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NONCONFORMING VIRTUAL ELEMENT METHOD FOR
2mTH ORDER PARTIAL DIFFERENTIAL EQUATIONS IN R"

LONG CHEN AND XUEHAI HUANG

ABSTRACT. A unified construction of the H"-nonconforming virtual elements
of any order k is developed on any shape of polytope in R™ with constraints
m < n and k > m. As a vital tool in the construction, a generalized Green’s
identity for H™ inner product is derived. The H™-nonconforming virtual
element methods are then used to approximate solutions of the m-harmonic
equation. After establishing a bound on the jump related to the weak conti-
nuity, the optimal error estimate of the canonical interpolation, and the norm
equivalence of the stabilization term, the optimal error estimates are derived
for the H™-nonconforming virtual element methods.

1. INTRODUCTION

We intend to construct H™-nonconforming virtual elements of order £ € N on
a very general polytope K C R™ in any dimension and any order with constraints
m < n and k > m. Since an mth order derivative of polynomial degree m — 1
or less would be zero, the constraint £ > m is required to ensure that the virtual
element spaces possess meaningful approximation in the H™-seminorm. Due to a
technical reason, our attention is restricted to the case m < n in this paper, and
the case m > n is postponed for future works. The virtual element was described
as a generalization of the finite element on a general polytope in [12,13], thus it is
helpful to recall the definition of the finite element first.

A finite element on K was defined as a triple (K, Vi, N ) in [23], where Vi is the
finite-dimensional space of shape functions and N is the set of degrees of freedom
(d.o.f.). The set Nk forms a basis of (Vi)' the dual space of the space of shape
functions. The shape functions of the finite element are usually polynomials, and
their basis functions being dual to the degrees of freedom Ny have to be explicitly
constructed for the implementation, which is painful for high order cases (either
k,m, or n is large).

We can also represent the virtual element as a triple (K, Nk, V). Here we
reorder Vi and N to emphasize that the set of the degrees of freedom N is crucial
in the construction of the virtual element and that the space of shape functions Vi
is virtual. Indeed, after having the degrees of freedom Ny, we may attach different
spaces. The space of shape functions Vi is only required to include all polynomials
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2 LONG CHEN AND XUEHAI HUANG

of the total degree up to k for the approximation property. Different from the finite
element, one advantage of the virtual element is that the basis functions of Vi are
not explicitly required in the implementation. When forming the linear system of
the virtual element method, the computation of all the to-be-required quantities
can be transferred to the computation using the degrees of freedom.

Construction of H™-conforming or nonconforming elements has been an active
topic in the field of the finite element methods in recent years. Some H™-conforming
finite elements with polynomial shape functions were designed on the simplices
in [4,7,15,35,41] and on the hyperrectangles in [27,29,42]. Recently an H™-
conforming virtual element for polyharmonic problems with arbitrary m in two
dimensions was introduced and studied in [6]. For general m, nonconforming ele-
ments on the simplices are easier to construct than conforming ones. In [36, 37],
Wang and Xu constructed the minimal H™-nonconforming elements in any di-
mension with constraint m < n. Recently Wu and Xu extended these minimal
H™-nonconforming elements to m = n + 1 by enriching the space of shape func-
tions with bubble functions in [40], and to arbitrary m and n by using the interior
penalty technique in [39]. In two dimensions, Hu and Zhang designed the H™-
nonconforming elements on the triangle for any m in [30]. On the other hand, the
H?-conforming virtual element, the C%-type HZ?-nonconforming virtual element,
and the fully H2-nonconforming virtual element on the polygon with any shape
in two dimensions were developed in [19], [43], and [5,44], respectively. In [38], a
nonconforming Crouzeix-Raviart type, i.e., H'-nonconforming finite element, was
advanced on the polygon.

Although the H™-conforming virtual element has been devised for n = 2 in
[6] for arbitrary m, generalization to dimension n > 2 seems nontrivial. As we
show in this paper, the H™-nonconforming virtual element can be constructed in
a universal way for all n > m and allows unified error analysis.

We shall construct the H™-nonconforming virtual element in any order on the
polytope with any shape in any dimension (with constraints ¥ > m and m < n).
The vital tool is the following generalized Green’s identity for the H™ space:

(V™u, V™) g =((—A)™u,v) g

- 2m—j—lal, O
(1.1) +Z Z Z <DFvO‘ (w), 8V2—‘. )F7

J=1 FeFIi(K) <€4;
la]<m—j

which is proved by the mathematical induction and integration by parts. Here
FI(K) is the set of all (n — j)-dimensional faces of the polytope K, A; the set
consisting of all n-dimensional multi-indexes o = (a,...,a,) with aj4q = -+ =

oy, =0, Diﬂfr;jf‘a‘ (u) some (2m — j — |a|)th order derivatives of v on F, and %‘zlﬁ”

the multi-indexed normal derivatives on F'.

Imagining v in the Green’s identity (1.1) as a polynomial of degree k temporarily,
we acquire the degrees of freedom Ny (K) from the right-hand side of the Green’s
identity (1.1), and the space Vj(K) of shape functions is defined inherently by
requiring the first terms in the inner product to be in polynomial spaces. Namely,
the right-hand side of (1.1) provides a natural duality of V3 (K) and Ni(K). As a
result we construct the fully H™-nonconforming virtual element (K, Ny (K), Vi(K))
completely based on the Green’s identity (1.1). If K is a simplex and k = m, the
virtual element (K, N (K), Vi(K)) is reduced to the nonconforming finite element
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H™-NONCONFORMING VEM 3

in [37], and hence we generalize the nonconforming finite element in [37] to high
order k > m and arbitrary polytopes. In two dimensions, we also recover the fully
H?-nonconforming virtual element in [5,44].

After introducing the local H™ projection II* and a stabilization term using
d.o.f., we propose H™-nonconforming virtual element methods for solving the m-
harmonic equation. We assume the mesh 7 admits a virtual quasi-uniform trian-
gulation, and each element in 7}, is star-shaped. A bound on the jump [Viv,] is
derived using the weak continuity and the trace inequality, with which we show the
discrete Poincaré inequality for the global virtual element space. The optimal error
estimate of the canonical interpolation Iju is achieved after establishing a Galerkin
orthogonality of u — Ipu. By employing the bubble function technique which was
frequently used in proving the efficiency of the a posteriori error estimators, the
inverse inequality for polynomials, the generalized Green’s identity, and the trace
inequality, we acquire the norm equivalence of the standard stabilization using {2
inner products of degree of freedoms on ker(IT1¥). The optimal error estimates are
derived for the H"™-nonconforming virtual element methods by further estimating
the consistency error.

The shape functions of the virtual element spaces are not explicitly known; in
particular, the output of the method is a vector of degrees of freedom and not an
explicit function. In order to explicitly represent the solution, one employs some
suitable polynomial projector, which is typically piecewise defined and discontin-
uous over the polytopal decomposition. However, since the degrees of freedom in
the interior of each element for the virtual elements can be eliminated by the static
condensation, similarly as the hybridizable discontinuous Galerkin methods [31],
the virtual element methods possess fewer globally decoupled degrees of freedom
than the usual discontinuous Galerkin methods. Furthermore, the nonconforming
virtual element can be constructed in a universal way which allows unified error
analysis and is employed for theoretical purposes, independently of the way one
wants to represent the solution.

The rest of this paper is organized as follows. In Section 2, we present some
notation and the construction of the fully H'- and H2-nonconforming virtual ele-
ments. The general fully H™-nonconforming virtual element is designed in Section
3. The corresponding H™-nonconforming virtual element method and its error es-
timate are shown in Sections 4 and 5, respectively. A conclusion is given in Section
6. Finally, we prove the norm equivalence in Appendix A and give a remark on the
implementation in Appendix B.

2. PRELIMINARIES

2.1. Notation. Assume that @ C R™ (n > 2) is a bounded polytope. For any
nonnegative integer  and 1 < ¢ < n, denote the set of r-tensor spaces over R
by Te(r) = (RY)" = | R, Given a bounded domain K C R™ and a non-
negative integer k, let H*(K;T,(r)) be the usual Sobolev space of functions over
K taking values in the tensor space Ty(r). The corresponding norm and semi-
norm are denoted, respectively, by || - ||x.x and |- |k, k. It is customary to rewrite
H*(K;T,(0)) as H*(K). For any F C 0K, denote by vk r the unit outward normal
to OK. Without causing any confusion, for simplicity we will abbreviate vk r as
v. Define HY(K) as the closure of C§°(K) with respect to the norm || - || x, i-e.

Licensed to Univ of Calif, Irvine. Prepared on Thu Jan 2 14:45:07 EST 2020 for download from IP 128.195.64.2.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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(cf. [1, Theorem 5.37]),

k-1
_3”_...2220 OnaK}7

HYNK) = {v € HY(K):v = 5= ST

and define H} (K;T,(r)) in a similar way. Let (-, -)x be the standard inner product
on L?(K;Te(r)). If K is 2, we abbreviate ||-||x.x, ||k, x and (-, )k by |||k, ||x and
(+,-), respectively. The notation Py (K) stands for the set of all polynomials over
K with the total degree no more than k, and denote by Py (K; Ty(r)) the tensorial
version space of P (K). Let QF be the L?-orthogonal projection onto Py (K; Ty(r)).

For an n-dimensional multi-index a = (ayq, ..., a,) with a; € Z1 U {0}, define
la| == Y1 a;. For 0 < ¢ < n, let Ay be the set consisting of all multi-indexes
a with E?:H-l a; = 0, ie., the nonzero index only exists for 1 < ¢ < [. For
any nonnegative integer k, define the scaled monomial M (K) on an ¢/-dimensional
domain K,

r—TK

= <
My(K) {( = ) aeAnlal < k}
where hg is the diameter of K and xx is the centroid of K. Also, My(K) :=
whenever k < 0.
Let {75} be a regular family of partitions of  into nonoverlapping simple poly-

topal elements with h := maxge7, hix. Let F] be the set of all (n —r)-dimensional
faces of the partition 7, for r = 1,2,...,n, and its boundary part

Fro = {FeF,: Fcon},

and interior part f;’i = .F,'L’\f,:’a. Moreover, we set for each K € Tj,
F(K):={F e F :F CO0K}.

The supscript r in Fj represents the co-dimension of an (n — r)-dimensional face
F. As we shall show later the degree of freedom will be associated to the r normal
vectors of F'. Similarly, for F' € F; and j =0,1,...,n—r withr =1,2,...,n, we
define

Fi(F):={ec F;7 :eC F}.

Here j is the co-dimension relative to the face F. Apparently F°(F) = F.

For any F' € F}, let vp1,...,vF, be its mutually perpendicular unit normal
vectors, and define the surface gradient on F' as
T
v
(2.1) Vev:=Vuv —

——VF;
— Jup,
=1 ’

namely the projection of Vv to the face F', which is independent of the choice of the
normal vectors. When v is a tensor, the surface gradient Vpv is defined element-
wisely in convention, which is a one-order higher tensor. And denote by divg the

corresponding surface divergence. For any F' € F} and o € A, for r = 1,...,m,
set
glely glely
= -
ovg BuFfl e 8VF’7,

For any (n — 2)-dimensional face e € F7?, denote

O le:={FeF. ecCoF}.
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H™-NONCONFORMING VEM 5

Similarly, for any (n — 1)-dimensional face F' € F}, let
O 'F:={KecT,:FeF(K)}
For nonnegative integers m and k, let
H™(Ty) :={v € L*(Q) : v|x € H™(K) for each K € T},
P(T1) = {v € L*(Q) : v|g € Pi(K) for each K € T}.

For a function v € H™(T},), equip the usual broken H™-type norm and seminorm

1/2 1/2
lollma == (D2 Wolre) s Tobmni= (0 loPk)

KeTy KeTh

We introduce jumps on (n—1)-dimensional faces. Consider two adjacent elements
K™ and K~ sharing an interior (n — 1)-dimensional face F'. Denote by v and v~
the unit outward normals to the common face F of the elements K™ and K,
respectively. For a scalar-valued or tensor-valued function v, write v := v|g+ and
v~ 1= v|g—. Then define the jump on F as follows:

[v] := v+1/F71 vt 4 VT VRV .

On a face F lying on the boundary 09, the above term is defined by [v] := vvp -v.

Throughout this paper, we also use “< ---” to mean that “< C'---” where C
is a generic positive constant independent of mesh size h, but may depend on the
chunkiness parameter of the polytope, the degree of polynomials k, the order of
differentiation m, and the dimension of space n, which may take different values
at different appearances. Also, A <~ B means A < B and B < A. Hereafter, we
always assume k > m.

We summarize important notation in Tables 1 and 2 below.

TABLE 1. Notation of the mesh, elements, and faces.

m order of differentiation H™ n dimension of space R™ | m <n,k>m
k degree of polynomial Py, r co-dimension of a face 0<r<n
Th a mesh of K a polytope element KeT
Fr, (n — r)-dimensional face F a typical face FeF,

o7 te all faces surrounding e 07 'F | elements containing F | e € FZ, F € F}

TABLE 2. Notation for differentiation

a=(ai,az,...,an) an n-dimensional multi-index
A, set of multi-index a=(at,...,0r,0,...,0) for a € A,
VF1, " ,VFr r linearly independent unit normal vectors for F' € Fj,
r
ov .
Vrv:=Vv— Z VF,i surface gradient on F'
=1 8VF"L
Dy, (v) a jth order derivative of v on F'
8l*ly alely .. .
— = a7 g a multi-indexed normal derivative on F'

ovg ovgl ---Ovger,

Licensed to Univ of Calif, Irvine. Prepared on Thu Jan 2 14:45:07 EST 2020 for download from IP 128.195.64.2.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



6 LONG CHEN AND XUEHAI HUANG

2.2. H'-nonconforming virtual element. To drive the H™-nonconforming vir-
tual element in a unified framework, we first revisit the simplest case for the purpose
of discovering the underlying mechanism.

Taking any K € Ty, let u € H?(K), and let v € H'(K). Applying the integration
by parts, it holds that

ou

8VK7F7

(2.2) (Vu, Vo)g = —(Au,v)g + Z (
FeFl(K)

V)F

Imaging u € Pp(K), we are inspired by the Green’s identity (2.2) to advance the
following local degrees of freedom (dofs) N (K) of the H' nonconforming virtual

element:
1

(2.3) m(v,q)p ¥ g € My_1(F) on each F € FY(K),
1

(2.4) W(U’ Qr YV q€My_o(K).

The local space of the H'-nonconforming virtual element is

ou

ovk,r

)

Vi(K) = {u € H'(K) : Au € P_»(K), |l €Pp_1(F) VFEe€ fl(K)}

for k > 1. This is the H!'-nonconforming virtual element constructed in [8]; see
also [32].

2.3. H?-nonconforming virtual element. Then we consider the case m = 2.
For each F € F!(K) and any function v € H*(K), set

M,,(v) == V})l(VQU)l/KF,
M, (v) :== (V20)vg p — M, (v)vE,
Qu(v) == v p div(V?v) + dive M, (v).
In two dimensions, M, (v), M,:(v), and @Q,(v) are called the normal bending mo-

ment, twisting moment, and effective transverse shear force, respectively, when v
is the deflection of a thin plate in the context of elastic mechanics [25,34].

Lemma 2.1. For any u € H*(K) and v € H*(K), it holds that

)~ (@), v)e]

(V2u, Vo) = (A% o)i + 3 [(Mw<u>,ay—m

FeF'(K)

(2.5) + 0y Y (M), v)e.

e€F2(K) FeF'(K)Nd—1'e
Proof. Using integration by parts, we get
(div(VZu), Vo) = —(A%u,v)k + Y (v pdiv(VZu),0)F,
FeFY(K)
and for each F € F}(K),

(Myi(u), Vo) p = —(dive My(w),v)p + Y (V] Mye(u), v)e.
e€F1(F)
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H™-NONCONFORMING VEM 7

Then we acquire from the last two identities and splitting the gradient into the
tangential and normal components that

(V2u, V20) g = —(div(V?u), Vo) g + Z (V2u)vk p, Vo)

FeF(K)
= —(div(V?u), Vo) i + Z (M, (u), v F
87/1:'1
FeFI(K) '
+ Z (Myi(u), VEv)p
FeFY(K)
ov
= Q)+ Y (M), 5 —)r = (Qu(u).v)r]
VF1
FEeFI(K) '
+ Z Z (V}?,eMVt(u)7”)67
FEFI(K) ecF1(F)
which ends the proof. (I

Inspired by the Green’s identity (2.5), for any element K € 7Ty, and integer k > 2,
the local degrees of freedom N (K) of the H? nonconforming virtual element are
given as follows:

1
(2.6) W(va a)x ¥ q € My_4(K),
1
(27) W(vaq)F v q € Mk—?)(F) on each F' € ‘Fl(K)a
1 ov 1
(2.8) {2/ (81/1:71 yQ)F Y q€Mg_o(F) oneach F € F(K),
1
(2.9) (v,9)e ¥V q €My,_s(e) on each e € F*(K).

Je|
The local space of the H? nonconforming virtual element is
Vi(K) == {u € H*(K) : A*u € P,_4(K), M,,(u)|p € Pr_2(F),Q,(u)|p € Px_3(F),

> vE Myi(u)|e € Prs(e) ¥V F € FY(K) e F(K)}.
FeF'(K)no—le

Remark 2.2. In two dimensions, the degrees of freedom (2.9) will be reduced to the
function values on the vertices of K. Then the virtual element (K, N (K), Vi(K))
is the same as that in [5,44].

Remark 2.3. If the element K € 7T, is a simplex and k& = 2, the degrees of free-
dom (2.6)—(2.7) disappear, and the degrees of freedom (2.8)—(2.9) are the same
as the Morley-Wang—Xu element’s degrees of freedom in [36]. Indeed, the virtual
element (K, Nj(K),Vi(K)) coincides with the Morley~Wang—Xu element in [36]
when k = 2 and K is a simplex.

3. H™-NONCONFORMING VIRTUAL ELEMENT WITH 1 < m <n

In this section, we will construct the H™-nonconforming virtual element. It has
been illustrated in Sections 2.2-2.3 that the Green’s identity plays a vital role in
deriving the H! and H? nonconforming virtual elements. To this end, we shall first
derive a generalized Green’s identity for the H™ space.
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8 LONG CHEN AND XUEHAI HUANG

1. Generalized Green’s identity. For any scalar or tensor-valued smooth func-
tion v, nonnegative integer j, F € F;, with 1 <r <n, and « € A,, we use D%, (v)
to denote some jth order derivatives of v restrict on F', which may take different
expressions at different appearances.

Lemma 3.1. Let K € Ty, let F' € F'(K) with1 < r < n—1, and let s be a
positive integer satisfying s < n — r. There exist differential operators Dg.s’ ~lal
for j =0,...,s, e € FI(F), and o € A,y with |a| < s — j such that for any

T € H(F;T,(s)) and (V*v)|r € L2(F;Ty(s)), it holds that

(3.1) (7, V*v) Z > (pid e, %Z;)e.

J=0ecFi(F) «€Ar4;
lo|<s—j

Proof. We adopt the mathematical induction to prove the identity (3.1). When
s =1, we get from (2.1) and integration by parts

r

0
(Tu VU)F = Z(T, ﬁVFi)F + (77 VFU)F

_ZVFl —F—(dIVFT v)F + Z (VEoTs Ve

B e€FI(F)

Thus the identity (3.1) holds for s = 1.

Next assume that the identity (3.1) is true for s = £ — 1 with 2 < ¢ < n —r,
and then let us prove it is also true for s = £. We get from (2.1) and integration by
parts

r

(r, V) p =Y (rvp:, V! et (1, VRV )

i=1 OV,
- ov
= Z(TVF,i7 vlilr)F — (diVF T, Vlflv)p + Z (TVF,€7 Vlflv)e.
i=1 VF;i c€FL(F)

Applying the assumption with s = £ — 1 to the right-hand side of the last equation
term by term, we have

(’TZ/FJ;,vei )r = Z Z Z (Dﬁjalijila‘(TVF’i)’ gTi;(@i;i))e’

J=0ecFi(F) 0‘6’47+J
la|<e—

£—1 N
T =S S (o e, 5

J=0 e€Fi(F) «CAri;
o<1~

l—1 al
e E TS (o e, 22,

Jj=0écFi(e) “€Ar+14;
la|<e—1—j

Finally we conclude (3.1) for s = ¢ by combining the last four equations and the
fact that vp; is a linear combination of v 1, ..., Ve 4 if € € FI(F). ]
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H™-NONCONFORMING VEM 9

For each term on the right-hand side of (3.1), the total number of differentiation
of the integrand is s — j. In view of Stokes’s theorem, e € F7(F) can be thought
of as e € &' F so that the total number of differentiations is s which matches that
of the left-hand side. The bounds on s in Lemma 3.1 imply r + s < n; then
F5(F) C Frt5(K) is well-defined for F € F"(K). Hence we can recursively apply
the Stokes theorem until there is no derivative of v on the lowest-dimensional faces.

We give two examples of identity (3.1). Whenn >2,s=1,and 1 <r <n—1,
the explicit expression of (3.1) is that for any F € F"(K), 7 € H'(F;R"), and
(Vo) € L2(FiR"),

. . Ov
(1, Vo)p = —(divp 7,v)F + Z(V}7iT, 81/—)F + Z (VE T V)e
i=1 Fi c€FL(F)

If n =3 and s = 2, then r = 1. Also, the explicit expression of (3.1) is that for any
F e FY(K), T € H*(F;T3(2)), and (VZ%)|r € L3(F;T3(2)),
ov

81/1:,1

0%v ) .
+(V;7ITVF71,8V—2)F— > Wl (dive 1) + dive(Tvme), v)e
"l e€FL(F)

)F

(1, V*0)p = (divp dive 7,v)p — (V}vl(diVF T)+dive(Tve1),

T ov
+ E E vitvpe + (W vp WE TR e, 57— )e
e, e, ' e

e€FI(F) =1 ’

+ Z Z v 5TVRe)(0)v(0).

e€FL(F)SeF1(e)

Theorem 3.2. Let 1 < m < n. There exist differential operators D?;Z_j_‘al for
j=1,....m, F € FI(K), and o € A; with |a|] < m — j such that it holds for
any u € H™(K) satisfying (—A)™u € L*(K) and D?Jy’;ﬁjf‘a'u € L*(F), and any
ve H™(K)

(V™u, V™) g =((—A)"u,v)k

52 Sy (g,

J=1FeFi(K) <€4;
lal<m—j
Proof. By the density argument, we can assume u € H?™(K). We still use the
mathematical induction to prove the identity (3.2). The identity (3.2) for m = 1 and
m = 2 is just the identities (2.2) and (2.5), respectively. Assume the identity (3.2)
is true for m = £ —1 with 3 < £ < n; then let us prove that it is also true for m = £.
Applying the integration by parts,

(Vu, Vo) e = —(div V'u, Vo) i + Z (Vu)vg,p, Vo) p
FEFL(K)

= (VN (=Au), V) + Y (Vv r, Vo) p.
FeFY(K)
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10 LONG CHEN AND XUEHAI HUANG

Since the identity (3.2) holds for m = ¢ — 1, we have
(VEH(=Aw), Véflv)

; lerly
=((-A U’UK-l-Z Z Z (D%i_l)_]_‘al(—Au),%y )F.

(a3
J=1FeFi(K) «&€4; F
| <e— 1 —j

Taking 7 = (Viu)vg r, s=¢—1,and r = 1 in (3.1), we get

. laly,
(Vouvi,r, V© F*Z > X (Dﬁlvlﬂfla‘((véu)’/l‘f)’ aaug )e

J=0e€Fi(F) ¢*€A1+J
|| <l—

Y YT (P e, ).

j=1e€Fi—1(F) acA;
Ia\Slfj

Therefore we finish the proof by combining the last three equations. O

Examples for m = 1,2,n > m, and m = n = 3 can be found in Appendix B.

3.2. Virtual element space. Inspired by identity (3.2), for any element K € Ty,
and integer k£ > m, the local degrees of freedom Ny (K) are given as follows:

1
1 dlely
(34) |F|(n—j—|a|)/(n—j)( 8%& 7Q)F‘ v qc Mk—(2m—j—|a|)(F)

on each F € F/(K), where j =1,...,m, a € Aj, and |a| < m — j. Denote by Ng
the number of local degrees of freedom (3.3)—(3.4).

We present a heuristic explanation of the scaling factor in (3.4). Let K = {& €
R": &= i(w—w;{) V& € K}, and let an affine mapping ¥ : & € R" — U(&) =
hx& +xx € R". Then hy =~ 1 and U(K) = K. For any function v(x) defined on
K, let (&) := v(¥(&)), which is defined on K. By the scaling argument, we have

ploly g, Dl
8]/0"QF_hK (8]/‘2‘,qF
F

By the mesh conditions (A1)-(A2) in Section 4.2, it holds that |F| = hlx 7. Thus
there exists a constant C' >0 being independent of hx such that |F|(»=7=leD/(r=5) —
Ch?7 71 Then

1 (a\% 1,0y 1 1 (8‘0417 -
T A A oA - R N O O B P Y R

where €} = C/|F|("=i~1aD/(n=7) is independent of hx. Hence all the degrees of
freedom in (3.3)—(3.4) share the same order of magnitude.

Again due to the first terms in the inner products of the right-hand side of (3.2),
and the degrees of freedom (3.3)—(3.4), it is inherent to define the local space of the
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H™-NONCONFORMING VEM 11

H"™-nonconforming virtual element as
Vi(K) :={ue H"(K) :(=A)"u € Pr_om(K),
Dy W) p € Py om—jjapy (F) ¥ F € FI(K),

e

j=1,...,m,a € A4;, and |a| < m — j},

where the differential operators D7 2m=j=lel 31 introduced in Theorem 3.2.

In the following we shall prove that (K,Ni(K), Vi(K)) forms a finite element
triple in the sense of Ciarlet [23]. Unlike the traditional finite element, in the
virtual element only the set of the degrees of freedom A (K) needs to be explicitly
known. The “virtual” space Vk( ) is only needed for the purpose of analysis and
2m=i=1el ig 1ot needed in the definition of Vj,(K).

The following property is the direct result of (3.1) and the definition of the
degrees of freedom (3.4).

the specific formulation for D

Lemma 3.3. Let K € Ty, let F € F'(K) with 1 <r <m, and let s <m —7 be a
nonnegative integer satisfying k > 2m—(r+s). For any 7 € Py_ (2 —r—s)(F; T (s))
and (V*v)|r € L?(F;T,(s)), the term

(T, VSU)F

is uniquely determined by the degrees of freedom (%‘:}’,q)e for all 0 < j < s,
e € FI(F), a € Apyj with |a| < s—j, and q € Ml — (2m—r—j—|a])(€)-
Lemma 3.4. We have Pi(K) C Vi (K) and
(3.5) dim Vi (K) = dim NV, (K).
Proof. For any q € Py (K), it is obvious that
(~A)"q € Prozm(K), Dyt ?lgle € P oy jap (F).

Hence it holds that P (K) C V4(K). Since all the differential operators in the
definition of Vi (K) are linear, Vj(K) is a vector space.

Next we count the dimension of Vi (K). Consider the local polyharmonic equa-
tion with the Neumann boundary condition

(=A)"u=fi inK,
(3.6) D?’;ﬁj*lal(u) = gf’o‘ on each F' € F/(K)
withj=1,...,m, a € 4;, and |a|] <m —j,

where f1 € Pr_om(K), gJF’O‘ € Py_(2m—j—|a|)(F). Applying the generalized Green’s
identity (3.2), the weak formulation of (3.6) is

laly
(3.7) (V"u, V™) = (f1,v K+Z Z Z (fa’%yg)p

j=1 FEFi(K) «cA;
\a\<m j

for any v € H™(K). If we take v = ¢ € P,,,_1(K) in (3.7), we have the compatibility
condition of the data

|ex]
(3.8) (f1,9) K+Z Z Z (Fo‘,a q)F:O VqeP, 1(K).

(67
J=1FeFi(K) €4, YF
\a\<m j
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12 LONG CHEN AND XUEHAI HUANG

On the other hand, given f; € Pr_qpm(K), gf’a € Pr_(2m—j—|a)) (F) satisfying
the compatibility condition (3.8), the weak formulation of the Neumann problem
of the local polyharmonic equation (3.6) is: find u € H™(K)/P,,—1(K) such that

(V"™u, V™) = (f1,v) +Z Z Z (Fa i ‘U)F

J=1 FeFi(K) «€4;
\a\<m J
for all v € H™(K)/Py,—1(K). The well-posedness of this variational formulation is
guaranteed by the Lax—Milgram lemma [9,23], and specifically the well-posedness
of polyharmonic equations with various boundary conditions can be found in [2,26].
Therefore dim(Vy(K)/Pp,—1(K)) equals

dmProom(K)+ Y > Y dimPhomejjap(F) — dim Py (K),
J=l FEFi(K) acA;
o <m—j
where the dimension of the constraint for the data is subtracted. When count-
ing dim Vi (K), we should add back the dimension of the kernel space, i.e., solu-
tion spaces of (V™u, V"v)x = 0, which implies dim V;(K) = dimPy_o,,(K) +
Yim Yreriu 2 ocay AmPrmoj—ja) (F) = dim Ny (K). O
al<m—j
Lemma 3.5. The degrees of freedom (3.3)—(3.4) are unisolvent for the local virtual
element space Vi, (K).

Proof. Let v € Vi(K) and suppose all the degrees of freedom (3.3)—(3.4) vanish.
We get from (3.7) that
V™ 0I5, = 0.

Thus v € P,,,—1(K). By Lemma 3.3 with s = m — r, we have for any F' € F"(K)
with 1 <7 <m,

(3.9) (1, Veu)p =0 V71 ePy(F;Ty(s)).

Due to (3.9) with » = 1 and the fact that v € P,,_;(K), it follows that v €
P,,—2(K). Recursively applying (3.9) with » = 2,...,m gives v = 0. This ends the
proof. ([

Remark 3.6. If the element K € 7T, is a simplex and & = m, the degrees of free-
dom (3.3) disappear, and the degrees of freedom (3.4) are the same as those of the
nonconforming finite element in [37]. Since P,,(K) C Vi (K), the virtual element
(K, Ni(K), Vi(K)) coincides with the nonconforming finite element in [37] when K
is a simplex and k& = m, which is the minimal finite element for the 2mth order par-
tial differential equations in R™. In other words, we generalize the nonconforming
finite element in [37] to high order k > m and arbitrary shape of polytopes.

3.3. Local projections. For each K € Tj, define a local H™ projection IT¥ :
H™(K) — Pr(K) as follows: given v € H™(K), let I15v € P(K) be the solution
of the problem

(3.10) (V™"IE v, V™) = (V™0, V")V q € Pu(K),
(3.11) doEvtTIfv) = > QE(VTTY), r=1,...,m.
Ferr(K) FeFr(K)
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H™-NONCONFORMING VEM 13

The number of equations in (3.11) is
Z CZ+71n 1-r = Ciymeq = dim(Pr, 1 (K)).
Then the well-posedness of (3.10)—(3.11) can be shown by the similar argument as

in the proof of Lemma 3.5. To simplify the notation, we will write it as IT¥.
Obviously we have

(3.12) 50| i < [0l Vv e H™(K).

We show that the projection IT* u is computable using the degrees of freedom (3.3)—
(3.4).

Lemma 3.7. The operator IX : H™(K) — P(K) is a projector, i.e.,

(3.13) M5y =v VovePy(K),

and the projector IIX can be computed using only the degrees of freedom (3.3)—(3.4).

Proof. We first show that I1¥ is a projector. Let p = II¥v — v € Py (K). Taking
¢ =pin (3.10), we get V"p =0, i.e., p € P,,_1(K). By (3.11),

Z QE(V™Tp) =0, r=1,...,m.
FEFr(K)

Therefore p = 0, which means IT¥ is a projector.
Next, by applying the identity (3.2) and the right-hand side of (3.10)

laly o
TGN LIRS SO DD Dl vt A )

J=1FeFi(K) «€4;
lal<m’

Hence we conclude from the degrees of freedom (3.3)—(3.4) and Lemma 3.3 with
s =m — r that the right-hand sides of (3.10)—(3.11) are computable. O

Remark 3.8. D§27j7|a| is needed in the computation of II*. But since q € Py (K)
and Vq € Py, (K), few terms are left for moderate k.

Let Wi (K) := Vi(K) for k > 3m —1 or m < k < 2m — 1. To compute the L?
projection onto Py,_1(K) for 2m < k < 3m — 1, following [3], define

Vi(K) = {v € H™(K) : (~A)"™ € Pp_1(K), Dy 1N (0) | p € B omejeiap (F),
VFeF(K),j=1,...,m,a€A;, and |a| <m — j},

Wi(K):={ve ‘7;@([() t(v —HKv,q)K =0 Vgqge Pé_zm([()},

where Pi-_,, (K) C P,,—1(K) is the orthogonal complement space of Py_s,,(K) in
P,,—1(K) with respect to the inner product (-,-)g. It is apparent that Pr(K) C
Wi(K) and that the local space Wi (K) shares the same degrees of freedom as
Vi(K). That is, for the same N (K), we can associate different “virtual” spaces
and thus have a different interpretation.

Lemma 3.9. The degrees of freedom (3.3)—(3.4) are unisolvent for the local virtual
element space Wy (K).
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14 LONG CHEN AND XUEHAI HUANG

Proof. Tt is enough to only consider the case 2m < k < 3m—1. Take any v € Wy (K)
all of whose degrees of freedom (3.3)-(3.4) disappear. Then IIXv = 0. By the
definition of Wy, (K), we have

(@) =0V q € Py, (K),
which together with (3.3) implies
(U,q)K =0V q € ]P)mfl(K)

Applying the argument in Lemma 3.5 to the space YN/k(K ) with vanishing degrees
of freedom (3.4) and the last equation, we know that v = 0. O

In the original space Vi, (K), the volume moment (cf. (3.3)), is only defined up to
degree k—2m which cannot compute the L2-projection to P,,,_; when k is small. For
2m < k < 3m — 1, a desirable property of the local virtual element space Wy (K) is
that the L2-projection QX _; is computable if all the degrees of freedom (3.3)—(3.4)
are known. Indeed, it follows from the definition of W (K) that

( iq - Qi(&m)(v — %) = 571(1 - Qkazm)(U —%v) =0 Voe Wi (K),
which provides a way to compute the L2-projection

(3.14) E v=0QF, v+QE 15y —-QK, "y VwveWy(K).

m—1

Denote by I : H™(K) — Wy (K) the canonical interpolation operator based on
the degrees of freedom in (3.3)—(3.4). Namely, given a u € H™(K), Ixu € Wi(K)
so that x(u) = x(Ixu) for all x € Ni(K). As a direct corollary of Lemma 3.7, we
have the following identity.

Corollary 3.10. For any v € H™(K), it holds that
(3.15) % (v) = X (I'gw).

4. DISCRETE METHOD

We will present the virtual element method for the polyharmonic equation based
on the virtual element (K,N(K),Vi(K)) or (K,Ng(K), Wi(K)) when L2
projection is needed.

4.1. Discretization. Consider the polyharmonic equation with a homogeneous
Dirichlet boundary condition

(—A)"u = f in €,
(4.1) Cou . om T _
u=gr=---= 455 =0 ond,

where f € L?(Q) and Q C R™ with 1 < m < n. The weak formulation of the
polyharmonic equation (4.1) is to find v € HJ*(2) such that

(4.2) (V™u, V™) = (f,v) Y ve HQ).
Since
IV™ollo = [[v]lm and  (f,v) < [[fllolfvllm Vv e Hg" (),

it follows from the Lax—Milgram lemma that the variational formulation (4.2) is
well-posed.
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H™-NONCONFORMING VEM 15

Define the global virtual element space as
Vi, i= {vn, € L*(Q) vp|x € Wi(K) for each K € Ty,; the degrees of freedom

||
8ayzh ,q)r are continuous through F for all
F
q € Pr_(2m—j—|a)(F),a € Aj with |af <m —j, F € F/(K),
alalvh

and j=1,...,m; ( )rp=0 if F CoQ}.

8—a’q

Vp

Define the local bilinear form ap, i (-, -) : Wi(K) x Wi(K) = R as
anx(w,v) = (VT w, V' TTE0) ¢ + S (w — T w, v — TFv),

where the stabilization term
Ng

(4.3) Sr(w,v) 1= Rl 2™ in(w)xi(v) YV w,v € Wi(K),
i=1

where x; is the ith local degree of freedom in (3.3)—(3.4) for ¢ = 1,..., Ng. The
global bilinear form ap(-,-) : Vs x Vj, = R is

ap(wp,vp) = Z an, i (Wh, Vp).
KeT

Remark 4.1. The stabilization (4.3) resembles the original recipe in [12,13]. This
classical stabilization is easy to implement and was used to develop the discrete
Galerkin orthogonality (5.1) and the stability bounds in Appendix A. However, the
stabilization (4.3) usually suffers from conditioning and stability issues, especially
for high-order k and differential problems with large m. Instead, several other
stabilizations have been devised and investigated in [10,11,14,24,33] to cure these
issues. The numerical results in [33] show that these stabilizations have almost the
same effect on the condition number of the stiffness matrix for n = 2. The classical
stabilization, the D-recipe stabilization in [11], and the D-recipe stabilization with
only boundary dofs were compared in three dimensions in [24]; as a result the
D-recipe stabilization outperforms the other two.

Define IIj, : Vi, = Pi(Tn) as (Iv)|x = II¥(v|k) for each K € Ty, and let
QL : L%(Q) — P;(Tn) be the L2-orthogonal projection onto P;(7,). Then for any
v e L3(Q),

@)k = Qi (v|k) VK €Ty
We compute the right-hand side according to the following cases:
(fTon),  m<k<2m—1,
(4.4) (oo = (£,Qr o), 2m <k <3m—2,
(f,QF ™), 3m—1<k.
We will need this definition of the right-hand side in order to get an optimal order
of convergence; see Lemma 5.7.

Remark 4.2. When m < k < 2m — 1, which is an important range for large m as
high-order methods are harder to implement, there is no need to compute a new
projection and no need to modify the local virtual element space. For k > 2m,
however, an L2-projection to a higher degree polynomial space is needed to control
the consistency error; see Section 5.2.
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16 LONG CHEN AND XUEHAI HUANG

With the previous preparations, we propose the nonconforming virtual element
method for the polyharmonic equation (4.1) in any dimension: find u; € Vj, such
that

(45) ah(uh,vh) = <f, ’Uh> Y vy € V.

In the rest of this section, we shall prove the well-posedness of the discretization
(4.5) by establishing the coercivity and continuity of the bilinear form ay (-, -).

4.2. Mesh conditions. We impose the following conditions on the mesh 7:

(A1) Each element K € T, and each face F' € F} for 1 < r < n—1 is star-shaped
with a uniformly bounded star-shaped constant.

(A2) There exists a quasiuniform simplicial mesh 7.* such that each K € 7}, is a
union of some simplexes in 7;*.

Notice that (Al) and (A2) imply diam(F) ~ diam(K) for all F € F"(K),1 <
r<n-—1.

For a star-shaped domain D, there exists a ball Bp C D with radius pphp
and a Lipschitz isomorphism ® : Bp — D such that |®|1 o 5, and [P < p
are bounded by a constant depending only on the chunkiness parameter pp. Then
several trace inequalities of H(D) can be established with a constant depending
only on pp [17, (2.18)]. In particular, we shall use

(4.6) lol§ op < hp' 1013 p + hplvlf p Vv € HY (D).

The condition (A2) is inspired by the virtual triangulation condition used in [18,
22]. The simplicial mesh 7;* will serve as a bridge to transfer the results from finite
element methods to virtual element methods.

Very recently, some geometric assumptions being the relaxation of conditions
(A1)-(A2) were suggested in [20,21] under which a refined error analysis was de-
veloped for the linear conforming and nonconforming virtual element methods of
the Poisson equation, i.e., the H' case. For high order H™, m > 1, elements, we
will investigate such a relaxation in future works.

4.3. Weak continuity. Based on Lemma 3.3, the space V}, has the weak continu-
ity; that is, for any F € F}, vj, € Vj,, and nonnegative integer s < m — 1,

(4.7) (IVion], T)r =0 V7 € Py_(2m—1-5)(F; Tn(s)),
(4.8) Qi(IViunllr) =0 Vee F"7I(F),

where V}, is the elementwise gradient with respect to the partition 7. We shall
derive some bound on the jump [V} wv,] using the weak continuity and the trace
inequality.

By the weak continuity (4.7), the mean value of V; v, over F is continuous only
when s > 2m — 1 — k. For s < 2m — 1 — k, the mean value of V;jv, is merely
continuous over some low-dimensional face of F; cf. (4.8). As a concrete example,
consider the Morley element in three dimensions. The mean value of Vv, over
faces is continuous, but the mean value of vy, is only continuous on edges rather
than over faces.

Recall the following error estimates of the L?-projection.
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H™-NONCONFORMING VEM 17

Lemma 4.3. Let { € N. For each K € T;, and F*(K), we have for any v €

HlJrl(K)
(4.9) v — QF vllo,x S B o]k,
(4.10) v = QF vllo,r < A [0l es i

Then recall the Bramble-Hilbert Lemma (cf. [16, Lemma 4.3.8]).

Lemma 4.4. Let ¢ € N, and let K € T, UT, . There exists a linear operator
TE : LY(K) — Py(K) such that for any v € HY(K),
(4.11) v =Tl Shg 7 olerix for 0<j<C+1.

Notice that the constants in (4.9)—(4.11) depend on the star-shaped constant,
i.e., the chunkiness parameter pg, and also depend on the degree /.
Similarly, define T}, : L?(Q) — Px(T3) as

(Tho)|x = TE (v|g) VK € Th.

Lemma 4.5. Given F € F} and a positive integer s < m, assume for any e €
FT(F) withr =0,1,...,m—1—s that
(4.12) IVionlllo. S D B Pl ¥ on € Vi

Ked—1F
Then we have for any e € F"(F) with r =0,1,...,m — s,
(4.13) Vi ondlly, S > B P jonlmx YV vn € Vi,

Ked—1F

Proof. We use the mathematical induction on r to prove (4.13). First consider
r = 0. Take some e; € F'(F) for i = 1,...,m — s such that e; € F'(e;_1) with
eo = F. In the following we shall use Q§ as the L2-orthogonal projection onto
the constant tensor space on e which can be understood as a tensor defined on the
whole space. Employing the trace inequality (4.6), we get from (4.12) withr =i—1

B2V o] = QE (V3 onD),.,
<ShEV2 (15 o] — QE (195 onD) o, +AE 2150l

1—1)/2 s— s— —s+1/2
ShETV2 IV o] = QTS onD g+ D BT onlm k-
Kedo—'F

By this recursive inequality and the approximation properties of the L?-projection,
it holds that

R 195 ] - QE AV oD,

SNV ol = QE UV  nD)llopr + D AR onlm
Ked—'F

f,hp”[[VZUh]]HO)F—i— Z h?_s+1/2|vh|m,K~
Ked-1F
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18 LONG CHEN AND XUEHAI HUANG

On the other side, we have from (4.8) that
V35 endllo = (I0V5 on] = Q6™ ([V5 onD) o 5
= (|15 on] = QF (IV5 M unl) — Q5 (V5 won] — QF (IV3 on])) |
<||[[V;~ tonl — Qg([[vz_lvhﬂ)uo’p +[|QE™ (IVy o] — Qg([[vi_lvh]]))uo’p
Shel|[V5on] |y + b2 Q6m (195 on] = Q5 (V5 o) |y

<hr||[[Viondlly  + 25205 ol = QF (IV5 onD) g,

Hence (4.13) with r = 0 follows from the last two inequalities and (4.12) with r = 0.
Assume (4.13) holds with 7 = j < m —s. Let e € F/TY(F). Take some
e; € FI(F) satisfying e € F'(e;). Using the trace inequality (4.6) again, we know
that
V3 onlllg,e S 2295 ol o, + e 2 (1950l -
which combined with the assumptions means (4.13) is true with » = j + 1. ]

Again consider the Morley~Wang—Xu element in three dimensions [36], i.e., m =
2 and s = 1. The inequality (4.12) is just

I0Vhonlllor S D2 Pilenlazc ¥ on € Vi
Ked—'F
for each face F' € F}.. Then by Lemma 4.5 we will get from (4.8) that
H[[%]]HQF + h}(/2H[[7)h]]HO7e < Z h%2|vh|2,K Y v, € Vi,
Keo—'F
for any face F € F! and any edge e € F?. We refer to [36, Lemma 5] for these

estimates on tetrahedra.

Lemma 4.6. For each F € F} and nonnegative integer s < m, it holds that
(4.14) IIViodllyr S D W 2y e Y v € Vi
Ked—'F
Proof. Tt is sufficient to prove that for s =m —1,m —2,...,0 and any e € F"(F)
with r =0,1,...,m — 1 — s, it holds that
IVionlllo. S D B Pl Y oon € Vi
Ked—1F
According to Lemma 4.5 and the mathematical induction, we only need to show
||[[vhm_1vh]]“(),p 5 Z h}(/2|vh|m,K YV vy € V.
Ked—'F
In fact, due to (4.8) and (4.10), we get
_ - _ 1/2
N9 endlly = (077 on) = QEATT onlor S 30 Filenbmic
Ked—1F
This ends the proof. O

Given the virtual triangulation 7", for each nonnegative integer r < m, define
the tensorial (m — r)th order Lagrange element space associated with 7,*:

S,T’T ={m € H&(Q;Tn(r)) :Thli € P (KT (1)) VK €T}
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Lemma 4.7. Letr =0,1,...,m — 1. For any vy, € V}, there exists 7. = 1,.(vp,) €
S such that

W such tha
(4.15) IVivn — 7 lin S hmfrfj\vhm’h for 7=0,1,....,m—r.

Proof. Let wy, € L?(Q; T, (r)) be defined as
whlk = Tp_p 1 (V' (unlk)) VK €Ty

Since wy, is a piecewise tensorial polynomial, by Lemma 3.1 in [37], there exists
7, € S;"" such that

1—2j
lwn =750 S Y. el [wallld e
FeFL(T;y)

where F}(7;*) is the set of all (n — 1)-dimensional faces of the partition 7,*. Then
it follows from (4.11) and (4.14) that

wn =730 S Y. ke llwn = Viodl§ e+ Y by ZIIVAealllE F
FeFHTr) Fe]—‘,ﬁ
SR D2 .

Here we have used the fact that the jump [V} vy] is zero on F € FL(T;7) \ FL(Th)-
Applying (4.11) again gives

IVion — waljn S B og | n-

Finally, combining the last two inequalities indicates (4.15). O
Lemma 4.8. We have the discrete Poincaré inequality

(4.16) lorllm.e S |onlmn Y vn € V.

Proof. By picking 7. € H(;T,(r)) as in Lemma 4.7, due to (4.15) and the
Poincaré inequality, we have for r =0,1,...,m — 1,

IVivello < [IVhvn — 7ello + I7ello S [vnlmn + |70 )1
<\vnlmn + |Vhvn — Trl1,n + [ Vion
S valmn + IV vnllo,

which leads to (4.16). O

1,h

The discrete Poincaré inequality (4.16) means
lorllm.p = |[Vnlmp Y vp € Vi,
i.e., | |m,n is a norm on the space V,.

4.4. Norm equivalence and well-posedness of the discretization. Denote by
ker(IT15X) C Wy (K) the kernel space of the operator II%. By (3.13) and Lemma 3.9,
both | |, x and S}gz(-, -) are norms on the finite-dimensional space ker(IT¥). Then
we have the following norm equivalence.

Theorem 4.9. Assume the mesh Ty satisfies conditions (A1) and (A2). For any
K €Ty, the following norm equivalence holds:

(4.17) Sk(v,v) = \v\fn’K Y v € ker(TT%),

where the constant is independent of hy , but may depend on the chunkiness param-
eter pk, the degree of polynomials k, the order of differentiation m, the dimension
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20 LONG CHEN AND XUEHAI HUANG

of space n, and the shape reqularity and quasiuniform constants of the virtual tri-
angulation T

Using the generalized scaling argument, i.e., applying an affine map & = (x —
Ti)/hk, it is easy to show that the norm equivalence constant is independent of
the diameter of K.

The constant in (4.17), however, could still depend on the geometry of K, and
a clear dependence is not easy to characterize. For finite element space defined on
simplexes, the shape functions are usually polynomials and there exists an affine
map to the reference element K. The norm equivalence on the reference element
can be used. Since the Jacobi matrix is constant, the norms H™(K) and H™(K)
can be clearly characterized using the geometry of the simplex, e.g., the angles of
a triangle in 2D.

Now for a general polytope K, there does not exist an affine-equivalent reference
polytope K. For a star-shaped and Lipschitz continuous domain, one can use the
isomorphism ® : K — By, but ® € W1 (Bg) only. One can apply the norm
equivalence on By, but how the norm H™(K) is related to H™(Bk), for m > 1,
is not clear.

We shall prove the norm equivalence (4.17) with mesh conditions (A1)—(A2) in
Appendix A.

By the Cauchy—Schwarz inequality and the norm equivalence (4.17), we have

(4.18) Sk (w,v) S|,k |V|m,x YV w,ve ker(HK),

which implies the continuity of ap (-, -):

(419) ah(wh, ’Uh) S/ |wh|m7h 'Uh‘m,h A Wh, Uy, € Vi + ]P)k('ﬁl)
Next we verify the coercivity of ap(:,-).
Lemma 4.10. For any v, € Vi, + Pr(Tr), it holds that
(4.20) L2 < an(vn, va).
Proof. Since I1¥ is the H™-orthogonal projection,
2 2
[onli g = [T (nl i), e+ fon =TT (vonl )], -
Applying (4.17), we have
2
[onlm i S I (onlr) |, 5 + Sk (on = 115 (vn] i), v — 1% (vn| )

(4.21) = an, K (Vh, V),
which implies (4.20). O

Therefore the nonconforming virtual element method (4.5) is uniquely solvable

by the Lax—Milgram lemma.

5. ERROR ANALYSIS

In this section, we will develop the error analysis of the nonconforming virtual
element method (4.5) for the H™-problem.
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H™-NONCONFORMING VEM 21

5.1. Interpolation error estimate. We first explore a discrete Galerkin orthog-
onality of u— I'u for the nonconforming element, where I, defined on H™(£2) is the
global canonical interpolation operator based on the degrees of freedom in (3.3)-
(3.4), ie., (Inv)|x = Ix(v|k) for any v € H™(Q) and K € Tj. A similar result
was given in [28, (3.3)].
Lemma 5.1. For each K € Tp,, any v € H™(Q), and w € H™(K), it holds that
(5.1) ap, k(v — I, w) = 0.
Proof. Tt follows from (3.15) and the definition of Sk (-,-) that
an.x (v — Iyv,w) = (V™I (v — ), VTR w) g
+ Sk (v — v — TT¥ (v — Tw), w — T¥w)
= Sk(v— I, w— HKw) =0.

In the last step we use the fact that v and Iv share the same degrees of freedom,
and thus the stabilization Sy (v — Iv, w — ¥ w) using d.o.f. vanishes; cf. (4.3). O

Remark 5.2. Lemma 5.1 holds true by virtue of the choice (4.3); indeed, any stabi-
lization equivalent to (4.3) which annihilates if all the degrees of freedom are zero
would be fine.

With the help of the discrete Galerkin orthogonality, we present the following
interpolation error estimate.

Lemma 5.3. For each K € T;, and any v € H*TY(K), we have
(5.2) v = In0lm,x S R 0lkrn k-
Proof. Applying (4.21) and (5.1) with w = (Thv — Ipv)| K, we have
|Thv — IhU|$n7K S an,k (Thv — Iy, Tho — Inv) = ap k (Thy — v, Ty — Iyv)
S = Tpvlm, x| Tho — Invlm, ks

which indicates

|Tho — Inv|m,k S0 —Thvlm k-
Hence

[v = Ipv|m.x < |v = Tholm.x +|Thv — Invim.x S0 —Tholm k-

Therefore (5.2) follows from (4.11). O

5.2. Consistency error estimate. Due to (3.13) and (3.10), we have the following
k-consistency.

Lemma 5.4. For any p € Pi(K) and any v € Wi (K), it holds that
(5.3) ank(p,v) = (V"p, V™).

To estimate the consistency error of the discretization, we split it into two cases,
ie, k>2m—1and m < k < 2m — 1. For the first case, the weak continuity
(4.7), that is the projection Qf‘i(eri)(VZLi(Hl)’Uh) is continuous across F' € F} for
1=0,...,m — 1, is sufficient to derive the optimal consistency error estimate.

Lemma 5.5. Let u € H*(Q) N H*1(Q) be the solution of the polyharmonic equa-
tion (4.1). Assume k > 2m — 1. Then it holds that

(5.4) (V™u, Virvp) = (f,on) S Rl [oplmp ¥ on € Vi
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22 LONG CHEN AND XUEHAI HUANG

Proof. First we notice that

(V™u, Vi'on) = (f, vn)

—

(5.5) => (-1 ((divi V™, Vi) + (divi T VT, v;l*““%w).
1=0

For each term on the right-hand side of (5.5), applying integration by parts, (4.7)
with s =m — (i+ 1), (4.10), and (4.14), we get

(—1)f ((divi V7w, V) + (div ! v, v 0 %h))
= (-1 Y ((div' V™u)w, ViV u)ak

KeTy,

= (=1 3 (v V" up, [V ) e
FeF}

= (1) Y (@div V™ u)vps = QF sy (div' V™ u)vp), [V~ 0, ]) e
FeF}

< R |on s

as required. ([l

When the order £ is not high enough, the mean value of V;j v, is only continuous
over some low-dimensional face of F' for s < 2m — 1 — k. In this case, we divide
the consistency error into two parts. The first part is estimated by using the weak
continuity (4.7) as in the proof of (5.4), while the second part is estimated by
using the weak continuity (4.8) through employing the Lagrange element space as
a bridge.

Lemma 5.6. Let u € HF'(Q) N H?>™~1(Q) be the solution of the polyharmonic
equation (4.1). Assume m < k < 2m — 1. Then it holds that

m—1

(5:6) (V" Viron) = (Fon) S (D Wlulmss + A"l [onlmn ¥ 01 € Vi

i=k+1—m

Proof. Similarly as in (5.5), we have

(5.7) (V™u, Vi'on) = (f,vn) = E1 + B + E3,
where
k—m _ . ' ‘ ‘
Byi= >0 (=) ((@iv' V7, Vi) + (div 9, v ),
=0
m72 . - . . .
RS (—1)1((div’ V™, Vi) + (div v, v;”‘““)vh)),
i=k—m+1

B3 = ((—div)™ V™, Vyon) — (f,vn)-
By the same argument as in the proof of Lemma 5.5, we have

(5.8) Ey S A g [n -
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Next let us estimate Fy and E3. By (4.15), for each k — m 4+ 1 <4 <m — 1, there

exists T, _(i41) € S,T’m_(Hl) such that

(5.9) V= — il S R T onlm for j=0,1.
Since Ty, (i+1) € Hy (4 Tp(m — (i + 1)), we get for i =k —m+1,...,m —2
(5.10) (div' V™ u, V7 ig1)) + (v V™0, 7 41)) = 0,
(5.11) ((—div)""'V"™u, Vo) — (f,70) = 0.
Fori=k—m+1,...,m—2, it follows from (5.9)—(5.10) that
(-1) ((divi V™, VIl ) + (div' T V™, VZI_(Z'H)U;«L))
= (—l)i(divi V™u, Vh(VZ’_(iH)vh - Tm—(i-‘,—l)))
+ (=1 (div* T V™, VZ%_(Hl)vh — Trn—(i+1))
S hi‘u|m+i|vh|m7h + hi+1|u|m+i+1|vh|m,h-
Thus we obtain
m—1 .
(5.12) Ey S Y hfulmeilvalma-
i=k+1-—m
Similarly, employing (5.11) and (5.9), we get

E3 = ((—=div)™ 'V™u, Vion) — (f,vn)

((— diV)m_lvmu, Vh(’l)h — To)) — (f, Vh — T())

S B ulzm—r[vn | + R fllofvn .,

which together with (5.7)—(5.8) and (5.12) ends the proof. O

We then consider the perturbation of the right-hand side. Namely, replace the
L2-inner product (f,v;) by an approximated one (f,v;) defined in (4.4).

Lemma 5.7. Letu € H*(Q)NH"(Q) with r = max{k+1,2m—1} be the solution of
the polyharmonic equation (4.1). Assume f € H'(Ty) with £ = max{0,k+1—2m}.
Then it holds for any vy, € V}, that

(V™u, Vo) = (f, vn)
(5.13) S R (lully A+ Bl o + BEO2RE £l ) [on .

Proof. Tt follows from (5.4) and (5.6) that
(V"™u, Vi'vn) = (fron) S B (([ully + Rl llo) [vb L.
For m < k < 2m — 1, we get from the local Poincaré inequality (A.11)

(fson) = (fyon) = (f;on — Opon) S A™ (| fllolvalm,n-
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For k > 2m, it holds from (4.9) that

(fsvn) = (f,vn) ( Jvp — Qtmhimaml, )
(f Qﬁ 2 f o max{m 1,k—2m} h)
<|1fF =@y fllollon — Q@ onllo

5 hk+1 m|f|k+1—2m,h|vh‘m,h-

Thus we conclude (5.13) from the last three inequalities. O

5.3. Error estimate. Now we are in a position to present the optimal order con-
vergence of our nonconforming virtual element method.

Theorem 5.8. Letu € HJ*(Q)NH"(Q) with r = max{k+1,2m—1} be the solution
of the polyharmonic equation (4.1), and let up, € Vj, be the nonconforming virtual
element method (4.5). Assume the mesh Ty, satisfies conditions (Al) and (A2).
Assume f € HY(Ty) with £ = max{0,k + 1 —2m}. Then it holds that

(5.14) = wnlmp S BTl 4 B fllo + RTEOZPE £l ).
Proof. Let vy, = Inu — up. From (4.19), (5.2), and (4.11), it holds that
ap(Inu — Thu,vp) + (VP (Thu — u), Vitoy)
< | Ipu = Thtemn |V lmn + [ — Thte)m,n| Okl m,n
(5.15) S (Ju = Tnulm 4 [u = Tottlm, 1) [onlmp S BEFE ™ i1 [0R | p-
Employing (4.20), (4.5), and (5.3), we have
[Thu — uh\fmh < ap(Tpu — up, vp) = ap(Inu, vp) — (f, vn)
= ap(Ipu — Tru,vp) + ap(Thu, vn) — (f,vn)
= ap(Ipu — Thu,vp) + (Vi Thu, Vitvn) — (f,vp)
= ap(Ipu — Thu, vy) + (V7' (Thu — ), Vi vg)
+ (V™u, Vi'on) = (f, vn)-
Then we get from (5.15) and (5.13) that
[Tht = wnlmn S BT (e + B fllo + AP0 ET ).
Finally we derive (5.14) by combining the last inequality and (5.2). O

6. CONCLUSION

In view of a generalized Green’s identity for the H™ inner product, we have
constructed the H™-nonconforming virtual elements of any order k on any shape
of polytope in R™ with constraints m < n and k& > m in a unified way. A rigorous
and detailed convergence analysis is developed for the H"-nonconforming virtual
element methods, and the optimal error estimates are achieved. When m > n, the
generalized Green’s identity for the H™ inner product, the key tool in this paper,
will involve the derivative terms on zero-dimensional subsurfaces, i.e., nodes of the
mesh. We will postpone the case m > n to future works.

This paper was motivated by the theoretical purposes. The numerical investi-
gation of the virtual element method proposed in this paper is also postponed to
future works.
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APPENDIX A. NORM EQUIVALENCE

As mentioned before, it is difficult to derive the norm equivalence (4.17) directly
from the norm equivalence of the finite-dimensional space due to the absence of an
affine-equivalent reference polytope. We shall prove the norm equivalence (4.17)
in this appendix by assuming that the mesh 7y, satisfies conditions (A1) and (A2).
For m = 1, proofs on the norm equivalence for H! conforming VEM can be found
in [14,17,22].

With the help of the virtual triangulation 7;", we can prove the inverse inequality
of polynomial spaces on K following the proof in [22, Lemma 3.1]:

(Al) ||g||0,K Shl}l”g”*%K VgGPk(K), i= 1,27"',m,

where the constant depends only on the degree of polynomials %k, the order of
differentiation m, the dimension of space n, and the shape regularity and quasi-
uniformity of the virtual triangulation 7, (K).

On the polynomial space, we have the normal equivalence of the L?-norm of g
and [?-norm of its d.o.f. Let g = Y, g;m; be a polynomial on F, where F € FJ(K)
with 5 > 1. Denote by g = (g;) the coefficient vector. Then the following norm
equivalence holds (cf. [22, Lemma 4.1]):

(A2) me gl < lglor S hET gl

Take an element K € 7T;,. For any F' € F/(K) with j > 1, let R} 7 be the (n—j)-
dimensional affine space passing through F, F5L(K) := {e € F/(K) : e C RE 7},
and let s e VzTr,im ; :BF7

K

Apparently Ap;|r = 0, i.e., the (n —1)-dimensional face Ap; = 0 passes through F'.
If K is a simplex and F' € F'(K), —(v[,,vk r)Ar,1 is just the barycenter coordinate
when h g represents the height of K corresponding to the base F, and F%(K) ={F}
if K is strictly convex. For any F € F/(K) with j > 1, and F' € F/(K)\FL(K), let
vp pr be some unit normal vector of F’ such that the hyperplane 1/}71,, (x—xp)=0
does not pass through F'. Define bubble functions

br = H AR,

FeFL(K)
bp = < H V},F/w ;;F/> < H H V}”,e%)v
F'eFi(K)\FL(K) F'eFL(K)e€F (F’)
for each F' € F7(K) with 1 < j < n. Notice that both by and br are polynomials.
Lemma A.1. Let K € Ty,. It holds that
(A.3) k(=8)"vljox S IV 0llox Vv e Vi(K)UWi(K).

Proof. Let ¢ = b3 (—A)™v € HJ'(K); then ||¢xllox =~ [[(=A)™v|ox. Using
the scaling argument, integration by parts, and the inverse inequality for polyno-
mials (A.1), we get

(=A™} ¢ S (—A)™0,¢x)x = (V"™0, V0K )k
< |[[V™lo,x V™ bxrllo.x S hE™ IV 00,k ||¢x
S hE " IV lo,x [[(=A) 0]

which induces the required inequality. ([

i=1,...,4.

lo, K

0,K>»
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Lemma A.2. Let K € T,. For any positive integer j < m, F € FI(
a € Aj with o] <m —j, we have

>

K), and

Ry IR D e @) o,

F'eFL(K)
<||V’”v||oz<+h [(=A)"vl|o,x
+Z Z Z hm 18]— e/QHDQm — |[3| ‘
(=1 ceFL(K) PEA 0
18] <m—e
A4 m—lﬁ’l—t’/2H 2m—j—|5| H
(A4) + Z Y. hg Dipr g™ 7 (v) 0.5
F/E]-—%‘(K) BEA

la|<|Bl<m—j

for all v € Vi, (K) U Wi(K).

Proof. Since D, o J IOKI( )| is a polynomial for each F’ € Fi.(K #(K), we can regard

2
Dyl 7. Then

we extend the polynomial D7, o ] ‘a‘( )| to R™. For any € R, let X be the

(v)| s as the function on the (n— j)-dimensional affine space R,

projection of @ on R}~ g Deﬁne

Dzm_j_la‘

2m—j—|af
EK(DF’,a F' «

(v))(z) = (v)(@F).

Let R, := {z € R" : 2L € F'}, and let ¢ be a piecewise polynomial defined as

1h|a‘b2mE (D2m J—la

¢r(z)

0,

where a! = aq!---

«

J .
@) T X5 @ € Rp, 7 € Fp(K),
U

F'eFL(K)

z € R™\ R,

a;!. Then we have

(A.5) loplor < > R DE T @)
F'eFL(K)
91l laly2 2 la| LooleT(Ag )
- 7—h°‘b TEx (Dmaj O‘(v)) 4{12
(‘31/F, 21:[1 8VF,
= b Bxe (D5 w)).
Hence
m— o« m—j—|a a\a\(b
(A.6) 1D 1 @) 12 = | Dt ), S
8VF, .

For each e € FY(K) with £ =j +1,...,

o8l pp
ol

Similarly we have for each

Bl
ol

m, it follows from the fact bp/|. = 0 that

=0 VBeA with |B|<m—C

(&

e € FI(K)\FL(K) that

=0 VpBeA; with [8]<m—j.

€
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For any 8 € A;, |B] < |al, since gu—i( j: A, ) =0, it yields % = 0.
F’ F/ Vit Jall
For any 8 € Aj;, |8] = |af, but 8 # «, noting that 81/ = 0 for ¢ # ¢, we also
Plpp
have 3 = 0. Based on the previous discussion, we obtain from (A.6), the
Vpr \F?

generalized Green’s identity (3.2), and the density argument that

S DT W) E e (V0, VR K — (—A)™0, ér)

F'eFI(K)

_Z D ( p2m—t18l ),%L

(=1 ccFL{(K) Bcag
|Bl<m—¢

. 18]
2m—j— Plop
D D DR € O
’ BEA
F E}-J( ) | \<\/§\<m J

Employing the Cauchy—Schwarz inequality and the inverse inequality for polyno-
mials, it follows that

S opE )

F'eFL(K)
S hmeVmUHo kllorllo.x + [(=A)"v]lo,x[9Fllo

1S DD SIND i S Rl H rlox

2

=hee ) |1t
LD DR DR Plands I/ O] N EA TS
FIEFR D) |y o1 Ems 7
which combined with (A.5) implies (A.4). O

Lemma A.3. For any K € T, it holds that
(A.7) (=A)"0,0)k S HRI(=A)"0llo.x S > (v,0) ¥ v € ker(IT¥).

Proof. It m < k < 2m — 1, by the definition of Wy (K) = V;(K), (—A)™v = 0, thus
(A.7) is obvious. Now let us prove (A.7) for k > 2m. When 2m < k < 3m — 1,
since v € ker(II¥), it follows from (3.14) that

(=A)"v,0) = ((=A)"0,Qp 10)K
(=2)™0, Qf_amv) K = (Qh—2m ((=A)™0),v) .
If k> 3m — 1, then W (K) = Vj,(K), and we also have
(=2)"0,0)x = (Qk—2m((=A)"0),v) -

Therefore, to derive (A.7) for k > 2m, it is sufficient to prove that

(A8)  (QF 5, (—A)™0),0) o S HEI(=A)™0]lo, S (v,0) ¥ v € ker(ITF).
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Let N be the dimension of the space Py_a.,(K). Then there exist constants c;,
i=1,...,N, such that

Qk 2m Zczq“

where My_op, (K) :={q1,...,qn}; thus

N
(@ am (=2)™0),v) o = K] Y cixi(v)
i=1

Applying the norm equivalence on the polynomial space Py_o,,(K) (cf. (A.2)) we

get
N
Q5 (=)™ 0)[§ 1 = hc > €.
i=1
Hence
N 1/2
(QF o (—A)™),v) ,« < B2 IQE 5,0 ((—1) (Z x?(v)>
i=1
m K m 1/2
KN Qk—2m ((=A)"0)[l0,x S~ (v, v),
which implies (A.8). O

Lemma A.4. For any K € Ty, it holds that
(A.9) V™8 ¢ S Sk(v,v) Vv € ker(ITF).
Proof. By the generalized Green’s identity (3.2),

IV™oll§ x = (=2)"v,0)k

laly
(A.10) S DD (D30 5o )

J=1FeFi(K) «€4;
\a\<m J

Since v € Wi (K), we have D2m i=lel)|p e Pi—(2m—j—|af)(F) for any F € F/(K).
Let Ng be the dimension of the space Pj_(2m—;—|a)) (F'). Then there exist constants
¢, t=1,..., N, such that

2m—j—|a| 8‘0(‘0 n—j—|a| <
(P70 ) = i o)

Applying the norm equivalence on the polynomial space Pj_(2m—;—|a))(F) (cf.
(A.2)) we get

F
D2 )2 = h TS 2

Hence

1/2
, lal ‘ , Nr
2m—j—|a o0'*ly n—j)/2—|a 2m—j—|o
(D), S20) S A D ) fo e (} jx§<v>>
1=1

ovg

< R DRI () o p 832 (v, ).

)
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Applying (A.4) recursively, it follows that

m—j—|a 8|0“U m m m
(PR G ) S Ul + B8 0lo.) 30, 0)

Then we derive from (A.10), (A.7), and (A.3) that

V™02 5 S (IV™0llo,x + BEI(=A)™0l0.5)SK > (,0) S [V™0lo, xS > (v, v),
which induces (A.9). O

We then prove another side of the norm equivalence (4.17).

Lemma A.5. For any K € T, and nonnegative integer s < m, we have the local
Poincaré inequality

(A.11) SN PRIV llor S REIV ok Vv € ker(ITF).
Jj=0 FeFi(K)

Proof. 1t is sufficient to prove that

m—s—1

(A.12) Z SRR llor € Z SR v,

j=0 FeFi(K) =0 ecF!(K)

for s =0,1,...,m — 1. Thanks to (3.11), it follows that

j S j S 1 € S
W2V 0llo.r = W2|| Vo0 — EF(K) > (V)

e€Fm—5(K) 0.F
SHE ST [Vie= @iV, .
eeFm—s(K)
=1 V- QE (V) - Q5T - K (V)
ecFm—3(K)
SV = QE (Vg + Do AT QE(V - QE (VP g,
ecFm—s(K)
<[V - Qv p+ Y BTV = QF (V) -
ecFm—s(K)

On the other hand, applying the trace inequality (4.6) recursively, we get from (4.9)

that
WAV = QE(V )y p+ D ATV = QE (V).
ecFm—s(K)
m—s—1
SV =QEV )l + Yo D hd IV oo
’ (=0 ecF!(K)
m—s—1
S Y Y IV o

=0 ecFi(K)
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Combining the last two inequalities yields

m—s—1

PRIV lor S S T vt
=0 eeFt(K)

,€s

which indicates (A.12). Thus the Poincaré inequality (A.11) holds. O

Lemma A.6. For any K € Ty, it holds that
(A.13) Sk(v,v) S HvaHaK Y v € ker(IT5).

Proof. Due to the definition of the degrees of freedom, we have
Ng
Swc(v,0) = hi*™ X7 (v)

IO I DI Sias! 7 (VL0

Jj=0 FEFIi(K) €A,

Ia\<m J

3

Z

m

> 5 gl
0 FeFi( 2y 8VF
Ia\Smr—y

Z ST gl glely)2 4,
F

) aEA;

|lal<m—j

IN

F

3

IA

O

which together with the Poincaré inequality (A.11) implies (A.13). O

At last, combining (A.9) and (A.13) gives the norm equivalence (4.17); cf. The-
orem 4.9.

APPENDIX B. EXAMPLES OF GREEN’S FORMULA

Take K € Tp. The explicit expression of (3.2) for m = 1 with n > m is no more
than (2.2), i.e.,

ou
aVKJ:'

(Vu, Vo) = —(Au,0)g + Y (
FeF(K)

) r Yue€ HA(K), ve H(K).

Also, the explicit expression of (3.2) for m = 2 with n > m is exactly (2.5), i.e., for
any u € H*(K) and v € H%(K), it holds that

(V0 V0 = (00 + 30 (M), 5 = (Qu(w). )

FeF'(K)

* Z Z (V}',eMVt(u)av)e-

e€eF?2(K) FeF (K)No—le
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When m = n = 3, the explicit expression of (3.2) is that for any « € H%(K) and
v € H3(K),
(V3u, V30) g + (A3u,v) k¢
= Z (VkF diV2(V3u) + diVF(diV(Vgu)l/KJ:‘) +divp divF((V3u)1/K7F), v)

FeF'(K)

- Z (V}’l(divF((VBU)VK,F)) +dive (V) vk p)ve), 35—21)1«“

FeFI(K)

. ov
— Z (V},l le(v3’u)VK,F7 81/—1:*1)
> F

FeF(K)

+ ) ( (VP )VKF)VF178822v>
Vp1 F

FEF(K)

F

- Z Z (Z/Fe (divp((V? U)K, F)) —|—dive(((Vgu)VKF)VF&),v)e

FeF(K) eeF(F)

_ Z Z UF,edIVVU)VK,Fyv)e

FeF'(K) ecF(F)

+ Z Z Z ((Vez (v ’iup,l)uFl) (V3u )VKrF)I/F,maaV—Zi)

FeFY(K) ecFI(F)i=1

FYY Y (P rvee) (610)

FeF'(K) eeFL(F) 6eF1(e)
Consider the lowest-order case k = m = 3. The last identity will be reduced to
(V30,V3q) i

82
= > (&/—QU’V}‘,l((V3Q>VK,F)VF,1>
F

FeF(K) ml

Py Yy (x

FEFI(K) ecFL(F)i=1

+ Y o> w ( (Viq)vi, F)VFe) (9)

FeF(K) eeFL(F) 6€F'(e)

- (Vez (Vg,iVFJ)V;‘,l) ((V3Q)VK,F)VF,e)

€

for any v € H3(K) and ¢ € P3(K), which will be used to compute the projector
% : H3(K) — P3(K). The degrees of freedom are

0%v ov ov
—. 1 —.1 1
(ay%,l’ >F7 (81/671, )e7 (aVE-,Q, )e7 v(é)

on each F € FY(K), e € F?(K), and § € F3(K).
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