Ludo Hashing: Compact, Fast, and Dynamic Key-value
Lookups for Practical Network Systems

SHOUQIAN SHI and CHEN QIAN, University of California, Santa Cruz, USA

Key-value lookup engines running in fast memory are crucial components of many networked and distributed
systems such as packet forwarding, virtual network functions, content distribution networks, distributed
storage, and cloud/edge computing. These lookup engines must be memory-efficient because fast memory is
small and expensive. This work presents a new key-value lookup design, called Ludo Hashing, which costs
the least space (3.76 + 1.05] bits per key-value item for [-bit values) among known compact lookup solutions
including the recently proposed partial-key Cuckoo and Bloomier perfect hashing. In addition to its space
efficiency, Ludo Hashing works well with most practical systems by supporting fast lookups, fast updates,
and concurrent writing/reading. We implement Ludo Hashing and evaluate it with both micro-benchmark
and two network systems deployed in CloudLab. The results show that in practice Ludo Hashing saves 40%
to 80%+ memory cost compared to existing dynamic solutions. It costs only a few GB memory for 1 billion
key-value items and achieves high lookup throughput: over 65 million queries per second on a single node
with multiple threads.

CCS Concepts: « Theory of computation — Bloom filters and hashing; - Networks — Data
path algorithms.

Additional Key Words and Phrases: Compact data structures; Key-value lookups; Network algorithms;
Forwarding algorithms

ACM Reference Format:
Shougian Shi and Chen Qian. 2020. Ludo Hashing: Compact, Fast, and Dynamic Key-value Lookups for
Practical Network Systems. Proc. ACM Meas. Anal. Comput. Syst. 4, 2, Article 22 (June 2020), 32 pages. https:
//doi.org/10.1145/3392140

1 INTRODUCTION

Fast lookups of large-scale key-value items are fundamental functions and design blocks of numer-
ous networked and distributed systems. These in-memory key-value lookup engines serve as the
indices to store and find the locations, addresses, or directions of the destination devices or queried
data. The representative applications of these lookup engines include:

(1) The forwarding information bases (FIBs) on network routers and switches run in SRAM.
Many FIBs uses key-value lookup engines to forward packets by searching flat network
addresses, as such MAC, in data center networks [27-29, 58], metropolitan networks [45],
LTE [61], software defined networks (SDNs) [59, 62], and future Internet designs [47]. The
values of the lookups are packet outgoing ports.

Authors’ address: Shougian Shi, sshi27@ucsc.edu; Chen Qian, cqian12@ucsc.edu, University of California, Santa Cruz,
1156 High Street, Santa Cruz, California, 95064, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

2476-1249/2020/6-ART22 $15.00

https://doi.org/10.1145/3392140

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 22. Publication date: June 2020.

https://doi.org/10.1145/3392140
https://doi.org/10.1145/3392140
https://doi.org/10.1145/3392140

22:2 Shougian Shi and Chen Qian

(2) In a content distribution network (CDN) or edge network, a number of proxy servers cache
popular Internet contents [36, 48, 57]. A lookup table can be used to find the server that
stores a particular content [22].

(3) In a distributed file system, an index is required to maintain metadata and the location of file
storage [42, 54]. The lookup keys are usually file names or IDs, and the values are locations
where the files are stored.

(4) Cloud load balancers are important components of a data center, which distribute packets
to replicated backend servers [16, 38, 43]. Here the lookup engine stores the flow states and
each key is a 5-tuple and each value is a server index. Network address translation (NAT)
also stores flow states and performs lookups based on 4-tuple for every packet.

(5) In embedded IoT devices, lookup tables are required for sharing sensing data and public keys
(32, 51].

The important requirement of these in-memory lookup engines is space efficiency. It is because
they are hosted in high levels of the memory hierarchy or special network devices, where the
memory is fast, small, expensive, and power-hungry. Another requirement is to support dynamic
updates that allow the tables to work in practice, including key-value insertions, deletions, and
changes.

Hash tables are the conventional solutions of fast in-memory key-value lookups. To resolve hash
collisions, the item keys should be stored to tell which value belongs to which key. For example,
the widely used version of Cuckoo Hashing [41] allows up to 8 key collisions [17, 19, 34, 61, 62].
Hence Cuckoo Hashing must store the keys or at least the digests of keys [35]. Storing keys may
cost more space than storing the values in the above applications. For example, a typical file ID in a
storage system has hundreds of bits and each value (disk address) is only tens of bits. For FIBs the
network addresses (48 to > 100 bits) are longer than the port values (< 8 bits). In a CDN the keys
(URLSs) could be thousands of bits.

Hence, recent efforts have been made to use minimal perfect hash functions (MPHFs) [10, 18, 26]
for in-memory key-value lookups, which significantly reduce the space cost by avoiding storing
keys. For a set of n key-value items where each item is a tuple (k;, v;) of key k; and value v;, a
minimal perfect hash function H” maps the n keys to integers 0 to n— 1 without collision. The lookup
table can simply use the MPHF and an array of n values, where the i-th value corresponds to the key
that is mapped to i by H’. The lookup table does not need to store keys. Unfortunately, none of the
existing MPHFs support fast dynamic updates. When there is a single item insertion/deletion, the
MPHF and whole array need reconstruction. Bloomier filters [13, 15] and SetSep [21, 61] are two
alternative perfect hash tables that have been used for network applications [21, 49, 51, 56, 59-61].
However, Bloomier filters spend > 2x space to store the values, and SetSep is also difficult to update.

This paper presents Ludo Hashing, a space-efficient lookup engine based perfect hashing, which
supports O(1) lookups and dynamic updates. To our knowledge, Ludo Hashing costs the least
space compared with existing solutions of dynamic key-value lookups. We show the numerical
comparison of these solutions in Table 1 and Fig. 1. Unless explicitly sourced, empirical values in
Table 1 are based on experiments of n = 64M, and I = 20, as explained in § 6.

Ludo Hashing gains the space saving by removing the key storage while maintaining a low
amplification factor (AF) on values. AF is the number of more bits taken per item when the length
of values are incremented by 1 bit. The core idea of Ludo Hashing can be presented in two steps.
Step i): We first use a properly designed method to divide all key-value items to a number of
small groups. Each group only contains at most four items. Step ii): For each group we find a hash
function H such that H maps the four keys to integers 0 to 3 without collision. For most modern
random hash function algorithms, we may generate an independent hash function H by using a

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 22. Publication date: June 2020.

Ludo Hashing: Compact, Fast, and Dynamic Key-value Lookups for Practical Network Systems

. Space cost Lookup time Update time
Solution . . .
(bits per item) per query per operation
MPHF +Array >1.44+1(x) O(1),>67ns [18] Not allowed
SetSep [21, 61] 0.5+ 1.5 0(1), 212ns >120ms
Partial key Cuckoo [35] 1.05(L" + 1) 0(1), 163ns >46ns [49]
Bloomier/Othello [13, 15, 59] 2.331 0(1), 187ns 173ns
Ludo Hashing (this work) 3.76 + 1.05] 0(1), 303ns 163ns

Table 1. I: bit length of each value. L: bit length of each key. L’: bit length of each key digest. (*)The most
compact version of MPHF [18] costs 1.56 + [bits per item, already at a prohibitively high construction time
cost: 2ms per item. The SetSep papers [21, 61] include neither clear update function nor experimental results
of updating. We designed an update function in our best effort.

20.0
m 17.51
15.01
1251
10.01
7.5

O (2,4)-Cuckoo
X Othello

OOOOOO

[PK-Cuckoo
Ludo OoooOOOOOO

5000000000090

E’OA

D.
2.51

Overall space (GB

goooo
poooo0o==c o x
\,VYXXXX

g 0 X

ooo

% X

o lalala)
ORSSS

T

T

0.0+

0 0 15 20

Length of value (bits)

25 30

.
5

Fig. 1. Numerical space comparison of dynamic key-value lookups. n = 1 billion, L = 100 bits, L’ = 30 bits.
Ludo uses Bloomier for I < 4. n: number of items in table.

different seed s. Hence we find the right hash function for each group by trying different seeds
with brute-force. Since each group contains only 4 keys, the seed can be found within a limited
number of attempts — and costs only a few bits. Within each group, it is only necessary to store
one seed s and four values that are in the order of the result of H,(k) for each key k. Both steps cost
O(1) time during lookups and each insertion/deletion/change can be updated in O(1) amortized
time. Eventually, we save the space of storing four keys — hundreds of bits or more — by using a
seed that costs only 5 bits!

The main contribution of this work is a dynamic key-value lookup engine that works well in
practical systems and achieves the least memory cost among existing methods to our knowledge. It is
based on our discovery of a minimal perfect hashing method with O(1) update cost. The compactness
under dynamics is achieved via a novel combination of Bloomier filters, Cuckoo hashing, and brute-
force based slot arrangement. We have implemented the complete software of Ludo Hashing with
dynamic updates and single writer/multiple readers concurrency. We implement and evaluate Ludo
Hashing in two working systems deployed in a real cloud environment. Experimental and analytical
results are available for each design choice to inspire future methods and tools. The source code
of Ludo Hashing is available for results reproducing [3].

The rest of this paper is organized as follows. Section 2 presents the related work. Section 3
defines the problem and system model. We present the detailed design of Ludo Hashing in Section 4
and the analysis results in Section 5. The system implementation and evaluation results are shown
in Section 6. We have discussions in Section 7 and conclude this work in Section 8.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 22. Publication date: June 2020.

22:4 Shougian Shi and Chen Qian

4 slots
—>
N
5 bucketsl 0|k, v \
1 i relocation of
/ an existing key
hy(ky) 2 k', v’
key k, 3
ho (k) ™ 4

Fig. 2. (2,4)-Cuckoo Hash Table
2 RELATED WORK

In-memory key-value lookup engines with small memory footprint support vital functions of many
networked and distributed systems, including network forwarding [58, 59, 61, 62], distributed
storage [42, 54], cloud load balancers [38], and content distributions [22, 36]. Space efficiency is the
most significant requirement of these applications because they are all running in fast and small
memory, such as cache, DRAM, or ASICs, in order to serve frequent lookups.

Hash Tables are conventional tools for in-memory key-value lookups. Most existing hash
table implementations require storing the complete keys. In particular, Cuckoo Hashing [41] is
a key-value mapping data structure that could achieve O(1) lookup time in the worst case and
amortized O(1) update time. As shown in Fig. 2: a (2,4)-Cuckoo has a number of buckets, each
bucket has 4 slots, and every key-value pair is stored in one slot of the two alternate buckets based
on the two hash values hy(k) and h;(k). The lookup of the value for a key k is to fetch the two
buckets and match the keys in all 8 slots until a key matches k correctly. For an item insertion
with key ki, a single empty slot should be found in bucket ho(k;) or hi(k;). If both the buckets are
full, one existing item (e.g., the one with key k’ in Fig. 2) will be relocated to the other alternate
bucket of k’, and k; takes the slot of k’. If the alternate bucket of k’ is full as well, an item in that
bucket will be relocated recursively. This process stops when every item is placed in a slot. Many
recent system designs choose the (2,4)-Cuckoo to achieve high memory utilization and fast lookups,
such as the memory cache system MemC3 [19], the software switch CuckooSwitch [62], the LTE
FIB ScaleBricks [61], and the cloud load balancer Silkroad [38]. The amortized insertion time of
(2,4)-Cuckoo is proved to be constant [39, 55] and empirically shown [19, 41]. The insertions are
proved to be successful asymptotically almost surely (a.a.s.) for load factor < 98.03% and n — oo
[12, 23].

Partial key Cuckoo hashing (PK Cuckoo) costs less space by storing the key digests instead
of full keys. A basic version of PK Cuckoo is proposed in [20], and a more compact version, Vacuum
filter, is proposed in [52]. SILT [35], an index for flash storage, proposes to use 15-bit key digests
instead of the full keys. Using key digests is not a trivial solution. Short key digests incur hash
collisions and false mappings, and a nontrivial two-level design is proposed in [49] to address the
collisions.

EMOMA [44] is a lookup data structure with a full version of (2,4)-Cuckoo holding the key-value
mappings. A counting block bloom filter (CBBF) is placed in cache to maintain the bucket choice of
each key, such that each lookup costs exactly one off-chip memory load. There are three major
differences between Ludo and EMOMA: 1) Ludo aims to reduce the memory cost while EMOMA
requires significantly more memory cost — even higher than a full (2,4)-Cuckoo. The key reason
is that Ludo resolves collisions within a bucket via a very short seed, instead of storing full keys
in EMOMA. 2) EMOMA optimizes the lookup throughput while Ludo does not. 3) Ludo records
the bucket choice of all keys without any error, while EMOMA uses a CBBF, which exhibits false

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 22. Publication date: June 2020.

Ludo Hashing: Compact, Fast, and Dynamic Key-value Lookups for Practical Network Systems 22:5

positives and counter overflows. 4) On a single insertion, keys in EMOMA may be inserted into
and deleted from the CBBF multiple times, which hurt the update speed.

value hg(k) hy(k) al [+ [Jof Ta |
1 6 5 O
' C(Jtl}ll:tlﬂl(l)ction @
2 ——

w

OO
blt] [of1] o] | |

Fig. 3. Othello maintenance structure to build and update a and b

I

k
k
k
k
k
k

N W N O

0 1
1 1
0 1
0 4

5

Bloomier filters [14, 15] are instances of minimal perfect hashing (MWHC) [9, 14, 15, 37, 59],
originally proposed for static lookup tables. Othello Hashing is a data structure and a series of
algorithms based on Bloomier filters designed for dynamic forwarding information bases [59].
Othello Hashing extends the Bloomier filter-based data plane by supporting runtime updates in
programmable networks. Coloring Embedder [56] is a recent work with a similar design of Bloomier.
Its space cost is also close to that of the Bloomier and Othello. Othello hashing includes both the
lookup structure running in fast memory such as switch ASICs and a maintenance structure running
in resource-rich platforms such as servers. For n key-value items and values with [bits, the Othello
lookup structure only includes the two arrays a and b, each including m elements m > n. Each
element in a and b is [bits. The lookup result of a key k is 7(k) = a[h,(k)] & b[hy(k)], where h,
and hy, are two uniform hash functions. The Othello maintenance structure helps to compute the a
and b to provide correct values as shown in Fig. 34. A good setup in practice is to allow a having
1.33n elements and b having n elements. The expected time cost of a construction of n keys is O(n),
and the expected time to add, delete, or change a key is O(1) [59]. More detailed explanation and
examples can be found in Appendix A.

SetSep [21, 61] is a lookup table that uses brute force to resolve collisions. Suppose the key set
has cardinality n, and all values are of the same length I. During SetSep construction, a global hash
function distributes the keys across [n/4] buckets, each of which contains 4 keys on expectation,
with high variations. 256 consecutive buckets form a block, and blocks are built independently. To
build a block, a greedy algorithm is used to map its buckets to 64 groups, each holding 16 keys
on expectation. For the i-th value bit in each group, a 16-bit array m and a 8-bit hash seed s are
found by brute-force, such that for every key value pair (k, v) in the group, m[h,(k)] = v;, where
Vo, V1, " -+, vj—1 are bits of v. All key-value items of the failed groups are put into a small plain
hash table. Ludo Hashing provides two major advantages over SetSep. First, Ludo Hashing can be
updated in O(1) complexity, while a single insertion into SetSep may cause reconstructions of the
involved group, block, or even the whole data structure. The main challenge of its updates is that
SetSep has no theoretical or empirical bound on the average number of group/block/global level
reconstructions per update. Experimental results show that SetSep takes 10x construction time and
>1000x update time compared to Ludo. Second, Ludo Hashing has small space cost when the value
length is > 7, which is the case for most applications.

3 PROBLEM DEFINITION AND MODELS

We formally define the problem in this work. Given a set of key-value items S and |S| = n. Each
item in S is a tuple (k;, v;) of key k; and value v;. Every key is unique in S. All values have the
same size (i.e., number of binary digits), denoted by I. The goal of this work is to find a key-value
lookup engine that provides the following functions, with minimized time and space costs.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 22. Publication date: June 2020.

22:6 Shougian Shi and Chen Qian

(1) The lookup function query(k) returns the corresponding value v for the query key k, where
(k,v) € S.

(2) The construction function construct(S) constructs a table for the set S.

(3) The insertion function insert(k, v) inserts the item (k, v) to the current table.

(4) The deletion function delete(k) deletes the item with key k from the current table.

(5) The value change function remap(k, v’) changes the value of the item with key k to v/, in
the current table.

System model. The proposed Ludo Hashing includes the lookup structure and maintenance

structure.

e The lookup structure in fast memory focuses on the lookup function. Its space cost and
lookup time are minimized.

e The maintenance structure maintains the full key-value state and performs construction and
update functions. It can run in a different thread or even on a different machine from where
the lookup structure runs.

e Necessary update information will be constructed by the maintenance structure and sent to
the lookup structure. The time complexity of each update is an important metric.

For space-efficient lookup engines that do not store full keys, a separate maintenance structure
is necessary to support updates. Otherwise, update correctness cannot be guaranteed. In practice,
the lookup structure is hosted in fast and small memory, while the maintenance structure can
be hosted in slower but larger memory. This model has been extensively used in system designs
[21, 22, 32, 35, 36, 38, 59-61].

4 DESIGN OF LUDO HASHING
4.1 Challenges and the main idea

A typical MPHF consists two-level hashing [10]. The first level hashing g : U — [0, r — 1] divides the
entire set K of n keys randomly into r buckets. The numbers of keys in all buckets vary significantly
and the maximum number of keys in a bucket is much bigger than n/m based on the ‘balls into
bins’ results [46]. The buckets are sorted in descending order of their size. In this order, the second
level finds a hash function f; : U — [0, m — 1] for each bucket B; such that the hash result of every
key in B; does not collide with any other key in all previous buckets. Let ¢ = m/n—1and A = n/r,
the time complexity of the above construction is O(n(2* + (1/€)*)) [10]. In most cases, an insertion
will cause the reconstructions of O(r) second level hashes f;.

Our main contribution is to allow each update to finish in O(1) time by a novel utilization of
(2,4)-Cuckoo and Othello, which has not been discovered before. Ludo first uses (2,4)-Cuckoo and
Othello together to build a function F that divides the keys into r buckets, each of which has up
to 4 keys, and then find a seed to resolve the collisions among each bucket. This design provides
two unique benefits: 1) each insertion only affect O(1) buckets (proved by [39, 55] and empirically
< 6 among all our experiments), while in other MPHFs this number is unbounded; 2) within each
bucket Ludo only needs to find a hash that maps four keys to [0, 3] without collision, which is
significantly easier than other MPHFs that need the results to be collision-free across all buckets.

Step 1: Uniform-sized grouping. By observing the (2,4)-Cuckoo Hash Table as shown in Fig. 2,
we find that it includes a number of buckets, each containing up to 4 keys. This organization is close
to our requirement of uniform-sized grouping. However, each key could be placed to any of its two
alternate buckets based on the insertion process of (2,4)-Cuckoo. If we use a simple hash function
to map keys to buckets, then the sizes of buckets suffer from a high variation. Resolving collisions
of different numbers of keys will cause a significant waste of space, as shown in § 4.3.3. Hence, our
idea is to combine a Bloomier filter [13, 59] and the bucket information of keys in the (2,4)-Cuckoo

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 22. Publication date: June 2020.

Ludo Hashing: Compact, Fast, and Dynamic Key-value Lookups for Practical Network Systems 22:7

as the uniform-sized grouping function F. In a (2,4)-Cuckoo, each key k can only stay in one of the
two alternate buckets, indexed hy(k) and hy (k). Given a already constructed (2,4)-Cuckoo, we only
need a Bloomier filter to maintain only 1 bit information per key: whether the key stays in the
bucket hy(k) or (k). Recall that Othello Hashing is a dynamic extension to the original Bloomier
filter, and Othello supports key-value lookups with 100% correctness using 2.33 bits per key for
1-bit values [59]. Hence, we need 2.33 bits per key to locate each key to the bucket holding it, in a
constructed (2,4)-Cuckoo.

Step 2: Collision resolution. Given a bucket B of four keys, we want to find a function Fj
that maps the four keys to four different slots without collision. In this way, we can match all
keys to their corresponding values without storing keys. Note that we may sample sufficiently
many independent random hash functions from a universal hash function family H. For example,
Google’s Farm Hash [2] accepts a ‘seed’ as input, and different seeds will result in independent hash
functions. The probability that a randomly seeded hash function maps 4 keys to 4 slots without
collision is 4!/4* = 3/32. Therefore, by trying different hash functions with brute force, we can find
a hash function that maps the 4 keys without collision in a limited number of attempts. Once a
function is found for a bucket, the seed value is stored along the bucket. In our implementation, the
seed costs 5 bits, i.e., 1.25 bits per key — a significant space saving comparing with storing the keys.

4.2 System overview

The complete Ludo Hashing includes two components, the Ludo lookup structure and Ludo
maintenance structure. The Ludo lookup structure, considered as the data plane, runs in fast
memory and supports lookup queries. The Ludo maintenance structure, considered as the control
plane, can run in a slower memory, possibly on a separate machine. The lookup structure receives
update information from the maintenance structure and updates accordingly.

Ludo lookup structure. As shown in Fig. 4, a Ludo lookup structure is a tuple (O, B, ho, hy, H)
where B is an array of buckets, each bucket B[i] includes a hash seed s and 4 slots storing up to 4
values; hy and h; are two uniform hash functions; O is an Othello lookup structure that returns
1-bit value to indicate whether a key k is mapped to bucket hy(k) or hi(k); and H is a universal
hash function family. The query of a key k will output the value vg. Ludo lookup structure will
query two locators in turn: the bucket locator to indicate the bucket that stores the value, and
the slot locator to determine the slot that stores the value. The bucket locator will lookup k in
Othello and get a result b € {0, 1}. Then v is in bucket hy (k). The slot locator computes t = H,(k)
where s is the seed stored in this bucket and ¢t € {0, 1, 2, 3}. Finally, the value in slot ¢ of bucket
hy(k) is returned as vy.

Ludo maintenance structure. As shown in Fig. 5, a Ludo maintenance structure is composed
of two main parts: 1) a complete (2,4)-Cuckoo holding all inserted key-value items, and each bucket
stores a seed for the slot locator; 2) an Othello maintenance structure that stores whether each key
is in bucket hy(k) or hy(k). It can produce an Othello lookup structure used in the bucket locator.
The seed s is found by brute force such that Hs maps the keys in the bucket to different slots
without collision. We name the full (2,4)-Cuckoo as the ‘source Cuckoo table’ of the lookup structure.
To generate the Ludo lookup structure, the maintenance program first generates an Othello lookup
structure and sets it as the bucket locator. Then it builds a table where each bucket includes the
seed and only the four values in the order of the (k). The Ludo maintenance structure supports
updates including item insertions, deletions, and value changes (Sec. 4.5) and will reflect them in
the lookup structure. Multiple Ludo lookup structures can be produced from and associated with
the maintenance structure to receive update messages and update locally.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 22. Publication date: June 2020.

22:8 Shougian Shi and Chen Qian

Look up k hash seeds
@l 0
Bucket Locator 1
Othello lookup) 2
maps k to b, % 3
bel0, 1} %‘
@ 4 | s v
l@
Slot Locator Return the
D E— value in slot ¢
Compute
H(k)=1,
te{0,1,2,3}

Fig. 4. Lookup workflow of Ludo lookup structure

Cuckoo Hash Table

0
1
Buckets 2

3 Find the seed
by brute force

4 |ky, v1 [z, v3 |ka, va]ko, vy S
Othello
maintenance

construct o
Stores whether £ is in

bucket (k) or h,(k)

Fig. 5. Ludo maintenance structure

We define the load factor of a Ludo Hashing as the number of slots storing values to the number
of total slots. We use load factor 95% as the target load factor of Ludo. The total space cost of Ludo
Hashing is 3.76 + 1.05 for I-bit values.

4.3 Ludo lookup structure

We show the pseudocode of the Ludo Hashing lookup algorithm in Algorithm 1. This algorithm is
simple and fast. It contains two steps: querying the bucket locator and the slot locator respectively.
Each step takes O(1) time.

4.3.1 The bucket locator. The bucket locator, implemented with an Othello lookup structure,
maintains the bucket location of all inserted key-value items and serves in the uniform-sized
grouping step. Given a query key k, the Ludo lookup structure locates k to a bucket by querying
Othello. The return value b is 0 or 1, denoting the value of k is stored in the first alternate bucket
ho(k) or the second one h; (k). The proposed bucket locator has the following properties.

1) It locates every inserted key-value item to the bucket holding it without error.

2) It costs amortized O(1) time for dynamic updates, at a high throughput in practice (over 10
million operations per second [49]). During updates, it still supports fast lookup [59].

3) The current design is a good tradeoff among solutions that are fast in lookup and updates,
and compact in mapping keys to {0, 1}, such as SetSep [21], Bloom filter cascades [32].

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 22. Publication date: June 2020.

Ludo Hashing: Compact, Fast, and Dynamic Key-value Lookups for Practical Network Systems 22:9

Input: The Ludo lookup structure and the key k
Output: The lookup result v of k
begin
// Step I: compute bucket location
1 b « Othello lookup result of k
2 B « hy(k)-th bucket of the table
// Step II: compute slot location
3 s < seed stored in B
/7 Hs(k) € {0,1,2,3}
4 v «— B.slot[Hs (k)]
end

Algorithm 1: Ludo Hashing lookup algorithm

3.5 1004
o = = oy = & = a - Othello
= 30 . X SetSep
B g FilterCascades
3 s g ascades
= =
ER) — 60 x\x
+ Y 5 ~
g 15 T &]
z - El R CEE SRV
S 10 X,,—»ﬁ(- CHD SetSep E H——x o
& = e = 5l ~
B o5 e —— Recsplit % Filters £ 2
- * =S~ Othello X
0.0
0.04 0.06 0.09 0.13 0.18 0.25 0.35 0.50 256K IM AM 16M 64M 256M
Portion of keys with value 0 Number of key-value items

Fig. 6. Space cost of different algorithms as Fig. 7. Lookup throughput of different algo-
the bucket locator rithms as the bucket locator

We compare their space cost in Fig. 6. Note that the filter cascades [32] cost different space when
the distribution of keys to 0 and 1 changes. We collect the statistics of a (2,4)-Cuckoo with 100
million keys from 10 independent runs. The distribution of items stored in the bucket (ho(k), h1(k))
is (0.7175, 0.2825) with the standard deviation 0.0008. By looking at 0.28 in Fig. 6, SetSep and filter
cascades cost less space than Othello by about 0.3 bits per key. The reason for choosing Othello is
that SetSep is difficult to update, as shown in § 6, and filter cascades are slow in lookup because
each lookup costs higher number of memory loads on average. Fig. 7 shows the lookup throughput
for different number of key-value items, where each key is a 32-bit integer and each value is 0 or
1 at the probability 0.7175 or 0.2825, respectively. Perfect hashing algorithms like CHD [10] and
RecSplit [18] are also compared here, but they are not compact enough because an additional bit
array is required to store the values, which costs 1 bit per item.

4.3.2 The slot locator. After locating the bucket, Ludo Hashing retrieves the bucket content that
includes a seed s and 4 value slots. Ludo Hashing then calculates H;(k) and gets a result in range
{0,1,2,3}. H is a universal hash family and each seed produces an independent random hash
function. Finally, it returns the value that stored in the H;(k)-th slot.

It should be noted that the order of the values in each bucket of a Ludo lookup structure
does not necessarily follow the order in the source Cuckoo table of the Ludo maintenance
program. The order of the key-value items in a bucket of the source Cuckoo table is determined
by the insertion and relocation processes. In Ludo lookup structure, however, we only need a
collision-free key-to-slot mapping and the order of keys makes no difference.

The brute-force seed searching starts from s = 0. It increases s by 1 at each time until H;(-) maps
the 4 keys of the bucket to {0, 1, 2, 3} without collision (called a valid seed). This design is much
less complex than finding the seed that produces the same order of the items in the source Cuckoo
table. Our experimental studies show that it saves around 4.6 bits per key and use 4.2% time.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 22. Publication date: June 2020.

22:10 Shougian Shi and Chen Qian

| B ovf-4 [ovf-5 [ovf-6 | ovf-7
I seed-4 [seed-5 [O seed-6 [seed -

1M 2M 4aM 8M 16M
Number of key-value items

Fig. 8. Memory cost for different seed lengths (95% load)

0 0 0
Ox1 s [o]|2]: Ox oo]2] O SRR
Q N S s
V‘ 2 V 5 \/ |
k 3 k 3 x ;
%‘4 sl s s |7 %4 s 1 2 3 %4 5| o ; 7 .

Ho, () =b, be{01} H, () =b be{01)
H(k)=1¢t t€f0,1,2,-,7} H,() =1t t€{0,1,2,3} H, (k) = t, t €{0,1,2,3}
(a) Look up a key in Single (b) Look up a key in Separate (c) Look up a key in Grouped

Fig. 9. Possible Ludo variants: Single, Separate, and Grouped

For O(1) time lookups, each bucket should have the same size. Hence, the space to store the seed
in every bucket should also be the same. For e-bit seed space, if the brute-force searching cannot
find a valid seed by up to value 2¢ — 2, the seed space will store 2¢ — 1 (i.e., all 1 bits) to indicate
that it is an overflow seed. Overflow seeds will be stored in a separate but much smaller table. We
show the memory cost breakdown of seeds in buckets and the overflow table for different seed
lengths in Fig. 8. Our implementation uses 5-bit seeds for minimal space cost.

The bucket and slot locators in total use 3.76 bits per key, including 2.33 bits for the bucket
locator, 1.31 bits for the slot locator (assuming 95% load factor), and 0.12 bits for the overflow table.
Each lookup takes 4 hash function calls and 3 memory loads — small constant time.

4.3.3 Design optimizations. The current design of Ludo lookup structure is chosen from a number
of variants that achieves similar tasks, as shown in Fig. 9. We show the current design is more
optimized than the others in the following.

Recall that each key can be mapped to two alternate buckets ho(k) and h;(k). For each bucket B,
we define the ‘T0 keys’ of B as the keys whose hy(k) buckets are B and the ‘T1 keys’ as the keys
whose h;(k) buckets are B.

Design option 1: Single locator (‘Single’). We do not use the bucket locator. At each bucket,
a hash seed is stored. For each key k, we always retrieve the seed s stored in the bucket hy(k). If
the value of k is stored in the bucket hy(k), H,(k) should be the correct slot position from 0 to 3. If
the value is in the bucket h;(k), H;(k) should be from 4 to 7 indicating one of the 4 slots in bucket
hq(k). Hence, the seed s of bucket B is used for all T0 keys of B.

This method is simple to implement and requires fewer memory loads for each lookup: only one
memory load with 71.75% possibility versus 3 for Ludo. However, the numbers of T0 keys of all
buckets are not uniformly distributed and could possibly have high variation. In our experiments
of 100 million items, some buckets may have > 20 TO0 keys and thus the brute force process could

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 22. Publication date: June 2020.

Ludo Hashing: Compact, Fast, and Dynamic Key-value Lookups for Practical Network Systems

1.0

0.8

0.6

L

= __1 3 I
a i a /
O o4 ~3 -+ Grouped-bucket O 4] £ —Single
H Separate-slot 4 - Ludo Hashing
02" ~= Separate-bucket 02 ' Grouped
— Single -~ Separate

0.0
q

1 6 8 10 12 1
Memory overhead per bucket (bits)

16

0.0
1

10

100 1000 10000
Number of tries per bucket

22:11

Fig. 10. Storage overhead per bucket for dif-
ferent design choices (1M keys, 95% load)

Fig. 11. Seed attempts per bucket for differ-
ent design choices (1M keys, 95% load)

be very time-consuming and result in very long seeds. This introduces a dilemma: setting a short
seed length leads to a large portion of seed overflow while setting a long seed length incurs big
memory waste.

Design option 2: Separate seeds (‘Separate’). This method stores two hash seeds s; and s; in
each bucket: Hj, (-) computes an 1-bit value for all tier-1 keys, indicating whether the key is in
bucket hy(k) or h;(k); and Hs,(-) maps all keys in this bucket to 4 slots without collision. Hence,
s; works as the bucket locator and s; works as the slot locator. Compared to the Ludo Hashing
design, it moves the time and space costs of Othello to the calculation of H;, (-) and the storage of
s1. However, s; still needs to handle T0 keys with large variations.

Design option 3: Grouped buckets (‘Grouped’). This method applies an additional optimiza-
tion to save space for the seed s; in Separate. We combine the space of 4 consecutive buckets as a
group and use a shared space for their s; seeds (4 is a number chosen for good cache locality and
space saving). The shared space is used to store a long seed to filter all T1 keys in all 4 buckets.
This method is designed to amortize the large variation of T0 keys in every bucket.

Design comparisons. We conduct the experiments of the 4 design choices Single, Separate,
Grouped, and Ludo Hashing, and compare their results. We generate 1 million uniformly distributed
32-bit integers as keys and set the load factor of Ludo Hashing to 95%. To make the evaluations
finish in a reasonable time, we set an upper bound 2!° for the number of seed attempts per bucket.
We denote the seed length for the bucket locator of Separate as ‘Separate-bucket’, the seed length for
the slot locator of Separate as ‘Separate-slot’, and the seed length per bucket for the bucket locator
of Grouped as ‘Grouped-bucket’. Note that the seed lengths of the slot locators of Ludo Hashing and
Grouped are both equal to Separate-siot.

Fig. 10 shows the cumulative distribution of the memory overhead (seed size) of each bucket
and Fig. 11 shows the number of attempts to find the right seeds for each bucket. Single requires
much longer seed sizes and higher computation overhead than other solutions. Note that Grouped
fails to construct more than 30% groups in 2! attempts as shown in Fig. 11. The sudden increase of
the Grouped curve indicates the bound of this design. For Separate to work, the seed of the bucket
locator requires 8 bits, allowing a small portion of overflow. This cost is thus about 2.11 bits per key,
slightly less than using Othello. However, as shown in Fig. 11, Separate takes 3x time to compute
the seeds compared to Ludo. Hence we believe the current design selects a good tradeoff.

Overflow seeds. As shown in Fig. 10, more than 98% slot locator seeds can be stored in 5 bits.
Hence we set the seed length in each bucket to 5 bits. If a seed is larger than 30, it is marked overflow
by storing the seed as 31. The map from the bucket index to the overflow seed is inserted into a
small (2,4)-Cuckoo, called the overflow table, both in the maintenance structure and the lookup
structure. According to the experiments in § 6, we show two facts: 1) We have never observed any
seed that needs more than 8 bits. Hence, the value length is just 1 byte in the overflow table; 2) The

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 22. Publication date: June 2020.

22:12 Shougian Shi and Chen Qian

overflow rate is always around 1.2% and independent from the number of items in the table. The
amortized cost of overflow seeds is around 0.12 bit per key.

Insertion fallback table. Recall we set the target load factor of the source Cuckoo table to
95%, which is a load factor in our experiments that never introduce a single insertion failure in
breadth-first search (BFS) within 5 steps. For the strong robustness as a system, we set aside another
small hash table to store the full key-value mapping for all items failed to be inserted, although
in practice we have never seen failed insertions during the experiments for load factor < 95%.
The fallback table is similar to the stash approach used in Cuckoo [30, 31]. We store a fallback
bit along with h, and h;. At the beginning of each lookup, if the fallback bit is 1, it means the
fallback table stores some items. Hence the fallback table is first queried, and the corresponding
value is returned if there is a match. If the fallback bit is 0, the query goes through the normal
lookup procedure as shown in 4. In theory as long as the load factor < 98.03%, the insertions are
successful asymptotically almost surely (a.a.s.) assuming n — oo [12, 23] as explain in Section 5
and Appendix C. This is the main reason why we never encounter a single insertion failure during
our experiments. When the load factor reaches an application-dependent threshold (such as 94%)
during system execution, the Ludo maintenance program will start to build a new Cuckoo table
with higher capacity, which will be used to replace the original lookup table as soon as its load
factor exceeds 95%. The implementation of this fallback table can be standard hash tables such as
C++ unordered_map. The rebuild happens in the maintenance server, not on the query devices.

Why (2,4)-hash table? We conclude (2,4) is the best configuration for Ludo, based on the
following reasons. 1) (2,4)-Cuckoo is almost optimal in load factor (maximum load ~ 98% in
theory [12, 23] and > 96% in practice). 2) (2,4)-Cuckoo minimize the space costs of the bucket and
slot locators. Recall the bucket locator costs 2.33[log, d] bits per key, where d is the number of
alternative buckets. Any increment in d will cost at least 2.33 bits per key, over 60% of the current
overall overhead 3.72 bits per key. Besides, 5 or more slots in one bucket contributes little to the
load factor [12, 23] but the expected number of slot locator tries grows from ~ 4*/4! ~ 10.7 to
~ 5%/5! = 130 or even higher.

4.4 Ludo Hashing construction algorithm

We design the Ludo maintenance structure to support fast construction and updates to the Ludo
lookup structure. The construction takes O(n) for n key-value items and each update takes amortized
O(1) time.

As shown in Fig. 5, the Ludo maintenance structure includes 1) a (2,4)-Cuckoo, which maintains
all the inserted key-value items and decides their key-to-bucket mapping; 2) a seed in each bucket
to determine the slot positions of the values; 3) an Othello maintenance structure to keep track
of the current Othello lookup structure. As shown in Fig. 12, constructing a Ludo maintenance
structure and Ludo lookup structure from scratch consists of the following steps.

Step 1. We start a standard (2,4)-Cuckoo construction. All key-value items are serially inserted
into the Cuckoo table whose size is estimated by a load factor 0.95.

Step 2. For every bucket, a valid seed s is one that hashes keys to slots without collision. Numbers
0,1,---,30 are tested in order, to see if any is a valid seed. If all s from 0 to 30 are invalid, the
algorithm stores 31 to indicate an overflow.

Step 3. For every key, get the 1-bit bucket placement information: 0 indicates the item is stored in
bucket ho(k) and 1 indicates it is stored in bucket h;(k). The algorithm then constructs the Othello
maintenance structure O to track this information for all keys.

Step 4. Construct the Othello lookup structure by simply copying the two data arrays from the
Othello maintenance structure. Hence, the Othello lookup and maintenance structures give the
same lookup result for every input key.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 22. Publication date: June 2020.

Ludo Hashing: Compact, Fast, and Dynamic Key-value Lookups for Practical Network Systems 22:13

Cuckoo Hash Table (@) construct
Key-value Othello
item set maintenance
(1) Serial insert Stores whether £ is in
Iy, vy Jfes, U5 [ka, val ko, vy f=———P| s bucket hy(k) or hy(k)

(2) Find the seed
by brute force

Ludo maintenance

Ludo lookup table Bucket Locator (® Convert to Bloomier filter

(5) Remove keys,
add seeds, re-order
values based on
hash results

S |v, |vy | v, | vy

Fig. 12. Ludo construction algorithm

1? oy s,
S
Dy,
Ly U
Uy Oll/de/ a/ue
e oy, or
N

Ludo maintenance program

Listen to application updates & v

construct update messages
~

1 S Application syst
n ication systems
Update messages +'|“| Query lookup program & Send
ﬂ' updates to maintenance program
S s
Ludo lookup program P o0
ook
Answer lookup requests
in fast memory © ‘e?\\e

ook

Fig. 13. Ludo Hashing system at runtime

Step 5. Construct a table with the same number of buckets as the source Cuckoo table. For each
bucket in the source Cuckoo table (called the source bucket), copy the seed s to the bucket in the
same position of the target table (called the target bucket). For each key-value item (k, v) in the
source bucket, copy v into the H;(k)-th slot of the target bucket.

4.5 Ludo Hashing update algorithm

As a part of a practical system, Ludo Hashing at runtime consists two kinds of processes: the
Ludo maintenance program holding a Ludo maintenance structure to maintain the full system
state, possibly duplicated for robustness, and the Ludo maintenance program running as multiple
instances (e.g., multiple lookup servers or routers), as shown in Fig. 13. The Ludo maintenance
program and multiple Ludo lookup programs, receives update reports from applications, constructs
update messages according to its current state, and sends them to all Ludo lookup programs. Each
Ludo lookup program answers the lookup queries from applications and updates its memory
according to the messages from the Ludo maintenance program. Similar to other key-value lookup
tables, Ludo Hashing has three kinds of updates: key-value item insertions, item deletions, and
value changes. We discuss the three update algorithms separately.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 22. Publication date: June 2020.

22:14 Shougian Shi and Chen Qian

Original Cuckoo Hash Table Updated Cuckoo Hash Table

0 0 kg, vg > s

1 1

2 ke, Ve |ks, vs [k7, v7|ks, vg 2 ke, ve|ks, vs|k7, vo|ka, va

Insert ko, vg 3 3
4 |ky, vy [k3, v3 |ky, valky, vy 4 kg, vy |3, vs ks va k9:V9_P'S_|
Compute
new seeds
Cuckoo path: <b4,s3>, <b2,53>, <b0,s3> Update values of ky, kg,
ky in Othello

Fig. 14. Ludo maintenance program insertion process

Item insertion. The Ludo maintenance program takes three steps to construct the update mes-
sage for an item insertion. 1) It first inserts this key-value item (k, v) into the source Cuckoo table,
and records the cuckoo path. The cuckoo path of an item insertion is defined as the sequence of
the positions of key relocations, where each position is determined by (bucket_index, slot_index)
[19]. In the example of Fig. 14, (ky, vo) is inserted to the table. (k;, v) is relocated to from posi-
tion (b4, s3) to (b2, s3) and (ks, vs) is relocated from (b2, s3) to (b0, s3). Hence the cuckoo path is
(b4, 53), (b2, 53), (b0, s3). 2) For each relocated key-value item, its position is switched between its
alternate buckets ho(k) and h; (k). In Fig. 14, both k; and kg have switched between their alternate
buckets. Ludo maintenance program updates the corresponding value in the Othello maintenance
structure, and makes the changes in the Othello lookup structure. 3) For each modified bucket,
Ludo maintenance program finds a new slot locator seed by brute force. The pseudocode is shown
in Appendix B.

When the Ludo maintenance program finishes updating by the above steps. It creates an update
message including three fields: type tells the update message type (insertion, deletion, or change), val
is the value of the new item for insertion, and update_sequence is a sequence of nodes, representing
the updates applied to the Ludo lookup structure. Each node in update_sequence corresponds to
a position in the cuckoo path and includes the following: the bucket index bIdx, slot index sldx,
the new seed of this bucket s, the new order of values in the slots of this bucket vodr, and the
changes made to the Othello lookup structure Ochg. The pseudocode of the update steps is shown
in Appendix.B.

All associated Ludo lookup programs receive the same update message and follow the update
sequence in that message to perform the insertion. Each Ludo lookup program traverses the nodes
of the update sequence reversely, and takes three steps at each node: 1) Copy the bucket indicated in
the node to a temporary memory. 2) Write the new seed into the bucket, reorder values according
to vodr. 3) Atomically write the bucket back to the table and apply the change to the Othello lookup
structure. The pseudocode of the update steps is shown in Appendix.B. The compiler barriers and
version array are necessary for concurrent reads during updates.

Item deletion. In the Ludo maintenance program, deletions serve for space reclaim for future
new items, and a deletion is achieved by deleting the item in the source Cuckoo table and the
associated bucket location information in the Othello maintenance structure. There is no change to
the Ludo lookup structure. If the number of items are lower than a threshold, e.g., the load factor
< 80%, a reconstruction can be triggered on the maintenance program to reduce the size of the
lookup structure. During that process, the lookups are still on the existing lookup structure.

Value change. A value change only involves an update to a single slot and does not require any
change in the bucket/slot locators. The Ludo maintenance program will perform a lookup in the
source Cuckoo table to locate the bucket/slot position of the item, change the corresponding value,
and send out a value change message to the lookup structure, specifying the new value and its

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 22. Publication date: June 2020.

Ludo Hashing: Compact, Fast, and Dynamic Key-value Lookups for Practical Network Systems 22:15

location in the target table. The Ludo lookup program will perform the value change according to
the message.

Consistency under concurrent read/write. We design Ludo Hashing as a dynamic key-value
lookup table under the single writer multiple reader model. To make the Othello lookup structure
work well under concurrency, all modifications to the nodes belonging to the same key should
appear atomic to the lookup threads. To allow concurrency in the lookup table, the value re-ordering
should use the reverse order in the update sequence, and sequential writes of a single bucket should
be atomic to the lookup threads. We extend the version-based optimistic locking scheme proposed
in [19] and [59] for the target Cuckoo table and Othello lookup structure, respectively. Besides,
we use the lock striping method proposed in [19] to reduce the size of the version array from
the number of buckets to a constant 8192 at a 0.01% false retry rate. The pseudocode is shown in
Appendix.B.

Ludo reconstruction. In very rare cases, such as table resizing, the Ludo maintenance program
needs to reconstruct the Ludo lookup structure. During the reconstruction time, the data plane
still queries the old lookup structure and use the fallback table to guarantee the correctness. When
reconstruction finishes, the new lookup structure is sent from the maintenance program to the
data plane. The update operations on the lookup structures are atomic. The new lookup structure
is loaded from the update message and the old lookup structure is immediately discarded. Since
then the queries will be based on the new lookup structure.

Parallel updates. The update algorithm on the maintenance program can be in some level of
parallelism. If two updates do not touch the same bucket, then they can be computed in two threads
without violating the correctness. The requirement is to have a shared array to store the locks of
the buckets. If a bucket is currently in writing, the lock is set to 1 and other threads must wait to
visit this bucket. We do not implement the parallel version of updates because the current update
speed (>1M operations per second) is sufficiently high.

5 ANALYSIS

We summarize the performance analysis of Ludo Hashing: 1) The space cost of the Ludo Hashing
is 3.76 + 1.05/ bits per item; 2) Each lookup costs 3.02 memory loads on average; 3) Each insertion,
deletion, or value change costs O(1) time on average; 4) the communication cost for each update is
O(1) on average. The following presents the details.

5.1 Space cost of Ludo lookup structure

A Ludo lookup structure consists of three parts: the Bloomier filter for the bucket locator, the
lookup table storing values and seeds, and a small table for the overflow seeds. The Bloomier filter
costs 2.33 bits per key. The seeds cost 5 bits per bucket, i.e., 1.25 bits per key. The overflow table
contains 1.2% of the seeds statistically, and each entry in the overflow table costs 29 + 8 = 37
bits. Since the load factor of the Ludo lookup structure is 95%, it costs 1.05/ bits per item, where
I is the length of each value in bits. In total, the average memory cost per key-value item is:
2.33+5x%1.05/4+37%x1.05%0.012/4 +1.05] = 3.76 + 1.05] bits. The space cost of the fallback table
is O(ny), where ny is the number of fallback keys and ny — 0 based on the insertion correctness
analysis below. Also our experiments never find a single fallback key. When the lookup structured
is updated, the load factor may be set to an application-specific threshold (such as 94%) hence the
space cost may increase to 3.78 + 1.06l.

5.2 Lookup overhead

A key-value lookup in Ludo lookup structure always requires 3 memory loads: two for the Bloomier
filter, and one to fetch the bucket including the value. If the seed overflows (with probability 1.2%),

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 22. Publication date: June 2020.

22:16 Shougian Shi and Chen Qian

another 1 or 2 random loads are required in the overflow table to get the seed. Hence we get the
average number of memory loads 3 + 0.012 X (1 X 0.71 + 2 X 0.29) = 3.016.

5.3 Insertion correctness

From existing theoretical results of random graphs presented by Cain et al. [12] and independently
Fernholz and Ramachandran [23], it has been proved that all n keys can be inserted to a (2,4)-Cuckoo
table asymptotically almost surely (a.a.s.) such that each bucket has at most 4 keys if the load factor
< 98.03%, assuming uniform hashing and n — oco. This result has been confirmed by later studies
[24, 25, 33, 55]. Detailed explanation can be found in the Appendix. In practice, our design sets the
load factor threshold to 95% to avoid hitting the tight threshold. In fact we have not observed a
single failure case among over 20 billions of insertions during our tests.

When the load factor < 95%, the insertions are unlikely to fail from the above results. When the
Ludo maintenance program detects the current load factor reaches 94%, it will start to build a new
Cuckoo table with a higher capacity. The insertion failures (if any) will be stored in the fallback
table. This design guarantees the correctness via these properties: 1) the runtime load factor will
not be higher than 95% in most time; 2) even if the load factor temporarily exceeds 95% while the
rebuild of Ludo with higher capacity has not finished, most insertions are still successful as the
theoretical threshold is 98%; 3) even if there is an insertion failure, the fallback table is able to store
it and guarantees the correctness of lookups.

5.4 Update overhead

Item insertion. The time complexity of each insertion to Ludo includes three parts: 1) the time
to addition the item to Othello; 2) the number of nodes in the update sequence of each Cuckoo
insertion; and 3) the time of updating the bucket of each node. We show the time of each insertion
to Ludo is amortized O(1) and independent of n based on the facts that all these three parts are
either O(1) or amortized O(1). Inserting an item to Othello is proved to be amortized O(1) [59].
From the theoretical results in [39], for a (2,k)-Cuckoo with load factor 1/(1+¢) and k > 16(In(1/€)),
each insertion costs amortized constant time ((1/¢)°U1°8108(1/€)) by breadth-first search [39, 55].
Our design uses k = 4, which is less than 16(In(1/¢)). There is no proof of constant-time insertion
for this setting. In our experiments, all insertions finish within 5 levels of breadth-first search.
For each node in the update sequence, the update includes re-compute a seed (up to 31 attempts)
and re-ordering the values (up to 4). It costs constant time for each node. We list the lengths of
the update message fields. type: 1 bit; For each node in the update sequence, bIdx: 30 bits; sldx:
2 bits; seed: 8 bits; vorder: 2 bits for each slot and 8 bits in total; Bchg contains the indices of the
influenced nodes in the Bloomier filter, 32 bits for each index.

Each item deletion or value change costs O(1) time and communication cost.

We discussed the average case above. In the worst case (very rare), an update may cause re-
construction of Othello, but it only happens with probability O(1/n) as proved in [59]. The Cuckoo
table will not experience re-construction when the load factor is no more than 95% as shown above.

6 IMPLEMENTATION AND EVALUATIONS
6.1 Evaluation methodology

In this section we conduct two types of performance evaluation of Ludo Hashing: 1) Evaluation of
the in-memory lookup tables on a commodity workstation with two Intel E5-2660 v3 10-core CPUs
at 2.60GHz, with 160GB 2133MHz DDR4 memory and 25MB LLC; 2) Case study of Ludo Hashing
on two real network systems, namely distributed content storage and packet forwarding.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 22. Publication date: June 2020.

Ludo Hashing: Compact, Fast, and Dynamic Key-value Lookups for Practical Network Systems 22:17

We implement the Ludo maintenance structure and Ludo lookup structure prototypes in 3272
lines of C++ code. We also make use the open source implementation of Cuckoo Hashing (pre-
sized_cuckoo_map in the Tensorflow repository [7]) and Othello Hashing (its authors’ implementa-
tion [4]), with several major modifications to implement bucket/slot locator, update, and concurrent
reading/writing. The buckets of Ludo lookup structure are stored as an array of 64-bit integers by
carefully applying a series of bit-wise operations, such that there is no single bit waste on storing
the buckets. The source code of Ludo Hashing is available for results reproducing [3].

We identify the following metrics to be evaluated:

(1) Memory cost, the most important metric to characterize the space efficiency.

(2) Speed of update to characterize the update time.

(3) Lookup throughput for single thread, multiple threads, and with concurrent reading/writing.
(4) Construction time of the lookup engine.

Each data point shown in the figures is the average of 10 independent experimental runs. We
also use the error bars to show the standard deviation among the 10 results. For lookup throughput
evaluations, the request workloads are in two types: in the uniform distribution and Zipfian
distribution. For the uniform distribution, all items are requested with an equal probability. For
the Zipfian distribution, items are requested with biased probabilities, which better simulates the
workload in most practical systems. We set the Zipfian parameter to be 1.

We compare Ludo Hashing with the following dynamic lookup solutions: (2,4)-Cuckoo [19, 41],
partial key Cuckoo [35, 49], Othello Hashing [59], and SetSep [21, 61]. We implement partial
key Cuckoo based on the Tensorflow repository [7], with several major modifications to support
fingerprint collision resolution. We implement SetSep and made several extensions to allow some
level of updates of SetSep after construction — but still reconstructions are frequently needed. We
use the Google FarmHash [2] as the hash function for all experiments.

6.2 Evaluation of in-memory lookup engines

We denote the number of key-value items as n, the sizes of each value, key, and digest as [, L, and
L’ respectively, all in bits.

Memory cost. Fig. 15 shows the memory cost breakdown of Ludo lookup structure, SetSep,
Othello Hashing lookup structure, Cuckoo hashing, and partial key Cuckoo hashing, where n = 1B,
L =100, and L’ = 30. We set [as 10 and 20. Clearly, Ludo Hashing needs the least memory cost
among all designs for both [= 10 and 20. By comparing the breakdown parts of each design, we
find that Ludo uses similar space to store the values, which seems unavoidable for every key-value
lookup table. Note that Othello embeds the values in the two arrays A and B. Ludo saves much
space cost by reducing the key storage while maintaining a low amplification on value storage.
Despite being difficult to update, SetSep costs more space than Ludo Hashing, especially for large I.

From the analytical comparison in Fig. 1, Ludo always costs the least memory when [> 3. We
then compare the actual memory cost of the in-memory lookup tables in three practical setups.
1) For the application of indexing distributed contents, we set [= 20, L = 500, L" = 60, assuming
there are 1M content storage nodes. We set n to be 512M and 1B and show the results in Fig. 16.
Ludo only requires 3.3GB for 1B items, while other designs need at least 6.3GB. Here Ludo saves
almost 50% memory. 2) For the application of network FIBs, we set [= 8, L = 48, L’ = 30, assuming
a switch has 256 ports and MAC addresses are used. The results are shown in Fig. 17. It is known
that a commodity switch has < 100MB SRAM [38], and Ludo only needs 50.5MB for 32M addresses.
3) For the application of indexing key-value storage, we set [= 40, L = 200, L’ = 60 and show the
results in Fig. 18. Ludo only uses 6.1GB memory to support 1B items, while other designs need
> 12GB.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 22. Publication date: June 2020.

22:18 Shougian Shi and Chen Qian

B Ludo

201 B SetSep
= [PK-Cuckoo
\C'_D, 159 B Othello group
= B Cuckoo
o 10_ slot loc-«,
g bucket, loc--|
=

=] slotloce

2 hucke: loc--|

32 64
Length of value

Fig. 15. Memory cost for different value lengths (1B keys)

107 250
B Ludo B Ludo
B SetSep 200 M SetSep
E‘B [Othello E) O Othello
] B PK-Cuckoo g 1 @ PK-Cuckoo
H B Cuckoo ’g‘ 1001 B Cuckoo
g Z
= =
501
100 N
512M 1B 16M 32M
Number of key-value items Number of key-value items
Fig. 16. Memory cost for indexing distributed con- Fig. 17. Memory cost for FIBs
tents
359 102
201 B Ludo ol 3 o .
B SetSep 2 T N e e
g *1 @ Othello EO 10°4 o Ludo
}’ 201 @ PK-Cuckoo g 101 Othello
% B Cuckoo Eﬂ 102 ¢ SetSep
- =}
= E e e = e e e 3 — e =3
5 s
O ik
512M 1B 256K 1M A 1M oM 236M 1B
Number of key-value items Number of key-value items
Fig. 18. Memory cost for indexing key-value stor- Fig. 19. Throughput (speed) of updates

age

Dynamic update. We evaluate the update throughput of Ludo Hashing, Othello Hashing, and
SetSep, which characterizes the maximum number of updates a table can support, in the unit of
millions of operations per second (Mops). All experiments are performed in a single thread, with
equal numbers of insertions, deletions, and changes. We set L = 32 and [= 20, change the table
size, and show the results in Fig. 19 where SetSep only performs the updates that do not cause
reconstruction. Each update event may be an insertion, deletion, or value change, with the equal
probability. The results show that Ludo allows > 5Mops updates, which is sufficient for most
applications. Othello shows comparable performance with Ludo, while SetSep performs > 1000x
worse than the other two even if we only consider the updates that do not cause reconstruction.
As shown in the results below, each reconstruction of SetSep may take hundreds of seconds to >5
hours.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 22. Publication date: June 2020.

Ludo Hashing: Compact, Fast, and Dynamic Key-value Lookups for Practical Network Systems 22:19

= Othello

& PK-Cuckoo

- Ludo
SetSep

B-.qg -8 30

ex

1 X =3¢ X7

X Othello £} PR-Cuckoo SetSep &= Ludo

Throughput (Mqps)
Throughput (Mgps

'”..—.”_-.,—_g-.—..ﬁ-mg-_--..g‘ﬁ

=8

BOK M N 1M G 25%6M 1B BOK M AL 1M 6M 236M 1B
Number of key-value items Number of key-value items

Fig. 20. Single-thread throughput for Zipfian Fig. 21. Single-thread throughput for uniform

350 3504

’ x =~ 20 Thread P15 uniform-1600
— 3001 58 Threads L — 3001 Zipfian-1600
é‘ 4 Threads é - Zipfian-100

2504 - "
g 20 ¢ 2 Threads = 2501 ¢ uniform-100
~ -6 1 Thread ~
5 20 =200
2 2
2 1504
B 150, Bererrrerenaend R T = 5 1501
2 10 8
k= = 1004
S =

L T Hmmmmmm e e »* 504

0 25 100 400 1600 2 4 6 8 10 12 14 16 18 2
Number of updates per second Number of parallel threads

Fig. 22. Lookup throughput under updates Fig. 23. Lookup throughput scales with # of
threads

Single-thread lookup throughput. We compare the single-thread lookup throughput of Ludo,
Othello, partial key Cuckoo, and SetSep, in Zipfian (Fig. 20) and uniform (Fig. 21) workload respec-
tively. We set [= 20 and vary n, and the throughputs are in the unit of million queries per second
(Mgps).

The throughput under uniform queries decreases with the growth of table size because the
memory is randomly accessed and larger table incurs higher cache miss rate. The throughput under
Zipfian distribution is less degraded by the table size because the L3 cache satisfies most queries.
Othello/Bloomier shows the highest lookup throughput. Ludo Hashing is slower because for a
single lookup, it requires 1 more hash function calculation and 1 more memory load. However, it
still satisfies > 5M queries per second when n < 16M and > 3M when n = 1B. The throughput
satisfies most applications and unlikely to become the system bottleneck.

Throughput under updates. We wonder whether concurrent writing/reading would affect the
performance. Fig. 22 shows the lookup throughput of Ludo under concurrent updates (writing) by
varying the update frequency, where L = 64, = 20, and n = 16M. Our observation is that there is
no noticeable throughput degradation when the update frequency grows to up to 1.6K updates
per second. Since 1.6K updates per second are sufficient for most dynamic applications, we may
conclude that the lookup throughput is stable under concurrent writing.

Multi-thread throughput. We also show the results of multi-thread lookup throughput in
Fig. 23, with up to 20 threads on a single machine and concurrent updates (100 and 1600 times per
second). We find that the throughput scales linearly with the multi-thread. It achieves > 300Mqps
with 20 threads for n = 1B.

Construction time. We also examine the construction time of the lookup engines. Fig. 24 shows
the construction time of different designs by varying n, for L = 64, and [= 20. SetSep is >10x
slower than other tables and takes >5.5 hours to construct for 1B keys. All other tables have similar
construction time. For 1B items, Ludo Hashing can be constructed in 30 minutes.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 22. Publication date: June 2020.

22:20 Shougian Shi and Chen Qian

B Ludo I Othello O PK Cuckoo [SetSep
z
Q 3]
g v
+ 2]
= 10
o
210t
13}
= 0
=100
&
S 107'5
o
102
256K 1M 4AM 16M 64M 256M 1B

Number of key-value items

Fig. 24. Construction time

6.3 Case studies of real systems

We study the practical system performance with Ludo Hashing for two applications. All experi-
ments in this subsection perform real query packet receiving and forwarding,.

6.3.1 Case 1: indexing distributed contents. In this system, a large number of data contents
are stored among the distributed storage nodes. There is an index node that accepts the queries of
contents and forwards them to the correct storage nodes. The index node can be easily replicated
to avoid the single point of failure. This model may be applied to many practical systems such as
distributed data storage in a data center [8], CDNs [36], or edge computing [50]. In our experiments,
the requested keys are uniformly sampled from the std::string representation of the content IDs (45
bytes).

Implementation details. We run the experiments in CloudLab [1], a research infrastructure to
host experiments for real networks and systems. We implement Ludo Hashing, Bloom filter based
lookup table (Summary Cache [22]), partial key Cuckoo hashing, and Othello Hashing to serve as
the content lookup engine. We use two nodes in CloudLab to construct the evaluation platform of
the forwarder prototypes. Each of the two nodes is equipped with one Dual-port Intel X520 10Gbps
NIC, with 8 lanes of PCIe V3.0 connections between the CPU and the NIC. They are denoted by
Node 1 and Node 2 in the following presentation. Each node has two Intel E5-2660 v3 10-core CPUs
at 2.60GHz. The Ethernet connection between the two nodes is 2x10Gbps. The network between
the two nodes provides full bandwidth. Logically, Node 1 works as the index node, and Node 2
works as all storage nodes in the system. The clients generate queries from the content IDs with
Zipfian and uniform distributions.

Throughput of query processing and forwarding. We evaluate the query processing and
forwarding throughput of Ludo Hashing, Bloom filters, partial key Cuckoo, and Othello in the
distributed content storage system, in million queries per second (Mqps). We vary the number of
contents from 16K to 16M. Figures 25 to 28 show the throughput versus number of items, in single
and two threads, with Zipfian and uniform workload, respectively. Ludo Hashing provides the
highest throughput as the index among the four methods. The reason is that the bucket locator of
Ludo Hashing is compact enough to fit into the L3 cache so that it is likely to have only one load
from the main memory for the table bucket access. Other solutions may have two main memory
loads. Another interesting observation is that the capacity of querying processing and forwarding
is bounded by 7 Mqps, which is smaller than the network bandwidth. The throughput does not
grow significantly when we add more threads, which infers computation is not the bottleneck.
Hence we consider the throughput is bounded by the bus bandwidth between CPU and memory.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 22. Publication date: June 2020.

Ludo Hashing: Compact, Fast, and Dynamic Key-value Lookups for Practical Network Systems

6l BB g B g B B B B
Z 5
S 4N
k- \\V” " = Z. S
‘5 3 em ™ R S o o e — mym— e = = = 3 m e 3K
§~ = Ludo
D2 Othello
o
=] Cuckoo
&= -~ Bloom
0
FHFFEFFFIIIDID
TR F YT DS S

Number of items

Fig. 25. Throughput of querying contents with
Zipfian workload (single thread)

61 2.,
BB B B B BB G B =
Z 5
= 4
= R e TR e TR SRS 50 L
= 3 it SN
é“ & Ludo =
02 Othello
s}
= 1] ¢ Cuckoo
&= -~ Bloom
0 T T T T T T T T T T T
TS EFOD S
TR F PPV S

Number of items

Fig. 27. Throughput of querying contents with
uniform workload (single thread)

e s B T O R S
S| TN — gz
i 01 @ udo ¥ T e
e Othello
é 34 =% Cuckoo
o0 5] =& Bloom
2 2
g]

H
O, O——
N RN RN
TP FE P VY

Fig. 26. Throughput of querying contents with
Zipfian workload (two threads)

. B B B BB g B g B
& 5 FeosemmREo e Igm g T N -
S5 Seqge-mPel
\2/ \ <&+ Ludo - e
= Othello
2 31 = Cuckoo
&b 9] == Bloom
E Y
01 ——————— RN
FFFFEFS S DS
O P P \q-/b Qi)b <§/ ST S & @

Number of items

Fig. 28. Throughput of querying contents with
uniform workload (two threads)

22:21

6.3.2 Case 2: forwarding information bases (FIBs). A modern data center network includes
a large amount of physical servers [27, 29, 45]. Each server is identified by its network address
(e.g., its MAC address). An interconnection of switches connects the servers. Each switch has
multiple ports connecting neighboring switches and servers. A switch forwards the packet to a
neighbor based on FIB lookups using the packet address. Many modern networks are variants
of this model [27, 29, 45]. For software defined networks [40], the flow ID may be a combination
of source/destination IPs, MACs, and other header fields. The forwarding may be per flow basis,
rather than per destination basis. LTE backhaul networks and core networks can also be regarded
as an instance of this network model, especially for the down streams from the Internet to mobile
phones, where the destination addresses are Tunnel End Point Identifiers (TEIDs) of mobiles [61].

Implementation details. In the CloudLab prototype, we implement the FIBs as software
switches [59, 62] that are running on the end hosts. We implement the FIBs using Ludo Hashing,
Bloom filter based method (Buffalo [58]), partial key Cuckoo hashing [62], and Othello Hashing [59].
For each FIB implementation, we make several major modifications to support Dijkstra routing. The
prototypes work with Intel Data Plane Development Kit (DPDK) [5] to support packet forwarding
using end hosts. DPDK is a series of libraries for fast user-space packet processing [5] and is
useful for bypassing the complex networking stack in Linux kernel, and it has utility functions for
huge-page memory allocation and lockless FIFO, etc. We modify the code of the key-value lookup
tables and link them with DPDK libraries. The query keys are in four types: 32-bit IPv4 addresses,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 22. Publication date: June 2020.

22:22 Shougian Shi and Chen Qian

B NS =
Z1.0
& 2 B 25.0
e ST
S 20 *"‘ﬁ:— __*/»@___X’_,*__*”__*--*--* s 22.5 Othello
- g I L gege T B g = 200 5 Ludo
=] 2 175
215 Othello z 17.5 < Cuckoo
e ¢ Cuckoo &0 15.0 -e- Bloom
E 101 = Ludo é 125
IS - Bl = 100 9/9/6\9\9\9/‘3/@\9—-6—9
5 75
& - RS - & AR
FFFFEFTP eS¢ FFFFEFI PSS §
Number of items Number of items
Fig. 29. FIB throughput with Zipfian workload Fig. 30. FIB throughput with Zipfian workload
(single thread) (two threads)
e - - - - -
; Othello ﬂ-:%ﬁt‘.é‘_‘_f?_‘_’_é‘:g
= » T <" Cuckoo z 2 "'\;'E ..
a. 2.
5 201 se__ & Ludo 5 90 Othello \\X--
= - “%M‘E‘“"«E -~ Bloom = & Ludo =
= T VR =
é—' 15 ANt 5,‘—; Z:; _‘;t:g Bo15{ 7% Cuckoo
=% =4 -~ Bloom
2 210
= =
= 5 &
NN 5 T —9e—-—o——o o o
& & RS L & RN
FFFHFFFIP 0§ FFFFEFSTP oS¢
Number of items Number of items
Fig. 31. FIB throughput with uniform workload Fig. 32. FIB throughput with uniform workload
(single thread) (two threads)

48-bit MAC addresses, 128-bit IPv6 addresses, and 104-bit 5-tuples. We still use the two nodes in
CloudLab (denoted by Nodes 1 and 2) for this prototype. The Ethernet connection between the
two nodes is 2x10Gbps. The switches between the two nodes support OpenFlow [40] and provide
full bandwidth. Logically, Node 1 works as a switch in the network, and Node 2 works as the
neighboring switches and end hosts in the network.

Node 2 uses the DPDK official packet generator Pktgen-DPDK [6] to generate random packets
and sends them to Node 1. The packets sent from Node 2 carry the destination addresses with
Zipfian or uniform distributions. Each FIB prototype is deployed on Node 1 and forwards each
packet back to Node 2 after determining the outbound link of the packet. By specifying a virtual
link between the two servers, CloudLab configures the OpenFlow switches such that all packets
from Node 1, with different destination addresses, will be received by Node 2. Node 2 then records
the receiving bandwidth as the throughput of the whole system. The maximum network bandwidth
is 28.40 million packets per second (Mpps).

Packet forwarding throughput. Figures 29 to 32 show the packet forwarding throughput of
the four solutions, by vary the number of addresses stored in the FIB, with Zipfian and uniform
distributions, for single thread and two threads, respectively. While Othello Hashing performs the
best on a single thread, two threads of Ludo Hashing, partial key Cuckoo hashing, and Othello
Hashing are sufficient to fill the full network bandwidth (called line rate) for a 16M FIB. For all
cases, FIBs with Ludo Hashing, Othello Hashing, and partial key Cuckoo hashing performs >2x
higher throughput than Bloom filters.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 22. Publication date: June 2020.

Ludo Hashing: Compact, Fast, and Dynamic Key-value Lookups for Practical Network Systems 22:23

100 XX X PK Cuckoo 51 < X PK Cuckoo
= 801 [] Othello = 4] 1 Othello
% 601 % SetSep % SetSep
E O Ludo :3 31 X O Ludo
< 401 « 2
= 901 X ES 14 X

X>< - ><><
0L O PORXXXXXXXXXXX [01 Q T TXXXXXXX O
5 10 15 20 25 5 10 15 20 25
Extra bits per k-v pair Extra bits per k-v pair

Fig. 33. Memory cost and collision rate

6.4 Summary of evaluation

Memory footprint. Ludo Hashing is the most compact among all dynamic in-memory lookup
tables, under all configurations.

Lookup throughput. Ludo lookup structure achieves 5 to 20 Mqps single-thread throughput
for up to 1B items. The throughput scales linearly with the number of threads and can achieves
65Mgps on one node.

Runtime update. Ludo lookup structure performs > 6M updates per second. The throughput
of Ludo lookup structure is stable with concurrent updates.

Construction time. Ludo Hashing can be constructed for 1B items in 10 minutes.

Performance in real systems. Ludo Hashing provides higher throughput than other methods
in the content lookup system. In the packet forwarding system, Ludo Hashing can easily achieve
maximum network bandwidth with two threads.

7 DISCUSSION

Partial-key Cuckoo. One may consider setting short digests in partial-key Cuckoo [35] is a
straightforward solution. However, short digests cannot be used because the key collision rate
grows. Assuming values are [-bit long and I = 20, we change the key digest bit length L’ from 1
to 20 for partial key Cuckoo, and observe the relation between the extra memory cost and key
collision rate. The extra memory cost is defined as the overall memory cost of the lookup data
structure minus nl, where n is the number of keys. We insert 1M random MAC addresses into
different partial key Cuckoos, and the results are shown in Fig. 33.The right figure zooms in and
shows the results near 1% of key collision. If we configure the PK Cuckoo to take no more than the
memory of Ludo, > 40% keys will be mapped to more than one values. If we control the collision
rate under 0.1%, the PK Cuckoo takes > 3x extra memory than Ludo.

Alien keys. Let K be the set of the keys of all items. An alien key (k) is defined as a key that
was never inserted to the item set, i.e., k, ¢ K. The lookup of an alien key may result in an arbitrary
value by a perfect hash table, and we denote this as the ‘alien key problem’. The alien key problem is
not unique for Ludo. It exists for all perfect hashing based designs that do not store keys, including
SetSep [21], Bloomier filters [11], and Othello [59]. This is a simple trade-off: either store the keys
with several times higher memory cost, or accept the alien key problem and try to limit its impact.
However, for any key k € K, the lookup by Ludo Hashing will always be correct. Hence there is no
false lookup result.

Most applications in the context of this work are not sensitive to alien keys, namely the
distributed content index, network forwarding, and storage index. For a distributed content index,
querying an alien key will make the index forward the request to an arbitrary storage node. The
storage node will then find that no data in the node match this key. Hence it simply notifies the
client a ‘not exist’ message. For a network forwarding device, a packet with an alien address will be

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 22. Publication date: June 2020.

22:24 Shougian Shi and Chen Qian

forwarded to an arbitrary port. Note that every packet will carry the time-to-live (TTL) field that
will decrease by 1 after each forwarding action. Hence a packet will either be dropped when the
TTL becomes 0 or dropped at a destination that does not match the address. Also, most networks
will have firewalls that can filter all packets with alien addresses. In the above situations, an alien
key has limited negative impact.

Alien keys will become a problem for applications that need to filter keys such as firewalls. Hence
none of the perfect hashing method can be used for firewalls. For applications that really need to
filter alien keys, a filter function can be added to the lookup table. Ludo Hashing can be perfectly
combined with a Cuckoo filter [20, 53] that have a better trade-off between false positives and
memory, compared to Bloom filters. Other methods such as Othello and SetSep will need either
extra memory or lookup time to work with a filter. This topic is beyond the scope of this work, and
we skip the details due to page limit.

8 CONCLUSION

Ludo Hashing is a practical solution for space-efficient, fast, and dynamic key-value lookup engines
that can fit into fast memory:. Its core idea is to use perfect hashing and resolve the hash collisions
by finding the seeds of collision-free hash functions, instead of storing the keys. We present the
detailed design of Ludo Hashing, including the lookup, construction, and update algorithms under
concurrent reading and writing. The analytical and experimental results show that Ludo Hashing
costs the least memory among known solutions that can be used for in-memory key-value lookups,
while satisfying > 65 million queries per second for 1 billion key-value items on a single node.
Ludo allows fast updates. We further demonstrate that Ludo Hashing achieves high performance
in practice by implementing it in two working systems deployed in CloudLab.

9 ACKNOWLEDGEMENT

This work was partially supported by National Science Foundation Grants 1750704 and 1932447.
We thank Bin Fan, Phokion Kolaitis, Heiner Litz, Ying Zhang, our shepherd Stefan Schmid, and the
anonymous reviewers for their suggestions and comments.

REFERENCES

[1] CloudLab. https://www.cloudlab.us/.

[2] Implementation of farmhash. https://github.com/google/farmhash.

[3] Implementation of Ludo Hashing in C++. https://github.com/QianLabUCSC/Ludo.

[4] Implementation of Othello: a concise and fast data structure for classification. https://github.com/sdyy1990/Othello.

[5] Intel DPDK: Data Plane Development Kit. https://www.dpdk.org.

[6] Pktgen-DPDK. https://github.com/pktgen/Pktgen-DPDK.

[7] Implementation of presized cuckoo map. https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/util/

presizedcuckoomap.h, 2016.
[8] ABU-LIBDEH, H., COsTA, P., RoWSTRON, A., O’SHEA, G., AND DONNELLY, A. Symbiotic routing in future data centers. In
Proc. of ACM SIGCOMM (2010).
[9] Berazzouaur, D., BoLpi, P., PAGH, R., AND VIGNA, S. Monotone minimal perfect hashing: searching a sorted table with

O(1) accesses. In Proc. of ACM SODA (2009).

[10] Berazzougul, D., AND BoTELHO, F. C. Hash, displace, and compress. In Proc. of Algorithms-ESA (2009).

[11] Broom, B. H. Space/time trade-offs in hash coding with allowable errors. Communications of the ACM 13, 7 (1970),
422-426.

[12] Caln,]. A., SANDERS, P., AND WORMALD, N. The Random Graph Threshold for k-orientiability and a Fast Algorithm
for Optimal Multiple-Choice Allocation. In Proc. of ACM-SIAM SODA (2007).

[13] CHARLES, D., AND CHELLAPILLA, K. Bloomier Filters: A Second Look. In Proc. of European Symposium on Algorithms
(2008).

[14] CHARLES, D., AND CHELLAPILLA, K. Bloomier Filters: A Second Look. In Proc. of ESA (2008).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 22. Publication date: June 2020.

https://www.cloudlab.us/
https://github.com/google/farmhash
https://github.com/QianLabUCSC/Ludo
https://github.com/sdyy1990/Othello
https://www.dpdk.org
https://github.com/pktgen/Pktgen-DPDK
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/util/presized_cuckoo_map.h
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/util/presized_cuckoo_map.h

Ludo Hashing: Compact, Fast, and Dynamic Key-value Lookups for Practical Network Systems 22:25

[15]
[16]

[17]

(18]
[19]

[20]

[21]
[22]

[23]
[24]

[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]

[33]
[34]

[35]
[36]
[37]
[38]
[39]
[40]

[41]
[42]

[43]

[44]

CHAZELLE, B., KILIAN, J., RUBINFELD, R., AND TAL, A. The Bloomier Filter: An Efficient Data Structure for Static Support
Lookup Tables. In Proc. of ACM SODA (2004), pp. 30-39.

EisEnBUD, D. E., Y1, C., CoNTAVALLI, C., SMITH, C., KONONOV, R., MANN-HIELSCHER, E., CILINGIROGLU, A., CHEYNEY, B.,
SHANG, W., AND HOSEIN, J. D. Maglev: A Fast and Reliable Software Network Load Balancer. In Proc. of USENIX NSDI
(2016).

ERLINGSSON, U., MANASSE, M., AND MCSHERRY, F. A cool and practical alternative to traditional hash tables. In Proc.
7th Workshop on Distributed Data and Structures (WDAS 06) (2006).

EsposiTo, E., GRAF, T. M., AND VIGNA, S. Recsplit: Minimal perfect hashing via recursive splitting. Tech. rep., 2019.
FaAN, B., ANDERSEN, D., AND Kaminsky, M. MemC3: Compact and Concurrent MemCache with Dumber Caching and
Smarter Hashing. In Proc. of USENLX NSDI (2013).

FaN, B., ANDERSEN, D. G., KAMINSKY, M., AND MITZENMACHER, M. D. Cuckoo filter: Practically better than bloom. In
Proceedings of the 10th ACM International on Conference on emerging Networking Experiments and Technologies (2014),
ACM.

FaN, B, Znou, D, Lim, H., KAMINSKY, M., AND ANDERSEN, D. G. When cycles are cheap, some tables can be huge. In
Proc. of USENIX HotOS (2013).

Fan, L., Cao, P., ALMEIDA, J., AND BRODER, A. Z. Summary Cache: A Scalable Wide-Area Web Cache Sharing Protocol.
IEEE/ACM Transactions on Networking (2000).

FERNHOLZ, D., AND RAMACHANDRAN, V. The k-orientability Thresholds for G, p- In Proc. of ACM/SIAM SODA (2007).
FounTouLAKkis, N., KHOsLA, M., AND PanacGIoTou, K. The multiple-orientability thresholds for random hypergraphs.
In Proc. of ACM/SIAM SODA (2011).

Gao, P., AND WormALD, N. C. Load balancing and orientability thresholds for random hypergraphs. In Proc. of ACM
STOC (2010).

GENUZIO, M., OTTAVIANO, G., AND VIGNA, S. Fast Scalable Construction of (Minimal Perfect Hash) Functions. In
Proceedings of the International Symposium on Experimental Algorithms (2016).

GREENBERG, A., HAMILTON, J. R, JAIN, N., KANDULA, S., Kim, C., LAHIRI, P., MALTZ, D. A., PATEL, P., AND SENGUPTA, S.
VL2: a scalable and flexible data center network. In Proceedings of ACM SIGCOMM (2009).

JaIN, S., CHEN, Y., JAIN, S., AND ZHANG, Z.-L. VIRO: A Scalable, Robust and Name-space Independent Virtual Id ROuting
for Future Networks. In Proc. of IEEE INFOCOM (2011).

Kim, C., CAESAR, M., AND REXFORD, J. Floodless in SEATTLE: A Scalable Ethernet Architecture for Large Enterprises.
In Proc. of Sigcomm (2008).

KirscH, A., AND MITZENMACHER, M. Using a queue to de-amortize cuckoo hashing in hardware. In Proceedings of the
Forty-Fifth Annual Allerton Conference on Communication, Control, and Computing (2007), vol. 75.

KirscH, A., MITZENMACHER, M., AND WIEDER, U. More robust hashing: Cuckoo hashing with a stash. SIAM Journal on
Computing (2009).

LARiscH, J., CHOFENES, D., LEVIN, D., MAGGs, B. M., MISLOVE, A., AND WiLsoN, C. CRLite: A Scalable System for
Pushing All TLS Revocations to All Browsers. In Proc. of IEEE S&P (2017).

LELARGE, M. A new approach to the orientation of random hypergraphs. . In Proc. of ACM-SIAM SODA (2012).

L1, X., ANDERSEN, D., KAMINSKY, M., AND FREEDMAN, M. J. Algorithmic improvements for fast concurrent cuckoo
hashing. In Proc. of ACM EuroSys (2014).

Lim, H., FaN, B., ANDERSEN, D. G., AND KamINsky, M. SILT: A Memory-Efficient, High-Performance Key-Value Store.
In Proc. of ACM SOSP (2011).

MaGas, B. M., AND SITARAMAN, R. K. Algorithmic Nuggets in Content Delivery. ACM SIGCOMM Computer Communi-
cation Review (2015).

MAJEWSKI, B. S., WorMALD, N. C., Havas, G., AND CzEcH, Z.]. A Family of Perfect Hashing Methods. The Computer
Journal (1996).

Mao, R., ZENG, H., KM, C,, LEE, J., AND YU, M. SilkRoad: Making Stateful Layer-4 Load Balancing Fast and Cheap
Using Switching ASICs. In Proc. of ACM SIGCOMM (2017).

MARTN DIETZFELBINGER AND CHRISTOPH WEIDLING. Balanced allocation and dictionaries with tightly packed constant
size bins. Theoretical Computer Science (2007).

McKEowN, N., ANDERSON, T., BALAKRISHNAN, H., PARULKAR, G., PETERSON, L., REXFORD, J., SHENKER, S., AND TURNER,
J. Openflow: Enabling innovation in campus networks. SIGCOMM Comput. Commun. Rev. (2008).

PacH, R, AND RODLER, F. F. Cuckoo hashing. Journal of Algorithms (2004).

PaRekH, A. K., AND GALLAGER, R. G. A generalized processor sharing approach to flow control in integrated services
networks: the single-node case. IEEE/ACM Transactions on Networking 1, 3 (1993), 344-357.

PATEL, P., BANsAL, D, YUAN, L., MURTHY, A., GREENBERG, A., MALTZ, D. A,, KERN, R., KuMAR, H., Z1xos, M., Wu, H.,
Kim, C., AND KarRI, N. Ananta: Cloud scale load balancing.

PONTARELLL S., REVIRIEGO, P., AND MITZENMACHER, M. Emoma: Exact match in one memory access. IEEE Transactions

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 22. Publication date: June 2020.

22:26 Shougian Shi and Chen Qian

on Knowledge and Data Engineering (2017).

[45] Q1an, C., AND LaM, S. ROME: Routing On Metropolitan-scale Ethernet . In Proceedings of IEEE ICNP (2012).

[46] RaaB, M., AND STEGER, A. Balls into Bins — A Simple and Tight Analysis. In Lecture Notes in Computer Science (1998).

[47] RaycHAUDHURL D., NAGARAJA, K., AND VENKATARAMANTI, A. MobilityFirst: A Robust and Trustworthy MobilityCentric
Architecture for the Future Internet. Mobile Computer Communication Review (2012).

[48] SCHLINKER, B., ET AL. Engineering Egress with Edge Fabric: Steering Oceans of Content to the World. In Proc. of ACM
SIGCOMM (2017).

[49] SHL S., Q1aN, C., AND WANG, M. Re-designing Compact-structure based Forwarding for Programmable Networks. In
Proc. of IEEE ICNP (2019).

[50] Su1, W., Cao, J., ZHANG, Q., L1, Y., AND XU, L. Edge computing: Vision and challenges. IEEE Internet of Things Journal
3,5 (2016).

[51] WanG, M., ET AL. Collaborative Validation of Public-Key Certificates for IoT by Distributed Caching. In Proc. of IEEE
INFOCOM (2019).

[52] WaNG, M., ZHou, M., SHI, S., AND QIAN, C. Vacuum filters: more space-efficient and faster replacement for bloom and
cuckoo filters. Proceedings of the VLDB Endowment (2019).

[53] Wang, M., ZHou, M., SHI, S., AND QIAN, C. Vacuum Filters: More Space-Efficient and Faster Replacement for Bloom
and Cuckoo Filters. In Proceedings of VLDB (2020).

[54] WEIL, S. A., BRANDT, S. A., MILLER, E. L., LoNG, D. D. E., AND MALTZAHN, C. Ceph: A scalable, high-performance
distributed file system. In Proc. of USENIX OSDI (2006).

[55] WIEDER, U. Hashing, Load Balancing and Multiple Choice. Now Publishers, 2017.

[56] Yang, T, Yang, D,, J1aNG, J., Gao, S., Cur, B., SHi, L., AND L1, X. Coloring Embedder: a Memory Efficient Data Structure
for Answering Multi-set Query. In Proc. of IEEE ICDE (2019).

[57] Yar,K.-K., ET AL. Taking the Edge off with Espresso: Scale, Reliability and Programmability for Global Internet Peering.
In Proc. of ACM SIGCOMM (2017).

[58] Yu, M., FABRIKANT, A., AND REXFORD, J. BUFFALO: Bloom filter forwarding architecture for large organizations. In
Proc. of ACM CoNEXT (2009).

[59] Yu, Y. Berazzoucur, D., QIAN, C., AND ZHANG, Q. Memory-efficient and Ultra-fast Network Lookup and Forwarding
using Othello Hashing. IEEE/ACM Transactions on Networking (2018).

[60] Yu,Y., Ly X., aND Q1aN, C. SDLB: A Scalable and Dynamic Software Load Balancer for Fog and Mobile Edge Computing.
In Proc. of ACM SIGCOMM Workshop on Mobile Edge Computing (MECCOM) (2017).

[61] Zuou, D, Fan, B., Lim, H., ANDERSEN, D. G., KAMINSKY, M., MITZENMACHER, M., WANG, R., AND SINGH, A. Scaling up
clustered network appliances with scalebricks. In SIGCOMM (2015).

[62] Zuou, D., FaN, B., Lim, H., KAMINSKY, M., AND ANDERSEN, D. G. Scalable, High Performance Ethernet Forwarding
with CuckooSwitch. In Proc. of ACM CoNEXT (2013).

APPENDIX

A. Bloomier filters and Othello hashing

We propose to use Othello Hashing [59] for the bucket locator of Ludo Hashing. Othello Hashing
is a data structure and a series of algorithms based on Bloomier filters [14, 15]. Bloomier filters
are instances of minimal perfect hashing (MWHC) [9, 14, 15, 37, 59], originally proposed for static
lookup tables.! The recently proposed Othello Hashing [59] is an application of Bloomier filters
for dynamic forwarding information bases. Othello Hashing includes the construction, update,
and consistency maintenance of the Bloomier filter based data plane in programmable networks.
Othello finds a setting of Bloomier filters to achieve good time/space trade-off for dynamic network
environments.

An Othello Hashing is used as a mapping for a set of key-value pairs. Let S be the set of keys
and n = |S|. A basic version of Othello Hashing supports the key-value pairs with 1-bit value. The
lookup of each key returns an 1-bit value corresponding to the key. An advanced version of Othello
supports [-bit values.

Othello maintenance structure construction. We use an example in Fig. 34 to show the
construction process, which results in an Othello maintenance structure of a set of five key-value
pairs. Each of the keys k; to ks has a corresponding value 0 or 1. We build two bitmaps a and b,

IBloomier filters are completely different from the well-known Bloom filters.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 22. Publication date: June 2020.

Ludo Hashing: Compact, Fast, and Dynamic Key-value Lookups for Practical Network Systems 22:27

k value hg(k) hy(k) al [1] T Jof T1]]
ky 1 6 5 Othello

k, 0 1 0 construction

ks 1 1 2

k, 0 1 3

k 0 4 2

5

Fig. 34. Othello maintenance structure construction. An Othello only includes arrays A and B for lookups.

ha (kl) ﬁ ha (ke)

al [1] | Jof [a] | al [1] | Jof [a] |
160 =1 OG# =?
blr] [of1] Jof | | blo] [of1] Jof [|
hy (k1) 1 hy (ko)
(a) Look up a key known during (b) Look up a key unknown during
construction: Specified Result construction: Deterministic Random

Fig. 35. Othello lookup structure

each with m bits and m > n. In this example m = 8. For every bit i in a we place a vertex u; and for
every bit j in b we place a vertex w;. In this example m = m, = m;, = 8. Two hash functions h, and
hy are used to compute the integer hash values in [0, m — 1] for all keys. Then, for each key, an
edge is placed between the two vertices that correspond to its hash values. For example, h,(k;) = 6
and hy (k1) = 5, so an edge is placed to connect us and ws.Each vertex is colored by black or white
to represent the corresponding bit to be 1 or 0 respectively. For a key with value 0, the two vertices
of the edge should have the same color. For a key with value 1, the two vertices of the edge should
have different colors, so that the two bits have different values. k; is with value 1, hence ug and ws
are with different colors. Gray color vertices represent “not care” bits. Note that after placing the
edges for all keys, the bipartite graph G needs to be acyclic. If G is acyclic, a valid coloring plan is
easily built by traversing each connected component of G, and setting bits based on corresponding
values [59]. If a cycle is found, Othello needs to find another pair of hash functions to re-build G. It
is proved that during the construction of n keys, the expected total number of re-hashing is < 1.51
when n < 0.75m [59]. The expected time cost to construct G of n keys is O(n), and the expected
time to add, delete, or change a key is O(1).The design can be trivially extended to [> 2.
Key-value lookups in the Othello lookup structure. As shown in Fig. 35 (a), the Othello
lookup structure only includes the two arrays A and B, and does not store the key-value array and
the bipartite graph. To look up the value of ki, we only need to compute h, and hj, which are
mapped to position 6 of A and position 5 of B (starting from 0). Then we compute the bit-wise XOR
of the two bits and get the value 01. Hence, the lookup result is 7(k) = a[h,(k)] ® b[hy(k)].
Lookups of Othello lookup structure are memory-efficient and fast. 1) The lookup structure only
needs to maintain the two arrays. The keys themselves are not stored in the arrays. Hence, the
space cost is small (2m/n per key). 2) Each lookup costs just two memory access operations to read
one element from each of A and B. It fits the programmable network architecture: the data plane
only needs to store the lookup structure, two arrays; the control plane stores the key-value pairs

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 22. Publication date: June 2020.

22:28 Shougian Shi and Chen Qian

| == 8M
— 4M
16M

0.8 1

0.6 1

CDF

0.4

0.24

0.0 . . .
1 2 3 4 5
Cuckoo path length

Fig. 36. CDF of Cuckoo path length

and the acyclic bipartite graph G. When there is any change, the control plane updates the two
arrays and let the data plane to accept the new ones. When an Othello performs a lookup of a key
that does not exist during construction, it returns an arbitrary value. For example in Fig. 35(b),
ke ¢ S and its result may be an arbitrary value.

A lookup structure does not maintain the full states and must be updated by its associated
maintenance structure. During an insertion or a value change, the maintenance structure keeps
a list L of the influenced bits in arrays a and b. Then the list L is input to the update function in
the lookup structure. The lookup structure simply flips the influenced bits to perform the updates.
More details (e.g., read/write concurrency, [-bit updates) are found in [49, 59].

B. Pseudocode

We also show the pseudocode of the insertion algorithm on Ludo maintenance program algorithm
in Algorithm 2, the insertion on the Ludo lookup program in Algorithm 3, the concurrent lookup
algorithm of Ludo in Algorithm 4, and the construct algorithm for Ludo lookup structure from
the Ludo maintenance structure in Algorithm 5. Algorithm 6 shows the subroutine in Ludo control
plane to find a seed for a bucket.

C. Load factor for successful insertions.

From existing theoretical results of random graphs, it has been proved by both [23] and [12] that, if
the average degree d of a random directed graph G of n vertices is no higher than a threshold d,
then

lim Pr(G is k-orientable) = 1if d < dj

n—oo
We say G is asymptotically almost surely (a.a.s.) k-orientable. A graph is k-orientable if every vertex
has in-degree at most k. Consider that each bucket of (2,4)-Cuckoo corresponds to a vertex of a
random graph and each key corresponds to an edge. A key stored in a bucket can be considered
an edge contributing to an in-degree to the vertex. Hence, a 4-orientable graph is equivalent to a
(2,4)-Cuckoo where each bucket stores at most 4 keys. The above proved result [12, 23] is equivalent
to the following statement. If the load factor is no higher than d4 /8 and the table is sufficiently large,
all inserted keys can be stored in a (2,4)-Cuckoo such that every bucket has at most 4 keys. The
numerical value of dy is 7.843, meaning the threshold of the load factor can be as much as 0.9803,
provided by both [23] and [12]. Many later studies confirm this result [24, 25, 33, 55]. Note the
extreme cases in practice that cause failed insertions do not conflict with this theoretical result. In
practice, the length of a cuckoo path is within a small constant. We show the experimental results

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 22. Publication date: June 2020.

Ludo Hashing: Compact, Fast, and Dynamic Key-value Lookups for Practical Network Systems 22:29

of the lengths of cuckoo paths in Fig. 36, for Ludo Hashing with load factor < 95%, 4, 8, and 16
million items, and 10 runs for each setup. We find that all lengths of the Cuckoo paths are < 5 and
more than 95% are smaller than 3. In our design, we set the load factor threshold to be 95% due to
practical issues such as the maximum number of steps of evictions in implementation. We have not
observed a single failure among over 20 billions of insertions during our tests.

Input: The Ludo maintenance structure (Oyy, C) and the item to insert (k, v)
Result: The insertion message (val, update_seq, failed_key) for Ludo lookup program

begin
1 val « v
2 update_seq «— new empty list
// 1: Insert item and record cuckoo path
3 cuckoo_path « C.Insert(k,v)
4 if cuckoo_path is empty then
5 Insert to fallback table
6 failed_key «— k
7 return
8 for position in cuckoo_path do
9 bldx, sldx < position
10 b « C.buckets[bIdx]
11 k « b.keys[sldx]
12 // 1I: Reverse the bucket locator record, and record the influenced bits in
Othello
13 Ochg « O.Insert(k,1 — O.LookUp(k))
// III: Find a new seed
14 b.s « FindSeed (b)
15 vorder « Order of the values based on b.s
16 update_seq.add({bldx, sIdx, b.s, vorder, Ochg));
end
end

Algorithm 2: insertion algorithm on Ludo maintenance program

Received January 2020; revised February 2020; accepted March 2020

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 22. Publication date: June 2020.

22:30

10

11

12

13

14

15

16

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 22. Publication date: June 2020.

Shougian Shi and Chen Qian

Input: Ludo lookup structure (Op, T) and the insertion message (val, update_seq, failed_key), the
version array V, a global lock L for fallback
Result: Ludo lookup structure is updated

begin
if failed_key is set then

end

end

L.lock()

Insert to fallback table

L.unlock()

return

i = update_seq_size —1,---,3,2,1,0 do
bldx, sIdx, s,vorder, Ochg « update_seq|i]

// I:. Copy current bucket

b « copy of T.buckets[bIdx]

// 1I: Update the temporary bucket
bs=s

Order values in b according to vorder

// 1I1: Consistency under concurrent R/W
V[bldx mod 8192] « V[bldx mod 8192] + 1
compiler barrier

Othello atomic update (Ochg)
C.buckets[bldx] < b

compiler barrier

V|[bIdx mod 8192] « V[bldx mod 8192] + 1

Algorithm 3: insertion on the Ludo lookup program

Ludo Hashing: Compact, Fast, and Dynamic Key-value Lookups for Practical Network Systems

10

11

12

13

14

15

16

17

Input: Ludo lookup structure, the version array V, and the key k to look up
Output: The query result v

begin
// Never entered in practice, under 95% load.
if Fallback table has entries then

end

end

L.lock()

v « read from fallback table
L.unlock()

return

while true do

// Enssure bucket versions are even

v, v1 < V[ho(k) mod 8192], V[hi(k) mod 8192]
compiler barrier

if vy or v; is odd then continue

// Atomically query bucket locator

I « Othello atomic lookup (k)

// Fetch the bucket holding k

b « hj(k)-th bucket of the table

// Enssure versions have not changed
compiler barrier

vg, v] < V[ho(k) mod 8192], V[h1(k) mod 8192]
if vy # v] or v1 # v] then continue

// Fetch the value of k

s « slot locator seed stored in b

v « b.slots|Hs(k) mod 4]

break

Algorithm 4: Concurrent lookup algorithm on the Ludo lookup structure

22:31

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 22. Publication date: June 2020.

22:32 Shougian Shi and Chen Qian

Input: The Ludo maintenance structure (Oys, C)
Output: The Ludo lookup structure (Or, T)
begin

// 1: Othello maintenance to lookup
1 Or < Oy converts to a lookup structure
// II: New empty (2,4)-Cuckoo Hash Table
2 T « empty table of size C.size
3 for i =1,2,3,---,C.bucket_size do
4 b « C.buckets|i]
5 b’ « T.buckets[i]
// II1: Copy locator seeds
6 s « b.seed
7 b’ .seed «— s
// IV: Copy values to target buckets
8 for (k,v) in valid items of b do
9 sidx «— Hg(k) mod 4
10 b’ .values[sidx] «— v
end
end
end

Algorithm 5: construct algorithm for Ludo lookup structure from the Ludo maintenance structure

Input: The Ludo maintenance structure bucket b
Input: The new seed s

begin
1 for s=0,1,2,--- do
2 taken < 4-element boolean array
3 success < true
4 for k in valid keys of b do
5 sid «— H(k)
6 if taken[sid] then
7 success «— false
8 break
9 taken[sid] « true
end
10 if success then
11 ‘ return s
end
end
end

Algorithm 6: Subroutine FindSeed

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 22. Publication date: June 2020.

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Definition and Models
	4 Design of Ludo Hashing
	4.1 Challenges and the main idea
	4.2 System overview
	4.3 Ludo lookup structure
	4.4 Ludo Hashing construction algorithm
	4.5 Ludo Hashing update algorithm

	5 Analysis
	5.1 Space cost of Ludo lookup structure
	5.2 Lookup overhead
	5.3 Insertion correctness
	5.4 Update overhead

	6 Implementation and evaluations
	6.1 Evaluation methodology
	6.2 Evaluation of in-memory lookup engines
	6.3 Case studies of real systems
	6.4 Summary of evaluation

	7 Discussion
	8 Conclusion
	9 Acknowledgement
	References

