


at most six lines (except for arbitrarily many lines in the

case of two views.) Problems 50002 [37], 32003 [13, 34],

30100,10400 [21] have been known before, all other 26

minimal problems in Tab. 1, as far as we know, are new.

For each minimal problem, we compute its algebraic

degree which is its number of solutions over the complex

numbers for generic images. This degree measures the in-

trinsic difficulty of a minimal problem. We observe how

this degree generally grows with the number of cameras,

but we also found several minimal problems with small de-

grees (32, 40 and 64), which might be practical in image

matching and 3D reconstruction [47].

We consider generic minimal problems, i.e. the prob-

lems that have a finite number of complex solutions and

are generic in the sense that random noise in image mea-

surements does not change the number of solutions. For in-

stance, the classical problem of five points in two views [37]

is minimal and one can add arbitrarily many lines to the

arrangement in 3-space; as long as it contains five points

in sufficiently generic position, it is still minimal. On the

other hand, the problem of four points in three views [31,

18, 40, 42] is overconstrained when all measurements and

equations are used. It becomes inconsistent for noisy image

measurements. Thus it is not a minimal problem for us.

We assume complete visibility, i.e. all points and lines

are observed in all images and all observed information

is used to formulate minimal problems. Complete point-

line incidence correspondences arise when, e.g., SIFT point

features [32] are considered together with their orientation,

lines are constructed from matched affine frames [35], or

obtained as simultaneous point and line detections [36],

Fig. 12. On the other hand, we do not cover cases that re-

quire partial visibility, e.g., 3 PPP + 1 PPL in [21]. Full

account for partial visibility is a much harder task and will

be addressed in the future.

We explicitly model point-line incidences. Several lines

may be incident to a single point (n-quiver) and several

points may be dependent by lying on a single line. We as-

sume that such relations are not broken by image noise since

they are constructed by the feature detection process.

Our problem formulation uses direct geometrical deter-

minantal constraints as in [19, 41], not multi-view tensors,

since it works for any number of cameras and can model

point-line incidences. On the other hand, our formulation is

not the most economical for the minimal problem with five

independent points in two views (50002 in Tab. 1). This

problem has degree 20 in our formulation while the degree

is only 10 when reformulated [38] as a problem of finding

the essential matrix.3

2Real images from [36] by courtesy of S. Ramalingam.
3Proving that the minimal problems with three or more views cannot

be reformulated in a way that decreases the degrees that we report, or find-

ing reformulations, may require more advanced algebraic techniques and

presents a challenge for the future research.

Structure of the paper The paper is organized as follows.

We review previous work in Sec. 2. Section 3 defining main

concepts is followed by problem specification in Sec. 4. All

candidates for minimal problems satisfying balanced counts

of degrees of freedom are identified in Sec. 5. Section 6

presents our parameterization of the problems for compu-

tational purposes. Procedures for checking the minimality

and computing the degrees using symbolic and numerical

methods from algebraic geometry are presented in Sec. 7.

2. Previous work

Here we review the most relevant work for point-line in-

cidences and minimal problems. See [30, 25, 21] for ref-

erences on minimal problems in general. Using correspon-

dences of non-incident points and lines in three uncalibrated

views was considered in works on the trifocal tensor [16].

The early work on point-line incidences [19] introduced

n-quivers, i.e. points incident with n lines in uncalibrated

views, and studied minimal problems arising from three 1-

quivers in three affine views and three 3-quivers in three

perspective views, as well as the overconstrained problem

of four 2-quivers in three views.

Uncalibrated multi-view constraints for points, lines and

their incidences appeared in [33]. In [41], non-incident

points and lines in uncalibrated views were studied and four

points and three lines in three views, two points and six lines

in three views, and nine lines in three views cases were

presented. The solver for the latter case has recently ap-

peared in [27]. Absolute pose of cameras with unknown

focal length from 2D-3D quiver correspondences has been

solved in [23] for two points and 1-quiver, for one 1-quiver

and one 2-quiver, and for four lines. In [11], an impor-

tant case, when lines incident to points arise from tangent

lines to curves, is presented. It motivates the case with

three points and tangent lines at two points (case 30021 in

Tab. 1). Work [36] presents several minimal problems for

generalized camera absolute pose computation from 2D-3D

correspondences of non-incident points and lines with fo-

cus on cases when a closed-form solution could be found.

In [10, 45], parallelism and perpendicularity of lines in

space were exploited to find calibrated relative pose from

lines and points. Recent work [55] investigates calibrated

relative camera pose problems from two views with 2-

quivers with known angles between the 3D lines generating

the quivers. Minimal problems for finding the relative pose

from three such correspondences for the generic as well as

several more specific cases is derived. Our closest gener-

alization of this result is that one can obtain calibrated rel-

ative pose of three cameras from one 2-quiver and two in-

dependent points in three views without knowing angles in

3D. Recently, minimal problems were constructed for local

multi-features including lines incident to points as well as

more complex features [7, 5, 6]. They build on SIFT di-
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rections [32] or more elaborate local affine features [35] to

reduce the number of samples needed in RANSAC [43] to

verify tentative matches.

The most relevant previous work Recent theoretical re-

sults [20, 1, 2, 3, 53, 54] made steps towards characterizing

some of the classes of minimal problems. The most rele-

vant work [21] provided a classification for three calibrated

views that can be formulated using linear constraints on the

trifocal tensor [15]. In [21], 66 minimal problems for three

calibrated views were presented and their algebraic degrees

computed. The lowest degree 160 has been observed for

one PPP and four PPL constraints while the highest degree

4912 has been observed for 11 PLL constraints. Out of 66

problems in [21] the ones that can be modeled with com-

plete visibility are (1 PPP + 4 LLL) and (3 PPP + 1 LLL).

These two minimal problems appear as 10400 and 30100 in

Tab. 1. The other 15 minimal problems in three views that

we discovered do not appear in [21] since the point-line in-

cidences were not considered.

3. Notation and concepts

We use nomenclature from [15]. Points and lines in space

are in the projective space P3, image points are in P2 and

are represented by homogeneous coordinates. We consider

the Grassmannians G1,3 and G1,2 which are the spaces of

lines in P3 and P2, respectively. SO(3) stands for the spe-

cial orthogonal group, i.e. rotations, defined algebraicly as

3 × 3 matrices R such that RR⊺ = I , detR = 1. All is con-

sidered over an arbitrary field F unless explicitly specified.

Coefficients of equations originate from the field Q of ratio-

nal numbers. Solutions of the equations are in the field C of

complex numbers. We carry out symbolic computations in

a finite field Zp for a prime p for the sake of exactness and

computational efficiency. Numerical algorithms use float-

ing point to approximate complex numbers. 4

4. Problem Specification

Our main result applies to problems in which points, lines,

and point-line incidences are observed. We first introduce

a point-line problem as a tuple (p, l,I,m) specifying that p

points and l lines in space, which are incident according to

a given incidence relation I ⊂ {1, . . . , p} × {1, . . . , l} (i.e.

(i, j) ∈ I means that the i-th point is on the j-th line) are

projected to m views. So a point-line problem captures the

numbers of points, lines and views as well as the incidences

between points and lines. We will model intersecting lines

by requiring that each intersection point of two lines has to

be one of the p points in the point-line problem. Throughout

this article we will only consider incidence relations which

4 See Sec. Notation and Concepts of Supplementary material for more

details.

can be realized by a point-line arrangement in P3. In partic-

ular, two distinct lines cannot be incident to the same two

distinct points. In addition, we will always assume that the

incidence relation I is complete in the sense that every in-

cidence which is automatically implied by the incidences in

I must also be contained in I . An instance of a point-line

problem is specified by the following data:

(1) A point-line arrangement in space consisting of p

points X1, . . . ,Xp and l lines L1, . . . , Ll in P3 which are

incident exactly as specified by I ⊂ {1, . . . , p} × {1, . . . , l}.
Hence, the point Xi is on the line Lj if and only if (i, j) ∈ I .

We write

Xp,l,I = {(X,L) ∈ (P3)p × (G1,3)l ∣ ∀(i, j) ∈ I ∶Xi ∈ Lj}

for the associated variety of point-line arrangements. Note

that this variety also contains degenerate arrangements,

where not all points and lines have to be pairwise distinct or

where there are more incidences between points and lines

than those specified by I .

(2) A list of m calibrated cameras which are represented

by matrices

P1 = [R1 ∣ t1], . . . , Pm = [Rm ∣ tm]
with R1, . . . ,Rm ∈ SO(3) and t1, . . . , tm ∈ F3.

(3) The joint image consisting of the projections

xv,1, . . . , xv,p ∈ P2 of the points X1, . . . ,Xp and the pro-

jections ℓv,1, . . . , ℓv,l ∈ G1,2 of the lines L1, . . . , Ll by the

cameras P1, . . . , Pm to the v = 1, . . . ,m views. We write

Yp,l,I,m = {(x, ℓ) ∈ (P2)mp × (G1,2)ml ∣ ∀v = 1, . . . ,m
∀(i, j) ∈ I ∶ xv,i ∈ ℓv,j}

for the image variety which consists of all m-tuples of two-

dimensional point-line arrangements which satisfy the inci-

dences specified by I .

Given a joint image, we want to recover an arrangement

in space and cameras yielding the given joint image. We

refer to a pair of such an arrangement and such a list of m

cameras as a solution of the point-line problem for the given

joint image. We note that an m-tuple in Yp,l,I,m does not

necessarily admit a solution, i.e. a priori it does not have

to be a joint image of a common point-line arrangement in

3-space.

To fix the arbitrary space coordinate system [15], we set

P1 = [I ∣0] and the first coordinate of t2 to 1. Hence, our

camera configurations are parameterized by

Cm = {(P1, . . . , Pm) ∈ (F3×4)m ∣ Pi = [Ri ∣ ti],
Ri ∈ SO(3), ti ∈ F3, R1 = I, t1 = 0, t2,1 = 1} .

We will always assume that the camera positions in an in-

stance of a point-line problem are sufficiently generic such
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that the following three natural conditions are satisfied for

each camera: Firstly, two distinct lines or points in the

given arrangement in 3-space are viewed as distinct lines

or points. Secondly, a point and a line in the space arrange-

ment, which are not incident in 3-space, are viewed as non-

incident. Thirdly, three non-colinear points in the space ar-

rangement are viewed as non-colinear points.

We say that a point-line problem is minimal if a generic

image tuple in Yp,l,I,m has a nonzero finite number of so-

lutions. We may phrase this definition formally:

Definition 1. Let Φp,l,I,m ∶ Xp,l,I × Cm ⇢ Yp,l,I,m denote

the joint camera map, which sends a point-line arrangement

in space and m cameras to the resulting joint image. We say

that the point-line problem (p, l,I,m) is minimal if

● Φp,l,I,m is a dominant map5, i.e. a generic element (x, ℓ)
in Yp,l,I,m has a solution, so Φ

−1
p,l,I,m(x, ℓ) ≠ ∅, and

● the preimage Φ−1p,l,I,m(x, ℓ) of a generic element (x, ℓ) in

Yp,l,I,m is finite.

Remark 1. For a given a minimal problem (p, l,I,m), the

joint camera map Φp,l,I,m maps Xp,l,I × Cm onto a con-

structible subset of Yp,l,I,m of the same dimension. Given

a solution for a generic joint image (x, ℓ) when F = R or C,

there exists a ball around (x, ℓ), say Bǫ(x, ℓ), and for each

solution (X,C) ∈ Φ−1p,l,I,m(x, ℓ) a ball Bδ(X,C) such that

Φp,l,I,m (Bδ(X,C)) ⊂ Bǫ(x, ℓ).

In this sense, we may deduce that solutions to minimal

problems are stable under perturbation of the data.

The joint camera map Φp,l,I,m reflects that we want to

recover world points and lines as well as camera poses from

a given joint image. In the case of complete visibility, this is

equivalent to only recovering camera poses. We formalize

this observation in Lemma 2 and Corollary 2.

Over the complex numbers, the cardinality of the preim-

age Φ−1p,l,I,m(x, ℓ) is the same for every generic joint image

(x, ℓ) of a minimal point-line problem (p, l,I,m). We re-

fer to this cardinality as the degree of the minimal problem.

Our goal is to list all minimal point-line problems and to

compute their degrees. For this, we pursue the following

strategy:

Step 1: A classical statement from algebraic geometry

states for a dominant map ϕ ∶ X ⇢ Y from a variety X

to another variety Y that the preimage ϕ−1(y) of a generic

point y in Y has dimension dim(X) − dim(Y ). When ϕ is

a linear map between linear spaces, this is simply the rank-

nullity theorem of linear algebra. As the generic preim-

age of the joint camera map Φp,l,I,m associated to a mini-

mal point-line problem (p, l,I,m) is zero-dimensional, we

see that every minimal point-line problem must satisfy the

5Dominant maps are analogs of surjective maps in birational geometry.

equality dim(Xp,l,I×Cm) = dim(Yp,l,I,m). This motivates

the following definition.

Definition 2. We say that a point-line problem (p, l,I,m)
is balanced if dim(Xp,l,I × Cm) = dim(Yp,l,I,m).

As we have now established that all minimal point-line

problems are balanced, we classify all balanced point-line

problems in Sec. 5. We will see that there are only finitely

many such problems, explicitly given in Tab. 1, up to arbi-

trarily many lines in the case of two views; see Remark 2.

Step 2: The classical statement from algebraic geome-

try mentioned above further implies that a balanced point-

line problem (p, l,I,m) is minimal if and only if its joint

camera map Φp,l,I,m is dominant. Hence, to determine the

exhaustive list of all minimal point-line problems, we only

have to check for each balanced point-line problem in Tab. 1

if its joint camera map is dominant. We perform this check

computationally, as described in Sec. 7.

Step 3: Finally, we use symbolic and numerical com-

putations to calculate the degrees of the minimal point-line

problems. We describe these computations in Sec. 7.

5. Balanced Point-Line Problems

To understand balanced point-line problems we need to de-

rive formulas for the dimensions of the varieties Xp,l,I , Cm
and Yp,l,I,m. As SO(3) is three-dimensional, and we set

the first camera to [I ∣0] and one parameter in the second

camera to 1, the parameter space of camera configurations

for m ≥ 2 has dimension dim(Cm) = 6m − 7.
Let us now consider a generic point-line arrangement

in Xp,l,I . Some of its points may be dependent on other

points, in the sense that such a dependent point lies on a

line spanned by two other points. In any arrangement of

points in 3-space, each minimal set of independent points

has the same cardinality. For our arrangement of p points

we denote this cardinality by pf (the upper index f stands

for free). We write pd = p − pf for the number of dependent

points. Each free point is defined by three parameters. A

dependent point X is only defined by one further parame-

ter after the two points, which span the line containing X ,

are defined. In total, the p points in our arrangement are

defined by 3pf + pd parameters. Each of the l lines in our

arrangement is either incident to zero, one or at least two

points. We refer to lines which are incident to no points as

free lines. We denote the number of free lines by lf . As the

Grassmannian G1,3 of lines is four-dimensional, each free

line is defined by four parameters. A line which is incident

to a fixed point is defined by only two parameters. We de-

note the number of lines which are incident to exactly one

point by la (the upper index a stands for adjacent). Finally,

each of the remaining l − lf − la lines is incident to at least

two points and thus already uniquely determined by the two
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This implies pf + pd ≥ 5 if m ≥ 8, which contradicts

Lemma 1, and thus we have only one remaining case to

check: m = 7. From (5) and Lemma 1, we have pf + pd = 0
in the case of seven cameras. It means that there are no

points, and thus there cannot be lines which are incident to

points. So we have pf = 0, pd = 0, la = 0, and (3) reduces to

35 = 10lf , which is clearly not possible. So there are no bal-

anced point-line problems with seven or more cameras.

Theorem 2. There are 34 balanced point-line problems

with 3, 4, 5 or 6 cameras. They are all listed in Tab. 1.

Proof. We consider the different cases for 3 ≤ m ≤ 6 and

reason by cases.

●m = 6: Due to (5) and Lemma 1, every balanced point-line

problem with six cameras must have exactly one point. So

we have pf = 1, pd = 0, and (3) reduces to 5 = 2lf + la. This

gives us three possibilities: (lf , la) ∈ {(2,1), (1,3), (0,5)}
(see first row of Tab. 1).

●m = 5: Due to (5) and Lemma 1, every balanced point-line

problem with five cameras must have exactly two points. So

we have pf = 2, pd = 0, and (3) reduces to 3 = 2lf + la. This

gives us two possibilities: (lf , la) ∈ {(1,1), (0,3)}, which

yield three point-line problems (see the first row of Tab. 1).

● m = 4: Due to (5) and Lemma 1, every balanced point-

line problem with four cameras must have either one point

or three points. Let us first consider the case of a single

point. Here we have pf = 1, pd = 0, and (3) reduces to

6 = 2lf + la. This gives us four possibilities: (lf , la) ∈
{(3,0), (2,2), (1,4), (0,6)} (see first row of Tab. 1). Sec-

ondly, we consider balanced point-line problems with four

cameras and three points. If all three points are indepen-

dent, (3) reduces to 1 = 2lf + la, which has a single solution:

(lf , la) = (0,1). If not all three points are independent, we

have pf = 2, pd = 1, and (3) reduces to 2 = 2lf + la. This

gives us two possibilities: (lf , la) ∈ {(1,0), (0,2)}, which

yield three point-line problems (see the first two rows of

Tab. 1 for all four point-line problems with four cameras

and three points).

● m = 3: We first observe that each balanced point-line

problem with three cameras must have at least one point.

Otherwise we would have pf = 0, pd = 0 and la = 0, so (3)

would reduce to 11 = 2lf , which is impossible. Let us first

consider the case of a single point. Here we have pf = 1,

pd = 0, and (3) reduces to 8 = 2lf+la. This gives us five pos-

sibilities: (lf , la) ∈ {(4,0), (3,2), (2,4), (1,6), (0,8)} (see

second row of Tab. 1). Secondly, in the case of two points,

we have pf = 2, pd = 0, and (3) reduces to 5 = 2lf + la. This

gives us three possibilities: (lf , la) ∈ {(2,1), (1,3), (0,5)},
which yield six point-line problems (see second row of

Tab. 1). Thirdly, we consider the case of three points. If all

three points are independent, (3) reduces to 2 = 2lf + la. The

two solutions (lf , la) ∈ {(1,0), (0,2)} yield three point line

problems (see last two rows of Tab. 1). If not all three points

are independent, we have pf = 2, pd = 1, and (3) reduces to

3 = 2lf + la. The two solutions (lf , la) ∈ {(1,1), (0,3)}
yield four point-line problems (see last row of Tab. 1). Fi-

nally, we consider balanced point-line problems with three

cameras and four points. We see from (3) that not all four

points can be independent. Hence, we either have pf = 3 and

pd = 1 such that (3) reduces to 0 = 2lf + la, which has a sin-

gle solution (lf , la) = (0,0), or we have pf = 2 and pd = 2

such that (3) reduces to 1 = 2lf + la, which also has a single

solution (lf , la) = (0,1) (see the last row of Tab. 1)

Remark 2. For the case of two cameras, we see from (3)

that the number of free and incident lines do not contribute

to the parameter count for balanced point-line problems. In

fact, (3) reduces for m = 2 to 5 = pf+pd. Hence, we have the

classical minimal problem of recovering five points from

two camera images. More precisely, a point-line problem

with two cameras is balanced if and only if it has five points.

Therefore, it is irrelevant how many lines are contained in

the arrangement or how many points are independent. There

are 5 combinatorial possibilities to distribute dependent and

independent points (see the last row of Tab. 1).

Corollary 1. There are 39 balanced point-line problems,

modulo any number of lines in the case of two views. They

are listed in Tab. 1.

6. Eliminating world points and lines

In order to do computations, it is customary to describe

problems with implicit equations that do not depend on the

world variables. Before we describe such equations, let us

phrase the elimination of the world variables geometrically.

We consider the Zariski closure6 of the graph of the joint

camera map:

Inc = {(X,C,Y ) ∈ Xp,l,I × Cm ×Yp,l,I,m ∣
Y = Φp,l,I,m(X,C)}.

The joint camera map Φp,l,I,m is dominant if and only if the

projection πY ∶ Inc → Yp,l,I,m onto the last factor is domi-

nant (since this is the projection from the graph of Φp,l,I,m

on its codomain). Moreover, the cardinality of the preimage

of a generic point Y ∈ Yp,l,I,m under both maps Φp,l,I,m

and πY is the same.

To make computations simpler, we want to derive the

same statement for the following restricted incidence vari-

ety, which does not include the 3D structure Xp,l,I :

Inc
′
= {(C,Y ) ∈ Cm ×Yp,l,I,m ∣

∃X ∈ Xp,l,I ∶ Y = Φp,l,I,m(X,C)}.

6The Zariski closure of a set is the smallest algebraic variety containing

the set. See Sec. Notation and Concepts in Supplementary Material.
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LC and CP constraints immediately translate into deter-

minantal conditions: the 3 × 3 minors of the matrix in (6)

must vanish for each visible line, and the 4 × 4 minors of

the matrix in (7) must vanish for each point. Thus, we ob-

tain explicit polynomials for each point-line problem once

we fix some encoding and the cameras parametrization, i.e.

a rational map G ∶ F6m−7 ⇢ Cm. In our computations, we

define G via the Cayley parametrization for SO(3):

R([a, b, c]) = (I + [[a, b, c]]×)(I − [[a, b, c]]×)−1. (8)

7. Checking minimality & computing degrees

Denote by F = Fp,l,I,m the system of polynomials result-

ing from a given point-line problem (p, l,I,m) using our

construction of the LC and CP constraints in Sec. 6 with

the cameras parameterization G plugged in. The variety

of points satisfying F (C,Y ) = 0 contains Inc
′ as an irre-

ducible component10.

Remark 3. The variety of points satisfying F (C,Y ) = 0

may also have spurious components corresponding to solu-

tions (C,Y ) where the ranks of the matrices (6) or (7) are

smaller than desired. Such spurious solutions do not corre-

spond to world lines in G1,3 and must be ruled out. These

spurious components are naturally avoided by sampling a

point on Inc
′. For implicit symbolic calculations, the spu-

rious solutions may be eliminated by including inequations

enforcing nonvanishing of the minors of size one smaller.

The following algorithm checks minimality of a point-

line problem locally; geometrically this amounts to passing

to the tangent space of Inc′.

Algorithm 1 (Minimal).

Input: (p, l,I,m), a balanced point-line problem.

Output: “Y” if the problem is minimal; “N” otherwise.

1: J(C,Y )← ∂F (C,Y ))
∂C

2: Take random C0 ∈ Cm and random X0 ∈ Xp,l,I .

3: Y0 ← Φp,l,I,m(X0, C0)
4: return “Y” if rankJ(C0, Y0) = 6m − 7, else “N.”

Proof of Correctness for Algorithm 1. In terminology de-

scribed in the beginning of Sec. 6, the algorithm checks if

the conditions of the Inverse Function Theorem hold at a

generic point on Inc
′. If they do, the map π′Y is dominant,

since in a neighborhood of Y0 the map has an inverse: i.e if

Y is near Y0 then there is C near C0 satisfying F (C,Y ) = 0.

If these conditions do not hold generically, π′Y is not domi-

nant. By Cor. 2, the given point-line problem is minimal if

and only if π′Y is dominant.

For the minimal problems with two and three views we

use the following symbolic algorithm to compute their de-

grees, i.e. the cardinality of the preimage of a generic joint

image Y ∈ Yp,l,I,m under the projection π′Y (by Cor. 2).

10
Inc
′ cannot be written as a finite union of strictly smaller varieties.

Algorithm 2 (Degree).

Input: (p, l,I,m), a point-line minimal problem.

Output: The degree of this problem.

1: Take a random Y0 ∈ Yp,l,I,m.

2: Compute the Gröbner basis B of the ideal generated by

F (C,Y0) ⊂ F[C].
3: return the number of monomials in variables C not

divisible by the leading monomials of B.

Proof of Correctness. Using Gröbner bases to solve a sys-

tem of polynomial equations is a standard technique in com-

putational nonlinear algebra. Since we are interested only

in the solution count, not the solutions, we are able to carry

out computations relatively quickly; see Remark 4.

Remark 4. Algorithms 1 and 2 are valid over an arbitrary

field F. Our main problem is stated over Q, the rational

numbers, but since the algorithms rely heavily on symbolic

techniques such as Gröbner bases we use the so-called mod-

ular technique: we perform computations over a finite field,

namely F = Zp for p < 2
15. There is a slight chance that

this approach fails for a particular exceptional “unlucky”

prime p, but it is possible to compute the result using several

primes and confirm it over Q via rational reconstruction.

Algorithms 1 and 2 were implemented and executed in

the Macaulay2 [14] computer algebra system 11. Due to

limitations of Gröbner basis algorithms we were unable to

compute the degrees of any of the problems with m > 3 with

our implementation of Algorithm 2. On the other hand, the

degrees of all minimal problems in Tab. 1 are within reach

for the monodromy method, a technique based on numerical

homotopy continuation. Specifically, we follow the mon-

odromy solver framework outlined in [9] carrying out com-

putation via a Macaulay2 package MonodromySolver11.

Similar techniques have been successfully employed in a

number of studies in applied algebraic geometry [17, 22, 8].

Imagine the projection π′Y ∶ Inc
′
⇢ Yp,l,I,m as the cover

map from top to the bottom in Fig. 3. The seed solution

(C0, Y0) produced as in Algorithm 1 is one of the solutions

that project to Y0 at the bottom. Since the Galois group of

π′Y acts transitively on the solutions, one can create enough

random paths connecting Y0 and an auxiliary point Y1 so

that walking on the liftings of the bottom paths, it is possible

to visit all solutions that are above Y0 and, hence, discover

the degree. See Supplementary Material for how these ran-

dom paths are created as well as what assurances of com-

pleteness this technique provides.

8. Conclusion

We characterized a new class of minimal problems and

discovered problems with small numbers of solutions that

call for constructing their efficient solvers [12].

11 Available at https://github.com/timduff35/PLMP.
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