
This paper is included in the Proceedings of the 

28th USENIX Security Symposium.

August 14–16, 2019 • Santa Clara, CA, USA

978-1-939133-06-9

Open access to the Proceedings of the 

28th USENIX Security Symposium 

is sponsored by USENIX.

in-toto: Providing farm-to-table guarantees 
for bits and bytes

Santiago Torres-Arias, New York University; Hammad Afzali, New Jersey Institute of 

Technology; Trishank Karthik Kuppusamy, Datadog; Reza Curtmola, New Jersey Institute of 

Technology; Justin Cappos, New York University

https://www.usenix.org/conference/usenixsecurity19/presentation/torres-arias



in-toto: Providing farm-to-table guarantees for bits and bytes

Santiago Torres-Arias†, Hammad Afzali‡, Trishank Karthik Kuppusamy∗ , Reza Curtmola‡ , Justin Cappos†

santiago@nyu.edu ha285@njit.edu trishank@datadog.com crix@njit.edu jcappos@nyu.edu

†New York University, Tandon School of Engineering
∗Datadog

‡Department of Computer Science, New Jersey Institute of Technology

Abstract
The software development process is quite complex

and involves a number of independent actors. Developers

check source code into a version control system, the code

is compiled into software at a build farm, and CI/CD systems

run multiple tests to ensure the software’s quality among a

myriad of other operations. Finally, the software is packaged

for distribution into a delivered product, to be consumed by

end users. An attacker that is able to compromise any single

step in the process can maliciously modify the software and

harm any of the software’s users.

To address these issues, we designed in-toto, a frame-

work that cryptographically ensures the integrity of the

software supply chain. in-toto grants the end user the

ability to verify the software’s supply chain from the project’s

inception to its deployment. We demonstrate in-toto’s

effectiveness on 30 software supply chain compromises

that affected hundreds of million of users and showcase

in-toto’s usage over cloud-native, hybrid-cloud and cloud-

agnostic applications. in-toto is integrated into products and

open source projects that are used by millions of people daily.

The project website is available at: https://in-toto.io.

1 Introduction

Modern software is built through a complex series of steps

called a software supply chain. These steps are performed

as the software is written, tested, built, packaged, localized,

obfuscated, optimized, and distributed. In a typical software

supply chain, these steps are “chained” together to transform

(e.g., compilation) or verify the state (e.g., the code quality)

of the project in order to drive it into a delivered product,

i.e., the finished software that will be installed on a device.

Usually, the software supply chain starts with the inclusion

of code and other assets (icons, documentation, etc.) in a

version control system. The software supply chain ends with

the creation, testing and distribution of a delivered product.

Securing the supply chain is crucial to the overall security

of a software product. An attacker who is able to control

any step in this chain may be able to modify its output for

malicious reasons that can range from introducing backdoors

in the source code to including vulnerable libraries in the

delivered product. Hence, attacks on the software supply

chain are an impactful mechanism for an attacker to affect

many users at once. Moreover, attacks against steps of the

software supply chain are difficult to identify, as they misuse

processes that are normally trusted.

Unfortunately, such attacks are common occurrences,

have high impact, and have experienced a spike in recent

years [60, 129]. Attackers have been able to infiltrate

version control systems, including getting commit access

to the Linux kernel [58] and Gentoo Linux [76], stealing

Google’s search engine code [22], and putting a backdoor

in Juniper routers [48, 96]. Popular build systems, such as

Fedora, have been breached when attackers were able to sign

backdoored versions of security packages on two different

occasions [75, 123]. In another prominent example, attackers

infiltrated the build environment of the free computer-cleanup

tool CCleaner, and inserted a backdoor into a build that

was downloaded over 2 million times [126]. Furthermore,

attackers have used software updaters to launch attacks, with

Microsoft [108], Adobe [95], Google [50,74,140], and Linux

distributions [46, 143] all showing significant vulnerabilities.

Perhaps most troubling are several attacks in which nation

states have used software supply chain compromises to target

their own citizens and political enemies [35,55,82,92,93,108,

127,128,138]. There are dozens of other publicly disclosed in-

stances of such attacks [8,33,38,39,41,52,53,65,70,76,79,80,

83,95,107,113,115,118,119,122,130–132,134,139,141,146].

Currently, supply chain security strategies are limited to se-

curing each individual step within it. For example, Git commit

signing controls which developers can modify a reposi-

tory [78], reproducible builds enables multiple parties to

build software from source and verify they received the same

result [25], and there are a myriad of security systems that

protect software delivery [2, 20, 28, 100, 102]. These building

blocks help to secure an individual step in the process.

Although the security of each individual step is critical,

such efforts can be undone if attackers can modify the output

of a step before it is fed to the next one in the chain [22, 47].

These piecemeal measures by themselves can not stop

malicious actors because there is no mechanism to verify

that: 1) the correct steps were followed and 2) that tampering

did not occur in between steps. For example a web server

compromise was enough to allow hackers to redirect user

downloads to a modified Linux Mint disk image, even

though every single package in the image was signed and

the image checksums on the site did not match. Though

this was a trivial compromise, it allowed attackers to build

a hundred-host botnet in a couple of hours [146] due to the

lack of verification on the tampered image.

In this paper we introduce in-toto, Latin for “as a whole,”

the first framework that holistically enforces the integrity

of a software supply chain by gathering cryptographically

verifiable information about the chain itself. To achieve

this, in-toto requires a project owner to declare and sign a
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layout of how the supply chain’s steps need to be carried out,

and by whom. When these steps are performed, the involved

parties will record their actions and create a cryptographically

signed statement — called link metadata — for the step they

performed. The link metadata recorded from each step can be

verified to ensure that all steps were carried out appropriately

and by the correct party in the manner specified by the layout.

The layout and collection of link metadata tightly connect

the inputs and outputs of the steps in such a chain, which

ensures that tampering can not occur between steps. The lay-

out file also defines requirements (e.g., Twistlock [30] must

not indicate that any included libraries have high severity

CVEs) that will be enforced to ensure the quality of the end

product. These additions can take the form of either distinct

commands that must be executed, or limitations on which

files can be altered during that step (e.g., a step that localizes

the software’s documentation for Mexican Spanish must not

alter the source code). Collectively, these requirements can

minimize the impact of a malicious actor, drastically limiting

the scope and range of actions such an attacker can perform,

even if steps in the chain are compromised.

We have built a series of production-ready implementations

of in-toto that have now been integrated across several

vendors. This includes integration into cloud vendors such

as Datadog and Control Plane, to protect more than 8,000

cloud deployments. Outside of the cloud, in-toto is used

in Debian to verify packages were not tampered with as part

of the reproducible builds project [25]. These deployments

have helped us to refine and validate the flexibility and

effectiveness of in-toto.

Finally, as shown by our security analysis of three in-toto

deployments, in-toto is not a “lose-one, lose-all” solution,

in that its security properties only partially degrade with

a key compromise. Depending on which key the attacker

has accessed, in-toto’s security properties will vary.

Our in-toto deployments could be used to address most

(between 83% - 100%) historical supply chain attacks.

2 Definitions and Threat Model

This section defines the terms we use to discuss the software

supply chain and details the specific threat model in-toto

was designed to defend against.

2.1 Definitions

The software supply chain refers to the series of steps

performed in order to create and distribute a delivered

product. A step is an operation within this chain that takes in

materials (e.g., source code, icons, documentation, binaries,

etc.) and and creates one or more products (e.g., libraries,

software packages, file system images, installers, etc.). We

refer to both materials and products generically as artifacts.

It is common to have the products of one step be used

as materials in another step, but this does not mean that a

supply chain is a sequential series of operations in practice.

Depending on the specifics of a supply chain’s workflow,

steps may be executed in sequence, in parallel, or as a

combination of both. Furthermore, steps may be carried out

by any number of hosts, and many hosts can perform the

same step (e.g., to test a step’s reproducibility).

In addition to the materials and products, a step in the

supply chain produces another key piece of information,

byproducts. The step’s byproducts are things like the STDOUT,

STDERR, and return value that indicate whether a step was

successful or had any problems. For example, a step that runs

unit tests may return a non-zero code if one of the unit tests

fails. Validating byproducts is key to ensuring that steps of

the supply chain indicate that the software is ready to use.

As each step executes, information called link metadata

that describes what occured, is generated. This contains

the materials, products, and byproducts for the step. This

information is signed by a key used by the party who

performs the action, which we call a functionary. Regardless

of whether the functionary commits code, builds software,

performs QA, localizes documentation, etc., the same link

metadata structure is followed. Sometimes a functionary’s

participation involves repeated human action, such as a

developer making a signed git commit for their latest code

changes. In other cases, a functionary may participate in

the supply chain in a nearly autonomous manner after setup,

such as a CI/CD system. Further, many functionaries can be

tasked to perform the same step for the sake of redundancy

and a minimum threshold of them may be required to agree

on the result of a step they all carried out.

To tie all of the pieces together, the project owner sets

up the rules for the steps that should be performed in a

software supply chain. In essence, the project owner serves

as the foundation of trust, stating which steps should be

performed by which functionaries, along with specifying

rules for products, byproducts, and materials in a file called

the layout. The layout enables a client that retrieves the

software to cryptographically validate that all actions were

performed correctly. In order to make this validation possible,

a client is given the delivered product, which contains the

software, layout, and link metadata. The layout also contains

any additional actions besides the standard verification

of the artifact rules to be performed by the client. These

actions, called inspections, are used to validate software

by further performing operations on the artifacts inside the

delivered product (e.g., verifying no extraneous files are

inside a zip file). This way, through standard verification

and inspections, a client can assure that the software went

through the appropriate software supply chain processes.

2.2 Threat Model

The goal of in-toto is to minimize the impact of a party

that attempts to tamper with the software supply chain. More

specifically, the goal is to retain the maximum amount of

security that is practical, in any of the following scenarios:

Interpose between two existing elements of the supply

chain to change the input of a step. For example, an

attacker may ask a hardware security module to sign

a malicious copy of a package before it is added to the

repository and signed repository metadata is created to

index it [27, 44, 51, 76, 107, 120, 120, 147].
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Act as a step (e.g., compilation), perhaps by compro-

mising or coercing the party that usually performs that

step [27, 57, 62, 64, 76, 81, 99, 112, 125]. For example,

a hacked compiler could insert malicious code into

binaries it produces [126, 136].

Provide a delivered product for which not all steps have

been performed. Note that this can also be a result of an

honest mistake [37, 49, 56, 68, 73, 97, 142].

Include outdated or vulnerable elements in the supply

chain [59,61,91,94,117]. For example, an attacker could

bundle an outdated compression library that has many

known exploits.

Provide a counterfeit version of the delivered product

to users [8, 35, 66, 70, 71, 95, 118, 134, 135, 146]. This

software product can come from any source and be

signed by any keys. While in-toto will not mandate

how trust is bootstrapped, Section 6 will show how other

protocols such as TUF [28], as well as popular package

managers [2] can be used to bootstrap project owner keys.

Key Compromise. We assume that the public keys of

project owners are known to the verifiers and that the attacker

is not able to compromise the corresponding secret key. In ad-

dition, private keys of developers, CI systems and other infras-

tructure public keys are known to a project owner and their cor-

responding secret keys are not known to the attacker. In sec-

tion 5.2, we explore additional threat models that result from

different degrees of attacker access to the supply chain, includ-

ing access to infrastructure and keys (both online and offline).

2.3 Security Goals

To build a secure software supply chain that can combat

the aforementioned threats, we envision that the following

security goals would need to be achieved:

supply chain layout integrity: All of the steps defined

in a supply chain are performed in the specified order.

This means that no steps can be added or removed, and

no steps can be reordered.

artifact flow integrity: All of the artifacts created, trans-

formed, and used by steps must not be altered in-between

steps. This means that if step A creates a file foo.txt

and step B uses it as a material, step B must use the ex-

act file foo.txt created by step A. It must not use, for

example, an earlier version of the file created in a prior

run.

step authentication: Steps can only be performed by the

intended parties. No party can perform a step unless it is

given explicit permission to do so. Further, no delivered

products can be released unless all steps have been per-

formed by the right party (e.g., no releases can be made

without a signoff by a release engineer, which would stop

accidental development releases [68]).

implementation transparency: in-toto should not re-

quire existing supply chains to change their practices in

order to secure them. However, in-toto can be used

to represent the existing supply chain configuration and

reason about its security practices.

graceful degradation of security properties: in-toto

should not lose all security properties in the event of

key compromise. That is, even if certain supply chain

steps are compromised, the security of the system is not

completely undermined.

In addition to these security goals, in-toto is also geared

towards practicality and, as such, it should maintain minimal

operational, storage and network overheads.

3 System overview

The current landscape of software supply chain security is

focused on point-solutions that ensure that an individual

step’s actions have not been tampered with. This limitation

usually leads to attackers compromising a weaker step in

the chain (e.g., breaking into a buildfarm [115]), removing

steps from the chain [68] or tampering with artifacts while

in transit (i.e., adding steps to the chain [66]). As such, we

identify two fundamental limitations of current approaches

to secure the software supply chain:

1. Point solutions designed to secure individual supply

chain steps cannot guarantee the security of the entire

chain as a whole.

2. Despite the widespread use of unit testing tools and

analysis tools, like fuzzers and static analyzers, software

rarely (if ever) includes information about what tools

were run or their results. So point solutions, even if used,

provide limited protection because information about

these tools is not appropriately utilized or even shown

to clients who can make decisions about the state of the

product they are about to utilize.

We designed in-toto to address these limitations by

ensuring that all individual measures are applied, and by the

right party in a cryptographically verifiable fashion.

In concrete terms, in-toto is a framework to gather and

verify metadata about different stages of the supply chain,

from the first step (e.g., checking-in code on a version control

system) to delivered product (e.g., a .deb installable package).

If used within a software supply chain, in-toto ensures that

the aforementioned security goals are achieved.

3.1 in-toto parties and their roles

Similar to other modern security systems [101, 102, 121],

in-toto uses security concepts like delegations and roles

to limit the scope of key compromise and provide a graceful

degradation of its security properties.

In the context of in-toto, a role is a set of duties and

actions that an actor must perform. The use of delegations

and roles not only provides an important security function

(limiting the impact of compromise and providing separation

of privilege), but it also helps the system remain flexible

and usable so that behaviors like key sharing are not needed.

Given that every project uses a very specific set of tools and

practices, flexibility is a necessary requirement for in-toto.

There are three roles in the framework:

Project Owner: The project owner is the party in charge

of defining the software supply chain layout (i.e., define
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a minimal software supply chain, along with a graphical

representation of an in-toto layout in Figure 1.

3.2.3 The delivered product

The delivered product is the piece of software that the end

user wants to install. In order to verify the delivered product,

the end user (or client) will utilize the supply chain layout

and its corresponding pieces of link metadata. The end user

will use the link metadata to verify that the software provided

has not been tampered with, and that all the steps were

performed as the project owner intended. In Figure 1 the

delivered product consists of the foo.pkg file.

3.3 in-toto usage lifecycle

The in-toto usage lifecycle encompasses the following

overarching operations:

1. The project owner defines a supply-chain layout.

2. Each step is carried out as specified, and functionaries

gather and sign link metadata.

3. A delivered product is shipped to the client, who verifies

it upon installation by:

ensuring the layout provided was signed by the

project owner and is not expired.

checking that all the steps defined have enough

pieces of link metadata; that such links were signed

by the indicated functionaries; and that all artifacts

recorded flowed properly between the steps as

indicated in the layout.

carrying out any inspection steps contained in the

layout and making sure that all artifacts recorded

match the flow described in the layout.

As seen in Figure 1 a project owner creates the layout to

describe an overarching structure of the supply chain that the

client can use to verify. Later, functionaries carry out their

operations as usual, and submit link metadata to attest for

the result of their operation. Finally, a client uses a delivered

product, metadata links and a layout to verify the integrity

of the delivered product and of the entire chain.

By following the chain of attestations in the link metadata,

the client can reconstruct the operations described in Figure 1.

Afterwards, the client can verify these attestations against the

layout and execute any inspections to make sure everything

is in order before consuming the delivered product.

4 in-toto internals

In order to avoid tampered, incomplete or counterfeit

software, in-toto ensures the integrity and accuracy of all

software supply chain operations. in-toto ensures supply

chain integrity by the verifying the collected link metadata

against a software supply chain layout file. This ensures that

all operations were carried out, by the intended party and as

the legitimate project owner intended.

Understanding how the system’s metadata helps to ensure

the integrity of the supply chain is critical to a deeper

appreciation of how in-toto works. In this section, we will

explore the specifics of the link metadata and the layout file

to understand how in-toto operates.

For the context of this section, we will demonstrate the

different features of in-toto using Figure 1 as an example.

The project owner Diana will create a layout that describes

three steps and three functionaries for each step. The first

step, tag, will produce a file foo.c to be input into the build

step, as well as a foo.po localization file. The second step,

build, will use the foo.c file from the tag step and produce a

foo binary. Finally, the package step will take the foo.po and

foo files and produce a package installable by the end user.

For a more complete and thorough description of all the

fields, signature schemes, implementations, a layout editing

tool and more, refer to the resources on the project website:

https://in-toto.io.

4.1 The supply chain layout

The supply chain layout explicitly defines the expected layout

of the software supply chain. This way, end users can ensure

that its integrity is not violated upon verification. To do this,

the layout contains the following fields:

1 { " _ t y p e " : " l a y o u t " ,
2 " e x p i r e s " : "<EXPIRES>" ,
3 " readme " : "<README>" ,
4 " keys " : { "<KEYID>" : "<PUBKEY_OBJECT>" . . . } ,
5 " s t e p s " : [ "<STEP>" , " . . . " ] ,
6 " i n s p e c t i o n s " : [ "<INSPECTION>" , " . . . " ]
7 }

Listing 1: The supply chain layout structure

The overarching architecture of the layout definition

includes the following relevant fields:

An expiration date: this will ensure that the supply chain

information is still fresh, and that old delivered products

can not be replayed to users.

A readme field: this is intended to provide a human-

readable description of the supply chain.

A list of public keys: these keys belong to each

functionary in the supply chain and will be assigned to

different steps to ensure that only the right functionary

performs a particular step in the supply chain.

A list of steps: these are the steps to be performed in

the supply chain and by who. Step definitions, described

in depth in Section 4.1.1, will contain a series of

requirements that limit the types of changes that can be

done in the pipeline and what functionary can sign link

metadata to attest for its existence.

A list of inspections: these are the inspections to be

performed in the supply chain. As described in depth

in section 4.1.2, inspections are verification steps to

be performed on the delivered product by the client to

further probe into its completeness and accuracy.

Though its structure is quite simple, the layout actually

provides a detailed description of the supply chain topology.

It characterizes each of the steps, and defines any possible

requirements for every step. Likewise, it contains instructions

for local inspection routines (e.g., verify that every file in a

tar archive was created by the right party in the supply chain),

which further ensure the delivered product has not been

USENIX Association 28th USENIX Security Symposium    1397



tampered with. As such the layout allows the project owner to

construct the necessary framework for a secure supply chain.

For our example supply chain, Diana would have to list the

public keys as described on Listing 2, as well as all the steps.

1 { " _ t y p e " : " l a y o u t " ,
2 " e x p i r e s " : "<EXPIRES>" ,
3 " readme " : " foo . pkg s u p p l y c h a i n " ,
4 " keys " : { "<BOBS_KEYID>" : "<PUBKEY>" ,
5 "<ALICES_KEYID" : "<PUBKEY>" ,
6 "<CLARAS_KEYID" : "<PUBKEY>" } ,
7 " s t e p s " : [ { " name " : " t a g " , " . . . " } ,
8 { " name " : " b u i l d " , " . . . " } ,
9 { " name " : " package " , " . . . " } ] ,

10 " i n s p e c t i o n s " : [ " { " name " : " i n s p e c t " , " . . . " } ]
11 }

Listing 2: The supply chain for our example

As described, the layout file already limits all actions to

trusted parties (by means of their public keys), defines the

steps that are carried out (to limit the scope of any step) and

specifies verification routines that are used to dive into the

specifics of a particular supply chain. We will describe the

latter two fields in depth now.

4.1.1 Step definition

1 { " _name " : "<NAME>" ,
2 " t h r e s h o l d " : "<THRESHOLD>" ,
3 " e x p e c t e d _ m a t e r i a l s " : [ [ "<ARTIFACT_RULE>" ] , " . . . " ] ,
4 " e x p e c t e d _ p r o d u c t s " : [ [ "<ARTIFACT_RULE>" ] , " . . . " ] ,
5 " pubkeys " : [ "<KEYID>" , " . . . " ] ,
6 " expected_command " : "<COMMAND>"
7 }

Listing 3: A supply chain step in the supply chain layout

Every step of the supply chain contains the following fields:

name: A unique identifier that describes a step. This

identifier will be used to match this definition with the

corresponding pieces of link metadata.

expected_materials: The materials expected as input

ARTIFACT_RULES as described in Section 4.1.3. It serves

as a master reference for all the artifacts used in a step.

expected_products: Given the step’s output information,

or evidence, what should be expected from it? The ex-

pected products also contains a list of ARTIFACT_RULES

as described in section 4.1.3.

expected_command: The command to execute and any

flags that may be passed to it.

threshold: The minimum number of pieces of signed

link metadata that must be provided to verify this step.

This field is intended for steps that require a higher de-

gree of trust, so multiple functionaries must perform the

operation and report the same results. For example, if the

threshold is set to k, then at least k pieces of signed link

metadata need to be present during verification.

a list of public keys id’s: The id’s of the keys that can be

used to sign the link metadata for this step.

The fields within this definition list will indicate re-

quirements for the step identified with that name. To

verify these requirements, these fields will be matched

against the link metadata associated with the step. The

expected_materials and expected_products fields will

be used to compare against the materials and products

reported in the link metadata. This ensures that no disallowed

artifacts are included, that no required artifacts are missing,

and the artifacts used are from allowed steps who created

them as products. Listing 4 contains the step definition for

the build step for our example Layout above.

1 { " _name " : " b u i l d " ,
2 " t h r e s h o l d " : " 1 " ,
3 " e x p e c t e d _ m a t e r i a l s " : [
4 [ "MATCH" , " foo . c " , "WITH" ,
5 "PRODUCTS" , "FROM" , " t a g " ]
6 ] ,
7 " e x p e c t e d _ p r o d u c t s " : [ [ "CREATE" , " foo " ] ] ,
8 " pubkeys " : [ "<BOBS_PUBKEY>" ] ,
9 " expected_command " : " gcc foo . c −o foo "

10 }
Listing 4: The build step in our example layout

4.1.2 Inspection definition

Inspection definitions are nearly identical to step definitions.

However, since an inspection causes the verifier on the client

device to run a command (which can also generate artifacts),

there cannot be a threshold of actions. The other fields are

identical to the link metadata generated by a step.

4.1.3 Artifact rules

Artifact rules are central to describing the topology of the

supply chain by means of its artifacts. These rules behave

like firewall rules and describe whether an artifact should be

consumed down the chain, or if an artifact can be created or

modified at a specific step. As such, they serve two primary

roles: to limit the types of artifacts that a step can create and

consume; and to describe the flow of artifacts between steps.

For the former, a series of rules describes the operation

within the step. A rule, such as CREATE, indicates that a

material must not exist before the step is carried out and

must be reported as a product. Other rules, such as MODIFY,

DELETE, ALLOW and DISALLOW are used to further limit

what a step can register as artifacts within the supply chain.

These rules are described in Grammar 5 (full definition in

Appendix A). An example of a simple CREATE rule can be

seen on the step definition in Listing 4.

[CREATE|DELETE|MODIFY|ALLOW|DISALLOW] artifact_pattern

Grammar 5: Grammar for operations within a step. artifact_pattern is a
regular expression for the paths to artifacts.

For the latter, the MATCH rule is used by project owners

to describe the flow of artifacts between steps. With it, a

project owner can mandate that, e.g., a buildfarm must only

use the sources that were created during a tag-release step

or that only the right localization files are included during

a localization step. Compared to the rules above, the MATCH

rule has a richer syntax, as it needs to account for artifacts

relocated during steps (e.g,. a packaging step moving .py

files to /usr/lib/pythonX.X/site-packages/ or a build

step moving artifacts to a build directory) using the IN

clause. Grammar 6 describes this rule and the Match function
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describes the algorithm for processing it during verification.

An example of a MATCH rule used to match the foo.c source

from tag into the build step is shown in Listing 4.

MATCH source_pattern [IN prefix]

WITH <MATERIALS|PRODUCTS> [IN prefix] FROM step_name

Grammar 6: The match rule grammar. The IN clauses are optional and
source_pattern is a regular expression

function MATCH
Input: source_artifacts; destination_artifacts, rule

Output: result: (SUCCESS/FAIL)

1: // Filter source and destination materials using the rule’s patterns

2: source_artifacts_filtered = filter(rule.source_prefix + rule.source_pattern,

source_artifacts)

3: destination_artifacts_filtered = filter(rule.destination_prefix +

rule.destination_pattern, destination_artifacts)

4: // Apply the IN clauses, to the paths, if any

5: for artifact in source_artifacts_filtered do

6: artifact.path -= rule.source_in_clause

7: for artifact in destination_artifacts_filtered do

8: artifact.path -= rule.destination_in_clause

9: // compare both sets

10: for artifact in source_artifacts_filtered do

11: destination_artifact = find_artifact_by_path(destination_artifacts,

artifact.path)

12: // the artifact with this path does not exist?

13: if destination_artifact == NULL then

14: return FAIL

15: // are the files not the same?

16: if destination_artifact.hash != artifact.hash then

17: return FAIL

18: // all of the files filtered by the source materials exist

19: return SUCCESS

4.2 Link metadata files

Link metadata serves as a record that the steps prescribed in

the layout actually took place. Its fields show evidence that is

used for verification by the client. For example, the materials

and products fields of the metadata are used to ensure that

no intermediate products were altered in transit before being

used in a step.

In order to determine if the executed step complies with its

corresponding metadata, several types of information need to

be gathered as evidence. A link includes the following fields:

1 { " _ t y p e " : " l i n k " ,
2 " _name " : "<NAME>" ,
3 " command " : "<COMMAND>" ,
4 " m a t e r i a l s " : { "<PATH>" : "<HASH>" , " . . . " : " . . . " } ,
5 " p r o d u c t s " : { "<PATH>" : "<HASH>" , " . . . " : " . . . " } ,
6 " b y p r o d u c t s " : { " s t d i n " : " " , " s t d o u t " : " " ,
7 " r e t u r n −v a l u e " : " " } ,
8 " e n v i r o n m e n t " : { " v a r i a b l e s " : "<ENV>" ,
9 " f i l e s y s t e m " : "<FS>" , . . . }

10 }
Listing 7: Link metadata format

Name: This will be used to identify the step and to match

it with its corresponding definition inside the layout.

Material(s): Input file(s) that were used in this step, along

with their cryptographic hashes to verify their integrity.

Command: The command run, along with its arguments.

Product(s): The output(s) produced and its corresponding

cryptographic hash.

Byproduct(s): Reported information about the step.

Elements like the standard error buffer and standard

output buffer will be used.

Signature: A cryptographic signature over the metadata.

Of these fields, the name, materials, and products

fields are the counterpart of the fields within the layout

definition. This, along with a cryptographic signature used

to authenticate the functionary who carried out the step can

be used to provide a baseline verification of the supply chain

topology (i.e., the steps performed and how do they interrelate

via their materials and products). For example, the build step

metadata described in Listing 8 shows the file foo.c used

as a material and the product foo as created in the build step.

The byproducts field is used to include other meaningful

information about a step’s execution to further introspect into

the specifics of the step that was carried out. Common fields

included as byproducts are the standard output, standard error

buffers and a return value. For example, if a command exited

with non-zero status, then the byproduct field be populated

with a value such as return-value: "126". In this case,

inspections can be set up to ensure that the return value of

this specific command must be 0.

1 { " _ t y p e " : " l i n k " ,
2 " name " : " b u i l d " ,
3 " command " : [ " gcc " , " foo . c " , "−o " , " foo " ] ,
4 " m a t e r i a l s " : { " foo . c " : { " sha256 " : " b f f 9 5 e . . . " }} ,
5 " p r o d u c t s " : { " foo " : { " sha256 " : " 25 c696 . . . " }}
6 " b y p r o d u c t s " : { " r e t u r n −v a l u e " : 0 ,
7 " s t d e r r " : " " , " s t d o u t " : " " } ,
8 " e n v i r o n m e n t " : {} ,
9 }

Listing 8: The link for the build step

Having a software supply chain layout along with the

matching pieces of link metadata and the delivered product

are all the parts needed to perform verification. We will

describe verification next.

4.3 Verifying the delivered product

Verification occurs when the link metadata and the lay-

out are received by the client and upon installing the

delivered product. A standalone or operating-system tool

will perform the verification, as described in the function

Verify_Final_Product. To do this, the user will need an initial

public key that corresponds to the supply chain layout, as

distributed by a trusted channel or as part of the operating

system’s installation [106].

The end user starts the verification by ensuring that the

supply chain layout provided was signed with a trusted key

(lines 2-3) and by checking the layout expiration date to make

sure the layout is still valid (lines 5-6). If these checks pass,

the public keys of all the functionaries are loaded from the

layout (line 8). With the keys loaded, the verification routine

will start iterating over all the steps defined in the layout and

make sure there are enough pieces of link metadata signed

by the right functionaries to match the threshold specified

for that role (lines 10-20). If enough pieces of link metadata
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function VERIFY_FINAL_PRODUCT
Input: layout; links; project_owner_key

Output: result: (SUCCESS/FAIL)

1: // verify that the supply chain layout was properly signed

2: if not verify_signature(layout, project_owner_key) then

3: return FAIL

4: // Check that the layout has not expired

5: if layout.expiration < TODAY then

6: return FAIL

7: // Load the functionary public keys from the layout

8: functionary_pubkeys = layout.keys

9: // verify link metadata

10: for step in layout.steps do

11: // Obtain the functionary keys relevant to this step and its corresponding

metadata

12: step_links = get_links_for_step(step, links)

13: step_keys = get_keys_for_step(step, functionary_pubkeys)

14: // Remove all links with invalid signatures

15: for link in step_links do

16: if not verify_signature(link, step_keys) then

17: step_links.remove(link)

18: // Check there are enough properly-signed links to meet the threshold

19: if length(step_links) < step.threshold then

20: return error("Link metadata is missing!")

21: // Apply artifact rules between all steps

22: if apply_artifact_rules(steps, links) == FAIL then

23: return FAIL

24: // Execute inspections

25: for inspection in layout.inspections do

26: inspections.add(Run(inspection))

27: // Verify inspections

28: if apply_artifact_rules(steps + inspections, links) == FAIL then

29: return FAIL

30: return SUCCESS

could be loaded for each of the steps and their signatures

pass verification, then the verification routine will apply the

artifact rules and build a graph of the supply chain using

the artifacts recorded in the link metadata (lines 22-23). If

no extraneous artifacts were found and all the MATCH rules

pass, then inspections will be executed1 (line 25-26). Finally,

once all inspections were executed successfully, artifact

rules are re-applied to the resulting graph to check that rules

on inspection steps match after inspections are executed,

because inspections may produce new artifacts or re-create

existing artifacts (lines 28-29). If all verifications pass, the

function will return SUCCESS.

With this verification in place, the user is sure that the

integrity of the supply chain is not violated, and that all

requirements made by the project’s maintainers were met.

4.4 Layout and Key Management

A layout can be revoked in one of two ways, the choice being

up to the project owner. One is by revoking the key that was

used to sign the layout, the other is by superseding/updating

the layout with a newer one. To update a layout, the project

owner needs to replace an existing layout with a newer layout.

This can be used to deal with situations when a public key

1Inspections are executed only after all the steps are verified to avoid

executing an inspection on an artifact that a functionary did not create.

of a misbehaving functionary needs to be changed/revoked,

because when the project owner publishes a newer layout

without that public key, any metadata from such misbehaving

functionary is automatically revoked. Updating a layout

can also be used to address an improperly designed initial

layout. The right expiration date for a layout depends on the

operational security practices of the integrator.

5 Security Analysis

in-toto was designed to protect the software supply chain as

a whole by leveraging existing security mechanisms, ensuring

that they are properly set up and relaying this information to

a client upon verification. This allows the client to make sure

that all the operations were properly performed and that no

malicious actors tampered with the delivered product.

To analyze the security properties of in-toto, we need to

revisit the goals described in Section 2. Of these, the relevant

goals to consider are supply chain layout integrity, artifact flow

integrity, and step authentication. In this section, we explore

how these properties hold, and how during partial key compro-

mise the security properties of in-toto degrade gracefully.

in-toto’s security properties are strictly dependent on an

attacker’s level of access to a threshold of signing keys for

any role. These security properties degrade depending on the

type of key compromise and the supply chain configuration.

5.1 Security properties with no key compromise

When an attacker is able to compromise infrastructure or

communication channels but not functionary keys, in-toto’s

security properties ensure that the integrity of the supply

chain is not violated. Considering our threat model in

Section 2, and contrasting it to in-toto’s design which

stipulates that the supply chain layout and link metadata are

signed, we can assert the following:

An attacker cannot interpose between two consecutive

steps of the supply chain because, during verification, the

hash on the products field of the link for the first step will

not match the hash on the materials field of the link for the

subsequent step. Further, a completely counterfeit version

of the delivered product will fail validation because its

hash will not match the one contained in the correspond-

ing link metadata. Thus, artifact flow integrity holds.

An attacker cannot provide a product that is missing

steps or has its steps reordered because the corresponding

links will be missing or will not be in the correct order.

The user knows exactly which steps and in what order

they need to be performed to receive the delivered

product. As such, supply chain layout integrity holds.

Finally, an attacker cannot provide link metadata for

which he does not have permission to provide (i.e., their

key is not listed as one that can sign link metadata for

a certain step). Thus, step authentication holds.

However, it is important to underline that this threat

model requires that the developer’s host systems are not

compromised. Likewise, it assumes that there are no rogue

developers wishing to subvert the supply chain. For practical

purposes, we consider a rogue functionary to be equivalent
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to a functionary key compromise. Hence this section frames

attacks from the standpoint of a key compromise, even when

the issue may be executed as a confused deputy problem or

a similar issue with equivalent impact.

5.2 Security properties if there is a key compromise

in-toto is not a “lose-one, lose-all” solution, in that its secu-

rity properties only partially degrade with a key compromise.

Depending on which key the attacker has accessed, in-toto’s

security properties will vary. To further explore the conse-

quences of key compromise, we outline the following types

of attacks in the supply chain:

Fake-check: a malicious party can provide evidence of

a step taking place, but that step generates no products

(it can still, however, generate byproducts). For example,

an attacker could forge the results of a test suite being

executed in order to trick other functionaries into

releasing a delivered product with failing tests.

Product Modification: a malicious party is able to

provide a tampered artifact in a step to be used as

material in subsequent steps. For example, an attacker

could take over a buildfarm and create a backdoored

binary that will be packaged into the delivered product.

Unintended Retention: a malicious party does not destroy

artifacts that were intended to be destroyed in a step. For

example, an attacker that compromises a cleanup step

before packaging can retain exploitable libraries that

will be shipped along with the delivered product.

Arbitrary Supply Chain Control: a malicious party is

able to provide a tampered or counterfeit delivered

product, effectively creating an alternate supply chain.

5.2.1 Functionary compromise

A compromise on a threshold of keys held for any functionary

role will only affect a specific step in the supply chain to

which that functionary is assigned to. When this happens,

the artifact flow integrity and step authentication security

properties may be violated. In this case, the attacker can

arbitrarily forge link metadata that corresponds to that step.

The impact of this may vary depending on the specific

link compromised. For example, an attacker can fabricate an

attestation for a step that does not produce artifacts (i.e., a

fake-check), or create malicious products (i.e., a product mod-

ification), or pass along artifacts that should have been deleted

(i.e., an unintended retention). When an attacker creates

malicious products or fails to remove artifacts, the impact is

limited by the usage of such products in subsequent steps of

the chain. Table 1 describes the impact of these in detail from

rows 2 to 5 (row 1 captures the case when the attacker does

not compromise enough keys to meet the threshold defined

for a step). As a recommended best practice, we assume there

is a “DISALLOW *” rule at the end of the rule list for each step.

It is of note from Table 1 that an attacker who is able

to compromise crucial steps (e.g., a build step) will have a

greater impact on the client than one which, for example,

can only alter localization files. Further, a compromise in

functionary keys that do not create a product is restricted

Type of Key

Compromise

Compromised Step

Rule

Subsequent Step

Rule
Impact

Under

threshold
Regardless of rule Regardless of rule None

Step None Regardless of rule Fake-check

Step
ALLOW pattern1

DELETE pattern2
MATCH pattern*

Unintended

Retention

Step
[ALLOW | CREATE |

MODIFY] pattern
MATCH pattern

Product

Modification

Layout N/A N/A
Arbitrary Supply

Chain Control

Table 1: Key compromise and impact based on the layout characteristics.

to a fake check attack (row two). To trigger an unintended

retention, the first step must also have rules that allow for

some artifacts before the DELETE rule (e.g., the ALLOW rule

with a similar artifact pattern). This is because rules behave

like artifact rules, and the attacker can leverage the ambiguity

of the wildcard patterns to register an artifact that was

meant to be deleted. Lastly, note that the effect of product

modification and unintended retention is limited by the

namespace on such rules (i.e., the artifact_pattern).

Mitigating risk. As discussed earlier, the bar can be raised

against an attacker if a role is required to have a higher

threshold. For example, two parties could be in charge of

signing the tag for a release, which would require the attacker

to compromise two keys to successfully subvert the step.

Finally, further steps and inspections can be added to

the supply chain with the intention of limiting the possible

transformations on any step. For example, as shown in

Section 6, an inspection can be used to dive into a Python’s

wheel and ensure that only Python sources in the tag release

are contained in the package.

5.2.2 Project owner compromise

A compromise of a threshold of keys belonging to the project

owner role allows the attacker to redefine the layout, and

thereby subvert the supply chain completely. However, like

with step-level compromises, an increased threshold setting

can be used to ensure an attacker needs to compromise many

keys at once. Further, given the way in-toto is designed,

the layout key is designed to be used rarely, and thus it should

be kept offline.

5.3 User actions in response to in-toto failures

Detecting a failure to validate in-toto metadata involves

making a decision about whether verification succeeded or

whether it failed and, if so, why. The user’s device and the

reason for failure are likely to be paramount in the user’s

decision about how to respond. If the user is installing in an

ephemeral environment on a testing VM, they may choose

to ignore the warning and install the package regardless. If

the user is installing in a production environment processing

PCI data, the failure to validate in-toto metadata will be

a serious concern. So, we expect users of in-toto will

respond in much the same way as administrators do today

for a package that is not properly signed.
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Verification overhead. Finally, to draw insight from the

computation time required to verify each package, we ran

a series of micro-benchmarks on a laptop with an Intel

i7-6500U processor and 8GB of RAM. In this case, we ran an

iterated verification routine with the packages already fetched

and instrumented the Datadog agent installer to measure the

installation time with and without in-toto verification.

From this experiment, we conclude that in-toto verifi-

cation adds less than 0.6 seconds on all cases. This is mostly

dominated by the signature verification, and is thus bounded

by the number of links to verify (i.e., the number of steps

times the threshold).

7.2 Supply chain data breaches

We surveyed 30 major different supply chain breaches and

incidents occurring from January 2010 to January 2019 (this

list of historical attacks is included in Appendix B). These

historical incidents cover a variety of software products and

platforms, such as Apple’s Xcode [113], Android GTK [8],

MeDoc financial software [35], Adobe updater [95], PHP

PEAR repository [33], and South Korean organizations [138].

Studying these historical attacks identified the type of

access that the attacker had (or was speculated to have)

and identified three categories: the attacker had control

of infrastructure (but not functionary keys), the attacker

had control over part of the infrastructure or keys of a

specific functionary, and the attacker was able to control

the entire supply chain by compromising a project owner’s

infrastructure (including their signing key).

For the historical attacks in Appendix B, we determined

whether an attack used a compromised key, and then labeled

those attacks with “Key Compromise”. We also determined

the degree of access in the attack (all the way to the possible

step) and labeled each attack with an “Access Level” that

indicates the step in the chain where the attack took place.

We now analyze how these compromises could affect

the three supply chains where in-toto was deployed (as

described in Section 6). Our analysis indicates that the

majority of attacks (23 out of 30) took place without any

key compromise. In those cases, none of the three in-toto

deployments would have been affected since the client

inspection (as described in Sec. 4.3) could detect extraneous

artifacts or malicious delivered products.

Out of the 30 studied incidents, 7 involved a key compro-

mise. We summarize our analysis of these attacks in Table 3.

One attack, Keydnap [71], used a stolen Apple developer

certificate to sign the malicious software package. Therefore,

this attack would not have affected any in-toto deploy-

ments, because in-toto would detect that an unauthorized

functionary signed the link metadata. Another attack used the

developer’s ssh key to upload a malicious Python package

on PyPI [52]. All in-toto deployments could have detected

this attack since files extracted from the malicious package

would not exactly match the source code as the products of

the first step in the supply chain.

The remaining five attacks involving a key compromise

were recent sophisticated incidents that affected many clients

Attack Name DD RB CN

Keydnap [71] X X X

backdoored-pypi [52] X X X

CCleaner Atatck [126] X X 7

RedHat breach [125] X X 7

*NotPetya [35] X 7 7

Operation Red [138] X 7 7

KingSlayer [118] X 7 7

Table 3: The impact of the historical attacks on the three in-toto

deployments: Datadog (DD), Reproducible Builds (RB), Cloud Native (CN).

Out of the 30 historical attacks, 23 did not involve a key compromise, so none

of the deployments would have been affected. This table shows the remaining

attacks which involved a key compromise. In one attack, marked with a star

(*), it is unknown if a key compromise took place. We assumed that was the

case. A Xindicates that the deployment could have detected the attack.

and companies. The CCleaner [126] and RedHat [125]

attacks are not effective against the Reproducible Builds

deployment (RB) and Datadog (DD), as the former imple-

ments a threshold mechanism in the build step and the latter

does not build binaries in their infrastructure. In a similar

flavor, three attacks (Operation Red [138], NotPetya [35], and

KingSlayer [118]) would not affect the Datadog deployment,

as it implements a threshold mechanism in the packaging

step. The Cloud Native deployment, on the other hand,

would detect none of these five attacks, as it does not employ

thresholds. To conclude, the in-toto deployments would

detect most of the historical attacks based on the general

in-toto design principles. For those attacks that involve

key compromises, our analysis shows that in-toto’s use of

thresholds is an effective mechanism.

Key Takeaway. Cloud Native (83%) and reproducible

builds (90%) integrations of in-toto would prevent most

historical supply chain attacks. However, integration into a se-

cure update system as was done by Datadog (100%) provides

further protection.

8 Related Work

To the best of our knowledge, work that attempts to use an

automated tool to secure the supply chain is scarce. However,

there has been a general push to increase the security of

different aspects within the supply chain, as well as to tighten

the binding between neighboring processes within that chain.

In this section, we mention work relevant to supply chain

security, as some of it is crucial for the success of in-toto

as a framework. We also list work that can further increase

the security guarantees offered by in-toto.

Automated supply chain administration systems. Config-

uring and automating processes of the supply chain has been

widely studied. Works by Bégin et al. [45], Banzai et al., [43]

and Andreetto et al. [36] focus on designing supply chains

that automatically assign resources and designate parties

to take part in different processes to create a product. This

work is similar to in-toto in that it requires a supply chain

topology to carry out the work. However, none of these

projects were focused on security. Instead, they deal with

adaptability of resources and supply chain automation.
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Perhaps most closely related to in-toto is the Grafeas

API [9] released by Google. However, Grafeas’s focus is

on tracking and storing supply chain metadata rather than

security. Grafeas provides a centralized store for supply chain

metadata, which can be later queried by verification tools such

as Google’s Binary Authorization [84]. Grafeas does not pro-

vide a mechanism to describe what steps should be performed,

validate performed steps, or even support cryptographic sig-

natures [1]. Finally, in-toto is architecture agnostic, while

Grafeas is mostly cloud-native; in-toto was geared to repre-

sent supply chains whether they are cloud-native, off-cloud or

hybrid-cloud. We are collaborating with the Grafeas team to

natively support in-toto link metadata within Grafeas [10].

Software supply chain security. In addition, many soft-

ware engineering practices have been introduced to

increase the security of the software development lifecycle

[42, 104, 105, 111, 116]. Additional work by Devanbu et

al. [67] has explored different techniques to “construct safe

software that inspires trust in hosts.” These techniques are

similar to in-toto in that they suggest releasing supply

chain information to the end users for verification.

Though none of these proposals suggest an automated tool

to ensure the integrity of the supply chain, they do serve as

a helpful first step in designing in-toto. As such, their prac-

tices could be used as templates for safe supply chain layouts.

Finally, there have been hints by the industry to support

features that could be provided by in-toto [90, 114, 145].

This includes providing certificates noting the presence of a

process within the supply chain and providing software trans-

parency through mechanisms such as reproducible builds.

Source control security. The source code repository is

usually the first link in the supply chain. Early work in

this field has explored the different security properties that

must be included in software configuration management

tools [63]. Version control systems, such as Git, incorporate

protection mechanisms to ensure the integrity of the source

code repository, which include commit hash chaining and

signed commits [77, 78].

Buildsystem and verification security. The field of auto-

mated testing and continuous integration has also received

attention from researchers. Recently, self-hosted and public

automated testing and continuous integration systems have

become popular [54, 72, 137]. Work by Gruhn et al. [85] has

explored the security implications of malicious code running

on CI systems, showing that it is possible for attackers to

affect other projects being tested in the same server, or the

server itself. This work, and others [69] serve as a motivation

for in-toto’s threat model.

Further work by Hanawa et al. [87] explores different

techniques for automated testing in distributed systems. The

work is similar to in-toto in that it allocates hosts in the

cloud to automatically run tests for different environments

and platforms. However, in-toto requires such systems to

provide certification (in the form of link metadata) that the

tests were run and the system was successful.

Subverting the development environment, including

subverting the compiler, can have a serious impact on the

software supply chain [135]. Techniques such as Wheeler’s

diverse double-compiling (DDC) [144] can be used to

mitigate such “trusting trust” attacks. In the context of

reproducible builds project, DDC can also be used for

multi-party verification of compiler executables.

Verifying compilers, applications and kernels. Ongoing

work on verifying compilers, applications and kernels will

provide a robust framework for applications that fully comply

with their specification [88, 98]. Such work is similar to

in-toto in that a specification is provided for the compiler to

ensure that their products meet stated requirements. However,

in contrast to our work, most of this work is not intended

to secure the origin of such specification, or to provide any

proof of the compilation’s results to steps further down the

supply chain. Needless to say, verifying compilers could be

part of a supply chain protected with in-toto.

Furthermore, work by Necula et al. introduces proof-

carrying code [109,110], a concept that relies on the compiler

to accompany machine code with proof for verification at

runtime. Adding to this, industry standards have included

machine code signing [40] to be verified at runtime. This

work is similar to in-toto in that compilers generate

information that will be verified by the end user upon runtime.

Although these techniques are more granular than in-toto’s

(runtime verification vs verification upon installation), they

do not aim to secure the totality of the supply chain.

Package management and software distribution security.

Work by Cappos et al. has been foundational to the design

of in-toto’s security mechanisms [46, 102, 121]. The

mechanisms used to secure package managers are similar to

in-toto in that they rely on key distribution and role sepa-

ration to provide security guarantees that degrade with partial

key compromise. However, unlike in-toto, these systems

are restricted to software updates, which limit their scope.

Concepts from this line of work could be overlaid on in-toto

to provide additional “last mile” guarantees for the resulting

product, such as package freshness or protection against de-

pendencies that are not packaged with the delivered product.

9 Conclusions and future work

In this paper, we have described many aspects of in-toto,

including its security properties, workflow and metadata.

We also explored and described several extensions and

implications of using in-toto in a number of real-world

applications. With this we have shown that protecting the

entirety of the supply chain is possible, and that it can be

done automatically by in-toto. Further, we showed that,

in a number of practical applications, in-toto is a practical

solution to many contemporary supply chain compromises.

Although plenty of work needs to be done in the context

of the in-toto framework (e.g., decreasing its storage cost),

tackling the first major limitations of supply chain security

will increase the quality of software products. We expect

that, through continued interaction with the industry and
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elaborating on the framework, we can provide strong security

guarantees for future software users.
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A in-toto artifact rule definition

The following artifact rule definition is taken from the

in-toto specification v0.9 [14].

ALLOW: indicates that artifacts matched by the pattern are

allowed as materials or products of this step.

DISALLOW: indicates that artifacts matched by the pattern

are not allowed as materials or products of this step.

REQUIRE: indicates that a pattern must appear as a

material or product of this step.

CREATE: indicates that products matched by the pattern

must not appear as materials of this step.

DELETE: indicates that materials matched by the pattern

must not appear as products of this step.

MODIFY: indicates that products matched by the pattern

must appear as materials of this step, and their hashes

must not by the same.

MATCH: indicates that the artifacts filtered in using

source-path-prefix/pattern must be matched to a

"MATERIAL" or "PRODUCT" from a destination step

with the "destination-path-prefix/pattern".

B Surveyed Attacks

Attack Name Key Access

Compromise Level

*NotPetya [35] X PI

CCleaner Attack [126] X BS, PI

Operation Red [138] X PI

KingSlayer [118] X PI

RedHat breach [125] X BS

keydnap [71] X PI

backdoored-pypi [52] X PI

PEAR breach [33] 7 PI

Monju Incident [55] 7 PI

Janus Vulnerability [89] 7 PI

Rust flaw [124] 7 PI

XcodeGhost [113] 7 BS

Expensive Wall [8] 7 BS

WordPress breach [107] 7 CR

HandBrake breach [134] 7 PI

Proton malware [86] 7 PI

FOSSHub breach [103] 7 PI

BadExit Tor [66] 7 PI

Fake updater [95] 7 PI

Bitcoin Gold breach [70] 7 PI

Adobe breach [44] 7 CR

Google Breach [147] 7 CR

ProFTPD breach [120] 7 CR

Kernel.org breach [62] 7 CR

Hacked Linux Mint [146] 7 PI

Code Spaces breach [51] 7 CR

Unnamed Maker [53] 7 PI

Gentoo backdoor [76] 7 CR

Buggy Windows [68] 7 PI

Buggy Mac [37] 7 PI

Table 4: Summary of surveyed supply chain attacks. CR,

BS and PI stand for Code Repository, Build System and

Publishing Infrastructure, respectively. A Xindicates that

the attack involved a key compromise. In one attack, marked

with a star (*), it was unknown if a compromised key was

involved. We assumed that was the case.
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