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Characteristic classes of bundles of K3 manifolds
and the Nielsen realization problem

Jeffrey Giansiracusa, Alexander Kupers and Bena Tshishiku

Let K be the K3 manifold. In this note, we discuss two methods to prove that
certain generalized Miller—-Morita—Mumford classes for smooth bundles with
fiber K are nonzero. As a consequence, we fill a gap in a paper of the first author,
and prove that the homomorphism Diff(K) — moDiff(K) does not split. One of
the two methods of proof uses a result of Franke on the stable cohomology of
arithmetic groups that strengthens work of Borel, and may be of independent
Interest.

1. Introduction

In this paper K denotes the K3 manifold, which is the underlying oriented manifold
of a complex K3 surface. This uniquely specifies its diffeomorphism type, and one
may construct it as the hypersurface in CP3 cut out by the homogeneous equation
Zg —f—z‘f +z§' —i—zgt =0. For each element ¢ € H(BSO(4); Q), there is a characteristic
class k. of smooth oriented manifold bundles with fiber K, called a generalized
Miller—Morita—Mumford class: given such a bundle E — B we take the vertical
tangent bundle T, E and integrate the class c(T,E) € H'(E; Q) over the fibers to
get k.(E) € H=*(B; Q).

Let Diff(K) denote the group of orientation-preserving C>-diffeomorphisms,
in the C2-topology. Its classifying space BDiff(K) carries a universal smooth
manifold bundle with fiber K, and hence there are classes «, € H*(BDiff(K); Q)
which may or may not be zero. Letting £, = %(7 P2 — p%) denote the second
Hirzebruch L-polynomial, we prove the following:

Theorem A. The generalized Miller—-Morita—Mumford-class
Kkr, € H*(BDIff(K); Q)

is nonzero.
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The Hirzebruch L-polynomials are related to signatures of manifolds and as a
corollary of Theorem A, there exists a smooth bundle of K3 manifolds over a closed
stably framed 4-manifold whose total space has nonzero signature. We shall give
two proofs of Theorem A: the first is an explicit calculation for the tautological
bundle over a certain moduli space of K3 surfaces, while the second combines the
study of Einstein metrics with a general result about cohomology of arithmetic
groups following work of Franke.

Either proof can be combined with the Bott vanishing theorem to prove the
following result. We define the mapping class group Mod(K) to be the group
7o Diff(K) of path components of Diff(K).

Theorem B. The surjection p: Diff(K) — Mod(K) does not split, i.e., there is
no homomorphism s : Mod(K) — Diff(K) such that p os = Id.

This is an instance of the Nielsen realization problem; see, e.g., [Mann and
Tshishiku 2019]. Theorem B first appeared in [Giansiracusa 2009], but the proof
was flawed (see [Giansiracusa 2019]). However, it can be repaired with small
modifications and many of the ideas in this paper derive from [Giansiracusa 2009].

2. Quasipolarized K3 surfaces

Suppose that 7 : E — B is an oriented manifold bundle with closed fibers of dimen-
sion d. This has a vertical tangent bundle T, E with corresponding characteristic
classes c(T,E) € H'(E; Q) for each c € H (BSO(d); Q). The generalized Miller—
Morita—Mumford classes are obtained by integration of these classes along the
fibers:

Ko (E) ::/c(T,,E)eH"d(B;@).

Applying this construction to the universal bundle of K3 manifolds over BDiff(K)
results in classes k. € H~*(BDIiff(K); Q) for each c € H (BSO(4); Q) = Qle, p1].

These classes are natural in the bundle: for any continuous map f: B’ — B,
ke (f*E) = f*k.(E). To prove . # 0 € H*(BDiff(K); Q), it therefore suffices to
find a single bundle £ — B such that «.(E) # 0.

We shall use the moduli space M, of quasipolarized K3 surfaces of degree 2d
(the value of d plays no role in our arguments). This is actually a stack with finite
automorphism groups of bounded order, but since we are interested in its rational
cohomology we may ignore these technical details. We shall not go into the details
of its construction, but recall some facts from [van der Geer and Katsura 2005;
Petersen 2019]. There is a universal family 7 : A>y — My, of K3 surfaces. As this
is a bundle of complex surfaces, its vertical tangent bundle has Chern classes #; :=
¢i(TyXog) € H¥ (Xag; Q). The class 7, is the pullback of a class A € H*(Moy; Q).
The main result of [van der Geer and Katsura 2003] is that A7 % 0 but A8 =0,in
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i 0 1 2 3 4 5 6 7 8
2 &t 1600 88 1610 16012 32214 810
ke (Xoa) 24 8M 3 45 315 14175 467775 42567525 638512875

Table 1. The class kr,,, (X24) in terms of the class A for i < 8.

the Chow ring of Mj,. Petersen [2019] gives the corresponding result in rational
cohomology, and attributes it to van der Geer and Katsura. We shall use this to
prove the following improvement of Theorem A:

Proposition 1. The generalized Miller—Morita—Mumford-class

Kr,., € H¥ (BDIff(K); Q)
is nonzero for i <8.

Proof. It suffices to prove that «.,,, (X24) # 0. Since the K3 manifold is 4-
dimensional, p;, p, are the only nonzero Pontryagin classes of the vertical tangent
bundle. These can be expressed in terms of the Chern classes using [Milnor and
Stasheff 1974, Corollary 15.5]:

p1(TyXog) =17 —tn and  pa(T, X)) =13

We substitute these into the first nine Hirzebruch L-polynomials, as computed by
McTague [2014]. Since integration along fibers is linear, it suffices to compute
/. - t{tzj. As t; = m*A, the push-pull formula gives A’ /, - tzj, and [van der Geer
and Katsura 2005, Section 3] used Grothendieck—Riemann—Roch to determine
that | - tzj =a;_ 142172 for particular_ integers a;_1. Using this, we compute that
Kz, (X2q) is a nonzero multiple of A2 for 1 <i < 8 and hence nonzero, see Table 1.

O
Example 2. Let us do the computation for i = 3 as an example:
—19p3 +22p3p> — 3p}
L4 = Pyt 22Pipa = P, ignoring terms involving p; with i > 3,
14175
—3¢8 424101, — 50112 + 8133 + 211
Li(T,20) = — T TEL T2
14175
241°.24 — 5014 - 8847 + 8A% - 18414 + 21 - 35210
1 (Xog) = | La(TyXog) =
kriyy (X2a) fﬂ 4(TyX2q) TA175
161.°
=— O
45

Remark 3. The classes k., ,, when pulled back to H 4 (BDIff(K rel *); Q), re-
main nonzero because H*(BDiff(K), Q) — H*(BDiff(K rel %), Q) is injective:
its composition with the Becker—Gottlieb transfer is given by multiplication with
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x (K) =24. We do not know whether k., , remains nonzero when pulled back to
H* (BDIff(K rel D*): Q).

3. Miller-Morita—Mumford classes and the action on homology

One can also approach the group of diffeomorphisms of K through its action
on Hy(K; Z). In particular, we shall explain a relationship between the general-
ized Miller—Morita—Mumford classes and the arithmetic part of the mapping class
group.

The middle-dimensional homology group H,(K; Z) = 7*? has intersection form
givenby M = H® H® H® —Eg ® —Eg, with H the hyperbolic form and —Eg
the negative of the Eg-form. This is equivalent over R to the symmetric (22 x 22)-

matrix
I; 0
0 —Io)’

where [, is the (n x n) identity matrix. In particular, we can consider Aut(M) as
a subgroup of the Lie group O(3, 19).

The action of Mod(K) on H>(K; Z) preserves the intersection form and hence
induces a homomorphism «: Mod(K) — Aut(M), whose image 'k is the index
2 subgroup of Aut(M) of those elements such that the product of the determinant
and the spinor norm equals 1, see [Giansiracusa 2009, §4.1].

The generalized Miller—Morita—Mumford classes associated to the Hirzebruch
L-polynomials £; € H* (BSO; @), whose pullback to H* (BSO(4); @) we shall
denote in the same manner, can be obtained from the arithmetic group I'x. We
will now justify this claim.

There are homomorphisms

'k = Aut(M) — O(3,19) < 0(3) x 0(19).

Thus we get, up to homotopy, a map w: BI'x — BO(3) x BO(19) which classifies
a bundle n with fibers M ® R, which decomposes as a direct sum 74 @ n_ of a 3-
and a 19-dimensional subbundle. We define a class

x4 = w*(phy; ®1 — 1 ® phy,) € H* (BI'k; Q),

where phy; denotes the degree 4i component of the Pontryagin character.

By definition xy4; is pulled back from BO(3) x BO(19), but it is in fact pulled
back from BO(3) [Giansiracusa 2009, Proposition 2.2]. By Chern—Weil theory the
Pontryagin classes of the flat bundle n vanish [Milnor and Stasheff 1974, Corol-
lary C.2]. This implies ph(n4) +ph(—) =0, and thus x4; = phy; (n+) —phy; (n-) =
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2 phy; (n+), which is evidently pulled back along
BT'x — BO(3) x BO(19) = BO(3).

Lemma 4. The pullback of x4; € H* (BT g ; Q) along the map BDiff(K) — BT'g
is equal to 1/2 k., | € H¥ (BDIff(K); Q).

Proof. Atiyah [1969, §4] proved that x4; € H¥ (BT'x; @) pulls back to k7, €
H* (BDiff(K); Q) along the map BDiff(K) — BI'g. Here Ly is the Atiyah—
Singer modification of the Hirzebruch L-polynomials: while the latter has generat-
ing series 4/z/ tanh(y/z), this modification has generating series /z/ tanh(y/z/2),
SO 2i+1Zi+1 = £i+l~ U

Let 'gin < 'k be the index 2 subgroup of those elements such that both the
determinant and the spinor norm are 1; it has index 4 in Aut(M) and is the maximal
subgroup contained in the identity component of O(3, 19). Restricting the previous
maps to the identity component SO (3, 19) in O(3, 19), we get

BT'gin — BSOg(3, 19) < BSO(3) x BSO(19) Z> BSO(3).

To understand the induced map H*(BSO(3); Q) — H*(BTgjy; Q), we intro-
duce the space
B SO(22)
~ SO(3) x SO(19)°

u

In Section 4 we shall discuss the Matsushima homomorphism
w: H*(Xy; C) — H*(BTEin; ©).

The principal SO(3)-bundle SO(22)/SO(19) — X, is classified by a 39-connected
map X, — BSO(3) that factors over the map X, — BSO(3) x BSO(19). By
[Giansiracusa 2009, Lemma 3.4] (a special case of [Borel 1977, Proposition 7.2]),
the Matsushima homomorphism fits in a commutative diagram

H*(BSO(3) x BSO(19); C) —— H*(X,; C)

T lu (1)

H*(BSOQ3); C) ———— H*(BTgin; ©)

Changing coefficients to the complex numbers and pulling back x4; from Bk to
BTgin, we get x4; € H¥ (BTgin; C).

Lemma 5. The class x4; € H¥ (BTgin; C) is in the image of the Matsushima ho-
momorphism.
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Proof. The argument preceding Lemma 4 tells us that in the commutative diagram

H*(BSO(3); C) —— H*(BTEp; C)

[ [

H*(BO@3); C) —— H*(BI'k;0)

the element x4; € H*(BT'k; C) is pulled back from BO(3), and hence x4; €
H*(BTgip; C) is pulled back from BSO(3). The results then follows from the
commutative diagram (1). O

4. Results of Franke and Grobner

In this section we explain a result about the Matsushima homomorphism, which
implies:

Proposition 6. The homomorphism
H*(BSO(3); C) > H*(X,; C) - H*(BTEgin; C)
is injective in degrees x < 20.

Let G be a connected semisimple linear algebraic group over Q. The real points
G (R) form a semisimple Lie group. Fix maximal compact subgroups K < G(R)
and U < G(C) with K C U, let Y, := G(R)/K be the symmetric space of G,
and X, := U/K be the compact dual symmetric space of G. Fixing an arithmetic
lattice I' < G(Q), by work of Matsushima [1962] and Borel [1974] there is a
homomorphism H*(X,; C) - H*(I'\Ys; C) constructed using differential forms.
Since I' acts on the contractible space Y, with finite stabilizers, H*(I"'\Yoo; C) =
H*(BT'; C). We shall call the composition

w: H*(X,; C) > H*(I'\Yoo; C) = H*(BT'; C) 2)

the Matsushima homomorphism. It may be helpful to point out that  in general is
not induced by a map of spaces, since it does not preserve the rational cohomology
as a subset of the complex cohomology [Borel 1977; Okun 2001].

Example 7. The Matsushima homomorphism discussed in the previous section is
a particular instance of this. In this case G = SO(3, 19), yielding X, as in the pre-
vious section. In this particular instance p does preserve the rational cohomology
in the range * < 39, as a consequence of the commutative diagram (1).

Borel [1974] proved that the Matsushima homomorphism is an isomorphism in
a range of degrees, and by work of Franke [2008] it is injective in a larger range.



CHARACTERISTIC CLASSES OF BUNDLES OF K3 MANIFOLDS 81

Theorem 8 (Franke). The homomorphism (2) is injective in degrees

* < mlgndim Ng, 3)

where R ranges over maximal parabolic subgroups of G over Q, and Ng C R is
the unipotent radical.

This is not stated explicitly in [Franke 2008], but a similar statement is given in
[Grobner 2013], as we now explain. We require the following additional setup (see
[Franke and Schwermer 1998], [Li and Schwermer 2004], [Speh and Venkatara-
mana 2005] or [Harder 2019, §6,8] for more information). Define the adelic sym-
metric space Y™ and the adelic locally symmetric space X* by

Y* =Y x GAAy) and X" :=G@\Y",

where A ¢ is the ring of finite adeles of Q. The (sheaf) cohomology H* (X A: C) can
be identified with the colimit colim H*(X”/K r; C), where Ky C G(Ay) ranges
over open compact subgroups. Each X* /K ¢ is a finite disjoint union | |, I';\ Yoo
with I'; < G(Q) an arithmetic lattice.

Definition 9. The automorphic cohomology of G is given by
H*(G; C) := colim H*(X"/K ; C). 4)

In this framework, there is a map [Grobner 2013, p. 1062]
V: H*(g, K; C) -> H*(G; 0), &)

where H*(g, K; C) is relative Lie algebra cohomology with trivial coefficients.
The construction of the Matsushima homomorphism (2) passes through the iso-
morphism H*(X,; C) = H*(g, K; C) [Okun 2001, §4; Borel 1974, §10]. In the
proof of Proposition 10 we will explain that the Matsushima homomorphism picks
out the contribution of the trivial representation to the automorphic cohomology.
In particular, it fits in a commutative diagram

H*(g, K; C) —Y— H*(G;C)

;T T (6)

H*(X,;C) —“— H*(BT;C)

with right vertical induced by the map BI' — I'\Yoo <= | |, I'i\Yoo = XA/Kf for
suitable K 7.

We will see that Theorem 8 follows from the following result regarding the
homomorphism (5).

Proposition 10. The homomorphism (5) is injective in degrees * < ming dim Ng.
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The proposition follows from [Franke 2008; Grobner 2013]. There is a small
amount of work needed to translate the results of these papers to our setting.

Proof. First we explain a weaker statement: in degrees x < %min grdim Ng, (5)is
injective.! This is proved directly in [Grobner 2013], building on [Franke 1998;
2008; Franke and Schwermer 1998]. We explain only what is needed for our argu-
ment, and refer to [Grobner 2013] for more details. The cohomology H*(G; C) can
be identified with relative Lie algebra cohomology H*(G; C) = H*(g, K; A(G)),
where A(G) is a space of automorphic forms [Grobner 2013, Introduction]. (Com-
paring with Grobner’s notation, we remark that since G is semisimple in our case,
the quotient mg in [Grobner 2013] is just the Lie algebra g; furthermore, since we
are only interested in the trivial representation E = C, we will write A(G) instead
of A7(G).)
By [Franke 1998; Franke and Schwermer 1998], there is a decomposition

AG) =P P Aipy.o0 (G,
{P} ¢r

and hence also H*(G;C) = @ @ H*(g, K; Apyg,(G)),
{P} ¢r

where { P} ranges over (associate classes) of (D-parabolic subgroups and ¢ p ranges
over (associate classes) of cuspidal automorphic representations of the Levi sub-
groups of elements of {P}; see [Grobner 2013, §2]. The summands of A(G)
corresponding to P # G are denoted Agis(G), and the corresponding subspace
HE (G; C) C H*(G; C©) is called the Eisenstein cohomology. The constant func-
tions span a trivial subrepresentation 1) C Agis(G). This defines a map

H*(g, K;C) - H*(G; C),

which is precisely the map (5). Necessarily 15(a) is contained in a unique summand
A;py,¢p(G). Then by [Grobner 2013, Cor. 17], the induced map H*(g, K; C) —
H*(g, K; Apy.gp (G)) is injective in a range 0 < % < g5, Where the constant
Gres = Gres(P, ¢p) is defined in [Grobner 2013, §6]. As discussed in [Grobner
2013, §7.4], since we are working with the trivial representation, g is equal to
the constant gmax = % ming dim Ny defined in [Grobner 2013, §7.1] (note that in
our case G is defined over (2, which as only one place, so the sum in Grobner’s
definition of gmax has only one term).

Next we explain how to deduce from [Franke 2008] that (5) is injective for
* < ming dim Ng.

1Although including this argument is not strictly necessary, this statement is already sufficient
for Theorem B and the argument illustrates the connection between the Matsushima homomorphism
and automorphic forms.
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We define H(G; C) to be the colimit of the compactly supported cohomology
groups H*(X*/K £3 ©). Using Poincaré duality for each of the symmetric spaces
[ /Yoo, the map ¥ : H*(X,; C) = H*(g, K; C) — H*(G; C) has a dual map

V' H*(G;C) —> H*(X,; C)

on compactly supported cohomology. Then ker(¥) = Im(¥')*, where the orthog-
onal complement is with respect to the cup product — on H*(X,; C). Franke
[2008] gives a precise description of Im(W’). To describe it, fix a minimal para-
bolic Py < G, and consider a parabolic subgroup R D Py. Write R = M AN for the
Langlands decomposition, where M is semisimple, A is abelian, and N is unipotent.
When we vary R, we write Mg, Ng for emphasis. The compact dual symmetric
space of M, denoted X, embeds in X,. Franke proves that Im(¥’) = ker(®),
where

®: H*(X,; C) —» HH*(XM; C)

is the map induced by the inclusions X — X,,, ranging over R = M AN maximal
parabolic subgroups (maximal is equivalent to dim A = 1). See [Franke 2008, (7.2)
p-59; Speh and Venkataramana 2005, §2,3]. Thus we have

ker(¥) = ker(®)*.

To show that W is injective in low degrees, we use the following observation: if
V1L c ker(®) for some subspace V C H*(X,; C), then ker(¥) = ker(®)- C V.
This implies that W is injective in degrees * < mingxyey deg(v).

Fix R, and consider the inclusion i : Xy — X,. For k > 1, observe that a €
H*(X,; C) belongs to ker(i*) if and only if a — PD(i,(z)) = O for every z €
Hi(Xp; C). Here PD(-) denotes Poincaré duality. Then V+ C ker(®), where
V € H*(X,; C) is defined as the image of

P P He(Xup: © 5 Hu(Xu3 ©) = H*(X,: O,
R k>1

where P, ranges over maximal parabolic subgroups containing Py as before. Ob-
serve that classes in H,(Xs; C) of low dimension map to classes in H*(X,; C)
of low codimension. Thus if v € V, then deg(v) > dim X, — dim X, for each M.
Therefore, W is injective in degrees * < ming(dim X,, — dim X,).

Finally, we show the minimum codimension of X, C X, is equal to 1 +
ming dim R. This follows quickly from the Iwasawa decomposition for a semisim-
ple Lie group and Langlands decompositions for a parabolic subgroup. By the
Iwasawa decomposition, we can write G = K AN, where K is maximal compact.
For our maximal parabolic R, we have R = M Ag N, and furthermore, since M
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is semisimple, it has an Iwasawa decomposition M = K Ay Nys. Observe that
dim X, =dim AN, dimXy =dimAyNy,

and dim AN =dim Ay Ny +dim Ag Ng.
Then
dim X, —dim Xy =dim AR Ng = 1 4+ dim N.

This completes the proof. U

Proof of Theorem 8. For any x € H*(g, K; C) in the given range, by the injectivity
of W and the description (4) of H*(G; C) as a colimit, there is an arithmetic lattice
I < G(Q) so that W (x) is in the image of H*(I'’; C) — H*(G; C), as in (6). By
transfer, the same is true for any further finite-index subgroup of I'”. Then since
H*(g, K; C) is degreewise finite-dimensional, in the desired range (5) provides an
injective map H*(g, K; C) — H*(I'’; C) for some arithmetic lattice I'' < G(Q).
Any arithmetic lattice I' < G(Q) is commensurable to '/, and hence I" and I'" have
a common finite index subgroup I'”. Consider the commutative diagram

H*(BT'; C)
\
H*(g, K; C) H*(BT”; C).
P
H*(BT; C)
By a transfer argument the top composition is injective in the desired range, and

hence so is H*(g, K; C) — H*(BTI"; C), proving that (5) and hence (2) is injective
in the desired range. (|

In the remainder of this section we compute Franke’s constant ming dim Ny for
G =S0(p, q). We also compute Franke’s constant for G = Sp,, and G = SL,,
since these are examples of common interest.

4.1. Special orthogonal groups. Fix 1 < p <gq, setd = g — p, and consider the
algebraic group
SO(B) :={g €SL,44 | g'Bg = B},

where B is the (p +¢) x (p + g)-matrix given by
I, O
B=|7 .
(¢ 5)
The associated compact dual symmetric space is

X, =S0(p +¢)/(SO(p) x SO(q)),

whose cohomology H*(X,; C) can be computed using [McCleary 2001, Theo-
rem 8.2].
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Proposition 11. Fix a finite-index subgroup I' < SO(B; Z). Then the Matsushima
homomorphism H*(X,; C) — H*(BT; C) is injective in degrees x < p+q — 2.

Proof. By the preceding discussion, it suffices to prove
mlgndimNR =p+q-—2,

where R ranges over a maximal parabolic subgroups over Q, and Ny, is the unipo-
tent radical. Parabolic subgroups of SO(B; R) are stabilizers of isotropic flags
in (RP*9, B). A maximal parabolic subgroup is specified by a single nontrivial

isotropic subspace. Let ey, ..., ep, fi...., f; be the standard basis for RP*4
(whose Gram matrix is B). Denoting u; = ¢; + f;, let Ry < SO(B; R) be the
stabilizer of W = R{u, ..., uy} for 1 <k < p. Every maximal parabolic subgroup

is conjugate to some Ry.

Fix 1 <k < p. An element of R; preserves the flag0 C W ¢ W+ c RPH4,
The unipotent radical Ny C Ry is the subgroup that acts trivially on each of the
quotients W/0, WL/ W, RP*4 /WL, To determine dim Ny, denote v; = e; — f; for
1 <i < p, and work in the ordered basis

ULy ooy Uk Uk ds ooy Upy fpls o vos fqo Vkpls o s Up, U1y oo ey Uk

Then g € N; can be expressed as a block matrix

Iy y Z
g=10 Ip+q—2k X |,
0 0 I

where y = —x'Q and z +z' = x" Qx and Q is the (p+g—2k) x (p+q—2k) matrix

0 0 I,
o=|0 1,, 0
I,xe 0 0

The homomorphism N 3 g > x € R¥P+4720 hag kernel the space of skew-
symmetric matrices 7/ = —z, so dim Ny = k(p + g — 2k) + k(k — 1)/2. For
1 <k < p, this number is smallest when k = 1, which gives the constant claimed
in the theorem. (]

Proof of Proposition 6. Since M, the intersection form of the K3 manifold, is equiv-
alent to B over R with p =3 and ¢ = 19. Thus when we apply Theorem 8, the same
estimates as in Proposition 11 holds. Thus the map H*(X,,; C) - H*(BTgjn; C) —
H*(BT; C) is injective for * <20 and hence so is H*(X,; C) > H*(BI'gj,; C). O
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4.2. Symplectic groups. We next specialize Theorem 8 to finite index subgroups
of symplectic groups. Take G = Sp,,, to be the algebraic group defined by

Spy, :={g € SLay | 8" Jug = Ju},

where J, is the 2n X 2n matrix given by

0 I,
(5 1)

The associated compact dual symmetric space is X,, = Sp(n)/ U(n), whose coho-
mology in the range below is the polynomial algebra on generators c1, ¢3, ¢s, . . .
with |¢;| = 2i.

Proposition 12. For any finite-index subgroup I' < Sp,, (Z) the Matsushima ho-
momorphism H*(X,; C) — H*(BT; C) is injective in degrees x <2n — 1.

Proof of Proposition 12. The proof follows from Theorem 8 similar to Proposition 11.

Letey,...,en, f1,..., fu be the standard symplectic basis for R2". Let Ry be the
maximal parabolic subgroup of Sp,, defined as the stabilizer of W =R{ey, ..., e}
for 1 <k <n. Working in the basis ey, ..., €, €x+1,---»€ns fitls---s fus f1s-os [l

an element of the unipotent radical Ny can be expressed as a block matrix

L 'y z
g=|0 Dby x|,
0 0 I

where y = x'J' and z — 7' = y'J'y and J' = J,_;. It follows that dim N; =
2k(n —k)+k+k(k—1)/2. For 1 <k < n, this number is smallest when k = 1. [J

4.2.1. The tautological ring of Ag. Let A, denote the moduli space of principally
polarized abelian varieties. The tautological ring Rf;(A,) C CH*(A,; Q) in the
Chow ring is the subalgebra generated by the A-classes A; € CH* (Ag; @), the
Chern classes of the Hodge bundle (the 2g-dimensional vector bundle given at an
abelian variety X € A, by the tangent space to its identity element). G. van der Geer
[1999, Theorem (1.5); 2013, §4] proved it has a Q-basis given by the monomials
ATIASE - -A;g_’f with a; € {0, 1}. As for Chow groups, there is a tautological ring
R7,(Ag) C H*(Ag; Q) in rational cohomology defined as the subalgebra generated
by the A-classes. In the literature it is claimed van der Geer’s computation also
holds in cohomology, but no reference for this is known to the authors. We provide
a proof below:

Theorem 13. The tautological ring Ry, (Ag) C H*(Ag; Q) has a Q-basis given by
the monomials A{'A5” - - -)»Z“f | with a; € {0, 1}.
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Proof. R{yy(Ayg) surjects onto Ry, (Ag), so it suffices to prove they have the same
dimension.

The space Ay is the quotient of the contractible Siegel upper half space H, by
szg (Z). This action has finite stabilizers, so there is an isomorphism H*(A,; Q) =
H*(Sp,,(Z); Q). Under the isomorphism

H*(Ag: ©) = H*(Spy, (2): ©),

R7,(Ag) ® Cis exactly the image of the Matsushima homomorphism [van der Geer
2013, §10]. Speh and Venkataramana [2005, Section 4] prove that the kernel of
the Matsushima homomorphism is the orthogonal complement of the ideal (u) in

Qluy, ..., ugl

H*(X,; Q) = .
(T4+ur+us+---+ug)(l —uy +us—-- -+ (=1sug) — 1)

This is [Speh and Venkataramana 2005, Lemma 8], combined with the description
of H*(X,; Q) in [van der Geer 1999, §1]. The latter also proves there is an iso-
morphism H*(X,; Q) = R{y(Agq1) identifying u; with A;. In particular, from
the basis given above we see that the kernel of the Matsushima homomorphism
is spanned by the monomials u}'u3’ - - - u;gjug with €; € {0, 1}. Thus the image
of the Matsushima homomorphism has the same dimension as R (Ag), and the
result follows. (]

Observe this result in particular describes the image of the Matsushima homo-
morphism in H*(BI'; C) for finite-index subgroups I' C Sp,,(Z).

4.3. Special linear groups. Finally, we specialize Theorem 8 to finite-index sub-
groups of special linear groups. Now we have G = SL,, and X, = SU(n)/ SO(n),
whose cohomology in the range below is the exterior algebra on generators

C3, G5, Gy, ... with |6 =2i — 1.

Proposition 14. For any finite-index subgroup I" < SL, (Z) the Matsushima homo-
morphism H*(X,; C) — H*(BT; C) is injective in degrees * <n — 1.

The proof is similar to the proof of Propositions 11 and 12, but simpler; one
identifies the maximal parabolic subgroups over @ as the stabilizers of a nontrivial
subspace W and observes that the stabilizers of 1-dimensional subspaces have the
smallest unipotent radical, of dimension n — 1.

4.3.1. A result announced by Lee. Lee [1978, Theorem 1], announced a result
which in particular implies that the range in Proposition 14 can be improved to
* < 2n — 3. His result can be deduced from page 61 of [Franke 2008], where
Franke describes the kernel of the Matsushima homomorphism for finite index
subgroups of SL, (Ok), with Ok the ring of integers in a number field K:
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Theorem 15. For any finite-index subgroup I' < SL,(Z), the image of the Mat-
sushima homomorphism H*(X,; C) — H*(BT'; C) is an exterior algebra on the
classes ¢, ..., cp—1 with |¢;| = 2i — 1 when n is odd, and an exterior algebra on
the classes c3, ..., c,—3 when n is even.

Proof. The cohomology of compact dual X, for SL, (Z) is given by the following
exterior algebras:

A(C3, ..., C if n is odd
H* (X, @)= | 2 s 0dd
A(c3,...,Cch_1,e) ifniseven,
with |¢;| = 2i — 1 and |e| = n. According to page 61 of [Franke 2008], when n
is odd the kernel of Matsushima homomorphism is the ideal generated by ¢,, and

when 7 is even it is the ideal generated by ¢,—; and e. U

Remark 16. Theorem 15 resolves a question in [Elbaz-Vincent et al. 2013, Re-
mark 7.5]; the Borel class ¢3 is nonzero in H>(BSL,(Z); Q) for n > 5, and
the Borel class ¢s is nonzero in H°(BSL,(Z); Q) for n > 7. Similarly ¢5¢s is
nonzero in H'*(BSL,(Z); Q) forn > 7. Curiously, the nonzero class they find in
H®(BSLg(Z); Q) is not stable.

5. Moduli of Einstein metrics

To apply our knowledge of the cohomology of arithmetic groups, we use the global
Torelli theorem to study the moduli space Mg;, of Einstein metrics on the K3
manifold. Following [Giansiracusa 2009, §4], for us this shall mean the homotopy
quotient

MeEin := TEin / TEin

of a moduli space 7gi, of marked Einstein metrics by the subgroup I'gi, < I'x. The
space Tgin admits a description as a hyperplane complement, but we only use a pair
of consequences of this.

Fix a finite-index subgroup I’ < 'k, and assume I'’ is contained in [gj,. Equiv-
alently, one may assume it is contained in the identity component of O(3, 19). We
introduce the notation Modgi, := o~ ' (Tgin) and Mod’ := o~ 1(I").

Proposition 17. The homomorphism H*(BT'; C) — H*(B Mod’; C) is injective
forany T <Tg.

Proof. We will first prove that the surjection Mod(K) — D'k splits over I'gj, by
Giansiracusa’s work: there is a map

¢: Mgin — BDIff(K) — BMod(K) — BT'k. (7)

The induced homomorphism 7 (MEgi,) — 'k is injective with image I'gj, by the
global Torelli theorem [Giansiracusa 2009, §§4-5]. Thus, Mod(K) — I'k splits
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over ['giy. This proves the case I'" = [gy; for I C g, one restricts the splitting
to I'V.

If I ¢ T N gjn, then IV N g, has index 2 in IV and similarly Mod’ N Modg;,
has index 2 in Mod’. Thus the injective homomorphism H*(B(I"' N T'giy); C) —
H*(B(Mod N Modgi,); C) is one of representations of Z/2 = T/(I'" N Tgjp) =
Mod’ /(Mod’ N Modg;,), and we can identify H*(BT"'; C) — H*(B Mod’; C) with
the induced map on Z/2-invariants. As taking Z/2-invariants preserves injective
maps, the proposition follows. U

To prove Theorem A we must prove that p*x4 # 0 € H*(BDiff(K); Q). To do
S0, it suffices to prove that is nonzero when pulled back to Mgj,:

Proposition 18. For the map e defined in (1), e*x4 # 0 € H*(Mgin; Q).

Proof. We will prove that e*: H*(BTk: Q) > H*(Mgin, Q) is injective. In [Gi-
ansiracusa 2009, §5], one finds a description of the Serre spectral sequence for the
fibration sequence

'EEin - MEin = Ein // 1_‘Ein - BFEin-
Its E2-page is given by
2 _ {0 if g is odd,
P4 ]_[UGAM/ ry, 17 (BStab(o); Q) if g is even.
The description of A, />/ I'gjn 1s not important here, as we shall only use the rows
0 < ¢ < 3. Of these, the following are nonzero: for ¢ =0 we get H” (BI'x; Q), and
for ¢ =2 we get a product of the cohomology groups of groups I' commensurable
with O(2, 19; Z) or O(3, 18; Z). For such groups H'(T'; Q) vanishes [Margulis

1991, Corollary 7.6.17], and thus there can not be any nonzero differential into the
entry E} . O

6. Nielsen realization

We now deduce Theorem B from either Proposition 1 or 6. The argument in fact
shows that Diff(K) — Mod(K) does not split over any finite index subgroup of
Mod(K).

Proof of Theorem B. We will show that Diff(K) — Mod(K) does not split by
contradiction, so we assume there is a splitting s: Mod(K) — Diff(K), which
necessarily factors over the discrete group Diff(K )% as

S(S 8
Mod(K) > Diff(K)® 2> Diff(K).

Note that xg € H¥(BT'k; Q) is nonzero; either one pulls back to BDiff(K) and
uses Proposition 1 and Lemma 4, or one pulls back to BI'gj, and uses Proposition 6.
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By Proposition 17 its pullback to H 8(BMod(K); @), which we denote by c, is also
nonzero. Its pullback under

s r)
BMod(K) > BDiff(K)® 2> BDiff(K) % B Mod(K)

is ¢ and hence nonzero. By Section 3 we get p*c =k, and we claim that ( pe )k, €
H8(BDiff(K)?®) vanishes. This would contradict ¢ % 0 and finish the proof. To
prove the claim, we use that BDiff(K )8 classifies flat K-bundles, i.e., bundles with
a foliation transverse to the fibers and of codimension 4. The normal bundle to this
foliation is isomorphic to the vertical tangent bundle, and by the Bott vanishing
theorem [1970] its Pontryagin ring vanishes in degrees > 8. In particular the class
L3 of degree 12 vanishes. (|

Remark 19. The idea of using Bott vanishing to obstruct Nielsen realization orig-
inates in Morita’s work [1987, Theorem 8.1].
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