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NONCONFORMING VIRTUAL ELEMENT METHOD FOR

2mTH ORDER PARTIAL DIFFERENTIAL EQUATIONS IN R
n

LONG CHEN AND XUEHAI HUANG

Abstract. A unified construction of the Hm-nonconforming virtual elements
of any order k is developed on any shape of polytope in R

n with constraints
m ≤ n and k ≥ m. As a vital tool in the construction, a generalized Green’s
identity for Hm inner product is derived. The Hm-nonconforming virtual
element methods are then used to approximate solutions of the m-harmonic

equation. After establishing a bound on the jump related to the weak conti-
nuity, the optimal error estimate of the canonical interpolation, and the norm
equivalence of the stabilization term, the optimal error estimates are derived
for the Hm-nonconforming virtual element methods.

1. Introduction

We intend to construct Hm-nonconforming virtual elements of order k ∈ N on
a very general polytope K ⊂ R

n in any dimension and any order with constraints
m ≤ n and k ≥ m. Since an mth order derivative of polynomial degree m − 1
or less would be zero, the constraint k ≥ m is required to ensure that the virtual
element spaces possess meaningful approximation in the Hm-seminorm. Due to a
technical reason, our attention is restricted to the case m ≤ n in this paper, and
the case m > n is postponed for future works. The virtual element was described
as a generalization of the finite element on a general polytope in [12, 13], thus it is
helpful to recall the definition of the finite element first.

A finite element onK was defined as a triple (K,VK ,NK) in [23], where VK is the
finite-dimensional space of shape functions and NK is the set of degrees of freedom
(d.o.f.). The set NK forms a basis of (VK)′ the dual space of the space of shape
functions. The shape functions of the finite element are usually polynomials, and
their basis functions being dual to the degrees of freedom NK have to be explicitly
constructed for the implementation, which is painful for high order cases (either
k,m, or n is large).

We can also represent the virtual element as a triple (K,NK , VK). Here we
reorder VK andNK to emphasize that the set of the degrees of freedomNK is crucial
in the construction of the virtual element and that the space of shape functions VK

is virtual. Indeed, after having the degrees of freedom NK , we may attach different
spaces. The space of shape functions VK is only required to include all polynomials
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of the total degree up to k for the approximation property. Different from the finite
element, one advantage of the virtual element is that the basis functions of VK are
not explicitly required in the implementation. When forming the linear system of
the virtual element method, the computation of all the to-be-required quantities
can be transferred to the computation using the degrees of freedom.

Construction of Hm-conforming or nonconforming elements has been an active
topic in the field of the finite element methods in recent years. SomeHm-conforming
finite elements with polynomial shape functions were designed on the simplices
in [4, 7, 15, 35, 41] and on the hyperrectangles in [27, 29, 42]. Recently an Hm-
conforming virtual element for polyharmonic problems with arbitrary m in two
dimensions was introduced and studied in [6]. For general m, nonconforming ele-
ments on the simplices are easier to construct than conforming ones. In [36, 37],
Wang and Xu constructed the minimal Hm-nonconforming elements in any di-
mension with constraint m ≤ n. Recently Wu and Xu extended these minimal
Hm-nonconforming elements to m = n + 1 by enriching the space of shape func-
tions with bubble functions in [40], and to arbitrary m and n by using the interior
penalty technique in [39]. In two dimensions, Hu and Zhang designed the Hm-
nonconforming elements on the triangle for any m in [30]. On the other hand, the
H2-conforming virtual element, the C0-type H2-nonconforming virtual element,
and the fully H2-nonconforming virtual element on the polygon with any shape
in two dimensions were developed in [19], [43], and [5, 44], respectively. In [38], a
nonconforming Crouzeix–Raviart type, i.e., H1-nonconforming finite element, was
advanced on the polygon.

Although the Hm-conforming virtual element has been devised for n = 2 in
[6] for arbitrary m, generalization to dimension n > 2 seems nontrivial. As we
show in this paper, the Hm-nonconforming virtual element can be constructed in
a universal way for all n ≥ m and allows unified error analysis.

We shall construct the Hm-nonconforming virtual element in any order on the
polytope with any shape in any dimension (with constraints k ≥ m and m ≤ n).
The vital tool is the following generalized Green’s identity for the Hm space:

(∇mu,∇mv)K =((−Δ)mu, v)K

+

m∑

j=1

∑

F∈Fj(K)

∑

α∈Aj
|α|≤m−j

(
D

2m−j−|α|
F,α (u),

∂|α|v

∂ναF

)

F
,(1.1)

which is proved by the mathematical induction and integration by parts. Here
Fj(K) is the set of all (n − j)-dimensional faces of the polytope K, Aj the set
consisting of all n-dimensional multi-indexes α = (α1, . . . , αn) with αj+1 = · · · =

αn = 0, D
2m−j−|α|
F,α (u) some (2m− j − |α|)th order derivatives of u on F , and ∂|α|v

∂να
F

the multi-indexed normal derivatives on F .
Imagining u in the Green’s identity (1.1) as a polynomial of degree k temporarily,

we acquire the degrees of freedom Nk(K) from the right-hand side of the Green’s
identity (1.1), and the space Vk(K) of shape functions is defined inherently by
requiring the first terms in the inner product to be in polynomial spaces. Namely,
the right-hand side of (1.1) provides a natural duality of Vk(K) and Nk(K). As a
result we construct the fullyHm-nonconforming virtual element (K,Nk(K), Vk(K))
completely based on the Green’s identity (1.1). If K is a simplex and k = m, the
virtual element (K,Nk(K), Vk(K)) is reduced to the nonconforming finite element
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Hm-NONCONFORMING VEM 3

in [37], and hence we generalize the nonconforming finite element in [37] to high
order k > m and arbitrary polytopes. In two dimensions, we also recover the fully
H2-nonconforming virtual element in [5, 44].

After introducing the local Hm projection ΠK and a stabilization term using
d.o.f., we propose Hm-nonconforming virtual element methods for solving the m-
harmonic equation. We assume the mesh Th admits a virtual quasi-uniform trian-
gulation, and each element in Th is star-shaped. A bound on the jump �∇s

hvh� is
derived using the weak continuity and the trace inequality, with which we show the
discrete Poincaré inequality for the global virtual element space. The optimal error
estimate of the canonical interpolation Ihu is achieved after establishing a Galerkin
orthogonality of u − Ihu. By employing the bubble function technique which was
frequently used in proving the efficiency of the a posteriori error estimators, the
inverse inequality for polynomials, the generalized Green’s identity, and the trace
inequality, we acquire the norm equivalence of the standard stabilization using l2

inner products of degree of freedoms on ker(ΠK). The optimal error estimates are
derived for the Hm-nonconforming virtual element methods by further estimating
the consistency error.

The shape functions of the virtual element spaces are not explicitly known; in
particular, the output of the method is a vector of degrees of freedom and not an
explicit function. In order to explicitly represent the solution, one employs some
suitable polynomial projector, which is typically piecewise defined and discontin-
uous over the polytopal decomposition. However, since the degrees of freedom in
the interior of each element for the virtual elements can be eliminated by the static
condensation, similarly as the hybridizable discontinuous Galerkin methods [31],
the virtual element methods possess fewer globally decoupled degrees of freedom
than the usual discontinuous Galerkin methods. Furthermore, the nonconforming
virtual element can be constructed in a universal way which allows unified error
analysis and is employed for theoretical purposes, independently of the way one
wants to represent the solution.

The rest of this paper is organized as follows. In Section 2, we present some
notation and the construction of the fully H1- and H2-nonconforming virtual ele-
ments. The general fully Hm-nonconforming virtual element is designed in Section
3. The corresponding Hm-nonconforming virtual element method and its error es-
timate are shown in Sections 4 and 5, respectively. A conclusion is given in Section
6. Finally, we prove the norm equivalence in Appendix A and give a remark on the
implementation in Appendix B.

2. Preliminaries

2.1. Notation. Assume that Ω ⊂ R
n (n ≥ 2) is a bounded polytope. For any

nonnegative integer r and 1 ≤ � ≤ n, denote the set of r-tensor spaces over R
�

by T�(r) := (R�)r =
∏r

j=1R
�. Given a bounded domain K ⊂ R

n and a non-

negative integer k, let Hk(K;T�(r)) be the usual Sobolev space of functions over
K taking values in the tensor space T�(r). The corresponding norm and semi-
norm are denoted, respectively, by ‖ · ‖k,K and | · |k,K . It is customary to rewrite
Hk(K;T�(0)) asH

k(K). For any F ⊂ ∂K, denote by νK,F the unit outward normal
to ∂K. Without causing any confusion, for simplicity we will abbreviate νK,F as
ν. Define Hk

0 (K) as the closure of C∞
0 (K) with respect to the norm ‖ · ‖k,K , i.e.
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4 LONG CHEN AND XUEHAI HUANG

(cf. [1, Theorem 5.37]),

Hk
0 (K) :=

{
v ∈ Hk(K) : v =

∂v

∂ν
= · · · =

∂k−1v

∂νk−1
= 0 on ∂K

}
,

and define H1
0 (K;T�(r)) in a similar way. Let (·, ·)K be the standard inner product

on L2(K;T�(r)). If K is Ω, we abbreviate ‖·‖k,K , |·|k,K and (·, ·)K by ‖·‖k, |·|k and
(·, ·), respectively. The notation Pk(K) stands for the set of all polynomials over
K with the total degree no more than k, and denote by Pk(K;T�(r)) the tensorial
version space of Pk(K). Let QK

k be the L2-orthogonal projection onto Pk(K;T�(r)).
For an n-dimensional multi-index α = (α1, . . . , αn) with αi ∈ Z

+ ∪ {0}, define
|α| :=

∑n
i=1 αi. For 0 ≤ � ≤ n, let A� be the set consisting of all multi-indexes

α with
∑n

i=�+1 αi = 0, i.e., the nonzero index only exists for 1 ≤ i ≤ l. For
any nonnegative integer k, define the scaled monomial Mk(K) on an �-dimensional
domain K,

Mk(K) :=

{(
x− xK

hK

)α

, α ∈ A�, |α| ≤ k

}
,

where hK is the diameter of K and xK is the centroid of K. Also, Mk(K) := ∅
whenever k < 0.

Let {Th} be a regular family of partitions of Ω into nonoverlapping simple poly-
topal elements with h := maxK∈Th

hK . Let Fr
h be the set of all (n− r)-dimensional

faces of the partition Th for r = 1, 2, . . . , n, and its boundary part

Fr,∂
h := {F ∈ Fr

h : F ⊂ ∂Ω},

and interior part Fr,i
h := Fr

h\F
r,∂
h . Moreover, we set for each K ∈ Th

Fr(K) := {F ∈ Fr
h : F ⊂ ∂K}.

The supscript r in Fr
h represents the co-dimension of an (n − r)-dimensional face

F . As we shall show later the degree of freedom will be associated to the r normal
vectors of F . Similarly, for F ∈ Fr

h and j = 0, 1, . . . , n− r with r = 1, 2, . . . , n, we
define

Fj(F ) := {e ∈ Fr+j
h : e ⊂ F}.

Here j is the co-dimension relative to the face F . Apparently F0(F ) = F .
For any F ∈ Fr

h, let νF,1, . . . , νF,r be its mutually perpendicular unit normal
vectors, and define the surface gradient on F as

(2.1) ∇F v := ∇v −
r∑

i=1

∂v

∂νF,i
νF,i,

namely the projection of ∇v to the face F , which is independent of the choice of the
normal vectors. When v is a tensor, the surface gradient ∇F v is defined element-
wisely in convention, which is a one-order higher tensor. And denote by divF the
corresponding surface divergence. For any F ∈ Fr

h and α ∈ Ar for r = 1, . . . ,m,
set

∂|α|v

∂ναF
:=

∂|α|v

∂να1

F,1 · · · ∂ν
αr

F,r

.

For any (n− 2)-dimensional face e ∈ F2
h , denote

∂−1e := {F ∈ F1
h : e ⊂ ∂F}.

Licensed to Univ of Calif, Irvine. Prepared on Thu Jan  2 14:45:07 EST 2020 for download from IP 128.195.64.2.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



Hm-NONCONFORMING VEM 5

Similarly, for any (n− 1)-dimensional face F ∈ F1
h , let

∂−1F := {K ∈ Th : F ∈ F1(K)}.

For nonnegative integers m and k, let

Hm(Th) := {v ∈ L2(Ω) : v|K ∈ Hm(K) for each K ∈ Th},

Pk(Th) := {v ∈ L2(Ω) : v|K ∈ Pk(K) for each K ∈ Th}.

For a function v ∈ Hm(Th), equip the usual broken Hm-type norm and seminorm

‖v‖m,h :=
( ∑

K∈Th

‖v‖2m,K

)1/2

, |v|m,h :=
( ∑

K∈Th

|v|2m,K

)1/2

.

We introduce jumps on (n−1)-dimensional faces. Consider two adjacent elements
K+ and K− sharing an interior (n− 1)-dimensional face F . Denote by ν+ and ν−

the unit outward normals to the common face F of the elements K+ and K−,
respectively. For a scalar-valued or tensor-valued function v, write v+ := v|K+ and
v− := v|K− . Then define the jump on F as follows:

�v� := v+νF,1 · ν
+ + v−νF,1 · ν

−.

On a face F lying on the boundary ∂Ω, the above term is defined by �v� := vνF,1 ·ν.
Throughout this paper, we also use “� · · · ” to mean that “≤ C · · · ”, where C

is a generic positive constant independent of mesh size h, but may depend on the
chunkiness parameter of the polytope, the degree of polynomials k, the order of
differentiation m, and the dimension of space n, which may take different values
at different appearances. Also, A � B means A � B and B � A. Hereafter, we
always assume k ≥ m.

We summarize important notation in Tables 1 and 2 below.

Table 1. Notation of the mesh, elements, and faces.

m order of differentiation Hm n dimension of space R
n m ≤ n, k ≥ m

k degree of polynomial Pk r co-dimension of a face 0 ≤ r ≤ n

Th a mesh of Ω K a polytope element K ∈ Th

Fr
h (n− r)-dimensional face F a typical face F ∈ Fr

h

∂−1e all faces surrounding e ∂−1F elements containing F e ∈ F2
h, F ∈ F1

h

Table 2. Notation for differentiation

α = (α1, α2, . . . , αn) an n-dimensional multi-index
Ar set of multi-index α = (α1, . . . , αr, 0, . . . , 0) for α ∈ Ar

νF,1, · · · , νF,r r linearly independent unit normal vectors for F ∈ Fr
h

∇F v := ∇v −

r∑

i=1

∂v

∂νF,i

νF,i surface gradient on F

D
j

F,α(v) a jth order derivative of v on F

∂|α|v

∂να
F

:=
∂|α|v

∂ν
α1

F,1 · · · ∂ν
αr
F,r

. a multi-indexed normal derivative on F
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6 LONG CHEN AND XUEHAI HUANG

2.2. H1-nonconforming virtual element. To drive the Hm-nonconforming vir-
tual element in a unified framework, we first revisit the simplest case for the purpose
of discovering the underlying mechanism.

Taking anyK ∈ Th, let u ∈ H2(K), and let v ∈ H1(K). Applying the integration
by parts, it holds that

(2.2) (∇u,∇v)K = −(Δu, v)K +
∑

F∈F1(K)

(
∂u

∂νK,F
, v)F .

Imaging u ∈ Pk(K), we are inspired by the Green’s identity (2.2) to advance the
following local degrees of freedom (dofs) Nk(K) of the H1 nonconforming virtual
element:

1

|F |
(v, q)F ∀ q ∈ Mk−1(F ) on each F ∈ F1(K),(2.3)

1

|K|
(v, q)K ∀ q ∈ Mk−2(K).(2.4)

The local space of the H1-nonconforming virtual element is

Vk(K) :=

{
u ∈ H1(K) : Δu ∈ Pk−2(K),

∂u

∂νK,F
|F ∈ Pk−1(F ) ∀ F ∈ F1(K)

}

for k ≥ 1. This is the H1-nonconforming virtual element constructed in [8]; see
also [32].

2.3. H2-nonconforming virtual element. Then we consider the case m = 2.
For each F ∈ F1(K) and any function v ∈ H4(K), set

Mνν(v) := νᵀF,1(∇
2v)νK,F ,

Mνt(v) := (∇2v)νK,F −Mνν(v)νF,1,

Qν(v) := νᵀK,F div(∇2v) + divF Mνt(v).

In two dimensions, Mνν(v), Mνt(v), and Qν(v) are called the normal bending mo-
ment, twisting moment, and effective transverse shear force, respectively, when v
is the deflection of a thin plate in the context of elastic mechanics [25, 34].

Lemma 2.1. For any u ∈ H4(K) and v ∈ H2(K), it holds that

(∇2u,∇2v)K = (Δ2u, v)K +
∑

F∈F1(K)

[
(Mνν(u),

∂v

∂νF,1
)F − (Qν(u), v)F

]

+
∑

e∈F2(K)

∑

F∈F1(K)∩∂−1e

(νᵀF,eMνt(u), v)e.(2.5)

Proof. Using integration by parts, we get

(div(∇2u),∇v)K = −(Δ2u, v)K +
∑

F∈F1(K)

(νᵀK,F div(∇2u), v)F ,

and for each F ∈ F1(K),

(Mνt(u),∇F v)F = −(divF Mνt(u), v)F +
∑

e∈F1(F )

(νᵀF,eMνt(u), v)e.
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Then we acquire from the last two identities and splitting the gradient into the
tangential and normal components that

(∇2u,∇2v)K = −(div(∇2u),∇v)K +
∑

F∈F1(K)

((∇2u)νK,F ,∇v)F

= −(div(∇2u),∇v)K +
∑

F∈F1(K)

(Mνν(u),
∂v

∂νF,1
)F

+
∑

F∈F1(K)

(Mνt(u),∇F v)F

= (Δ2u, v)K +
∑

F∈F1(K)

[
(Mνν(u),

∂v

∂νF,1
)F − (Qν(u), v)F

]

+
∑

F∈F1(K)

∑

e∈F1(F )

(νᵀF,eMνt(u), v)e,

which ends the proof. �

Inspired by the Green’s identity (2.5), for any element K ∈ Th and integer k ≥ 2,
the local degrees of freedom Nk(K) of the H2 nonconforming virtual element are
given as follows:

1

|K|
(v, q)K ∀ q ∈ Mk−4(K),(2.6)

1

|F |
(v, q)F ∀ q ∈ Mk−3(F ) on each F ∈ F1(K),(2.7)

1

|F |(n−2)/(n−1)
(

∂v

∂νF,1
, q)F ∀ q ∈ Mk−2(F ) on each F ∈ F1(K),(2.8)

1

|e|
(v, q)e ∀ q ∈ Mk−2(e) on each e ∈ F2(K).(2.9)

The local space of the H2 nonconforming virtual element is

Vk(K) := {u ∈ H2(K) : Δ2u ∈ Pk−4(K),Mνν(u)|F ∈ Pk−2(F ), Qν(u)|F ∈ Pk−3(F ),
∑

F∈F1(K)∩∂−1e

νᵀF,eMνt(u)|e ∈ Pk−2(e) ∀ F ∈ F1(K), e ∈ F2(K)}.

Remark 2.2. In two dimensions, the degrees of freedom (2.9) will be reduced to the
function values on the vertices of K. Then the virtual element (K,Nk(K), Vk(K))
is the same as that in [5, 44].

Remark 2.3. If the element K ∈ Th is a simplex and k = 2, the degrees of free-
dom (2.6)–(2.7) disappear, and the degrees of freedom (2.8)–(2.9) are the same
as the Morley–Wang–Xu element’s degrees of freedom in [36]. Indeed, the virtual
element (K,Nk(K), Vk(K)) coincides with the Morley–Wang–Xu element in [36]
when k = 2 and K is a simplex.

3. Hm-nonconforming virtual element with 1 ≤ m ≤ n

In this section, we will construct the Hm-nonconforming virtual element. It has
been illustrated in Sections 2.2–2.3 that the Green’s identity plays a vital role in
deriving the H1 and H2 nonconforming virtual elements. To this end, we shall first
derive a generalized Green’s identity for the Hm space.
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8 LONG CHEN AND XUEHAI HUANG

3.1. Generalized Green’s identity. For any scalar or tensor-valued smooth func-
tion v, nonnegative integer j, F ∈ Fr

h with 1 ≤ r ≤ n, and α ∈ Ar, we use Dj
F,α(v)

to denote some jth order derivatives of v restrict on F , which may take different
expressions at different appearances.

Lemma 3.1. Let K ∈ Th, let F ∈ Fr(K) with 1 ≤ r ≤ n − 1, and let s be a

positive integer satisfying s ≤ n − r. There exist differential operators D
s−j−|α|
e,α

for j = 0, . . . , s, e ∈ Fj(F ), and α ∈ Ar+j with |α| ≤ s − j such that for any

τ ∈ Hs(F ;Tn(s)) and (∇sv)|F ∈ L2(F ;Tn(s)), it holds that

(3.1) (τ,∇sv)F =

s∑

j=0

∑

e∈Fj(F )

∑

α∈Ar+j
|α|≤s−j

(
Ds−j−|α|

e,α (τ ),
∂|α|v

∂ναe

)

e
.

Proof. We adopt the mathematical induction to prove the identity (3.1). When
s = 1, we get from (2.1) and integration by parts

(τ,∇v)F =

r∑

i=1

(τ,
∂v

∂νF,i
νF,i)F + (τ,∇F v)F

=
r∑

i=1

(νᵀF,iτ,
∂v

∂νF,i
)F − (divF τ, v)F +

∑

e∈F1(F )

(νᵀF,eτ, v)e.

Thus the identity (3.1) holds for s = 1.
Next assume that the identity (3.1) is true for s = � − 1 with 2 ≤ � ≤ n − r,

and then let us prove it is also true for s = �. We get from (2.1) and integration by
parts

(τ,∇�v)F =
r∑

i=1

(τνF,i,∇
�−1 ∂v

∂νF,i
)F + (τ,∇F∇

�−1v)F

=

r∑

i=1

(τνF,i,∇
�−1 ∂v

∂νF,i
)F − (divF τ,∇�−1v)F +

∑

e∈F1(F )

(τνF,e,∇
�−1v)e.

Applying the assumption with s = �− 1 to the right-hand side of the last equation
term by term, we have

(τνF,i,∇
�−1 ∂v

∂νF,i
)F =

�−1∑

j=0

∑

e∈Fj(F )

∑

α∈Ar+j
|α|≤�−1−j

(
D�−1−j−|α|

e,α (τνF,i),
∂|α|

∂ναe

( ∂v

∂νF,i

))

e
,

(divF τ,∇�−1v)F =
�−1∑

j=0

∑

e∈Fj(F )

∑

α∈Ar+j
|α|≤�−1−j

(
D�−1−j−|α|

e,α (divF τ ),
∂|α|v

∂ναe

)

e
,

(τνF,e,∇
�−1v)e =

�−1∑

j=0

∑

ẽ∈Fj(e)

∑

α∈Ar+1+j
|α|≤�−1−j

(
D

�−1−j−|α|
ẽ,α (τνF,e),

∂|α|v

∂ναẽ

)

ẽ
.

Finally we conclude (3.1) for s = � by combining the last four equations and the
fact that νF,i is a linear combination of νe,1, . . . , νe,r+j if e ∈ Fj(F ). �
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Hm-NONCONFORMING VEM 9

For each term on the right-hand side of (3.1), the total number of differentiation
of the integrand is s − j. In view of Stokes’s theorem, e ∈ Fj(F ) can be thought
of as e ∈ ∂jF so that the total number of differentiations is s which matches that
of the left-hand side. The bounds on s in Lemma 3.1 imply r + s ≤ n; then
Fs(F ) ⊂ Fr+s(K) is well-defined for F ∈ Fr(K). Hence we can recursively apply
the Stokes theorem until there is no derivative of v on the lowest-dimensional faces.

We give two examples of identity (3.1). When n ≥ 2, s = 1, and 1 ≤ r ≤ n− 1,
the explicit expression of (3.1) is that for any F ∈ Fr(K), τ ∈ H1(F ;Rn), and
(∇v)|F ∈ L2(F ;Rn),

(τ,∇v)F = −(divF τ, v)F +

r∑

i=1

(νᵀF,iτ,
∂v

∂νF,i
)F +

∑

e∈F1(F )

(νᵀF,eτ, v)e.

If n = 3 and s = 2, then r = 1. Also, the explicit expression of (3.1) is that for any
F ∈ F1(K), τ ∈ H2(F ;T3(2)), and (∇2v)|F ∈ L2(F ;T3(2)),

(τ,∇2v)F =(divF divF τ, v)F − (νᵀF,1(divF τ ) + divF (τνF,1),
∂v

∂νF,1
)F

+ (νᵀF,1τνF,1,
∂2v

∂ν2F,1

)F −
∑

e∈F1(F )

(νᵀF,e(divF τ ) + dive(τνF,e), v)e

+
∑

e∈F1(F )

2∑

i=1

(νᵀe,iτνF,e + (νᵀe,iνF,1)ν
ᵀ

F,1τνF,e,
∂v

∂νe,i
)e

+
∑

e∈F1(F )

∑

δ∈F1(e)

(νᵀe,δτνF,e)(δ)v(δ).

Theorem 3.2. Let 1 ≤ m ≤ n. There exist differential operators D
2m−j−|α|
F,α for

j = 1, . . . ,m, F ∈ Fj(K), and α ∈ Aj with |α| ≤ m − j such that it holds for

any u ∈ Hm(K) satisfying (−Δ)mu ∈ L2(K) and D
2m−j−|α|
F,α u ∈ L2(F ), and any

v ∈ Hm(K)

(∇mu,∇mv)K =((−Δ)mu, v)K

+
m∑

j=1

∑

F∈Fj(K)

∑

α∈Aj
|α|≤m−j

(
D

2m−j−|α|
F,α u,

∂|α|v

∂ναF

)

F
.(3.2)

Proof. By the density argument, we can assume u ∈ H2m(K). We still use the
mathematical induction to prove the identity (3.2). The identity (3.2) form = 1 and
m = 2 is just the identities (2.2) and (2.5), respectively. Assume the identity (3.2)
is true for m = �−1 with 3 ≤ � ≤ n; then let us prove that it is also true for m = �.

Applying the integration by parts,

(∇�u,∇�v)K = −(div∇�u,∇�−1v)K +
∑

F∈F1(K)

((∇�u)νK,F ,∇
�−1v)F

= (∇�−1(−Δu),∇�−1v)K +
∑

F∈F1(K)

((∇�u)νK,F ,∇
�−1v)F .
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10 LONG CHEN AND XUEHAI HUANG

Since the identity (3.2) holds for m = �− 1, we have

(∇�−1(−Δu),∇�−1v)K

=((−Δ)�u, v)K +
�−1∑

j=1

∑

F∈Fj(K)

∑

α∈Aj
|α|≤�−1−j

(
D

2(�−1)−j−|α|
F,α (−Δu),

∂|α|v

∂ναF

)

F
.

Taking τ = (∇�u)νK,F , s = �− 1, and r = 1 in (3.1), we get

((∇�u)νK,F ,∇
�−1v)F =

�−1∑

j=0

∑

e∈Fj(F )

∑

α∈A1+j
|α|≤�−1−j

(
D�−1−j−|α|

e,α ((∇�u)νK,F ),
∂|α|v

∂ναe

)

e

=

�∑

j=1

∑

e∈Fj−1(F )

∑

α∈Aj

|α|≤�−j

(
D�−j−|α|

e,α ((∇�u)νK,F ),
∂|α|v

∂ναe

)

e
.

Therefore we finish the proof by combining the last three equations. �

Examples for m = 1, 2, n ≥ m, and m = n = 3 can be found in Appendix B.

3.2. Virtual element space. Inspired by identity (3.2), for any element K ∈ Th
and integer k ≥ m, the local degrees of freedom Nk(K) are given as follows:

1

|K|
(v, q)K ∀ q ∈ Mk−2m(K),(3.3)

1

|F |(n−j−|α|)/(n−j)
(
∂|α|v

∂ναF
, q)F ∀ q ∈ Mk−(2m−j−|α|)(F )(3.4)

on each F ∈ Fj(K), where j = 1, . . . ,m, α ∈ Aj , and |α| ≤ m− j. Denote by NK

the number of local degrees of freedom (3.3)–(3.4).

We present a heuristic explanation of the scaling factor in (3.4). Let K̂ = {x̂ ∈
R

n : x̂ = 1
hK

(x−xK) ∀ x ∈ K}, and let an affine mapping Ψ : x̂ ∈ R
n → Ψ(x̂) =

hK x̂+ xK ∈ R
n. Then hK̂ � 1 and Ψ(K̂) = K. For any function v(x) defined on

K, let v̂(x̂) := v(Ψ(x̂)), which is defined on K̂. By the scaling argument, we have

(
∂|α|v

∂ναF
, q)F = h

n−j−|α|
K (

∂|α|v̂

∂να
F̂

, q̂)F̂ .

By the mesh conditions (A1)–(A2) in Section 4.2, it holds that |F | � hn−j
K . Thus

there exists a constant C>0 being independent of hK such that |F |(n−j−|α|)/(n−j) =

Ch
n−j−|α|
K . Then

1

|F |(n−j−|α|)/(n−j)
(
∂|α|v

∂ναF
, q)F =

1

C
(
∂|α|v̂

∂να
F̂

, q̂)F̂ =
1

C1

1

|F̂ |(n−j−|α|)/(n−j)
(
∂|α|v̂

∂να
F̂

, q̂)F̂ ,

where C1 = C/|F̂ |(n−j−|α|)/(n−j) is independent of hK . Hence all the degrees of
freedom in (3.3)–(3.4) share the same order of magnitude.

Again due to the first terms in the inner products of the right-hand side of (3.2),
and the degrees of freedom (3.3)–(3.4), it is inherent to define the local space of the
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Hm-nonconforming virtual element as

Vk(K) := {u ∈ Hm(K) :(−Δ)mu ∈ Pk−2m(K),

D
2m−j−|α|
F,α (u)|F ∈ Pk−(2m−j−|α|)(F ) ∀ F ∈ Fj(K),

j = 1, . . . ,m, α ∈ Aj , and |α| ≤ m− j},

where the differential operators D
2m−j−|α|
F,α are introduced in Theorem 3.2.

In the following we shall prove that (K,Nk(K), Vk(K)) forms a finite element
triple in the sense of Ciarlet [23]. Unlike the traditional finite element, in the
virtual element only the set of the degrees of freedom Nk(K) needs to be explicitly
known. The “virtual” space Vk(K) is only needed for the purpose of analysis and

the specific formulation for D
2m−j−|α|
F,α is not needed in the definition of Vk(K).

The following property is the direct result of (3.1) and the definition of the
degrees of freedom (3.4).

Lemma 3.3. Let K ∈ Th, let F ∈ Fr(K) with 1 ≤ r ≤ m, and let s ≤ m− r be a

nonnegative integer satisfying k ≥ 2m−(r+s). For any τ ∈ Pk−(2m−r−s)(F ;Tn(s))

and (∇sv)|F ∈ L2(F ;Tn(s)), the term

(τ,∇sv)F

is uniquely determined by the degrees of freedom
(

∂|α|v
∂να

e
, q
)

e
for all 0 ≤ j ≤ s,

e ∈ Fj(F ), α ∈ Ar+j with |α| ≤ s− j, and q ∈ Mk−(2m−r−j−|α|)(e).

Lemma 3.4. We have Pk(K) ⊆ Vk(K) and

(3.5) dimVk(K) = dimNk(K).

Proof. For any q ∈ Pk(K), it is obvious that

(−Δ)mq ∈ Pk−2m(K), D
2m−j−|α|
F,α q|F ∈ Pk−(2m−j−|α|)(F ).

Hence it holds that Pk(K) ⊆ Vk(K). Since all the differential operators in the
definition of Vk(K) are linear, Vk(K) is a vector space.

Next we count the dimension of Vk(K). Consider the local polyharmonic equa-
tion with the Neumann boundary condition

(3.6)

⎧
⎪⎨
⎪⎩

(−Δ)mu = f1 in K,

D
2m−j−|α|
F,α (u) = gF,α

j on each F ∈ Fj(K)

with j = 1, . . . ,m, α ∈ Aj , and |α| ≤ m− j,

where f1 ∈ Pk−2m(K), gF,α
j ∈ Pk−(2m−j−|α|)(F ). Applying the generalized Green’s

identity (3.2), the weak formulation of (3.6) is

(3.7) (∇mu,∇mv)K = (f1, v)K +
m∑

j=1

∑

F∈Fj(K)

∑

α∈Aj
|α|≤m−j

(
gF,α
j ,

∂|α|v

∂ναF

)

F

for any v ∈ Hm(K). If we take v = q ∈ Pm−1(K) in (3.7), we have the compatibility
condition of the data

(3.8) (f1, q)K +
m∑

j=1

∑

F∈Fj(K)

∑

α∈Aj
|α|≤m−j

(
gF,α
j ,

∂|α|q

∂ναF

)

F
= 0 ∀ q ∈ Pm−1(K).
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12 LONG CHEN AND XUEHAI HUANG

On the other hand, given f1 ∈ Pk−2m(K), gF,α
j ∈ Pk−(2m−j−|α|)(F ) satisfying

the compatibility condition (3.8), the weak formulation of the Neumann problem
of the local polyharmonic equation (3.6) is: find u ∈ Hm(K)/Pm−1(K) such that

(∇mu,∇mv)K = (f1, v)K +
m∑

j=1

∑

F∈Fj(K)

∑

α∈Aj
|α|≤m−j

(
gF,α
j ,

∂|α|v

∂ναF

)

F

for all v ∈ Hm(K)/Pm−1(K). The well-posedness of this variational formulation is
guaranteed by the Lax–Milgram lemma [9, 23], and specifically the well-posedness
of polyharmonic equations with various boundary conditions can be found in [2,26].

Therefore dim(Vk(K)/Pm−1(K)) equals

dimPk−2m(K) +

m∑

j=1

∑

F∈Fj(K)

∑

α∈Aj
|α|≤m−j

dimPk−(2m−j−|α|)(F )− dimPm−1(K),

where the dimension of the constraint for the data is subtracted. When count-
ing dimVk(K), we should add back the dimension of the kernel space, i.e., solu-
tion spaces of (∇mu,∇mv)K = 0, which implies dimVk(K) = dimPk−2m(K) +∑m

j=1

∑
F∈Fj(K)

∑
α∈Aj

|α|≤m−j

dimPk−(2m−j−|α|)(F ) = dimNk(K). �

Lemma 3.5. The degrees of freedom (3.3)–(3.4) are unisolvent for the local virtual

element space Vk(K).

Proof. Let v ∈ Vk(K) and suppose all the degrees of freedom (3.3)–(3.4) vanish.
We get from (3.7) that

‖∇mv‖20,K = 0.

Thus v ∈ Pm−1(K). By Lemma 3.3 with s = m − r, we have for any F ∈ Fr(K)
with 1 ≤ r ≤ m,

(3.9) (τ,∇sv)F = 0 ∀ τ ∈ P0(F ;Tn(s)).

Due to (3.9) with r = 1 and the fact that v ∈ Pm−1(K), it follows that v ∈
Pm−2(K). Recursively applying (3.9) with r = 2, . . . ,m gives v = 0. This ends the
proof. �

Remark 3.6. If the element K ∈ Th is a simplex and k = m, the degrees of free-
dom (3.3) disappear, and the degrees of freedom (3.4) are the same as those of the
nonconforming finite element in [37]. Since Pm(K) ⊆ Vk(K), the virtual element
(K,Nk(K), Vk(K)) coincides with the nonconforming finite element in [37] when K
is a simplex and k = m, which is the minimal finite element for the 2mth order par-
tial differential equations in R

n. In other words, we generalize the nonconforming
finite element in [37] to high order k > m and arbitrary shape of polytopes.

3.3. Local projections. For each K ∈ Th, define a local Hm projection ΠK :
Hm(K) → Pk(K) as follows: given v ∈ Hm(K), let ΠK

k v ∈ Pk(K) be the solution
of the problem

(∇mΠK
k v,∇mq)K = (∇mv,∇mq)K ∀ q ∈ Pk(K),(3.10)

∑

F∈Fr(K)

QF
0 (∇

m−rΠK
k v) =

∑

F∈Fr(K)

QF
0 (∇

m−rv), r = 1, . . . ,m.(3.11)
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Hm-NONCONFORMING VEM 13

The number of equations in (3.11) is

m∑

r=1

Cn−1
n+m−1−r = Cn

n+m−1 = dim(Pm−1(K)).

Then the well-posedness of (3.10)–(3.11) can be shown by the similar argument as
in the proof of Lemma 3.5. To simplify the notation, we will write it as ΠK .

Obviously we have

(3.12) |ΠKv|m,K ≤ |v|m,K ∀ v ∈ Hm(K).

We show that the projection ΠKu is computable using the degrees of freedom (3.3)–
(3.4).

Lemma 3.7. The operator ΠK : Hm(K) → Pk(K) is a projector, i.e.,

(3.13) ΠKv = v ∀ v ∈ Pk(K),

and the projector ΠK can be computed using only the degrees of freedom (3.3)–(3.4).

Proof. We first show that ΠK is a projector. Let p = ΠKv − v ∈ Pk(K). Taking
q = p in (3.10), we get ∇mp = 0, i.e., p ∈ Pm−1(K). By (3.11),

∑

F∈Fr(K)

QF
0 (∇

m−rp) = 0, r = 1, . . . ,m.

Therefore p = 0, which means ΠK is a projector.
Next, by applying the identity (3.2) and the right-hand side of (3.10)

(∇mv,∇mq)K = (v, (−Δ)mq)K +

m∑

j=1

∑

F∈Fj(K)

∑

α∈Aj
|α|≤m−j

(∂|α|v

∂ναF
, D

2m−j−|α|
F,α (q)

)

F
.

Hence we conclude from the degrees of freedom (3.3)–(3.4) and Lemma 3.3 with
s = m− r that the right-hand sides of (3.10)–(3.11) are computable. �

Remark 3.8. D
2m−j−|α|
F,α is needed in the computation of ΠK . But since q ∈ Pk(K)

and ∇mq ∈ Pk−m(K), few terms are left for moderate k.

Let Wk(K) := Vk(K) for k ≥ 3m − 1 or m ≤ k ≤ 2m − 1. To compute the L2

projection onto Pm−1(K) for 2m ≤ k < 3m− 1, following [3], define

Ṽk(K) := {v ∈ Hm(K) : (−Δ)mv ∈ Pm−1(K), D
2m−j−|α|
F,α (v)|F ∈ Pk−(2m−j−|α|)(F ),

∀ F ∈ Fj(K), j = 1, . . . ,m, α∈Aj , and |α| ≤ m− j},

Wk(K) := {v ∈ Ṽk(K) : (v −ΠKv, q)K = 0 ∀ q ∈ P
⊥
k−2m(K)},

where P
⊥
k−2m(K) ⊂ Pm−1(K) is the orthogonal complement space of Pk−2m(K) in

Pm−1(K) with respect to the inner product (·, ·)K . It is apparent that Pk(K) ⊂
Wk(K) and that the local space Wk(K) shares the same degrees of freedom as
Vk(K). That is, for the same Nk(K), we can associate different “virtual” spaces
and thus have a different interpretation.

Lemma 3.9. The degrees of freedom (3.3)–(3.4) are unisolvent for the local virtual

element space Wk(K).
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14 LONG CHEN AND XUEHAI HUANG

Proof. It is enough to only consider the case 2m ≤ k < 3m−1. Take any v ∈ Wk(K)
all of whose degrees of freedom (3.3)–(3.4) disappear. Then ΠKv = 0. By the
definition of Wk(K), we have

(v, q)K = 0 ∀ q ∈ P
⊥
k−2m(K),

which together with (3.3) implies

(v, q)K = 0 ∀ q ∈ Pm−1(K).

Applying the argument in Lemma 3.5 to the space Ṽk(K) with vanishing degrees
of freedom (3.4) and the last equation, we know that v = 0. �

In the original space Vk(K), the volume moment (cf. (3.3)), is only defined up to
degree k−2m which cannot compute the L2-projection to Pm−1 when k is small. For
2m ≤ k < 3m− 1, a desirable property of the local virtual element space Wk(K) is
that the L2-projection QK

m−1 is computable if all the degrees of freedom (3.3)–(3.4)
are known. Indeed, it follows from the definition of Wk(K) that

(QK
m−1 −QK

k−2m)(v −ΠKv) = QK
m−1(I −QK

k−2m)(v −ΠKv) = 0 ∀ v ∈ Wk(K),

which provides a way to compute the L2-projection

(3.14) QK
m−1v = QK

k−2mv +QK
m−1Π

Kv −QK
k−2mΠKv ∀ v ∈ Wk(K).

Denote by IK : Hm(K) → Wk(K) the canonical interpolation operator based on
the degrees of freedom in (3.3)–(3.4). Namely, given a u ∈ Hm(K), IKu ∈ Wk(K)
so that χ(u) = χ(IKu) for all χ ∈ Nk(K). As a direct corollary of Lemma 3.7, we
have the following identity.

Corollary 3.10. For any v ∈ Hm(K), it holds that

(3.15) ΠK(v) = ΠK(IKv).

4. Discrete method

We will present the virtual element method for the polyharmonic equation based
on the virtual element (K,Nk(K), Vk(K)) or (K,Nk(K),Wk(K)) when L2-
projection is needed.

4.1. Discretization. Consider the polyharmonic equation with a homogeneous
Dirichlet boundary condition

(4.1)

{
(−Δ)mu = f in Ω,

u = ∂u
∂ν = · · · = ∂m−1u

∂νm−1 = 0 on ∂Ω,

where f ∈ L2(Ω) and Ω ⊂ R
n with 1 ≤ m ≤ n. The weak formulation of the

polyharmonic equation (4.1) is to find u ∈ Hm
0 (Ω) such that

(4.2) (∇mu,∇mv) = (f, v) ∀ v ∈ Hm
0 (Ω).

Since

‖∇mv‖0 � ‖v‖m and (f, v) � ‖f‖0‖v‖m ∀ v ∈ Hm
0 (Ω),

it follows from the Lax–Milgram lemma that the variational formulation (4.2) is
well-posed.
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Define the global virtual element space as

Vh := {vh ∈ L2(Ω) :vh|K ∈ Wk(K) for each K ∈ Th; the degrees of freedom

(
∂|α|vh
∂ναF

, q)F are continuous through F for all

q ∈ Pk−(2m−j−|α|)(F ), α ∈ Aj with |α| ≤ m− j, F ∈ Fj(K),

and j = 1, . . . ,m; (
∂|α|vh
∂ναF

, q)F = 0 if F ⊂ ∂Ω}.

Define the local bilinear form ah,K(·, ·) : Wk(K)×Wk(K) → R as

ah,K(w, v) := (∇mΠKw,∇mΠKv)K + SK(w −ΠKw, v − ΠKv),

where the stabilization term

(4.3) SK(w, v) := hn−2m
K

NK∑

i=1

χi(w)χi(v) ∀ w, v ∈ Wk(K),

where χi is the ith local degree of freedom in (3.3)–(3.4) for i = 1, . . . , NK . The
global bilinear form ah(·, ·) : Vh × Vh → R is

ah(wh, vh) :=
∑

K∈Th

ah,K(wh, vh).

Remark 4.1. The stabilization (4.3) resembles the original recipe in [12, 13]. This
classical stabilization is easy to implement and was used to develop the discrete
Galerkin orthogonality (5.1) and the stability bounds in Appendix A. However, the
stabilization (4.3) usually suffers from conditioning and stability issues, especially
for high-order k and differential problems with large m. Instead, several other
stabilizations have been devised and investigated in [10,11,14,24,33] to cure these
issues. The numerical results in [33] show that these stabilizations have almost the
same effect on the condition number of the stiffness matrix for n = 2. The classical
stabilization, the D-recipe stabilization in [11], and the D-recipe stabilization with
only boundary dofs were compared in three dimensions in [24]; as a result the
D-recipe stabilization outperforms the other two.

Define Πh : Vh → Pk(Th) as (Πhv)|K := ΠK(v|K) for each K ∈ Th, and let
Ql

h : L2(Ω) → Pl(Th) be the L2-orthogonal projection onto Pl(Th). Then for any
v ∈ L2(Ω),

(Ql
hv)|K := QK

l (v|K) ∀ K ∈ Th.

We compute the right-hand side according to the following cases:

(4.4) 〈f, vh〉 :=

⎧
⎪⎨
⎪⎩

(f,Πhvh), m ≤ k ≤ 2m− 1,

(f,Qm−1
h vh), 2m ≤ k ≤ 3m− 2,

(f,Qk−2m
h vh), 3m− 1 ≤ k.

We will need this definition of the right-hand side in order to get an optimal order
of convergence; see Lemma 5.7.

Remark 4.2. When m ≤ k ≤ 2m − 1, which is an important range for large m as
high-order methods are harder to implement, there is no need to compute a new
projection and no need to modify the local virtual element space. For k ≥ 2m,
however, an L2-projection to a higher degree polynomial space is needed to control
the consistency error; see Section 5.2.
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16 LONG CHEN AND XUEHAI HUANG

With the previous preparations, we propose the nonconforming virtual element
method for the polyharmonic equation (4.1) in any dimension: find uh ∈ Vh such
that

(4.5) ah(uh, vh) = 〈f, vh〉 ∀ vh ∈ Vh.

In the rest of this section, we shall prove the well-posedness of the discretization
(4.5) by establishing the coercivity and continuity of the bilinear form ah(·, ·).

4.2. Mesh conditions. We impose the following conditions on the mesh Th:

(A1) Each element K ∈ Th and each face F ∈ Fr
h for 1 ≤ r ≤ n−1 is star-shaped

with a uniformly bounded star-shaped constant.
(A2) There exists a quasiuniform simplicial mesh T ∗

h such that each K ∈ Th is a
union of some simplexes in T ∗

h .

Notice that (A1) and (A2) imply diam(F ) � diam(K) for all F ∈ Fr(K), 1 ≤
r ≤ n− 1.

For a star-shaped domain D, there exists a ball BD ⊂ D with radius ρDhD

and a Lipschitz isomorphism Φ : BD → D such that |Φ|1,∞,BD
and |Φ−1|1,∞,D

are bounded by a constant depending only on the chunkiness parameter ρD. Then
several trace inequalities of H1(D) can be established with a constant depending
only on ρD [17, (2.18)]. In particular, we shall use

(4.6) ‖v‖20,∂D � h−1
D ‖v‖20,D + hD|v|21,D ∀ v ∈ H1(D).

The condition (A2) is inspired by the virtual triangulation condition used in [18,
22]. The simplicial mesh T ∗

h will serve as a bridge to transfer the results from finite
element methods to virtual element methods.

Very recently, some geometric assumptions being the relaxation of conditions
(A1)–(A2) were suggested in [20, 21] under which a refined error analysis was de-
veloped for the linear conforming and nonconforming virtual element methods of
the Poisson equation, i.e., the H1 case. For high order Hm,m > 1, elements, we
will investigate such a relaxation in future works.

4.3. Weak continuity. Based on Lemma 3.3, the space Vh has the weak continu-
ity; that is, for any F ∈ F1

h, vh ∈ Vh, and nonnegative integer s ≤ m− 1,

(�∇s
hvh�, τ )F = 0 ∀ τ ∈ Pk−(2m−1−s)(F ;Tn(s)),(4.7)

Qe
0(�∇

s
hvh�|F ) = 0 ∀ e ∈ Fm−s−1(F ),(4.8)

where ∇h is the elementwise gradient with respect to the partition Th. We shall
derive some bound on the jump �∇s

hvh� using the weak continuity and the trace
inequality.

By the weak continuity (4.7), the mean value of ∇s
hvh over F is continuous only

when s ≥ 2m − 1 − k. For s < 2m − 1 − k, the mean value of ∇s
hvh is merely

continuous over some low-dimensional face of F ; cf. (4.8). As a concrete example,
consider the Morley element in three dimensions. The mean value of ∇hvh over
faces is continuous, but the mean value of vh is only continuous on edges rather
than over faces.

Recall the following error estimates of the L2-projection.
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Hm-NONCONFORMING VEM 17

Lemma 4.3. Let � ∈ N. For each K ∈ Th and F1(K), we have for any v ∈
H�+1(K)

‖v −QK
� v‖0,K � h�+1

K |v|�+1,K ,(4.9)

‖v −QF
� v‖0,F � h

�+1/2
K |v|�+1,K .(4.10)

Then recall the Bramble–Hilbert Lemma (cf. [16, Lemma 4.3.8]).

Lemma 4.4. Let � ∈ N, and let K ∈ Th ∪ T ∗
h . There exists a linear operator

TK
� : L1(K) → P�(K) such that for any v ∈ H�+1(K),

(4.11) ‖v − TK
� v‖j,K � h�+1−j

K |v|�+1,K for 0 ≤ j ≤ �+ 1.

Notice that the constants in (4.9)–(4.11) depend on the star-shaped constant,
i.e., the chunkiness parameter ρK , and also depend on the degree �.

Similarly, define Th : L2(Ω) → Pk(Th) as

(Thv)|K := TK
k (v|K) ∀ K ∈ Th.

Lemma 4.5. Given F ∈ F1
h and a positive integer s < m, assume for any e ∈

Fr(F ) with r = 0, 1, . . . ,m− 1− s that

(4.12)
∥∥�∇s

hvh�
∥∥
0,e

�
∑

K∈∂−1F

h
m−s−(r+1)/2
K |vh|m,K ∀ vh ∈ Vh.

Then we have for any e ∈ Fr(F ) with r = 0, 1, . . . ,m− s,

(4.13)
∥∥�∇s−1

h vh�
∥∥
0,e

�
∑

K∈∂−1F

h
m−s−(r−1)/2
K |vh|m,K ∀ vh ∈ Vh.

Proof. We use the mathematical induction on r to prove (4.13). First consider
r = 0. Take some ei ∈ F i(F ) for i = 1, . . . ,m − s such that ei ∈ F1(ei−1) with
e0 = F . In the following we shall use Qe

0 as the L2-orthogonal projection onto
the constant tensor space on e which can be understood as a tensor defined on the
whole space. Employing the trace inequality (4.6), we get from (4.12) with r = i−1

h
i/2
F

∥∥�∇s−1
h vh� −QF

0 (�∇
s−1
h vh�)

∥∥
0,ei

�h
(i−1)/2
F

∥∥�∇s−1
h vh� −QF

0 (�∇
s−1
h vh�)

∥∥
0,ei−1

+ h
(i+1)/2
F

∥∥�∇s
hvh�

∥∥
0,ei−1

�h
(i−1)/2
F

∥∥�∇s−1
h vh� −QF

0 (�∇
s−1
h vh�)

∥∥
0,ei−1

+
∑

K∈∂−1F

h
m−s+1/2
K |vh|m,K .

By this recursive inequality and the approximation properties of the L2-projection,
it holds that

h
(m−s)/2
F

∥∥�∇s−1
h vh� −QF

0 (�∇
s−1
h vh�)

∥∥
0,em−s

�
∥∥�∇s−1

h vh� −QF
0 (�∇

s−1
h vh�)

∥∥
0,F

+
∑

K∈∂−1F

h
m−s+1/2
K |vh|m,K

�hF

∥∥�∇s
hvh�

∥∥
0,F

+
∑

K∈∂−1F

h
m−s+1/2
K |vh|m,K .
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18 LONG CHEN AND XUEHAI HUANG

On the other side, we have from (4.8) that
∥∥�∇s−1

h vh�
∥∥
0,F

=
∥∥�∇s−1

h vh� −Q
em−s

0 (�∇s−1
h vh�)

∥∥
0,F

=
∥∥�∇s−1

h vh� −QF
0 (�∇

s−1
h vh�)−Q

em−s

0 (�∇s−1
h vh� −QF

0 (�∇
s−1
h vh�))

∥∥
0,F

≤
∥∥�∇s−1

h vh� −QF
0 (�∇

s−1
h vh�)

∥∥
0,F

+
∥∥Qem−s

0 (�∇s−1
h vh� −QF

0 (�∇
s−1
h vh�))

∥∥
0,F

�hF

∥∥�∇s
hvh�

∥∥
0,F

+ h
(m−s)/2
F

∥∥Qem−s

0 (�∇s−1
h vh� −QF

0 (�∇
s−1
h vh�))

∥∥
0,em−s

≤hF

∥∥�∇s
hvh�

∥∥
0,F

+ h
(m−s)/2
F

∥∥�∇s−1
h vh� −QF

0 (�∇
s−1
h vh�)

∥∥
0,em−s

.

Hence (4.13) with r = 0 follows from the last two inequalities and (4.12) with r = 0.
Assume (4.13) holds with r = j < m − s. Let e ∈ Fj+1(F ). Take some

ej ∈ Fj(F ) satisfying e ∈ F1(ej). Using the trace inequality (4.6) again, we know
that ∥∥�∇s−1

h vh�
∥∥
0,e

� h−1/2
e

∥∥�∇s−1
h vh�

∥∥
0,ej

+ h1/2
e

∥∥�∇s
hvh�

∥∥
0,ej

,

which combined with the assumptions means (4.13) is true with r = j + 1. �

Again consider the Morley–Wang–Xu element in three dimensions [36], i.e., m =
2 and s = 1. The inequality (4.12) is just

∥∥�∇hvh�
∥∥
0,F

�
∑

K∈∂−1F

h
1/2
K |vh|2,K ∀ vh ∈ Vh,

for each face F ∈ F1
h . Then by Lemma 4.5 we will get from (4.8) that

∥∥�vh�
∥∥
0,F

+ h
1/2
K

∥∥�vh�
∥∥
0,e

�
∑

K∈∂−1F

h
3/2
K |vh|2,K ∀ vh ∈ Vh,

for any face F ∈ F1
h and any edge e ∈ F2

h. We refer to [36, Lemma 5] for these
estimates on tetrahedra.

Lemma 4.6. For each F ∈ F1
h and nonnegative integer s < m, it holds that

(4.14)
∥∥�∇s

hvh�
∥∥
0,F

�
∑

K∈∂−1F

h
m−s−1/2
K |vh|m,K ∀ vh ∈ Vh.

Proof. It is sufficient to prove that for s = m− 1,m− 2, . . . , 0 and any e ∈ Fr(F )
with r = 0, 1, . . . ,m− 1− s, it holds that

∥∥�∇s
hvh�

∥∥
0,e

�
∑

K∈∂−1F

h
m−s−(r+1)/2
K |vh|m,K ∀ vh ∈ Vh.

According to Lemma 4.5 and the mathematical induction, we only need to show
∥∥�∇m−1

h vh�
∥∥
0,F

�
∑

K∈∂−1F

h
1/2
K |vh|m,K ∀ vh ∈ Vh.

In fact, due to (4.8) and (4.10), we get
∥∥�∇m−1

h vh�
∥∥
0,F

=
∥∥�∇m−1

h vh� −QF
0 (�∇

m−1
h vh�)

∥∥
0,F

�
∑

K∈∂−1F

h
1/2
K |vh|m,K .

This ends the proof. �

Given the virtual triangulation T ∗
h , for each nonnegative integer r < m, define

the tensorial (m− r)th order Lagrange element space associated with T ∗
h :

Sm,r
h := {τh ∈ H1

0 (Ω;Tn(r)) : τh|K ∈ Pm−r(K;Tn(r)) ∀ K ∈ T ∗
h }.
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Lemma 4.7. Let r = 0, 1, . . . ,m− 1. For any vh ∈ Vh, there exists τr = τr(vh) ∈
Sm,r
h such that

(4.15) |∇r
hvh − τr|j,h � hm−r−j|vh|m,h for j = 0, 1, . . . ,m− r.

Proof. Let wh ∈ L2(Ω;Tn(r)) be defined as

wh|K = TK
m−r−1(∇

r(vh|K)) ∀ K ∈ T ∗
h .

Since wh is a piecewise tensorial polynomial, by Lemma 3.1 in [37], there exists
τr ∈ Sm,r

h such that

|wh − τr|
2
j,h �

∑

F∈F1
h
(T ∗

h
)

h1−2j
F ‖�wh�‖20,F ,

where F1
h(T

∗
h ) is the set of all (n− 1)-dimensional faces of the partition T ∗

h . Then
it follows from (4.11) and (4.14) that

|wh − τr|
2
j,h �

∑

F∈F1
h
(T ∗

h
)

h1−2j
F ‖�wh −∇r

hvh�‖20,F +
∑

F∈F1
h

h1−2j
F ‖�∇r

hvh�‖20,F

� h2(m−r−j)|vh|
2
m,h.

Here we have used the fact that the jump �∇r
hvh� is zero on F ∈ F1

h(T
∗
h ) \ F

1
h(Th).

Applying (4.11) again gives

|∇r
hvh − wh|j,h � hm−r−j|vh|m,h.

Finally, combining the last two inequalities indicates (4.15). �

Lemma 4.8. We have the discrete Poincaré inequality

(4.16) ‖vh‖m,h � |vh|m,h ∀ vh ∈ Vh.

Proof. By picking τr ∈ H1
0 (Ω;Tn(r)) as in Lemma 4.7, due to (4.15) and the

Poincaré inequality, we have for r = 0, 1, . . . ,m− 1,

‖∇r
hvh‖0 ≤ ‖∇r

hvh − τr‖0 + ‖τr‖0 � |vh|m,h + |τr|1

≤ |vh|m,h + |∇r
hvh − τr|1,h + |∇r

hvh|1,h

� |vh|m,h + ‖∇r+1
h vh‖0,

which leads to (4.16). �

The discrete Poincaré inequality (4.16) means

‖vh‖m,h � |vh|m,h ∀ vh ∈ Vh,

i.e., | · |m,h is a norm on the space Vh.

4.4. Norm equivalence and well-posedness of the discretization. Denote by
ker(ΠK) ⊂ Wk(K) the kernel space of the operator ΠK . By (3.13) and Lemma 3.9,

both | · |m,K and S
1/2
K (·, ·) are norms on the finite-dimensional space ker(ΠK). Then

we have the following norm equivalence.

Theorem 4.9. Assume the mesh Th satisfies conditions (A1) and (A2). For any

K ∈ Th, the following norm equivalence holds:

(4.17) SK(v, v) � |v|2m,K ∀ v ∈ ker(ΠK),

where the constant is independent of hK , but may depend on the chunkiness param-

eter ρK , the degree of polynomials k, the order of differentiation m, the dimension
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20 LONG CHEN AND XUEHAI HUANG

of space n, and the shape regularity and quasiuniform constants of the virtual tri-

angulation T ∗
h .

Using the generalized scaling argument, i.e., applying an affine map x̂ = (x −
xK)/hK , it is easy to show that the norm equivalence constant is independent of
the diameter of K.

The constant in (4.17), however, could still depend on the geometry of K, and
a clear dependence is not easy to characterize. For finite element space defined on
simplexes, the shape functions are usually polynomials and there exists an affine
map to the reference element K̂. The norm equivalence on the reference element
can be used. Since the Jacobi matrix is constant, the norms Hm(K) and Hm(K̂)
can be clearly characterized using the geometry of the simplex, e.g., the angles of
a triangle in 2D.

Now for a general polytope K, there does not exist an affine-equivalent reference
polytope K̂. For a star-shaped and Lipschitz continuous domain, one can use the
isomorphism Φ : K → BK , but Φ ∈ W 1,∞(BK) only. One can apply the norm
equivalence on BK , but how the norm Hm(K) is related to Hm(BK), for m > 1,
is not clear.

We shall prove the norm equivalence (4.17) with mesh conditions (A1)–(A2) in
Appendix A.

By the Cauchy–Schwarz inequality and the norm equivalence (4.17), we have

(4.18) SK(w, v) � |w|m,K |v|m,K ∀ w, v ∈ ker(ΠK),

which implies the continuity of ah(·, ·):

(4.19) ah(wh, vh) � |wh|m,h|vh|m,h ∀ wh, vh ∈ Vh + Pk(Th).

Next we verify the coercivity of ah(·, ·).

Lemma 4.10. For any vh ∈ Vh + Pk(Th), it holds that

(4.20) |vh|
2
m,h � ah(vh, vh).

Proof. Since ΠK is the Hm-orthogonal projection,

|vh|
2
m,K =

∣∣ΠK(vh|K)
∣∣2
m,K

+
∣∣vh −ΠK(vh|K)

∣∣2
m,K

.

Applying (4.17), we have

|vh|
2
m,K �

∣∣ΠK(vh|K)
∣∣2
m,K

+ SK(vh −ΠK(vh|K), vh −ΠK(vh|K))

= ah,K(vh, vh),(4.21)

which implies (4.20). �

Therefore the nonconforming virtual element method (4.5) is uniquely solvable
by the Lax–Milgram lemma.

5. Error analysis

In this section, we will develop the error analysis of the nonconforming virtual
element method (4.5) for the Hm-problem.
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5.1. Interpolation error estimate. We first explore a discrete Galerkin orthog-
onality of u−Ihu for the nonconforming element, where Ih defined on Hm(Ω) is the
global canonical interpolation operator based on the degrees of freedom in (3.3)–
(3.4), i.e., (Ihv)|K := IK(v|K) for any v ∈ Hm(Ω) and K ∈ Th. A similar result
was given in [28, (3.3)].

Lemma 5.1. For each K ∈ Th, any v ∈ Hm(Ω), and w ∈ Hm(K), it holds that

(5.1) ah,K(v − Ihv, w) = 0.

Proof. It follows from (3.15) and the definition of SK(·, ·) that

ah,K(v − Ihv, w) = (∇mΠK(v − Ihv),∇
mΠKw)K

+ SK(v − Ihv −ΠK(v − Ihv), w −ΠKw)

= SK(v − Ihv, w −ΠKw) = 0.

In the last step we use the fact that v and Ihv share the same degrees of freedom,
and thus the stabilization SK(v−Ihv, w−ΠKw) using d.o.f. vanishes; cf. (4.3). �

Remark 5.2. Lemma 5.1 holds true by virtue of the choice (4.3); indeed, any stabi-
lization equivalent to (4.3) which annihilates if all the degrees of freedom are zero
would be fine.

With the help of the discrete Galerkin orthogonality, we present the following
interpolation error estimate.

Lemma 5.3. For each K ∈ Th and any v ∈ Hk+1(K), we have

(5.2) |v − Ihv|m,K � hk+1−m
K |v|k+1,K .

Proof. Applying (4.21) and (5.1) with w = (Thv − Ihv)|K , we have

|Thv − Ihv|
2
m,K � ah,K(Thv − Ihv, Thv − Ihv) = ah,K(Thv − v, Thv − Ihv)

� |v − Thv|m,K |Thv − Ihv|m,K ,

which indicates
|Thv − Ihv|m,K � |v − Thv|m,K .

Hence

|v − Ihv|m,K ≤ |v − Thv|m,K + |Thv − Ihv|m,K � |v − Thv|m,K .

Therefore (5.2) follows from (4.11). �

5.2. Consistency error estimate. Due to (3.13) and (3.10), we have the following
k-consistency.

Lemma 5.4. For any p ∈ Pk(K) and any v ∈ Wk(K), it holds that

(5.3) ah,K(p, v) = (∇mp,∇mv)K .

To estimate the consistency error of the discretization, we split it into two cases,
i.e., k ≥ 2m − 1 and m ≤ k < 2m − 1. For the first case, the weak continuity

(4.7), that is the projection QF
k−(m+i)(∇

m−(i+1)
h vh) is continuous across F ∈ F1

h for

i = 0, . . . ,m− 1, is sufficient to derive the optimal consistency error estimate.

Lemma 5.5. Let u ∈ Hm
0 (Ω)∩Hk+1(Ω) be the solution of the polyharmonic equa-

tion (4.1). Assume k ≥ 2m− 1. Then it holds that

(5.4) (∇mu,∇m
h vh)− (f, vh) � hk+1−m|u|k+1|vh|m,h ∀ vh ∈ Vh.
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Proof. First we notice that

(∇mu,∇m
h vh)− (f, vh)

=
m−1∑

i=0

(−1)i
(
(divi ∇mu,∇m−i

h vh) + (divi+1 ∇mu,∇
m−(i+1)
h vh)

)
.(5.5)

For each term on the right-hand side of (5.5), applying integration by parts, (4.7)
with s = m− (i+ 1), (4.10), and (4.14), we get

(−1)i
(
(divi ∇mu,∇m−i

h vh) + (divi+1 ∇mu,∇
m−(i+1)
h vh)

)

= (−1)i
∑

K∈Th

((divi ∇mu)ν,∇
m−(i+1)
h vh)∂K

= (−1)i
∑

F∈F1
h

((divi ∇mu)νF,1, �∇
m−(i+1)
h vh�)F

= (−1)i
∑

F∈F1
h

((divi ∇mu)νF,1 −QF
k−(m+i)((div

i ∇mu)νF,1), �∇
m−(i+1)
h vh�)F

� hk+1−m|u|k+1|vh|m,h,

as required. �

When the order k is not high enough, the mean value of ∇s
hvh is only continuous

over some low-dimensional face of F for s < 2m − 1 − k. In this case, we divide
the consistency error into two parts. The first part is estimated by using the weak
continuity (4.7) as in the proof of (5.4), while the second part is estimated by
using the weak continuity (4.8) through employing the Lagrange element space as
a bridge.

Lemma 5.6. Let u ∈ Hm
0 (Ω) ∩ H2m−1(Ω) be the solution of the polyharmonic

equation (4.1). Assume m ≤ k < 2m− 1. Then it holds that

(5.6) (∇mu,∇m
h vh)− (f, vh) �

( m−1∑

i=k+1−m

hi|u|m+i + hm‖f‖0
)
|vh|m,h ∀ vh ∈ Vh.

Proof. Similarly as in (5.5), we have

(5.7) (∇mu,∇m
h vh)− (f, vh) = E1 + E2 + E3,

where

E1 :=
k−m∑

i=0

(−1)i
(
(divi ∇mu,∇m−i

h vh) + (divi+1 ∇mu,∇
m−(i+1)
h vh)

)
,

E2 :=
m−2∑

i=k−m+1

(−1)i
(
(divi ∇mu,∇m−i

h vh) + (divi+1 ∇mu,∇
m−(i+1)
h vh)

)
,

E3 := ((− div)m−1∇mu,∇hvh)− (f, vh).

By the same argument as in the proof of Lemma 5.5, we have

(5.8) E1 � hk+1−m|u|k+1|vh|m,h.
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Next let us estimate E2 and E3. By (4.15), for each k −m+ 1 ≤ i ≤ m− 1, there

exists τm−(i+1) ∈ S
m,m−(i+1)
h such that

(5.9) |∇
m−(i+1)
h vh − τm−(i+1)|j,h � hi+1−j |vh|m,h for j = 0, 1.

Since τm−(i+1) ∈ H1
0 (Ω;Tn(m− (i+ 1))), we get for i = k −m+ 1, . . . ,m− 2

(divi ∇mu,∇τm−(i+1)) + (divi+1 ∇mu, τm−(i+1)) = 0,(5.10)

((− div)m−1∇mu,∇τ0)− (f, τ0) = 0.(5.11)

For i = k −m+ 1, . . . ,m− 2, it follows from (5.9)–(5.10) that

(−1)i
(
(divi ∇mu,∇m−i

h vh) + (divi+1 ∇mu,∇
m−(i+1)
h vh)

)

=(−1)i(divi ∇mu,∇h(∇
m−(i+1)
h vh − τm−(i+1)))

+ (−1)i(divi+1 ∇mu,∇
m−(i+1)
h vh − τm−(i+1))

�hi|u|m+i|vh|m,h + hi+1|u|m+i+1|vh|m,h.

Thus we obtain

(5.12) E2 �

m−1∑

i=k+1−m

hi|u|m+i|vh|m,h.

Similarly, employing (5.11) and (5.9), we get

E3 = ((− div)m−1∇mu,∇hvh)− (f, vh)

= ((− div)m−1∇mu,∇h(vh − τ0))− (f, vh − τ0)

� hm−1|u|2m−1|vh|m,h + hm‖f‖0|vh|m,h,

which together with (5.7)–(5.8) and (5.12) ends the proof. �

We then consider the perturbation of the right-hand side. Namely, replace the
L2-inner product (f, vh) by an approximated one 〈f, vh〉 defined in (4.4).

Lemma 5.7. Let u ∈ Hm
0 (Ω)∩Hr(Ω) with r = max{k+1, 2m−1} be the solution of

the polyharmonic equation (4.1). Assume f ∈ H�(Th) with � = max{0, k+1−2m}.
Then it holds for any vh ∈ Vh that

(∇mu,∇m
h vh)− 〈f, vh〉

� hk+1−m(‖u‖r + h‖f‖0 + hmax{0,2m−k−1}|f |�,h)|vh|m,h.(5.13)

Proof. It follows from (5.4) and (5.6) that

(∇mu,∇m
h vh)− (f, vh) � hk+1−m(‖u‖r + h‖f‖0)|vh|m,h.

For m ≤ k ≤ 2m− 1, we get from the local Poincaré inequality (A.11)

(f, vh)− 〈f, vh〉 = (f, vh −Πhvh) � hm‖f‖0|vh|m,h.
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For k ≥ 2m, it holds from (4.9) that

(f, vh)− 〈f, vh〉 =
(
f, vh −Q

max{m−1,k−2m}
h vh

)

=
(
f −Qk−2m

h f, vh −Q
max{m−1,k−2m}
h vh

)

≤ ‖f −Qk−2m
h f‖0‖vh −Qm−1

h vh‖0

� hk+1−m|f |k+1−2m,h|vh|m,h.

Thus we conclude (5.13) from the last three inequalities. �

5.3. Error estimate. Now we are in a position to present the optimal order con-
vergence of our nonconforming virtual element method.

Theorem 5.8. Let u ∈ Hm
0 (Ω)∩Hr(Ω) with r = max{k+1, 2m−1} be the solution

of the polyharmonic equation (4.1), and let uh ∈ Vh be the nonconforming virtual

element method (4.5). Assume the mesh Th satisfies conditions (A1) and (A2).
Assume f ∈ H�(Th) with � = max{0, k + 1− 2m}. Then it holds that

(5.14) |u− uh|m,h � hk+1−m(‖u‖r + h‖f‖0 + hmax{0,2m−k−1}|f |�,h).

Proof. Let vh = Ihu− uh. From (4.19), (5.2), and (4.11), it holds that

ah(Ihu− Thu, vh) + (∇m
h (Thu− u),∇m

h vh)

� |Ihu− Thu|m,h|vh|m,h + |u− Thu|m,h|vh|m,h

� (|u− Ihu|m,h + |u− Thu|m,h)|vh|m,h � hk+1−m|u|k+1|vh|m,h.(5.15)

Employing (4.20), (4.5), and (5.3), we have

|Ihu− uh|
2
m,h � ah(Ihu− uh, vh) = ah(Ihu, vh)− 〈f, vh〉

= ah(Ihu− Thu, vh) + ah(Thu, vh)− 〈f, vh〉

= ah(Ihu− Thu, vh) + (∇m
h Thu,∇

m
h vh)− 〈f, vh〉

= ah(Ihu− Thu, vh) + (∇m
h (Thu− u),∇m

h vh)

+ (∇mu,∇m
h vh)− 〈f, vh〉.

Then we get from (5.15) and (5.13) that

|Ihu− uh|m,h � hk+1−m(‖u‖r + h‖f‖0 + hmax{0,2m−k−1}|f |�,h).

Finally we derive (5.14) by combining the last inequality and (5.2). �

6. Conclusion

In view of a generalized Green’s identity for the Hm inner product, we have
constructed the Hm-nonconforming virtual elements of any order k on any shape
of polytope in R

n with constraints m ≤ n and k ≥ m in a unified way. A rigorous
and detailed convergence analysis is developed for the Hm-nonconforming virtual
element methods, and the optimal error estimates are achieved. When m > n, the
generalized Green’s identity for the Hm inner product, the key tool in this paper,
will involve the derivative terms on zero-dimensional subsurfaces, i.e., nodes of the
mesh. We will postpone the case m > n to future works.

This paper was motivated by the theoretical purposes. The numerical investi-
gation of the virtual element method proposed in this paper is also postponed to
future works.
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Appendix A. Norm equivalence

As mentioned before, it is difficult to derive the norm equivalence (4.17) directly
from the norm equivalence of the finite-dimensional space due to the absence of an
affine-equivalent reference polytope. We shall prove the norm equivalence (4.17)
in this appendix by assuming that the mesh Th satisfies conditions (A1) and (A2).
For m = 1, proofs on the norm equivalence for H1 conforming VEM can be found
in [14, 17, 22].

With the help of the virtual triangulation T ∗
h , we can prove the inverse inequality

of polynomial spaces on K following the proof in [22, Lemma 3.1]:

(A.1) ‖g‖0,K � h−i
K ‖g‖−i,K ∀ g ∈ Pk(K), i = 1, 2, . . . ,m,

where the constant depends only on the degree of polynomials k, the order of
differentiation m, the dimension of space n, and the shape regularity and quasi-
uniformity of the virtual triangulation T ∗

h (K).
On the polynomial space, we have the normal equivalence of the L2-norm of g

and l2-norm of its d.o.f. Let g =
∑

i gimi be a polynomial on F , where F ∈ Fj(K)
with j ≥ 1. Denote by g = (gi) the coefficient vector. Then the following norm
equivalence holds (cf. [22, Lemma 4.1]):

(A.2) h
(n−j)/2
F ‖g‖l2 � ‖g‖0,F � h

(n−j)/2
F ‖g‖l2 .

Take an element K ∈ Th. For any F ∈ Fj(K) with j ≥ 1, let Rn−j
F be the (n−j)-

dimensional affine space passing through F , Fj
F (K) := {e ∈ Fj(K) : e ⊂ R

n−j
F },

and let
λF,i := νᵀF,i

x− xF

hK
, i = 1, . . . , j.

Apparently λF,i|F = 0, i.e., the (n−1)-dimensional face λF,i = 0 passes through F .
If K is a simplex and F ∈ F1(K), −(νᵀF,1νK,F )λF,1 is just the barycenter coordinate

when hK represents the height ofK corresponding to the base F , and Fj
F (K) = {F}

if K is strictly convex. For any F ∈ Fj(K) with j ≥ 1, and F ′ ∈ Fj(K)\Fj
F (K), let

νF,F ′ be some unit normal vector of F ′ such that the hyperplane νᵀF,F ′(x−xF ′) = 0
does not pass through F . Define bubble functions

bK :=
∏

F∈F1(K)

λF,1,

bF :=

( ∏

F ′∈Fj(K)\Fj
F
(K)

νᵀF,F ′

x− xF ′

hK

)( ∏

F ′∈Fj
F
(K)

∏

e∈F1(F ′)

νᵀF ′,e

x− xe

hK

)
,

for each F ∈ Fj(K) with 1 ≤ j ≤ n. Notice that both bK and bF are polynomials.

Lemma A.1. Let K ∈ Th. It holds that

(A.3) hm
K‖(−Δ)mv‖0,K � ‖∇mv‖0,K ∀ v ∈ Vk(K) ∪Wk(K).

Proof. Let φK := b2mK (−Δ)mv ∈ Hm
0 (K); then ‖φK‖0,K � ‖(−Δ)mv‖0,K . Using

the scaling argument, integration by parts, and the inverse inequality for polyno-
mials (A.1), we get

‖(−Δ)mv‖20,K � ((−Δ)mv, φK)K = (∇mv,∇mφK)K

≤ ‖∇mv‖0,K‖∇mφK‖0,K � h−m
K ‖∇mv‖0,K‖φK‖0,K

� h−m
K ‖∇mv‖0,K‖(−Δ)mv‖0,K ,

which induces the required inequality. �
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Lemma A.2. Let K ∈ Th. For any positive integer j ≤ m, F ∈ Fj(K), and

α ∈ Aj with |α| ≤ m− j, we have
∑

F ′∈Fj
F
(K)

h
m−|α|−j/2
K ‖D

2m−j−|α|
F ′,α (v)‖0,F ′

�‖∇mv‖0,K + hm
K‖(−Δ)mv‖0,K

+

j−1∑

�=1

∑

e∈F�(K)

∑

β∈A�
|β|≤m−�

h
m−|β|−�/2
K

∥∥∥D2m−�−|β|
e,β (v)

∥∥∥
0,e

+
∑

F ′∈Fj

F
(K)

∑

β∈Aj

|α|<|β|≤m−j

h
m−|β|−�/2
K

∥∥∥D2m−j−|β|
F ′,β (v)

∥∥∥
0,F ′

(A.4)

for all v ∈ Vk(K) ∪Wk(K).

Proof. Since D
2m−j−|α|
F ′,α (v)|F ′ is a polynomial for each F ′ ∈ Fj

F (K), we can regard

D
2m−j−|α|
F ′,α (v)|F ′ as the function on the (n−j)-dimensional affine space Rn−j

F . Then

we extend the polynomial D
2m−j−|α|
F ′,α (v)|F ′ to R

n. For any x ∈ R
n, let xP

F be the

projection of x on R
n−j
F . Define

EK(D
2m−j−|α|
F ′,α (v))(x) := D

2m−j−|α|
F ′,α (v)(xP

F ).

Let Rn
F ′ := {x ∈ R

n : xP
F ∈ F ′}, and let φF be a piecewise polynomial defined as

φF (x) =

⎧
⎪⎪⎨
⎪⎪⎩

1
α!h

|α|
K b2mF ′ EK(D

2m−j−|α|
F ′,α (v))

j∏
i=1

λαi

F ′,i, x ∈ R
n
F ′ , F ′ ∈ Fj

F (K),

0, x ∈ R
n\

⋃

F ′∈Fj

F
(K)

R
n
F ′ ,

where α! = α1! · · ·αj !. Then we have

(A.5) ‖φF ‖0,K �
∑

F ′∈Fj
F
(K)

h
|α|+j/2
K ‖D

2m−j−|α|
F ′,α (v)‖0,F ′ ,

∂|α|φF

∂ναF ′

∣∣∣∣∣
F ′

=
1

α!
h
|α|
K b2mF ′ EK(D

2m−j−|α|
F ′,α (v))

j∏

i=1

∂|α|(λαi

F ′,i)

∂ναF ′

= b2mF ′ EK(D
2m−j−|α|
F ′,α (v)).

Hence

(A.6) ‖D
2m−j−|α|
F ′,α (v)‖20,F ′ �

(
D

2m−j−|α|
F ′,α (v),

∂|α|φF

∂ναF ′

)

F ′

.

For each e ∈ F�(K) with � = j + 1, . . . ,m, it follows from the fact bF ′ |e = 0 that

∂|β|φF

∂νβe

∣∣∣∣
e

= 0 ∀ β ∈ A� with |β| ≤ m− �.

Similarly we have for each e ∈ Fj(K)\Fj
F (K) that

∂|β|φF

∂νβe

∣∣∣∣
e

= 0 ∀ β ∈ Aj with |β| ≤ m− j.
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For any β ∈ Aj , |β| < |α|, since ∂|β|

∂νβ

F ′

(∏j
i=1 λ

αi

F ′,i

)∣∣∣∣
F ′

= 0, it yields ∂|β|φF

∂νβ

F ′

∣∣∣∣
F ′

= 0.

For any β ∈ Aj , |β| = |α|, but β �= α, noting that
∂λF ′,i

∂νF ′,�
= 0 for i �= �, we also

have
∂|β|φF

∂νβF ′

∣∣∣∣
F ′

= 0. Based on the previous discussion, we obtain from (A.6), the

generalized Green’s identity (3.2), and the density argument that
∑

F ′∈Fj

F
(K)

‖D
2m−j−|α|
F ′,α (v)‖20,F ′ � (∇mv,∇mφF )K − ((−Δ)mv, φF )K

−

j−1∑

�=1

∑

e∈F�(K)

∑

β∈A�
|β|≤m−�

(
D

2m−�−|β|
e,β (v),

∂|β|φF

∂νβe

)

e

−
∑

F ′∈Fj

F
(K)

∑

β∈Aj
|α|<|β|≤m−j

(
D

2m−j−|β|
F ′,β (v),

∂|β|φF

∂νβF ′

)

F ′
.

Employing the Cauchy–Schwarz inequality and the inverse inequality for polyno-
mials, it follows that

∑

F ′∈Fj

F
(K)

‖D
2m−j−|α|
F ′,α (v)‖20,F ′

� h−m
K ‖∇mv‖0,K‖φF ‖0,K + ‖(−Δ)mv‖0,K‖φF ‖0,K

+

j−1∑

�=1

∑

e∈F�(K)

∑

β∈A�
|β|≤m−�

h
−|β|−�/2
K

∥∥∥D2m−�−|β|
e,β (v)

∥∥∥
0,e

‖φF ‖0,K

+
∑

F ′∈Fj
F
(K)

∑

β∈Aj
|α|<|β|≤m−j

h
−|β|−j/2
K

∥∥∥D2m−j−|β|
F ′,β (v)

∥∥∥
0,F ′

‖φF ‖0,K ,

which combined with (A.5) implies (A.4). �

Lemma A.3. For any K ∈ Th, it holds that

(A.7) ((−Δ)mv, v)K � hm
K‖(−Δ)mv‖0,KS

1/2
K (v, v) ∀ v ∈ ker(ΠK).

Proof. If m ≤ k ≤ 2m−1, by the definition of Wk(K) = Vk(K), (−Δ)mv = 0, thus
(A.7) is obvious. Now let us prove (A.7) for k ≥ 2m. When 2m ≤ k < 3m − 1,
since v ∈ ker(ΠK), it follows from (3.14) that

((−Δ)mv, v)K = ((−Δ)mv,QK
m−1v)K

= ((−Δ)mv,QK
k−2mv)K =

(
QK

k−2m((−Δ)mv), v
)
K
.

If k ≥ 3m− 1, then Wk(K) = Vk(K), and we also have

((−Δ)mv, v)K =
(
QK

k−2m((−Δ)mv), v
)
K
.

Therefore, to derive (A.7) for k ≥ 2m, it is sufficient to prove that

(A.8)
(
QK

k−2m((−Δ)mv), v
)
K

� hm
K‖(−Δ)mv‖0,KS

1/2
K (v, v) ∀ v ∈ ker(ΠK).
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Let N be the dimension of the space Pk−2m(K). Then there exist constants ci,
i = 1, . . . , N , such that

QK
k−2m((−Δ)mv) =

N∑

i=1

ciqi,

where Mk−2m(K) := {q1, . . . , qN}; thus

(
QK

k−2m((−Δ)mv), v
)
K

= |K|
N∑

i=1

ciχi(v).

Applying the norm equivalence on the polynomial space Pk−2m(K) (cf. (A.2)) we
get

‖QK
k−2m((−Δ)mv)‖20,K � hn

K

N∑

i=1

c2i .

Hence

(
QK

k−2m((−Δ)mv), v
)
K

� h
n/2
K ‖QK

k−2m((−Δ)mv)‖0,K

(
N∑

i=1

χ2
i (v)

)1/2

� hm
K‖QK

k−2m((−Δ)mv)‖0,KS
1/2
K (v, v),

which implies (A.8). �

Lemma A.4. For any K ∈ Th, it holds that

(A.9) ‖∇mv‖20,K � SK(v, v) ∀ v ∈ ker(ΠK).

Proof. By the generalized Green’s identity (3.2),

‖∇mv‖20,K = ((−Δ)mv, v)K

+

m∑

j=1

∑

F∈Fj(K)

∑

α∈Aj
|α|≤m−j

(
D

2m−j−|α|
F,α (v),

∂|α|v

∂ναF

)

F
.(A.10)

Since v ∈ Wk(K), we have D
2m−j−|α|
F,α (v)|F ∈ Pk−(2m−j−|α|)(F ) for any F ∈ Fj(K).

Let NF be the dimension of the space Pk−(2m−j−|α|)(F ). Then there exist constants
ci, i = 1, . . . , NF , such that

(
D

2m−j−|α|
F,α (v),

∂|α|v

∂ναF

)

F
= h

n−j−|α|
K

NF∑

i=1

ciχi(v).

Applying the norm equivalence on the polynomial space Pk−(2m−j−|α|)(F ) (cf.
(A.2)) we get

‖D
2m−j−|α|
F,α (v)‖20,F � hn−j

K

NF∑

i=1

c2i .

Hence

(
D

2m−j−|α|
F,α (v),

∂|α|v

∂ναF

)

F
� h

(n−j)/2−|α|
K ‖D

2m−j−|α|
F,α (v)‖0,F

(
NF∑

i=1

χ2
i (v)

)1/2

� h
m−|α|−j/2
K ‖D

2m−j−|α|
F,α (v)‖0,FS

1/2
K (v, v).
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Applying (A.4) recursively, it follows that

(
D

2m−j−|α|
F,α (v),

∂|α|v

∂ναF

)

F
� (‖∇mv‖0,K + hm

K‖(−Δ)mv‖0,K)S
1/2
K (v, v).

Then we derive from (A.10), (A.7), and (A.3) that

‖∇mv‖20,K � (‖∇mv‖0,K + hm
K‖(−Δ)mv‖0,K)S

1/2
K (v, v) � ‖∇mv‖0,KS

1/2
K (v, v),

which induces (A.9). �

We then prove another side of the norm equivalence (4.17).

Lemma A.5. For any K ∈ Th and nonnegative integer s ≤ m, we have the local

Poincaré inequality

(A.11)
m−s∑

j=0

∑

F∈Fj(K)

h
s+j/2
K ‖∇sv‖0,F � hm

K‖∇mv‖0,K ∀ v ∈ ker(ΠK).

Proof. It is sufficient to prove that

(A.12)
m−s∑

j=0

∑

F∈Fj(K)

h
s+j/2
K ‖∇sv‖0,F �

m−s−1∑

�=0

∑

e∈F�(K)

h
s+1+�/2
K ‖∇s+1v‖0,e,

for s = 0, 1, . . . ,m− 1. Thanks to (3.11), it follows that

h
j/2
K ‖∇sv‖0,F = h

j/2
K

∥∥∥∥∇
sv −

1

#Fm−s(K)

∑

e∈Fm−s(K)

Qe
0(∇

sv)

∥∥∥∥
0,F

� h
j/2
K

∑

e∈Fm−s(K)

∥∥∇sv −Qe
0(∇

sv)
∥∥
0,F

= h
j/2
K

∑

e∈Fm−s(K)

∥∥∇sv −QK
0 (∇sv)−Qe

0(∇
sv −QK

0 (∇sv))
∥∥
0,F

� h
j/2
K

∥∥∇sv −QK
0 (∇sv)

∥∥
0,F

+
∑

e∈Fm−s(K)

h
(m−s)/2
K

∥∥Qe
0(∇

sv −QK
0 (∇sv))

∥∥
0,e

≤ h
j/2
K

∥∥∇sv −QK
0 (∇sv)

∥∥
0,F

+
∑

e∈Fm−s(K)

h
(m−s)/2
K

∥∥∇sv −QK
0 (∇sv)

∥∥
0,e

.

On the other hand, applying the trace inequality (4.6) recursively, we get from (4.9)
that

h
j/2
K

∥∥∇sv −QK
0 (∇sv)

∥∥
0,F

+
∑

e∈Fm−s(K)

h
(m−s)/2
K

∥∥∇sv −QK
0 (∇sv)

∥∥
0,e

�
∥∥∇sv −QK

0 (∇sv)
∥∥
0,K

+

m−s−1∑

�=0

∑

e∈F�(K)

h
1+�/2
K ‖∇s+1v‖0,e

�

m−s−1∑

�=0

∑

e∈F�(K)

h
1+�/2
K ‖∇s+1v‖0,e.
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Combining the last two inequalities yields

h
j/2
K ‖∇sv‖0,F �

m−s−1∑

�=0

∑

e∈F�(K)

h
1+�/2
K ‖∇s+1v‖0,e,

which indicates (A.12). Thus the Poincaré inequality (A.11) holds. �

Lemma A.6. For any K ∈ Th, it holds that

(A.13) SK(v, v) � ‖∇mv‖20,K ∀ v ∈ ker(ΠK).

Proof. Due to the definition of the degrees of freedom, we have

SK(v, v) = hn−2m
K

NK∑

i=1

χ2
i (v)

�

m∑

j=0

∑

F∈Fj(K)

∑

α∈Aj
|α|≤m−j

h
2|α|−2m+j
K

∥∥∥QF
k−(2m−j−|α|)

(∂|α|v

∂ναF

)∥∥∥
2

0,F

≤
m∑

j=0

∑

F∈Fj(K)

∑

α∈Aj

|α|≤m−j

h
2|α|−2m+j
K

∥∥∥
∂|α|v

∂ναF

∥∥∥
2

0,F

≤
m∑

j=0

∑

F∈Fj(K)

∑

α∈Aj
|α|≤m−j

h
2|α|−2m+j
K ‖∇|α|v‖20,F ,

which together with the Poincaré inequality (A.11) implies (A.13). �

At last, combining (A.9) and (A.13) gives the norm equivalence (4.17); cf. The-
orem 4.9.

Appendix B. Examples of Green’s formula

Take K ∈ Th. The explicit expression of (3.2) for m = 1 with n ≥ m is no more
than (2.2), i.e.,

(∇u,∇v)K = −(Δu, v)K +
∑

F∈F1(K)

(
∂u

∂νK,F
, v)F ∀ u ∈ H2(K), v ∈ H1(K).

Also, the explicit expression of (3.2) for m = 2 with n ≥ m is exactly (2.5), i.e., for
any u ∈ H4(K) and v ∈ H2(K), it holds that

(∇2u,∇2v)K = (Δ2u, v)K +
∑

F∈F1(K)

[
(Mνν(u),

∂v

∂νF,1
)F − (Qν(u), v)F

]

+
∑

e∈F2(K)

∑

F∈F1(K)∩∂−1e

(νᵀF,eMνt(u), v)e.
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When m = n = 3, the explicit expression of (3.2) is that for any u ∈ H6(K) and
v ∈ H3(K),

(∇3u,∇3v)K + (Δ3u, v)K

=
∑

F∈F1(K)

(
νᵀK,F div2(∇3u) + divF (div(∇

3u)νK,F ) + divF divF ((∇
3u)νK,F ), v

)

F

−
∑

F∈F1(K)

(
νᵀF,1(divF ((∇

3u)νK,F )) + divF (((∇
3u)νK,F )νF,1),

∂v

∂νF,1

)

F

−
∑

F∈F1(K)

(
νᵀF,1 div(∇

3u)νK,F ,
∂v

∂νF,1

)

F

+
∑

F∈F1(K)

(
νᵀF,1((∇

3u)νK,F )νF,1,
∂2v

∂ν2F,1

)

F

−
∑

F∈F1(K)

∑

e∈F1(F )

(
νᵀF,e(divF ((∇

3u)νK,F )) + dive(((∇
3u)νK,F )νF,e), v

)

e

−
∑

F∈F1(K)

∑

e∈F1(F )

(νᵀF,e div(∇
3u)νK,F , v)e

+
∑

F∈F1(K)

∑

e∈F1(F )

2∑

i=1

((
νe,i + (νᵀe,iνF,1)ν

ᵀ

F,1

)
((∇3u)νK,F )νF,e,

∂v

∂νe,i

)

e

+
∑

F∈F1(K)

∑

e∈F1(F )

∑

δ∈F1(e)

(
νᵀe,δ((∇

3u)νK,F )νF,e

)
(δ)v(δ).

Consider the lowest-order case k = m = 3. The last identity will be reduced to

(∇3v,∇3q)K

=
∑

F∈F1(K)

(
∂2v

∂ν2F,1

, νᵀF,1((∇
3q)νK,F )νF,1

)

F

+
∑

F∈F1(K)

∑

e∈F1(F )

2∑

i=1

(
∂v

∂νe,i
,
(
νe,i + (νᵀe,iνF,1)ν

ᵀ

F,1

)
((∇3q)νK,F )νF,e

)

e

+
∑

F∈F1(K)

∑

e∈F1(F )

∑

δ∈F1(e)

v(δ)
(
νᵀe,δ((∇

3q)νK,F )νF,e

)
(δ)

for any v ∈ H3(K) and q ∈ P3(K), which will be used to compute the projector
ΠK : H3(K) → P3(K). The degrees of freedom are

(
∂2v

∂ν2F,1

, 1

)

F

,

(
∂v

∂νe,1
, 1

)

e

,

(
∂v

∂νe,2
, 1

)

e

, v(δ)

on each F ∈ F1(K), e ∈ F2(K), and δ ∈ F3(K).
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