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Abstract—Public-key certificate validation is an important
building block for various security protocols for IoT devices, such
as secure channel establishment, handshaking, verifying sensing
data authenticity from cloud storage, and Blockchains. However,
certification validation incurs non-trivial overhead on resource-
constrained IoT devices, because it either requires long latency
or large cache space. This work proposes to utilize the power
of distributed caching and explores the feasibility of using the
cache spaces on all IoT devices as a large pool to store validated
certificates. We design a Collaborative Certificate Validation
(CCYV) protocol including a memory-efficient and fast locator for
certificate holders, a trust model to evaluate the trustworthiness
of devices, and a protocol suite for dynamic update and certificate
revocation. Evaluation results show that CCV only uses less than
25% validation time and reduces >90% decryption operations
on each device, compared to a recent method. Malicious devices
that conduct dishonest validations can be detected by the network
using the proposed trust model.

I. INTRODUCTION

In recent years, Internet of Things (IoT) has attracted
significant attention due to the emerging applications of in-
dustrial automation, smart devices, vehicular communication,
smart cities, and smart homes [3] [22]. A widely accepted
definition of IoT for the smart environment is that IoT is
an interconnection of sensing and actuating devices that are
capable of sharing information across platforms through a
unified framework such as cloud [10]. Thus, a great amount
of data, including both public and private information, will be
generated, processed and transmitted by IoT devices.

Although many current IoT devices rely on a central plat-
form to verify data authenticity. Emerging and future IoT
devices, such as personal health monitors, unmanned aerial ve-
hicles, robots, and self-driving cars, become multi-functional,
self-organized, and interactive. Hence due to scalability and
autonomy problems, there may not be a central platform to
interconnect all these devices. Public key cryptography (PKC)
enables fundamental security protocols for IoT data commu-
nication, based on a well-functioning public key infrastructure
(PKI). We list the following (incomplete) important use cases
of PKC for IoT. 1) The authentication process in protocols for
establishing a secure channel between two end devices or one
device and a server. For example, in an IoT-based healthcare
system, wearable sensors that collect human-related data need
to securely communicate with other sensors, caregivers and
doctors [20]. Existing approaches modify traditional end-to-
end IP security protocols to adapt to IoT environments, such
as DTLS [23] and HIP DEX [21], which rely on PKC for

handshaking. 2) When an IoT device retrieves sensing data
that were collected by other sensors and stored in the cloud, it
needs to verify the data integrity and authenticity to guarantee
that data have not been tampered with or partially dropped
[18]. Digital signatures of sensing data are applied to this
situation. In order to verify the correctness of a data signed
by the private key of the data generator, a device first needs to
validate the public key via its certificate. 3) Recently studied
Blockchain-based IoT systems [6] heavily rely on PKC. For
all situations, certificate validation is an essential step.
Although certificate validation can be completed relatively
easily on an ordinary computer, it incurs non-trivial overhead
on resource-constraint IoT devices. For example, using an
optimized method that requires only one signature verification,
certificate validation still costs 1.9 seconds and certificate-
based public key operations demand 95% of the overall
processing time of handshaking on the WisMote platform [19],
as reported in [11].

This work focuses on a specific yet important problem: how
to perform fast certificate validation in a large IoT network.
We do not intend to improve handshaking protocols, PKI, or
PKC schemes in IoT. Instead, we study the certificate valida-
tion method that is compatible with most existing PKIs and
PKC algorithms. There have been existing work on reducing
certificate validation cost in classic network environments. One
method is to delegate certificate validation to a third party [11]
[20],which creates a single point of failure. Prefetching and
prevalidation are also used for efficient certificate validation
[24], but they require heavy storage cost.

Fast certificate validation on IoT devices seems to be a
dilemma: the most effective approach is to cache as many
validated certificates as possible, but it is not allowed on IoT
devices with limited memory. We call the process of validating
a public-key certificate via verification of CA signature as
individual validation. Individual validation of every certificate
is time-consuming. Hence none of the above methods is
desired for IoT.

In this work, we propose to utilize the power of distributed
caching and explore the feasibility of using the cache spaces
on all IoT devices as a large pool to store validated certificates,
which can be accessed by any internal device. We design a
Collaborative Certificate Validation protocol (CCV), which
adopts the cooperation strategy in a large IoT network and
utilizes the overall computation power and storage resources.
When one device d needs to validate a certificate that has been



validated and cached by another device h in the network, d can
request a collaborative certificate validation from £ to confirm
that the requested certificate matches the cached one. The
design of CCV includes three main challenges. First, how
each device can efficiently locate the holder of a certificate
without storing a long index that maps every certificate to its
holder. Second, how to avoid false validation results shared by
the TIoT devices controlled by the attacker (called malicious
devices). Third, how to dynamically maintain a consistent
collaborative validation when new certificates are validated
and cached certificates are removed or revoked.

Our contributions of this work include the following. 1)
We design a memory-efficient and fast locator for certificate
holders, called OLoc, based on a recent data structure Othello
Hashing [26]. 2) We introduce a trust model for CCV to
evaluate the trustworthiness of each device to avoid dishonest
collaborative validation from malicious devices. 3) We design
a complete protocol suite for efficient OLoc update, cache
replacement, and revocation status checking mechanisms in
a dynamic network. Evaluation results show that CCV only
uses less than 25% time compared to the certificate validation
in a recent method [11]. The majority time cost of CCV is
on network latency rather than local public key decryptions
(reducing > 90% decryptions), hence it significantly saves
computation resource.

The paper is structured as follows. We give the problem
statement, network model and security model in Section II.
Section III presents the design consideration of the certificate
locator. We present the detailed protocol design in Section IV.
We show the evaluation results and security analysis in Sec-
tion V. Section VI presents the related work and Section VII
concludes this work.

II. PROBLEM STATEMENT AND MODELS
A. Problem Specification and Network Model

We consider a large IoT system including a large number
(100 or more) of devices. The use cases of such system
can be an industrial IoT network [15], a community network
with home IoT devices, or an organization/building/campus
network with various devices (cameras, sensors, smart office
products, etc.). The system consists of the following units.

(1) IoT devices. An IoT device (or “device” in short) is
a sensor or actuator with constrained computing, memory,
and power resources. Each device can communicate to the
Internet through the routers in the IoT system. A device
sends and receives packets to/from a router using its wireless
chip via either a direct connection to a router (“infrastructure
mode”, such as those in a home WiFi network) or multi-hop
forwarding (“ad-hoc mode”, such as those in a low-power
sensor network). Devices can communicate with each other.

(2) Routers. Routers are the forwarding units to support
communication among IoT devices, or between a device and
the Internet.

(3) Tracker. A tracker is a function running on a remote or
edge server to help to manage the IoT network. All IoT devices
can communicate with the tracker. There could be multiple

duplicate trackers in a network, running on different servers.
Every tracker maintains the same network state and does not
actually perform validation or caching for devices. A tracker
in CCYV is not a single point of failure. Our experiments will
show that a tracker requires minimal computation and com-
munication cost, hence it can be easily replicated. Note that
trackers do not need strong consistency or synchronization.
Even if some of the trackers have inconsistent, incomplete,
incorrect information, or stop functioning for a duration of
time, IoT devices can still perform correct certificate validation
—trackers impact on certificate caching efficiency rather
than verification correctness. Replicated trackers using ex-
isting protocols to tolerate Byzantine failures [4], which is out
of our scope.

This work focuses on the public key certificate validation
problem of an IoT system. Each certificate is uniquely iden-
tified by its public key. We assume secure communication
channels have already been established among the IoT devices
and the tracker in the same network using standard IoT
security solutions such as that in WirelessHART [15]. Hence
a device does not need to validate public keys of other devices
and the tracker in the same network. A device needs to validate
a public key certificate of an external node from the Internet
in the following situations:

(1) Authenticate an external node during the handshaking
to establish a secure session, such as that in DTLS [23] [11].

(2) Verify the authenticity of the data retrieved from a cloud,
which carry the digital signatures of external nodes [18].

The collaborative certificate validation scheme investigated
in the paper can be modeled as follows. When a device
receives a public key certificate that has already been verified
and cached by another device in the network (called the
holder), the device needs to locate the cached certificate
and ask the holder to confirm it. Otherwise, it needs to run
individual validation. Each device caches a (limited) number
of certificates validated by itself. When a device receives
a request from another device in the network to validate a
certificate, it will respond based on the result from its cache.
This research includes three main challenges. First, how each
device can efficiently locate the holder of a certificate without
storing a long index that maps every certificate to its holder.
Second, how to void false validation results shared by the IoT
devices controlled by the attacker (called malicious devices).
Third, how to dynamically maintain a consistent collaborative
validation when new certificates are validated and cached
certificates are removed or revoked.

B. Security Model

We assume the internal communication among IoT devices
or between a device and the tracker is secure. The secure
communication channels have been established using standard
solutions such as the security protocol of WirelessHART
[15]. Group keys and session keys have been successfully
distributed. We do not consider attacks on the communications
between two IoT devices or a device and the tracker. All
devices, except those controlled by an attacker, are willing



to collaborate. The goal of a device is to maximize the
functioning of the entire network rather than maximizing the
functioning or lifetime of itself.

This work focuses on the research problem of efficient
validation of public key certificates, assuming there exists a
well-functioning PKI. This research is not about building a
better PKI. Hence we do not consider attacks during the PKI
validation process.

An attacker can control a number of devices in the network
to conduct malicious behaviors, which are referred as mali-
cious devices. Malicious devices are “‘malicious-but-cautious”
and may collude. The tracker stores a trust value for every
device to indicate the likelihood that the device is legitimate.
We list six major attacks from malicious devices.

(1) False validation attack: A malicious device provides
false certificate validation results to other devices.

(2) Self-promoting attack: A malicious device promotes
its trust value by claiming that it helped other devices validate
certificates. However, it did not.

(3) Defamation attack: A malicious device claims that a
legitimate device provides wrong certificate validation results.

(4) Traitor attack: When a diplomatic attacker senses their
reputation is dropping because of providing malicious devices,
it can provide good services for a period of time to gain a high
reputation. Then it provides malicious services after it gains
high reputation.

(5) Whitewashing attack: Attackers can discard their cur-
rent identities and re-enter the systems when they have very
low trust levels and cannot be selected as collaborators.

(6) Collusion attack: Two or more malicious devices
improve their trust values by claiming that they helped each
other, However, they provide false validation results when
helping other devices to validate certificates.

In addition, a device never individually validates a certificate
that is not required by its own need, in order to avoid DoS
or resource exhaustion attacks. It only caches a certificate
validated by itself in prior communications and provides
validation confirmation of this certificate to another device.

III. DESIGN CONSIDERATION OF CERTIFICATE LOCATOR

One major challenge of collaborative certificate validation
is to allow each device to efficiently locate another device that
validated and caches the certificate of the public key to use.
A simple solution is to let each device maintain a complete
index of all certificate-to-device mappings. This method is
not scalable because every mapping requires more than 1000
bits of memory, assuming a public key is 1024-bit long. A
more advanced method is that each device maintains m — 1
counting Bloom filters (CBFs) [7] (m is the number of devices
in the network). Each CBF represents the set of certificates of
a device. The drawbacks of this method are 1) locating the
holder of a certificate requires up to m — 1 Bloom filter lookup
operations, and 2) CBFs are not memory-efficient. Hence these
methods are impractical for IoT.

In this work we utilize and improve a recent innovation
called Othello Hashing [26] to design a memory-efficient and

fast locator for certificate holders. In addition, existing design
of Othello Hashing does not fully satisfy the requirement of
the locator hence we propose an improvement design called
Othello-based Locator (OLoc). Every device stores an OLoc.

Othello Hashing is used to represent a set of key-value pairs.
Given a set of keys K and each key k is mapped to a value
v € V. Let n = |K|. An Othello Hashing structure is a seven-
tuple < mg, mp, ha, hp,a,b, G > defined as follows: Integers
m, and my is the size of Othello. m, = mp ~ 1.33n. A
pair of uniform random hash functions < hg,, h, > maps
keys to integer values 0,1,....mg, —1 and 0,1,...,mp — 1
respectively. a and b are two arrays including m, and my
elements respectively. GG is a bipartite graph which is used to
determine the values in a and b.

Othello uses O(n) time to build a bipartite graph G,
which is used to assign the elements of a and b, such that
a(hy(k))@®b(hy(k)) is the value of k. Hence finding the value
of a given key k is extremely fast. Othello can simply retrieve
a(h,(k)) and b(hy(k)) and compute their XOR, requiring only
two memory access operations. In addition, G is needed only
by construction, hence the devices that perform lookups (such
as the IoT devices) do not need to maintain G.

Complexity. The space cost of the two arrays in Othello
is small, around 2.66nl bits, where [ is the length of each
value. Each lookup only requires two memory access and one
XOR operations —very small constant. Space and lookup cost
is more efficient than most existing main-stream hash tables
including Cuckoo Hashing [26]. The expected time to add,
delete and update a key-value pair is proved to be O(1) [26].

Opportunities and challenges of using Othello. We find
that Othello Hashing is a good fit for the application of
memory-efficient certificate locator. Let each key be a public
key and the corresponding value be the holder of the certifi-
cate. We realize that, to perform locator lookups, only the two
hash functions < hg, hy > and arrays a and b need to be stored
in a device. The construction information, such as the key-
value pairs and the bipartite graph G are shared by the entire
network and not needed for lookups. Hence this information
can be stored at the tracker. Note the Othello construction and
update operations are relatively more complex than lookups.
Hence the IoT devices can avoid these operations and only
be responsible for efficient lookups. The tracker has plenty of
resources for construction and is responsible for updating and
sending the updated Othello arrays to the devices.

However, one limitation of Othello Hashing is that, if we
search a key k' that is not in K, Othello will return an
arbitrary value. It is because a(h,(k’)) and b(hy(k')) will
be two arbitrary elements. Hence if a certificate C' is not
cached by any device in the network, the locator will point to
an arbitrary device. Falsely locating a holder will waste both
communication bandwidth and latency. In the next section, we
will present an improved design of an Othello-based Locator
(OLoc) to reduce the rate of false holder locating.
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IV. PROTOCOL DESIGN
A. Protocol Overview

Fig. 1 illustrates the overview of the proposed protocol
CCV. The CCV protocol runs on both the IoT devices and
the tracker.

Protocol on an IoT device d. When a device d needs to
validate a certificate C, CCV works as follows. Part 1. d
searches the Othello-based Locator (OLoc) to look for a holder
of C. Part 2. If the OLoc indicates that there is a holder h of
C, devices d and h conduct collaborative validation based on
the cached certificate on h. Part 3. If the OLoc indicates that
there is no holder of C, d runs individual validation. Part 5.
If a holder A confirms the validation of C', d will forward this
event to the tracker with a probability to allow the tracker to
monitor the trustworthiness of h.

Protocol on the tracker. In fact, it can be any of the
trackers. For simplicity, we use ‘the’ tracker. The tracker
is responsible for updating the OLoc of different devices,
monitoring the trust values, and removing revoked certificates.
The protocol on the tracker operates as follows: Part 4. Since
the certificates cached in the network change gradually, the
tracker needs to update the OLoc for each device to keep track
of the update-to-date holder information. It then distributes
the updated OLoc to each device. Part 5. When the tracker
receives a forwarded validation confirmation showing that h
just helped d, it will verify the correctness of this confirmation
and update h’s trust value accordingly. Part 6. When the
tracker receives new revocation lists from CAs, it notifies the
holders to remove these certificates from their caches.

B. Othello-based Locator and Update

The CCV protocol is driven by messages and events. Upon
receiving a validation requirement of a certificate C' of a public
key kT from the upper layer, a device d first checks its local

cache to see whether it has cached C. If C' is cached and
the two versions are identical, then d confirms the validity of
C'. Otherwise, d needs to determine whether there is another
device being the holder of C' and which device it is.

Every device stores an Othello-based Locator (OLoc). The
lookup key of OLoc is a public key (identifier of a certifi-
cate) and the lookup result should indicate the holder of the
certificate. As discussed in Sec. III, one limitation of Othello
Hashing is that, if a certificate C' is not cached by any device
in the network, the locator will point to an arbitrary device.
Assume the network has n devices and each device can be
referred by a [-bit index: | = [log, n]. Our innovation is to
extend the lookup value 7 of an Othello to [ + [’ bits for
the certificate C' of the public key k™. The [ least significant
bits (LSBs) of 7 is the index of the holder i and the !
most significant bits is the check code c of this certificate.
c is determined by the hash value H (k™) using a CRC hash
function H. Since H (k™) is longer than !’ bits, ¢ can simply
be the I’ LSBs of H (k™).

Fig. 2 illustrates an example of the OLoc lookup. When a
device searches its OLoc for the holder of the certificate C
of k™, it compares whether the I’ LSBs of H (k™) matches
the check code c return by OLoc. If they match, it is highly
likely that the certificate is actually cached by the holder. By
“highly likely”, we mean that there is still a probability that
C is not cached but matches the check code, called a false
matching. Such probability is around 1/ 2 depending on the
length of the check code I’. The existence of false matchings
does not hurt the correctness and security of CCV, but will
slightly increase the communication cost. In the example of
Fig. 2, both [ and " are set to 8, which can be adjusted based
on the system requirements.

When the device d gets index ¢ and the check code matches
H(k™), d sends message < REQUEST VALI,C,d,h > to
another device h whose index is ¢ to perform collaborative
validation. If the check code does not match H (k™), the device
terminates CCV and conducts individual validation.

On the tracker side, the OLoc at every device should be
dynamically updated to reflect the update-to-date certificate
to holder mapping. At the very beginning, Othello is empty.
Then the tracker updates the OLoc of all devices at a fixed
interval and distributes newly updated OLoc to the devices.
Although the tracker is responsible for updating all devices in
the network, these updates are efficient and scalable because
all devices may share a same OLoc. When a device caches
a certificate, it sends a NEW_CACHE message to notify the
tracker. Hence the tracker keeps track of all cached certificates
in the network and updates the OLoc. The updated OLoc is
then sent to the devices using the UPDATE_OLOC message.

We apply another optimization based on the IoT network
features. It is possible that one certificate C' is cached by
multiple devices in the network. Hence C' may have multiple
holders, any of which can be a valid result of a holder
locator. In the construction stage of Othello, we choose the
index of one holder to be the lookup result of OLoc for the
public key k* in C. However, it is reasonable to choose the



most suitable holder of C' for different devices when there
are multiple feasible options. To construct the OLoc of a
device d, CCV may choose the holder with shortest network
distance (e.g., smallest hop count) to d. One may note that
using this optimization, the OLoc in different devices may be
different. Two devices on different locations in the network
may be close to different holders. However, constructing these
different versions of OLoc is still efficient. They share the
same set of keys and the same bipartite graph G, because G
depends only on the set of keys, rather than their values. Note
that computing G is the most time-complex step during the
construction of an Othello. Once G is obtained, determining
the arrays a and b is trivial. Hence all devices can still share
a same G and the arrays a and b can be computed in a short
time. In addition, many devices in network proximity are still
able to use a same OLoc.

In addition, the trust values of IoT devices maintained by the
track are used to filter malicious devices. Hence the tracker
will only select the holders whose values are above a pre-
determined threshold.

C. Collaborative Validation

To request a collaborative validation of certificate C, device
d sends a message < REQUEST_VALI, C,d, h > to the holder
h. Upon receiving this message, the holder /h searches its
cache to find the certificate of the public key kT on C.
If such certificate exists and is identical to C, it replies
d with a message < REPLY_VALI,C, h,d,‘Correct’ >. If
the certificate exists but is different from C, it replies d
with a message < REPLY_VALI,C h,d, Wrong' >. If no
certificate of k™ is cached, it replies d with a message
< REPLY _NO_CERT,C,h,d >. The main reason for a
missing certificate is that previously cached certificates may
be replaced by others due to the lack of cache space, while this
information has not been updated to OLoc. The other reason is
the false matchings. Note all these messages should be signed
by h’s private key for non-repudiation purposes.

Once the device d receives the REPLY_VALI message with
a ‘Correct’ value from a holder h, it knows the validation
of certificate C' is confirmed and it can use C for incoming
communications. If d receives the REPLY_VALI message
with a ‘Wrong’ value. It will discard the certificate C' and
still forward this event to the tracker. If d receives the
REPLY_NO_CERT message, it runs individual validation.

One additional step is that d may forward the confirmation
events to the tracker, in order to improve the trust value
of the holders that provide validation. It sends a message
< UPDATE_TRUST,d,t, E >, where F includes one or more
REPLY_VALI messages received during the past period of time
as well as their digital signatures. In order to save message
cost and reduce tracker overhead, d does not forward every
collaborative validation event but on a sampling basis. When
a malicious device keeps providing false validation results,
then eventually it will be detected.

D. Individual validation and caching

If the device d chooses to run individual validation of
certificate C, this process consumes computation resource and
relatively long latency on d. After C' being validated, d will
cache C in its local memory. One of the following three cache
replacement strategies will be used to replace old certificate:
random, FIFO (first in, first out), and LRU (Least recently
used). If an old certificate C, is replaced by a new one, d
sends a message < DELETE,C,,u,t > to the tracker.

Besides validating the certificate, d also needs to
check the revocation status of the certificate. It sends <
CHECK_REVO,C,d,t > to the tracker to query the re-
vocation status. If the certificate is included in the revo-
cation list stored in the tracker. The tracker will send a
< REVO_CERT,C,d,t > message to call back C' and let
d stop using C' and remove it from the cache.

E. Trust Model and Updates

1) Trust Model: The trust model is used to facilitate the
detection of malicious devices and make them in lower prob-
ability to be the selected holder. CCV adopts the following
definition of trust built from an existing model [5].

Definition 1. In the IoT network, a device d’s trust to
another device d’ is the subjective expectation of d of receiving
positive outcomes through the communications with d’.

Specifically, the trust value in CCV quantifies the expecta-
tion to receive correct validation results of certificates. The
range of trust value between two devices is [0,1]. At the
beginning, the trust value between every two devices is set to
be 0.5. Trust can be categorized into two classes: direct trust
and indirect trust. Direct trust is the trust that is calculated by
direct communications between two devices. Indirect trust is
the trust that is calculated by indirect recommendations, which
will be explained later.

We consider both direct and indirect trusts and use past
communications between two devices to measure the trust
value. Direct trust is based on the certificate validation results
between a validation requester and the holder. During a
period of time, the tracker will gather collaborative validation
events and verify whether the holder honestly validated the
certificates or not. At time p, the tracker records the number
of honest validation events s and the number of dishonest
validation events f between a requester d and a holder d’
from the beginning of the system. We adopt a subjective logic
framework [14] [13] to compute the direct trust. Due to space
limit, we skip the detailed formulas.

Indirect trust is based on the recommendation. Device A
trusts B with a direct trust value « and device A trusts C'
with a direct trust value e. When the trust value that B trusts
C updates to 3, if the trust value from A to B exceeds the
threshold 6, 6 is set to be 0.5. B can recommend C to A. A
trusts C' with an updated value af + (1 — a)e.

2) Trust Updates: When the tracker receives an UP-
DATE_TRUST message, it verifies the collaborative validation
events in F. The tracker maintains two arrays A and B to store
the numbers of honest and dishonest collaborative validation



events between two devices respectively. A[é][j] denotes the
number of honest validations that ¢ provides to j, and B[i][]
denotes the number of dishonest validations that ¢ provides
to j. The tracker also stores the trust value T[i][j] at current
time which denotes the degree that ¢ trusts 5. Once the tracker
verifies the collaborative validation event that j provided to ¢,
it updates Al¢][j] or B[i][j].

If the tracker finds that a validation is dishonest and the
certificate is not valid, it sends a FALSE VALI RESULTS
message to tell the device.

FE. Revocation Check

Revocation status check is important in certificate validation
but time-consuming on devices. In CCV, the tracker actively
downloads the Certificate Revocation List (CRL) [17]. A
device can send a CHECK_REVO message to request the
revocation status of a certificate. This design makes the device
start using the certificate simultaneously while waiting for the
reply from the tracker. The tracker replies about the status
using a REPLY_REVO message. If the certificate is revoked
according to the tracker, the device stops using it, removes it
from the cache, and rolls back to the prior state. In addition,
when the tracker updates its local revocation list and finds
existing certificates cached in the network are expired, it will
send REVO_CERT messages to the holders of these certificates
for removing them.

V. EXPERIMENTAL RESULTS AND SECURITY ANALYSIS

We implement a complete version of CCV in a packet-level
discrete-event simulator running on a desktop with 3.6GHz
Intel(R) Core(TM) i7-7700 CPU. The actual processes of
cryptographic operations are implemented and the latencies,
including cryptographic latency and network latency, are sim-
ulated. The reason is that the cryptographic latency on a
desktop does not reflect the actual cryptographic overhead
on an IoT device. We use the latency data of cryptographic
operations gathered from a WisMote platform featuring a
16MHz MSP430 micro-controller [19] [11]. We use SHA256
for hash operations, elliptic curve NIST P-256 for PKC, and
AES-128 for symmetric-key operations in secure communi-
cations among in-network IoT devices. We compare CCV
to an advanced method of individual certificate validation
[11], in which validating the certificate chain only requires
one single decryption operation. The average time of such
individual certificate validation on WisMote is around 1.9sec
with 13.9ms standard deviation as reported in [11]. Note
most existing certificate validation methods typically require
multiple intermediate certificates in a chain, and the validation
overhead grows linearly with the number of intermediate
certificates [11].

In our experiments, we simulate a number of IoT devices
running the CCV protocol to collaboratively validate the
certificates. We use ‘I-Valid’ to refer to individual validation.
For a fair comparison, in CCV we assume at the system start
time, no certificate is validated and cached in the network.
Also, OLoc will use the cache space. Every certificate in CCV

must be individually validated once and cached for further use.
The tracker updates the OLoc every five seconds.

We evaluate and compare the following six metrics of CCV.
1) Latency is the average time from receiving a certificate
to finishing validation on a device. 2) Number of local
decryptions is the number of times of running public key
decryption to validate certificates. It characterizes the compu-
tation overhead on devices. 3) Average number of messages
per certificate evaluates the communication cost. 4) Through-
put is the maximum number of certificate validations on the
simulator. Although the computation resource on the simulator
is different from that on a device, this metric still reflects
whether CCV reduces resource overhead. 5) Computational
cost for OLoc update measures the overhead of the tracker.
6) Trust value changes are used to detect malicious devices.

The number of events that require certificate validations
happening on devices follows the Poisson distribution. The
parameter )\ denotes the average number of events happening
in 1 sec, which is used to adjust the frequency of events. We
vary the number of events that requires a particular certificate
in three distribution: uniform, normal, and power law.

A. Evaluation Results

Performance varies with time. Assuming at the system
start time, no certificate is validated and cached in the network.
Then the devices validate and cache certificates gradually. We
may expect that the validation latency of CCV will decrease
when time increases. Fig. 3 shows the performance comparison
of CCV and I-Valid, by varying the time. In this set of
experiments, the number of IoT devices is 100, the total
number of certificates is 1000, \ is set to be 10, and the
memory size (OLoc and cache) is set to be 32 KB. I-Valid also
uses cache space to store certificates. We show the results for
uniform, normal, and power law distributions. From Fig. 3(a),
we find that CCV requires > 0.5s in average to validate a
certificate at time 500s and the latency keeps decreasing to
0.27s at time 5000s. CCV only uses 25% time compared to
I-Valid. More importantly, Fig. 3(b) shows that CCV always
requires around 10 decryptions per device, while this number
can be > 400 for I-Valid at time 5000s. CCV reduces more
than 99% local decryption operations and significantly saves
the computation cost. The latency of CCV is mainly the
network latency. From Fig. 3(c), we can see that the average
number of messages for each certificate in CCV increases
during time Os to 2000s, but will be stable after 2000s. It
is because more collaborative validation will be used than
individual validation. CCV is very communication-efficient:
the number of messages per certificate is close to two. We
also find that different distributions have a relatively small
influence on the performance of CCV.

Varying the number of certificates and cache size. We
conduct experiments by varying both the number of total
certificates and the cache size to evaluate their influence. In
this set of experiments, the number of devices is 100, A is set to
be 10, and the time is a 3000s duration. The results are shown
in Fig. 4. We find that CCV outperforms I-Valid protocol
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with lower latency and lower number of local decryptions.
When the number of total certificates increases, the latency
(Fig. 4(a)) and the number of decryptions (Fig. 4(b)) both
increase slightly in CCV, but still provides huge advantages
compared to I-Valid. There is a sudden increase at 3000
certificates in both latency, the number of decryptions, and
message cost (Fig. 4(c)) for CCV when the cache is 32KB.
This is because the more cache misses are caused by increasing
number of certificates. When the cache is 64KB, there is no
such problem.

Cache replacement. This set of experiments vary cache
replacement strategies including random, FIFO and LRU.
Fig. 5 shows that the strategy has little influence on the latency
of CCV, with random and LRU being slightly better.

Throughput. In this set of experiments, we compare the
validation capacity of CCV and I-Valid by keeping devices

performing validations in the simulation. The simulator simu-
lates 100 devices simultaneously. The signing and verification
algorithm is ECDSA with 160 bits keys. Fig. 6 shows that the
number of validations on a device in one millisecond. From
Fig. 6, we can see that CCV has a much better throughput
compared to I-Valid protocol, especially when large percentage
of public keys are recorded in OLoc.

B. Tracker overhead

The heaviest task for the tracker is to update the OLoc.
Table. I shows the time to construct an OLoc with different
number of certificates. The results show that it is very time-
efficient for the tracker to update the OLoc with a gigantic
size of certificates. CCV also builds different OLoc to choose
the most suitable holder of C' for different devices when there
are multiple choices. The reasons for multiple copies of C' are
the update delay of OLoc at the begining and the detection
of malicious devices. The number of different values among
different OLoc is small. Table. II shows the time to construct
an OLoc based on an existing OLoc with 10000 shared keys
but different values. The results show that it is very time-
efficient for the tracker to build the OLoc when there is little
difference in values with an existing OLoc.

C. Security Results and Analysis

We provide the evaluation results and analysis of how CCV
defends against three major attacks conducted by malicious
devices mentioned in Sec. II-B.
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TABLE I
TIME FOR BUILDING OLoC
# certificates | 100 | 1000 | 5000 | 10000 | 100000
Times (ms) | 0.20 | 148 | 6.59 | 13.03 131.51
TABLE II
TIME FOR BUILDING OLOC WITH SAME KEYS BUT DIFFERNET VALS
# different vals 10 100 | 200 | 300 | 400
Times (ms) 2.05 | 298 | 433 | 598 | 7.52

Trust value evaluation. We monitor the trust values
changes for both honest and malicious devices. In the set of
experiments, the number of devices is 100, the number of
certificates is 1000, time is set to a 900s duration, and the
cache size is 32 KB for each device. The initial trust value
between any two devices is set to be 0.5. The trust value will
be dynamically updated due to collaborative validation. The
percentage of malicious devices is 5%. Fig. 7 shows the trust
value changes. We show the results of five randomly chosen
honest (Fig. 7(a)) and the five malicious devices (Fig. 7(b)).
We find that the trust values of honest devices increase to
> 0.5 and are maintained at a high level. On the other
hand, the trust values of malicious devices are all < 0.5.
They will be filtered by the tracker during OLoc construction.
Fig. 8 shows the number of total false validations by malicious
devices.After a short duration, most malicious devices are not

able to perform false validations.

Fig. 9 shows the performance of CCV varying with the
percentage of malicious devices, ranging from 0% to 50%,
after 1000s. At that time, most malicious devices will be
detected and not used but the capacity of the whole cache
pool decreases. Hence we find that the latency (Fig. 9(a))
and average number of descriptions (Fig. 9(b)) both increase
with more malicious devices. The average message per cer-
tificate decreases from 1.88 to 1.77 in Fig. 9(c) because more
individual validation is conducted. However, CCV protocol
still achieves much better performance on average latency and
number of local decryptions, compared to I-Valid.

False validation attack: The evaluation of trust value
changes has been analyzed and the results, such as those in
Fig. 8, indicate that after a short period of time, the malicious
devices are not able to conduct false validation attacks.

Self-promoting attack: Trust value of each device is main-
tained and updated by the tracker. It is hard for a malicious
device to promote itself to be a collaborator.

Defamation attack: Each collaborative validation event
must carry a digital signature of the holder for authenticity
and non-repudiation purposes. The digital signature will be
verified by the tracker. Hence a malicious device cannot forge
a false validation event from a honest device unless it owns
the private key of the honest device.

Traitor attack and whitewashing attack: As shown in
Fig. 7(b), once the malicious device provides bad devices, the



trust value will drastically drop below the threshold, thus it can
not be selected as a collaborator. Besides, the tracker can audit
the identity of the device. Thus, the high cost will effectively
prevent the whitewashing attack.

Collusion attack: Two or more malicious devices may
improve their trust values by claiming that they helped each
other. However, a malicious device will eventually provide
a number of dishonest validations, which will be detected
by the tracker statistically. In our model, the trust value
reduction from one dishonest validation will be much larger
than the trust value improvement from one honest validation.
Hence it is only possible that the colluding malicious devices
claim collaborative validations much more frequently than
providing dishonest validations. Extremely high frequency of
collaborative validations will also be detected by the tracker.

VI. RELATED WORK

Certificate validation. Certificate-based PKIs are respon-
sible for creating, managing, distributing, using, storing and
revoking public key certificates, such as X.509. They are
widely used in Web browsing (TLS), email (S/MIME) and
document authentication. Efficient certificate validation has
attracted a broad attention of the research community in recent
years [11] [20] [2] [1] [16] [25] [12] [24]. Some approaches
delegate validation task to a third party, such as a smart e-
health gateway [20] and local ISPs [2]. Some approaches use
prefetching and prevalidation techniques to reduce certificate
validation cost [24], which can remove the time pressure from
the certificate validation. However, this approach brings a huge
cost for memory.

Trust Model. Ganeriwal et al. [9] proposes a distributed
reputation-based framework (RFSN) for high integrity sensor
networks. RFSN only uses direct trust between two nodes.
Feng et al. [8] proposes the NBBTE algorithm to establish the
direct trust and indirect values between two nodes by com-
prehensively considering and combining various factors. An
efficient distributed trust model (EDTM) has been proposed
in [13], which takes more trust metrics such as the energy
level information into consideration besides communication
behaviors. EDTM considers both direct and indirect trust.

VII. CONCLUSION

We design and evaluate the CCV protocol for fast public-
key certificate validation. Our contributions include a memory-
efficient and fast locator for certificate holders, called OLoc;
a trust model for CCV to evaluate the trustworthiness of
each device to avoid dishonest collaborative validation from
malicious devices; and a complete protocol suite for efficient
OLoc update, cache replacement, and revocation status check-
ing mechanisms in a dynamic network. Evaluation results
show that CCV significantly saves computation resource and
certificate validation latency on IoT devices.
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