sqs) + 52 + 2500 + s + 2502)1
+ (59 + S2,15) + 2507y + 2850313y + 2850,15) + 532,13 + 2502,13) + 4515
+ 53,23 + 25031 + 532,12 + 3502,13
+ 2502y + 4sasy + Sy + 258 + O@Y).
Considering the proof of Lemma 7.1 carefully, it is possible to deduce that
H*(BTor" (W,, %); Q)¢ contains the indicated Sp,,(Z)-representation.

By Lemma 7.2, in the stable range the Poincaré series for BTor™ (W,) is
obtained by dividing that for BTor"(W,,*) by the Poincaré series for W,,
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namely 1 + sz + #%. The inverse of this series is 1 — syt + (s2) + s2))12 —
(sq1y + s3y + 25001y + 53))1° + O(r*), so in the stable range the Poincaré series
for BTor™ (W,) is

1+ sunt + (s02) + Sa4) + Sasy + S22t
+ (sq3y + sy + 2805y + 507y + S0y + 50,13 + S5 + Sz
+ 802,13 + S2,15) + S31) + 2803 13y + 5303 + S<32,13))f3 + 0@t".
Considering the proof of Lemma 7.2, it follows that H?(BTor"(W,); Q)¢
contains the indicated Sp,, (Z)-representation.

It is interesting to compare these results with the literature. The work of
Johnson [Joh85] (or our theory) provides a Sp,, (Z)-equivariant isomorphism

T: Hj(BTor" (W,); Q) — Vs,

the Johnson homomorphism. This provides a Sp,,(Z)-equivariant ring
homomorphism t*: A*V;3 — H *(BTOr+(Wg); Q). Hain has shown in [Hai97]
that its image in degree 2 is precisely V2 + Vis + Vis + Va2 12, and this may
be recovered from our calculation above along with the discussion of the ring
structure in the following section. Sakasai has shown in [Sak05] that its image
in degree 3 is either

Vis +2Vis + Vir + Vo + Vo s + Vs + Va2 g
+ Ve +Vas 4+ Va4 Vs s+ Vi 4+ Vi s

or the same with V| added on. Furthermore, he shows that the V;-term is present
if and only if

Ko — (2 —2g)e* # 0 € H*(BTor" (W, x); Q). 8.1)

REMARK 8.2. Sakasai’s expression has one fewer copies of V,s 3 than our
expression, and in fact the decomposition of A*(V)s) into irreducibles contains
a single Vs 13. However, there is no contradiction: this simply expresses the fact
that the ring H *(BTor*(Wg); @Q)™¢ is not generated by the image of the Johnson
homomorphism.

Using our results we are able to resolve the ambiguity in Sakasai’s result, and
hence show that the inequation (8.1) holds. By our graphical interpretation, the
image of the composition

ANVp) > H’(BTort(W,); Q) —> H?*(BTor(W,, D*); Q)

after applying [— ® V,15°%® is the subspace of those elements which can be
represented by trivalent graphs with one leg, three internal vertices, and no loops.
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Figure 9. A trivalent graph with one leg, three internal vertices, and no loops.

There is such a graph, displayed in Figure 9, which gives a map V; — A3(V}3)
which when composed with the above and contracting all internal edges and
loops is seen to be k,2: V; — H3(BTor(W,, D?); Q) which we have shown
to be nonzero. It follows that 7*(A*(V}3)) does indeed contain a copy of V;,
resolving the ambiguity in Sakasai’s result.

One of the referees has pointed out a further conclusion implicit in the above
argument:

COROLLARY 8.3. On the universal W,-bundle w: E — BTor(W,, D?) the
class e(T, E)? is nonzero.

Proof. Foranonzero v € V; the class k,2(v) € H*(BTor(W,, D?); Q) is nonzero:
by construction this is given by applying the Gysin map to the class e(T, E)>-t(v),
so in particular e(T, E)* # 0. O

8.2. Ring structure. Let us now use the results of Section 5 to compute
the algebraic part of H*(BTor(W,, D?); Q) in the stable range, assuming the
conjecture that these cohomology groups are finite-dimensional in a range of
degrees tending to infinity with g.

In this case H*(B; Q) = H*(BSO(2); Q) = Q[e]. Combining Theorem 4.1
and Theorem 5.2 we see that the ring H*(BTor(W,, D?); Q)¢ is generated by
ke fori = 2, k,i(vy) fori > 1, and «;(v; ® v, ® v3). By relation (B), k. is
decomposable for i > 2 so can be eliminated from the generators. By relation
(¥), k.i (vy) is decomposable for i > 2, so can be eliminated from the generators.
By relation (§), k.(v;) = k(v ® w) so this can also be eliminated from the
generators. This leaves just the classes k1 (v; ® v, ® v3) as generators. By relation
(o) these provide a copy of the graded representation A*V,[1], so there is a
surjection

A*[A*V|[1]] — H*(BTor(W,, D?); Q).
The relations (€) span a certain subspace
Voo 4+ Vo + Vo < AX(APV) = Vie +2Vis + 3V + 2V + Voo + Vir + Vo 2
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described in Lemma 5.4. The induced map

A [APVY[1]]
(the relations (€), k¢, kz,, - - )

—> H*(BTor(W,, D*); Q)"¢

is an isomorphism, which may be seen as follows:

As in the proof of Proposition 5.5, injectivity may be checked by tensoring
with V#® and taking Sp,,(Z)-invariants for all finite sets S. Note that k., =
cik2 for a nonzero scalar ¢;. Using the graphical formalism of the proof of
Theorems 5.1 and 5.2 the left-hand side is given by the space of trivalent graphs
with orientation data, and legs in bijection with S, modulo (¢) and the graphs
containing a connected component with no legs and even first Betti number
(these are the «,2i’s). The right-hand side is given by partitions of S with parts
labelled by e'’s, where parts of size zero cannot be labelled by a e’ for i even
or 1, and parts of size 1 cannot be labelled by ¢°. The map is given by sending
a graph to the induced partition of S given by connected components of the
graph, and a part is given label ¢’ if the first Betti number of the connected graph
corresponding to that part is i. Given these descriptions it is easy to see the map
is injective as in the profs of Theorems 5.1 and 5.2.

REMARK 8.4. Adding «., to the relations (¢) gives a certain subspace Vy +
Vi2 + 2V, < A%(A*V)) where all summands apart from V}> are unambiguous,
and under the decomposition A3V, = Vj3 @ V; the copy of V)2 is such that it
has nontrivial projection to both A%(V;3) and A%(V;). The quadratic (graded)
commutative algebra
A [AV[1]]
Vo + V2 + V)

is precisely the quadratic dual of the quadratic presentation obtained by Hain
[Hai97] (see Habegger—Sorger [HS00] for this case) of the Mal’cev Lie algebra
t,,1 associated to the group 7T, := mo(Tor(W,, D?)). If the Lie algebra te1 i8S
Koszul, its continuous Lie algebra cohomology is given by (8.2), and this is also
the cohomology of the Mal’cev completion ?g,l. Thus the natural map

(8.2)

H*(Ty1: Q) — H' (T, 1; Q)"

would be surjective with kernel the ideal (x.,, k.5, .. .), in a stable range.

9. Explicit ranges

The ranges of cohomological degrees in which our results apply come from
three places:
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(i) homological stability results for the BDiff(W,, D™);
(i1) the Borel vanishing theorem, that is, Theorem 2.3;

(iii) the stability range for the invariant theory of Sp,, (C) and O,,(C).

We expect that the currently known ranges for (i) are likely not optimal, so we
have preferred not to state a particular range in our results. In this section we
explain the ranges which can be deduced from the current state of the art.

9.1. Ranges for Theorem 3.15. In the proof of Theorem 3.15,
homological stability results and stable homology computation for the space
BDiffGXY(Wg, D?: € pon) ¢, are used. In particular, we used that there is a map

a: BDIff”" (W,, D*; £pm),, —> 25°(MTO A YY)

which is an isomorphism on cohomology in range of degrees tending to
infinity with g, which can be found in [GRW18, GRW17] for 2n > 6 and
[Bol12, RW16] for 2n = 2. The case that is used in the remainder of the paper is
that of 6: BSO(2n)(n) — BSO(2n). In this case, the known ranges are * < %
when 2n > 6 and * < % when 2n = 2; these will also be the ranges for
Theorem 3.15.

9.2. Ranges for Theorem 4.1. The Borel vanishing theorem and its
consequences are used in the proof of Theorem 4.1, which also relies on
Theorem 3.15. Explicit ranges for Theorem 2.3 already appeared in Borel’s
original papers, but in Theorem 2.3 we have given an improved version which
was stated in [Hai97] without proofs, and proven in [Tsh19] (this is likely
optimal [Tsh17]). This range is linear of slope 1 in g, which is larger than the
range for Theorem 3.15. Thus the range in Theorem 4.1 is * < 5%3 for2n > 6
(and * < % for 2n = 2 in the range in which it applies).

9.3. Ranges for Theorem 8.1. The first part of Theorem 8.1 relies on
Theorem 4.1, and also uses Johnson’s computation of H'! of the Torelli group
as input. To get the maximal algebraic subrepresentation of H?2, in addition to
requiring g > 3 for Johnson’s result we also need g > 3 for Borel vanishing in
degrees < 2, and g > 4 to get the input from Theorem 3.15. The conclusion is
that the first part of Theorem 8.1 holds for g > 4.
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9.4. Ranges for Proposition 2.17 and Corollary 2.18. The range in
Proposition 2.17 has a slightly different source, namely the range given by
the first and second fundamental theorems of invariant theory for O, , and Sp,,
as we have encoded in Theorem 2.6. In fact, the range in Theorem 2.6 for szg
is 2g > |S| as we have stated, but can be improved to 4g > |S| for O, ,. This
may be deduced from a careful reading of [Pro07, Section 11.6.3]. Thus when
n is even the conclusion of Proposition 2.17 can be relaxed to ‘when evaluated
on sets S with |S| < 4g — N + 1’. There is a similar modest improvement to
Corollary 2.18.

9.5. Ranges for Theorem 5.1. The source of the map ¢: R;ﬁes — RV is

generated by the classes «.(v; ® - -+ ® v,) of degree |c| + n(r — 2) > 0. Such
classes are detected by applying [— ® H (g)®"1%: let us say they have weight r.
In the cases of interest the space of labels has the form V = Q{1} & V.,. The
smallest homological degree for such classes of weight < 1 is therefore 1, for
weight 2 is n, and for weight » > 3 is n(r — 2). As n > 3, it follows that in
homological degree d the kernel Ker(¢) has weight < d, that is, it vanishes if
and only if in this degree [¢ ® H (g)®°]% is injective for all sets S with | S| < d.

The proof of Theorem 5.1 uses Proposition 2.17 to determine the range of S’s
and homological degrees in which

P(S, V)so @ det(Q)™" — [RY ® H(g)®51%,

is an isomorphism. By a similar count to the above, the functor P(—, V)éo in
degree d vanishes on sets 7 with |T| > d + 1, and so by Proposition 2.17 this
map is an isomorphism in degree d as long as |S| < 2g — d. By the discussion
in the previous paragraph we only need it to be an isomorphism for | S| < d, so
in total need d < g.

Thus for Theorem 5.1 to hold in degrees * < d it is enough that g > d.
Combining it with the discussion in Section 9.4, if n is even it is enough that
2¢g > d.

This discussion also makes explicit the range in Proposition 4.4.
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