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Characteristic classes of bundles of K3 manifolds

and the Nielsen realization problem

Jeffrey Giansiracusa, Alexander Kupers and Bena Tshishiku

Let K be the K3 manifold. In this note, we discuss two methods to prove that

certain generalized Miller–Morita–Mumford classes for smooth bundles with

fiber K are nonzero. As a consequence, we fill a gap in a paper of the first author,

and prove that the homomorphism Diff(K )→ π0Diff(K ) does not split. One of

the two methods of proof uses a result of Franke on the stable cohomology of

arithmetic groups that strengthens work of Borel, and may be of independent

interest.

1. Introduction

In this paper K denotes the K3 manifold, which is the underlying oriented manifold

of a complex K3 surface. This uniquely specifies its diffeomorphism type, and one

may construct it as the hypersurface in CP3 cut out by the homogeneous equation

z4
0+z4

1+z4
2+z4

3= 0. For each element c ∈ H i(BSO(4);Q), there is a characteristic

class κc of smooth oriented manifold bundles with fiber K , called a generalized
Miller–Morita–Mumford class: given such a bundle E→ B we take the vertical

tangent bundle Tv E and integrate the class c(Tv E) ∈ H i (E;Q) over the fibers to

get κc(E) ∈ H i−4(B;Q).

Let Diff(K ) denote the group of orientation-preserving C2-diffeomorphisms,

in the C2-topology. Its classifying space BDiff(K ) carries a universal smooth

manifold bundle with fiber K , and hence there are classes κc ∈ H∗(BDiff(K );Q)

which may or may not be zero. Letting L2 = 1
45

(7p2 − p2
1) denote the second

Hirzebruch L-polynomial, we prove the following:

Theorem A. The generalized Miller–Morita–Mumford-class

κL2
∈ H 4(BDiff(K );Q)

is nonzero.
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The Hirzebruch L-polynomials are related to signatures of manifolds and as a

corollary of Theorem A, there exists a smooth bundle of K3 manifolds over a closed

stably framed 4-manifold whose total space has nonzero signature. We shall give

two proofs of Theorem A: the first is an explicit calculation for the tautological

bundle over a certain moduli space of K3 surfaces, while the second combines the

study of Einstein metrics with a general result about cohomology of arithmetic

groups following work of Franke.

Either proof can be combined with the Bott vanishing theorem to prove the

following result. We define the mapping class group Mod(K ) to be the group

π0 Diff(K ) of path components of Diff(K ).

Theorem B. The surjection p : Diff(K )→ Mod(K ) does not split, i.e., there is
no homomorphism s : Mod(K )→ Diff(K ) such that p ◦ s = Id.

This is an instance of the Nielsen realization problem; see, e.g., [Mann and

Tshishiku 2019]. Theorem B first appeared in [Giansiracusa 2009], but the proof

was flawed (see [Giansiracusa 2019]). However, it can be repaired with small

modifications and many of the ideas in this paper derive from [Giansiracusa 2009].

2. Quasipolarized K3 surfaces

Suppose that π : E→ B is an oriented manifold bundle with closed fibers of dimen-

sion d. This has a vertical tangent bundle Tv E with corresponding characteristic

classes c(Tv E) ∈ H i (E;Q) for each c ∈ H i (BSO(d);Q). The generalized Miller–

Morita–Mumford classes are obtained by integration of these classes along the

fibers:

κc(E) :=
∫

π

c(Tv E) ∈ H i−d(B;Q).

Applying this construction to the universal bundle of K3 manifolds over BDiff(K )

results in classes κc ∈ H i−4(BDiff(K );Q) for each c∈ H i (BSO(4);Q)=Q[e, p1].
These classes are natural in the bundle: for any continuous map f : B ′→ B,

κc( f ∗E)= f ∗κc(E). To prove κc 6= 0 ∈ H∗(BDiff(K );Q), it therefore suffices to

find a single bundle E→ B such that κc(E) 6= 0.

We shall use the moduli space M2d of quasipolarized K3 surfaces of degree 2d
(the value of d plays no role in our arguments). This is actually a stack with finite

automorphism groups of bounded order, but since we are interested in its rational

cohomology we may ignore these technical details. We shall not go into the details

of its construction, but recall some facts from [van der Geer and Katsura 2005;

Petersen 2019]. There is a universal family π : X2d→M2d of K3 surfaces. As this

is a bundle of complex surfaces, its vertical tangent bundle has Chern classes ti :=
ci (TvX2d) ∈ H 2i (X2d;Q). The class t1 is the pullback of a class λ ∈ H 2(M2d;Q).

The main result of [van der Geer and Katsura 2005] is that λ17 6= 0 but λ18 = 0, in
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i 0 1 2 3 4 5 6 7 8

κLi+1
(X2d) 24 8λ2 8λ4

3
16λ6

45
8λ8

315
16λ10

14175
16λ12

467775
32λ14

42567525
8λ16

638512875

Table 1. The class κLi+1
(X2d) in terms of the class λ for i ≤ 8.

the Chow ring of M2d . Petersen [2019] gives the corresponding result in rational

cohomology, and attributes it to van der Geer and Katsura. We shall use this to

prove the following improvement of Theorem A:

Proposition 1. The generalized Miller–Morita–Mumford-class

κLi+1
∈ H 4i (BDiff(K );Q)

is nonzero for i ≤ 8.

Proof. It suffices to prove that κLi+1
(X2d) 6= 0. Since the K3 manifold is 4-

dimensional, p1, p2 are the only nonzero Pontryagin classes of the vertical tangent

bundle. These can be expressed in terms of the Chern classes using [Milnor and

Stasheff 1974, Corollary 15.5]:

p1(TvX2d)= t2
1 − t2 and p2(TvX2d)= t2

2 .

We substitute these into the first nine Hirzebruch L-polynomials, as computed by

McTague [2014]. Since integration along fibers is linear, it suffices to compute
∫

π
t i
1t j

2 . As t1 = π∗λ, the push-pull formula gives λi
∫

π
t j
2 , and [van der Geer

and Katsura 2005, Section 3] used Grothendieck–Riemann–Roch to determine

that
∫

π
t j
2 = a j−1λ

2 j−2 for particular integers a j−1. Using this, we compute that

κLi+1
(X2d) is a nonzero multiple of λ2i for 1≤ i ≤ 8 and hence nonzero, see Table 1.

�

Example 2. Let us do the computation for i = 3 as an example:

L4 =
−19p2

2 + 22p2
1 p2− 3p4

1

14175
ignoring terms involving pi with i ≥ 3,

L4(TvX2d)=
−3t8

1 + 24t6
1 t2− 50t4

1 t2
2 + 8t2

1 t3
2 + 21t4

2

14175
,

κLi+1
(X2d)=

∫

π

L4(TvX2d)=
24λ6 · 24− 50λ4 · 88λ2+ 8λ2 · 184λ4+ 21 · 352λ6

14175

=
16λ6

45
. �

Remark 3. The classes κLi+1
, when pulled back to H 4i (BDiff(K rel ∗);Q), re-

main nonzero because H∗(BDiff(K ), Q)→ H∗(BDiff(K rel ∗), Q) is injective:

its composition with the Becker–Gottlieb transfer is given by multiplication with
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χ(K )= 24. We do not know whether κLi+1
remains nonzero when pulled back to

H 4i (BDiff(K rel D4);Q).

3. Miller–Morita–Mumford classes and the action on homology

One can also approach the group of diffeomorphisms of K through its action

on H2(K ;Z). In particular, we shall explain a relationship between the general-

ized Miller–Morita–Mumford classes and the arithmetic part of the mapping class

group.

The middle-dimensional homology group H2(K ;Z)∼= Z22 has intersection form

given by M = H ⊕ H ⊕ H ⊕−E8⊕−E8, with H the hyperbolic form and −E8

the negative of the E8-form. This is equivalent over R to the symmetric (22× 22)-

matrix
(

I3 0

0 −I19

)

,

where In is the (n× n) identity matrix. In particular, we can consider Aut(M) as

a subgroup of the Lie group O(3, 19).

The action of Mod(K ) on H2(K ;Z) preserves the intersection form and hence

induces a homomorphism α : Mod(K )→ Aut(M), whose image 0K is the index

2 subgroup of Aut(M) of those elements such that the product of the determinant

and the spinor norm equals 1, see [Giansiracusa 2009, §4.1].

The generalized Miller–Morita–Mumford classes associated to the Hirzebruch

L-polynomials Li ∈ H 4i (BSO;Q), whose pullback to H 4i (BSO(4);Q) we shall

denote in the same manner, can be obtained from the arithmetic group 0K . We

will now justify this claim.

There are homomorphisms

0K → Aut(M)→ O(3, 19)
'←− O(3)×O(19).

Thus we get, up to homotopy, a map w : B0K → BO(3)× BO(19) which classifies

a bundle η with fibers M ⊗R, which decomposes as a direct sum η+⊕ η− of a 3-

and a 19-dimensional subbundle. We define a class

x4i := w∗(ph4i ⊗1− 1⊗ ph4i ) ∈ H 4i (B0K ;Q),

where ph4i denotes the degree 4i component of the Pontryagin character.

By definition x4i is pulled back from BO(3)× BO(19), but it is in fact pulled

back from BO(3) [Giansiracusa 2009, Proposition 2.2]. By Chern–Weil theory the

Pontryagin classes of the flat bundle η vanish [Milnor and Stasheff 1974, Corol-

lary C.2]. This implies ph(η+)+ph(η−)= 0, and thus x4i = ph4i (η+)−ph4i (η−)=
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2 ph4i (η+), which is evidently pulled back along

B0K → BO(3)× BO(19)
π1→ BO(3).

Lemma 4. The pullback of x4i ∈ H 4i (B0K ;Q) along the map BDiff(K )→ B0K

is equal to 1/2i+1κLi+1
∈ H 4i (BDiff(K );Q).

Proof. Atiyah [1969, §4] proved that x4i ∈ H 4i (B0K ;Q) pulls back to κ
L̃i+1
∈

H 4i (BDiff(K );Q) along the map BDiff(K )→ B0K . Here L̃i+1 is the Atiyah–

Singer modification of the Hirzebruch L-polynomials: while the latter has generat-

ing series
√

z/ tanh(
√

z), this modification has generating series
√

z/ tanh(
√

z/2),

so 2i+1L̃i+1 = Li+1. �

Let 0Ein < 0K be the index 2 subgroup of those elements such that both the

determinant and the spinor norm are 1; it has index 4 in Aut(M) and is the maximal

subgroup contained in the identity component of O(3, 19). Restricting the previous

maps to the identity component SO0(3, 19) in O(3, 19), we get

B0Ein→ BSO0(3, 19)
'←− BSO(3)× BSO(19)

π1−→ BSO(3).

To understand the induced map H∗(BSO(3);Q)→ H∗(B0Ein;Q), we intro-

duce the space

Xu =
SO(22)

SO(3)×SO(19)
.

In Section 4 we shall discuss the Matsushima homomorphism

µ : H∗(Xu;C)→ H∗(B0Ein;C).

The principal SO(3)-bundle SO(22)/ SO(19)→ Xu is classified by a 39-connected

map Xu → BSO(3) that factors over the map Xu → BSO(3)× BSO(19). By

[Giansiracusa 2009, Lemma 3.4] (a special case of [Borel 1977, Proposition 7.2]),

the Matsushima homomorphism fits in a commutative diagram

H∗(BSO(3)× BSO(19);C) H∗(Xu;C)

H∗(BSO(3);C) H∗(B0Ein;C)

µ (1)

Changing coefficients to the complex numbers and pulling back x4i from B0K to

B0Ein, we get x4i ∈ H 4i (B0Ein;C).

Lemma 5. The class x4i ∈ H 4i (B0Ein;C) is in the image of the Matsushima ho-
momorphism.
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Proof. The argument preceding Lemma 4 tells us that in the commutative diagram

H∗(BSO(3);C) H∗(B0Ein;C)

H∗(BO(3);C) H∗(B0K ;C)

the element x4i ∈ H∗(B0K ;C) is pulled back from BO(3), and hence x4i ∈
H∗(B0Ein;C) is pulled back from BSO(3). The results then follows from the

commutative diagram (1). �

4. Results of Franke and Grobner

In this section we explain a result about the Matsushima homomorphism, which

implies:

Proposition 6. The homomorphism

H∗(BSO(3);C)→ H∗(Xu;C)→ H∗(B0Ein;C)

is injective in degrees ∗ ≤ 20.

Let G be a connected semisimple linear algebraic group over Q. The real points

G(R) form a semisimple Lie group. Fix maximal compact subgroups K < G(R)

and U < G(C) with K ⊂ U , let Y∞ := G(R)/K be the symmetric space of G,

and Xu :=U/K be the compact dual symmetric space of G. Fixing an arithmetic

lattice 0 < G(Q), by work of Matsushima [1962] and Borel [1974] there is a

homomorphism H∗(Xu;C)→ H∗(0\Y∞;C) constructed using differential forms.

Since 0 acts on the contractible space Y∞ with finite stabilizers, H∗(0\Y∞;C)∼=
H∗(B0;C). We shall call the composition

µ : H∗(Xu;C)→ H∗(0\Y∞;C)∼= H∗(B0;C) (2)

the Matsushima homomorphism. It may be helpful to point out that µ in general is

not induced by a map of spaces, since it does not preserve the rational cohomology

as a subset of the complex cohomology [Borel 1977; Okun 2001].

Example 7. The Matsushima homomorphism discussed in the previous section is

a particular instance of this. In this case G = SO(3, 19), yielding Xu as in the pre-

vious section. In this particular instance µ does preserve the rational cohomology

in the range ∗ ≤ 39, as a consequence of the commutative diagram (1).

Borel [1974] proved that the Matsushima homomorphism is an isomorphism in

a range of degrees, and by work of Franke [2008] it is injective in a larger range.
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Theorem 8 (Franke). The homomorphism (2) is injective in degrees

∗ ≤min
R

dim NR, (3)

where R ranges over maximal parabolic subgroups of G over Q, and NR ⊂ R is
the unipotent radical.

This is not stated explicitly in [Franke 2008], but a similar statement is given in

[Grobner 2013], as we now explain. We require the following additional setup (see

[Franke and Schwermer 1998], [Li and Schwermer 2004], [Speh and Venkatara-

mana 2005] or [Harder 2019, §6,8] for more information). Define the adelic sym-
metric space Y A and the adelic locally symmetric space XA by

Y A := Y∞×G(A f ) and XA := G(Q)\Y A,

where A f is the ring of finite adeles of Q. The (sheaf) cohomology H∗(XA;C) can

be identified with the colimit colim H∗(XA/K f ;C), where K f ⊂ G(A f ) ranges

over open compact subgroups. Each XA/K f is a finite disjoint union
⊔

i 0i\Y∞
with 0i < G(Q) an arithmetic lattice.

Definition 9. The automorphic cohomology of G is given by

H∗(G;C) := colim H∗(XA/K f ;C). (4)

In this framework, there is a map [Grobner 2013, p. 1062]

9 : H∗(g, K ;C)→ H∗(G;C), (5)

where H∗(g, K ;C) is relative Lie algebra cohomology with trivial coefficients.

The construction of the Matsushima homomorphism (2) passes through the iso-

morphism H∗(Xu;C) ∼= H∗(g, K ;C) [Okun 2001, §4; Borel 1974, §10]. In the

proof of Proposition 10 we will explain that the Matsushima homomorphism picks

out the contribution of the trivial representation to the automorphic cohomology.

In particular, it fits in a commutative diagram

H∗(g, K ;C) H∗(G;C)

H∗(Xu;C) H∗(B0;C)

9

∼=
µ

(6)

with right vertical induced by the map B0→ 0\Y∞ ↪→
⊔

i 0i\Y∞ = XA/K f for

suitable K f .

We will see that Theorem 8 follows from the following result regarding the

homomorphism (5).

Proposition 10. The homomorphism (5) is injective in degrees ∗ ≤minR dim NR .
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The proposition follows from [Franke 2008; Grobner 2013]. There is a small

amount of work needed to translate the results of these papers to our setting.

Proof. First we explain a weaker statement: in degrees ∗< 1
2

minR dim NR , (5) is

injective.1 This is proved directly in [Grobner 2013], building on [Franke 1998;

2008; Franke and Schwermer 1998]. We explain only what is needed for our argu-

ment, and refer to [Grobner 2013] for more details. The cohomology H∗(G;C) can

be identified with relative Lie algebra cohomology H∗(G;C)= H∗(g, K ;A(G)),

where A(G) is a space of automorphic forms [Grobner 2013, Introduction]. (Com-

paring with Grobner’s notation, we remark that since G is semisimple in our case,

the quotient mG in [Grobner 2013] is just the Lie algebra g; furthermore, since we

are only interested in the trivial representation E = C, we will write A(G) instead

of AJ (G).)

By [Franke 1998; Franke and Schwermer 1998], there is a decomposition

A(G)=
⊕

{P}

⊕

φP

A{P},φP (G),

and hence also H∗(G;C)=
⊕

{P}

⊕

φP

H∗
(

g, K ;A{P},φp(G)
)

,

where {P} ranges over (associate classes) of Q-parabolic subgroups and φP ranges

over (associate classes) of cuspidal automorphic representations of the Levi sub-

groups of elements of {P}; see [Grobner 2013, §2]. The summands of A(G)

corresponding to P 6= G are denoted AEis(G), and the corresponding subspace

H∗Eis(G;C)⊂ H∗(G;C) is called the Eisenstein cohomology. The constant func-

tions span a trivial subrepresentation 1G(A) ⊂AEis(G). This defines a map

H∗(g, K ;C)→ H∗(G;C),

which is precisely the map (5). Necessarily 1G(A) is contained in a unique summand

A{P},φP (G). Then by [Grobner 2013, Cor. 17], the induced map H∗(g, K ;C)→
H∗

(

g, K ;A{P},φP (G)
)

is injective in a range 0 ≤ ∗ < qres, where the constant

qres = qres(P, φP) is defined in [Grobner 2013, §6]. As discussed in [Grobner

2013, §7.4], since we are working with the trivial representation, qres is equal to

the constant qmax = 1
2

minR dim NR defined in [Grobner 2013, §7.1] (note that in

our case G is defined over Q, which as only one place, so the sum in Grobner’s

definition of qmax has only one term).

Next we explain how to deduce from [Franke 2008] that (5) is injective for

∗ ≤minR dim NR .

1Although including this argument is not strictly necessary, this statement is already sufficient

for Theorem B and the argument illustrates the connection between the Matsushima homomorphism

and automorphic forms.
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We define H∗c (G;C) to be the colimit of the compactly supported cohomology

groups H∗c (XA/K f ;C). Using Poincaré duality for each of the symmetric spaces

0i/Y∞, the map 9 : H∗(Xu;C)∼= H∗(g, K ;C)→ H∗(G;C) has a dual map

9 ′ : H∗c (G;C)→ H∗(Xu;C)

on compactly supported cohomology. Then ker(9)= Im(9 ′)⊥, where the orthog-

onal complement is with respect to the cup product ^ on H∗(Xu;C). Franke

[2008] gives a precise description of Im(9 ′). To describe it, fix a minimal para-

bolic P0 < G, and consider a parabolic subgroup R ⊃ P0. Write R = M AN for the

Langlands decomposition, where M is semisimple, A is abelian, and N is unipotent.

When we vary R, we write MR, NR for emphasis. The compact dual symmetric

space of M , denoted X M , embeds in Xu . Franke proves that Im(9 ′) = ker(8),

where

8 : H∗(Xu;C)→
∏

H∗(X M ;C)

is the map induced by the inclusions X M ↪→ Xu , ranging over R = M AN maximal

parabolic subgroups (maximal is equivalent to dim A = 1). See [Franke 2008, (7.2)

p. 59; Speh and Venkataramana 2005, §2,3]. Thus we have

ker(9)= ker(8)⊥.

To show that 9 is injective in low degrees, we use the following observation: if

V⊥ ⊂ ker(8) for some subspace V ⊂ H∗(Xu;C), then ker(9) = ker(8)⊥ ⊂ V .

This implies that 9 is injective in degrees ∗< min0 6=v∈V deg(v).

Fix R, and consider the inclusion i : X M → Xu . For k ≥ 1, observe that a ∈
H k(Xu;C) belongs to ker(i∗) if and only if a ^ PD(i∗(z)) = 0 for every z ∈
Hk(X M ;C). Here PD(·) denotes Poincaré duality. Then V⊥ ⊂ ker(8), where

V ⊂ H∗(Xu;C) is defined as the image of

⊕

R

⊕

k≥1

Hk(X MR ;C)
i∗−→ H∗(Xu;C)

PD−→ H∗(Xu;C),

where
⊕

R ranges over maximal parabolic subgroups containing P0 as before. Ob-

serve that classes in H∗(X M ;C) of low dimension map to classes in H∗(Xu;C)

of low codimension. Thus if v ∈ V , then deg(v)≥ dim Xu − dim X M for each M .

Therefore, 9 is injective in degrees ∗< minR(dim Xu − dim X MR ).

Finally, we show the minimum codimension of X M ⊂ Xu is equal to 1 +
minR dim R. This follows quickly from the Iwasawa decomposition for a semisim-

ple Lie group and Langlands decompositions for a parabolic subgroup. By the

Iwasawa decomposition, we can write G = K AN , where K is maximal compact.

For our maximal parabolic R, we have R = M AR NR , and furthermore, since M
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is semisimple, it has an Iwasawa decomposition M = KM AM NM . Observe that

dim Xu = dim AN , dim X M = dim AM NM ,

and dim AN = dim AM NM + dim AR NR.

Then

dim Xu − dim X M = dim AR NR = 1+ dim NR.

This completes the proof. �

Proof of Theorem 8. For any x ∈ H∗(g, K ;C) in the given range, by the injectivity

of 9 and the description (4) of H∗(G;C) as a colimit, there is an arithmetic lattice

0′ < G(Q) so that 9(x) is in the image of H∗(0′;C)→ H∗(G;C), as in (6). By

transfer, the same is true for any further finite-index subgroup of 0′. Then since

H∗(g, K ;C) is degreewise finite-dimensional, in the desired range (5) provides an

injective map H∗(g, K ;C)→ H∗(0′;C) for some arithmetic lattice 0′ ≤ G(Q).

Any arithmetic lattice 0 ≤ G(Q) is commensurable to 0′, and hence 0 and 0′ have

a common finite index subgroup 0′′. Consider the commutative diagram

H∗(B0′;C)

H∗(g, K ;C) H∗(B0′′;C).

H∗(B0;C)

By a transfer argument the top composition is injective in the desired range, and

hence so is H∗(g, K ;C)→ H∗(B0;C), proving that (5) and hence (2) is injective

in the desired range. �

In the remainder of this section we compute Franke’s constant minR dim NR for

G = SO(p, q). We also compute Franke’s constant for G = Sp2g and G = SLn ,

since these are examples of common interest.

4.1. Special orthogonal groups. Fix 1 ≤ p ≤ q, set d = q − p, and consider the

algebraic group

SO(B) := {g ∈ SLp+q | gt Bg = B},

where B is the (p+ q)× (p+ q)-matrix given by

B =
(

Ip 0

0 −Iq

)

.

The associated compact dual symmetric space is

Xu = SO(p+ q)/(SO(p)×SO(q)),

whose cohomology H∗(Xu;C) can be computed using [McCleary 2001, Theo-

rem 8.2].
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Proposition 11. Fix a finite-index subgroup 0 ≤ SO(B;Z). Then the Matsushima
homomorphism H∗(Xu;C)→ H∗(B0;C) is injective in degrees ∗ ≤ p+ q − 2.

Proof. By the preceding discussion, it suffices to prove

min
R

dim NR = p+ q − 2,

where R ranges over a maximal parabolic subgroups over Q, and NR is the unipo-

tent radical. Parabolic subgroups of SO(B;R) are stabilizers of isotropic flags

in (Rp+q , B). A maximal parabolic subgroup is specified by a single nontrivial

isotropic subspace. Let e1, . . . , ep, f1, . . . , fq be the standard basis for Rp+q

(whose Gram matrix is B). Denoting ui = ei + fi , let Rk < SO(B;R) be the

stabilizer of W = R{u1, . . . , uk} for 1≤ k ≤ p. Every maximal parabolic subgroup

is conjugate to some Rk .

Fix 1 ≤ k ≤ p. An element of Rk preserves the flag 0 ⊂ W ⊂ W⊥ ⊂ Rp+q .

The unipotent radical Nk ⊂ Rk is the subgroup that acts trivially on each of the

quotients W/0, W⊥/W , Rp+q/W⊥. To determine dim Nk , denote vi = ei − fi for

1≤ i ≤ p, and work in the ordered basis

u1, . . . , uk, uk+1, . . . , u p, f p+1, . . . , fq , vk+1, . . . , vp, v1, . . . , vk .

Then g ∈ Nk can be expressed as a block matrix

g =





Ik y z
0 Ip+q−2k x
0 0 Ik



,

where y =−x t Q and z+ zt = x t Qx and Q is the (p+q−2k)×(p+q−2k) matrix

Q =





0 0 Ip−k

0 Iq−p 0

Ip−k 0 0



.

The homomorphism Nk 3 g 7→ x ∈ Rk(p+q−2k) has kernel the space of skew-

symmetric matrices zt = −z, so dim Nk = k(p + q − 2k) + k(k − 1)/2. For

1≤ k ≤ p, this number is smallest when k = 1, which gives the constant claimed

in the theorem. �

Proof of Proposition 6. Since M , the intersection form of the K3 manifold, is equiv-

alent to B over R with p= 3 and q = 19. Thus when we apply Theorem 8, the same

estimates as in Proposition 11 holds. Thus the map H∗(Xu;C)→ H∗(B0Ein;C)→
H∗(B0;C) is injective for ∗≤ 20 and hence so is H∗(Xu;C)→ H∗(B0Ein;C). �
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4.2. Symplectic groups. We next specialize Theorem 8 to finite index subgroups

of symplectic groups. Take G = Sp2n to be the algebraic group defined by

Sp2n := {g ∈ SL2n | gt Jng = Jn},

where Jn is the 2n× 2n matrix given by

Jn :=
(

0 In

−In 0

)

.

The associated compact dual symmetric space is Xu = Sp(n)/ U(n), whose coho-

mology in the range below is the polynomial algebra on generators c1, c3, c5, . . .

with |ci | = 2i .

Proposition 12. For any finite-index subgroup 0 ≤ Sp2n(Z) the Matsushima ho-
momorphism H∗(Xu;C)→ H∗(B0;C) is injective in degrees ∗ ≤ 2n− 1.

Proof of Proposition 12. The proof follows from Theorem 8 similar to Proposition 11.

Let e1, . . . , en , f1, . . . , fn be the standard symplectic basis for R2n . Let Rk be the

maximal parabolic subgroup of Sp2n defined as the stabilizer of W =R{e1, . . . , ek}
for 1≤ k ≤ n. Working in the basis e1, . . . ,ek,ek+1, . . . ,en, fk+1, . . . , fn, f1, . . . , fk ,

an element of the unipotent radical Nk can be expressed as a block matrix

g =





Ik y z
0 I2n−2k x
0 0 Ik



,

where y = x t J ′ and z − zt = yt J ′y and J ′ = Jn−k . It follows that dim Nk =
2k(n− k)+ k+ k(k− 1)/2. For 1≤ k ≤ n, this number is smallest when k = 1. �

4.2.1. The tautological ring of Ag. Let Ag denote the moduli space of principally

polarized abelian varieties. The tautological ring R∗CH(Ag)⊂ CH∗(Ag;Q) in the

Chow ring is the subalgebra generated by the λ-classes λi ∈ CH2i (Ag;Q), the

Chern classes of the Hodge bundle (the 2g-dimensional vector bundle given at an

abelian variety X ∈Ag by the tangent space to its identity element). G. van der Geer

[1999, Theorem (1.5); 2013, §4] proved it has a Q-basis given by the monomials

λ
a1

1 λ
a2

2 · · · λ
ag−1

g−1 with ai ∈ {0, 1}. As for Chow groups, there is a tautological ring

R∗H (Ag)⊂ H∗(Ag;Q) in rational cohomology defined as the subalgebra generated

by the λ-classes. In the literature it is claimed van der Geer’s computation also

holds in cohomology, but no reference for this is known to the authors. We provide

a proof below:

Theorem 13. The tautological ring R∗H (Ag)⊂ H∗(Ag;Q) has a Q-basis given by
the monomials λ

a1

1 λ
a2

2 · · · λ
ag−1

g−1 with ai ∈ {0, 1}.
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Proof. R∗CH(Ag) surjects onto R∗H (Ag), so it suffices to prove they have the same

dimension.

The space Ag is the quotient of the contractible Siegel upper half space Hg by

Sp2g(Z). This action has finite stabilizers, so there is an isomorphism H∗(Ag;Q)∼=
H∗(Sp2g(Z);Q). Under the isomorphism

H∗(Ag;C)∼= H∗(Sp2g(Z);C),

R∗H (Ag)⊗C is exactly the image of the Matsushima homomorphism [van der Geer

2013, §10]. Speh and Venkataramana [2005, Section 4] prove that the kernel of

the Matsushima homomorphism is the orthogonal complement of the ideal (ug) in

H∗(Xu;Q)∼=
Q[u1, . . . , ug]

((1+ u1+ u2+ · · ·+ ug)(1− u1+ u2− · · ·+ (−1)gug)− 1)
.

This is [Speh and Venkataramana 2005, Lemma 8], combined with the description

of H∗(Xu;Q) in [van der Geer 1999, §1]. The latter also proves there is an iso-

morphism H∗(Xu;Q) ∼= R∗CH(Ag+1) identifying ui with λi . In particular, from

the basis given above we see that the kernel of the Matsushima homomorphism

is spanned by the monomials uε1

1 uε2

2 · · · u
εg−1

g−1ug with εi ∈ {0, 1}. Thus the image

of the Matsushima homomorphism has the same dimension as R∗CH(Ag), and the

result follows. �

Observe this result in particular describes the image of the Matsushima homo-

morphism in H∗(B0;C) for finite-index subgroups 0 ⊂ Sp2g(Z).

4.3. Special linear groups. Finally, we specialize Theorem 8 to finite-index sub-

groups of special linear groups. Now we have G = SLn and Xu = SU(n)/ SO(n),

whose cohomology in the range below is the exterior algebra on generators

c̄3, c̄5, c̄7, . . . with |c̄i | = 2i − 1.

Proposition 14. For any finite-index subgroup 0 ≤ SLn(Z) the Matsushima homo-
morphism H∗(Xu;C)→ H∗(B0;C) is injective in degrees ∗ ≤ n− 1.

The proof is similar to the proof of Propositions 11 and 12, but simpler; one

identifies the maximal parabolic subgroups over Q as the stabilizers of a nontrivial

subspace W and observes that the stabilizers of 1-dimensional subspaces have the

smallest unipotent radical, of dimension n− 1.

4.3.1. A result announced by Lee. Lee [1978, Theorem 1], announced a result

which in particular implies that the range in Proposition 14 can be improved to

∗ ≤ 2n − 3. His result can be deduced from page 61 of [Franke 2008], where

Franke describes the kernel of the Matsushima homomorphism for finite index

subgroups of SLn(OK ), with OK the ring of integers in a number field K :
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Theorem 15. For any finite-index subgroup 0 ≤ SLn(Z), the image of the Mat-
sushima homomorphism H∗(Xu;C)→ H∗(B0;C) is an exterior algebra on the
classes c̄3, . . . , c̄n−1 with |c̄i | = 2i − 1 when n is odd, and an exterior algebra on
the classes c̄3, . . . , c̄n−3 when n is even.

Proof. The cohomology of compact dual Xu for SLn(Z) is given by the following

exterior algebras:

H∗(Xu;Q)=
{

3(c̄3, . . . , c̄n) if n is odd,

3(c̄3, . . . , c̄n−1, e) if n is even,

with |c̄i | = 2i − 1 and |e| = n. According to page 61 of [Franke 2008], when n
is odd the kernel of Matsushima homomorphism is the ideal generated by c̄n , and

when n is even it is the ideal generated by c̄n−1 and e. �

Remark 16. Theorem 15 resolves a question in [Elbaz-Vincent et al. 2013, Re-

mark 7.5]; the Borel class c̄3 is nonzero in H 5(BSLn(Z);Q) for n ≥ 5, and

the Borel class c̄5 is nonzero in H 9(BSLn(Z); Q) for n ≥ 7. Similarly c̄3c̄5 is

nonzero in H 14(BSLn(Z);Q) for n ≥ 7. Curiously, the nonzero class they find in

H 9(BSL6(Z);Q) is not stable.

5. Moduli of Einstein metrics

To apply our knowledge of the cohomology of arithmetic groups, we use the global

Torelli theorem to study the moduli space MEin of Einstein metrics on the K3

manifold. Following [Giansiracusa 2009, §4], for us this shall mean the homotopy

quotient

MEin := TEin //0Ein

of a moduli space TEin of marked Einstein metrics by the subgroup 0Ein ≤ 0K . The

space TEin admits a description as a hyperplane complement, but we only use a pair

of consequences of this.

Fix a finite-index subgroup 0′ ≤ 0K , and assume 0′ is contained in 0Ein. Equiv-

alently, one may assume it is contained in the identity component of O(3, 19). We

introduce the notation ModEin := α−1(0Ein) and Mod′ := α−1(0′).

Proposition 17. The homomorphism H∗(B0′;C)→ H∗(B Mod′;C) is injective
for any 0′ ≤ 0K .

Proof. We will first prove that the surjection Mod(K )→ 0K splits over 0Ein by

Giansiracusa’s work: there is a map

e :MEin→ BDiff(K )→ B Mod(K )→ B0K . (7)

The induced homomorphism π1(MEin)→ 0K is injective with image 0Ein by the

global Torelli theorem [Giansiracusa 2009, §§4–5]. Thus, Mod(K )→ 0K splits
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over 0Ein. This proves the case 0′ = 0Ein; for 0′ ⊂ 0Ein one restricts the splitting

to 0′.
If 0′ 6⊂ 0′ ∩0Ein, then 0′ ∩0Ein has index 2 in 0′ and similarly Mod′ ∩ModEin

has index 2 in Mod′. Thus the injective homomorphism H∗(B(0′ ∩0Ein);C)→
H∗(B(Mod′ ∩ModEin);C) is one of representations of Z/2 ∼= 0′/(0′ ∩ 0Ein) =
Mod′ /(Mod′ ∩ModEin), and we can identify H∗(B0′;C)→ H∗(B Mod′;C) with

the induced map on Z/2-invariants. As taking Z/2-invariants preserves injective

maps, the proposition follows. �

To prove Theorem A we must prove that p∗x4 6= 0 ∈ H 4(BDiff(K );Q). To do

so, it suffices to prove that is nonzero when pulled back to MEin:

Proposition 18. For the map e defined in (7), e∗x4 6= 0 ∈ H 4(MEin;Q).

Proof. We will prove that e∗ : H 4(B0K ;Q)→ H 4(MEin, Q) is injective. In [Gi-

ansiracusa 2009, §5], one finds a description of the Serre spectral sequence for the

fibration sequence

TEin→MEin = TEin //0Ein→ B0Ein.

Its E2-page is given by

E2
p,q =

{

0 if q is odd,
∏

σ∈1q/2/0Ein
H p(BStab(σ );Q) if q is even.

The description of 1q/2/0Ein is not important here, as we shall only use the rows

0≤ q ≤ 3. Of these, the following are nonzero: for q = 0 we get H p(B0K ;Q), and

for q = 2 we get a product of the cohomology groups of groups 0 commensurable

with O(2, 19;Z) or O(3, 18;Z). For such groups H 1(0;Q) vanishes [Margulis

1991, Corollary 7.6.17], and thus there can not be any nonzero differential into the

entry E2
4,0. �

6. Nielsen realization

We now deduce Theorem B from either Proposition 1 or 6. The argument in fact

shows that Diff(K )→Mod(K ) does not split over any finite index subgroup of

Mod(K ).

Proof of Theorem B. We will show that Diff(K ) → Mod(K ) does not split by

contradiction, so we assume there is a splitting s : Mod(K )→ Diff(K ), which

necessarily factors over the discrete group Diff(K )δ as

Mod(K )
sδ

−→ Diff(K )δ
pδ

−→ Diff(K ).

Note that x8 ∈ H 8(B0K ;Q) is nonzero; either one pulls back to BDiff(K ) and

uses Proposition 1 and Lemma 4, or one pulls back to B0Ein and uses Proposition 6.
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By Proposition 17 its pullback to H 8(B Mod(K );Q), which we denote by c, is also

nonzero. Its pullback under

B Mod(K )
sδ

−→ BDiff(K )δ
pδ

−→ BDiff(K )
p−→ B Mod(K )

is c and hence nonzero. By Section 3 we get p∗c=κL3
and we claim that (pδ)∗κL3

∈
H 8(BDiff(K )δ) vanishes. This would contradict c 6= 0 and finish the proof. To

prove the claim, we use that BDiff(K )δ classifies flat K-bundles, i.e., bundles with

a foliation transverse to the fibers and of codimension 4. The normal bundle to this

foliation is isomorphic to the vertical tangent bundle, and by the Bott vanishing

theorem [1970] its Pontryagin ring vanishes in degrees > 8. In particular the class

L3 of degree 12 vanishes. �

Remark 19. The idea of using Bott vanishing to obstruct Nielsen realization orig-

inates in Morita’s work [1987, Theorem 8.1].
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