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Abstract

We present a complete classification of all minimal prob-
lems for generic arrangements of points and lines com-
pletely observed by calibrated perspective cameras. We
show that there are only 30 minimal problems in total, no
problems exist for more than 6 cameras, for more than 5
points, and for more than 6 lines. We present a sequence of
tests for detecting minimality starting with counting degrees
of freedom and ending with full symbolic and numeric ver-
ification of representative examples. For all minimal prob-
lems discovered, we present their algebraic degrees, i.e.
the number of solutions, which measure their intrinsic diffi-
culty. It shows how exactly the difficulty of problems grows
with the number of views. Importantly, several new mini-
mal problems have small degrees that might be practical in
image matching and 3D reconstruction.

1. Introduction

Minimal' problems [37, 50, 24, 26, 28, 29, 25, 30] play
an important role in 3D reconstruction [48, 49, 47], im-
age matching [44], visual odometry [39, 4] and visual lo-
calization [52, 46, 51]. Many minimal problems have been
described and solved and new minimal problems are con-
stantly appearing. In this paper, we present a step towards
a complete characterization of all minimal problems for
points, lines and their incidences in calibrated multi-view
geometry. This is a grand challenge, especially when deal-
ing with partial visibility due to occlusions and missing de-
tections. Here we provide a complete characterization for
the case of complete multi-view visibility. Informally, a
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Figure 1: (1-st row) Points (red) and lines (blue) get de-
tected independently as well as in arrangements with points
incident to lines [36]. (2-nd row) Examples of some inter-
esting arrangements of points and lines providing new min-
imal problems. See Tab. 1 for the complete classification of
minimal problems for points, lines and their arrangements
in multiple images with complete multi-view visibility.

minimal problem is a 3D reconstruction problem recover-
ing camera poses and world coordinates from given images
such that random input instances have a finite positive num-
ber of solutions.

Contribution We give a complete classification of minimal
problems for generic arrangements of points and lines, in-
cluding their incidences, completely observed by any num-
ber of calibrated perspective cameras. We consider cali-
brated scenarios since it avoids many degeneracies [15].

We show that there are exactly 30 minimal point-line
problems (up to an arbitrary number of lines in the case of
two views) when considering complete visibility (Tab. 1).
In particular, there is no such minimal problem for seven
or more cameras. For 6, 5, 4 and 3 cameras, there are
1, 3, 6 and 17 minimal problems, respectively. For two
views, there are three combinatorial constellations of five
points which yield minimal problems. We observe that
each minimal point-line problem has at most five points and

1675



at most six lines (except for arbitrarily many lines in the
case of two views.) Problems 50005 [37], 32005 [13, 34],
3010g,1040¢ [21] have been known before, all other 26
minimal problems in Tab. 1, as far as we know, are new.

For each minimal problem, we compute its algebraic
degree which is its number of solutions over the complex
numbers for generic images. This degree measures the in-
trinsic difficulty of a minimal problem. We observe how
this degree generally grows with the number of cameras,
but we also found several minimal problems with small de-
grees (32, 40 and 64), which might be practical in image
matching and 3D reconstruction [47].

We consider generic minimal problems, i.e. the prob-
lems that have a finite number of complex solutions and
are generic in the sense that random noise in image mea-
surements does not change the number of solutions. For in-
stance, the classical problem of five points in two views [37]
is minimal and one can add arbitrarily many lines to the
arrangement in 3-space; as long as it contains five points
in sufficiently generic position, it is still minimal. On the
other hand, the problem of four points in three views [31,

, 40, 42] is overconstrained when all measurements and
equations are used. It becomes inconsistent for noisy image
measurements. Thus it is not a minimal problem for us.

We assume complete visibility, i.e. all points and lines
are observed in all images and all observed information
is used to formulate minimal problems. Complete point-
line incidence correspondences arise when, e.g., SIFT point
features [32] are considered together with their orientation,
lines are constructed from matched affine frames [35], or
obtained as simultaneous point and line detections [36],
Fig. 12. On the other hand, we do not cover cases that re-
quire partial visibility, e.g., 3 PPP + 1 PPL in [21]. Full
account for partial visibility is a much harder task and will
be addressed in the future.

We explicitly model point-line incidences. Several lines
may be incident to a single point (n-quiver) and several
points may be dependent by lying on a single line. We as-
sume that such relations are not broken by image noise since
they are constructed by the feature detection process.

Our problem formulation uses direct geometrical deter-
minantal constraints as in [19, 41], not multi-view tensors,
since it works for any number of cameras and can model
point-line incidences. On the other hand, our formulation is
not the most economical for the minimal problem with five
independent points in two views (50002 in Tab. 1). This
problem has degree 20 in our formulation while the degree
is only 10 when reformulated [38] as a problem of finding
the essential matrix.’

2Real images from [36] by courtesy of S. Ramalingam.

3Proving that the minimal problems with three or more views cannot
be reformulated in a way that decreases the degrees that we report, or find-
ing reformulations, may require more advanced algebraic techniques and
presents a challenge for the future research.

Structure of the paper The paper is organized as follows.
We review previous work in Sec. 2. Section 3 defining main
concepts is followed by problem specification in Sec. 4. All
candidates for minimal problems satisfying balanced counts
of degrees of freedom are identified in Sec. 5. Section 6
presents our parameterization of the problems for compu-
tational purposes. Procedures for checking the minimality
and computing the degrees using symbolic and numerical
methods from algebraic geometry are presented in Sec. 7.

2. Previous work

Here we review the most relevant work for point-line in-
cidences and minimal problems. See [30, 25, 21] for ref-
erences on minimal problems in general. Using correspon-
dences of non-incident points and lines in three uncalibrated
views was considered in works on the trifocal tensor [16].
The early work on point-line incidences [19] introduced
n-quivers, i.e. points incident with n lines in uncalibrated
views, and studied minimal problems arising from three 1-
quivers in three affine views and three 3-quivers in three
perspective views, as well as the overconstrained problem
of four 2-quivers in three views.

Uncalibrated multi-view constraints for points, lines and
their incidences appeared in [33]. In [41], non-incident
points and lines in uncalibrated views were studied and four
points and three lines in three views, two points and six lines
in three views, and nine lines in three views cases were
presented. The solver for the latter case has recently ap-
peared in [27]. Absolute pose of cameras with unknown
focal length from 2D-3D quiver correspondences has been
solved in [23] for two points and 1-quiver, for one 1-quiver
and one 2-quiver, and for four lines. In [I1], an impor-
tant case, when lines incident to points arise from tangent
lines to curves, is presented. It motivates the case with
three points and tangent lines at two points (case 3002; in
Tab. 1). Work [36] presents several minimal problems for
generalized camera absolute pose computation from 2D-3D
correspondences of non-incident points and lines with fo-
cus on cases when a closed-form solution could be found.
In [10, 45], parallelism and perpendicularity of lines in
space were exploited to find calibrated relative pose from
lines and points. Recent work [55] investigates calibrated
relative camera pose problems from two views with 2-
quivers with known angles between the 3D lines generating
the quivers. Minimal problems for finding the relative pose
from three such correspondences for the generic as well as
several more specific cases is derived. Our closest gener-
alization of this result is that one can obtain calibrated rel-
ative pose of three cameras from one 2-quiver and two in-
dependent points in three views without knowing angles in
3D. Recently, minimal problems were constructed for local
multi-features including lines incident to points as well as
more complex features [7, 5, 6]. They build on SIFT di-
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rections [32] or more elaborate local affine features [35] to
reduce the number of samples needed in RANSAC [43] to
verify tentative matches.

The most relevant previous work Recent theoretical re-
sults [20, 1, 2, 3, 53, 54] made steps towards characterizing
some of the classes of minimal problems. The most rele-
vant work [21] provided a classification for three calibrated
views that can be formulated using linear constraints on the
trifocal tensor [15]. In [21], 66 minimal problems for three
calibrated views were presented and their algebraic degrees
computed. The lowest degree 160 has been observed for
one PPP and four PPL constraints while the highest degree
4912 has been observed for 11 PLL constraints. Out of 66
problems in [21] the ones that can be modeled with com-
plete visibility are (1 PPP + 4 LLL) and (3 PPP + 1 LLL).
These two minimal problems appear as 1040 and 3010 in
Tab. 1. The other 15 minimal problems in three views that
we discovered do not appear in [21] since the point-line in-
cidences were not considered.

3. Notation and concepts

We use nomenclature from [15]. Points and lines in space
are in the projective space P2, image points are in P? and
are represented by homogeneous coordinates. We consider
the Grassmannians G 3 and G, 2 which are the spaces of
lines in P? and P2, respectively. SO(3) stands for the spe-
cial orthogonal group, i.e. rotations, defined algebraicly as
3 x 3 matrices R such that RR"™ = I, det R = 1. All is con-
sidered over an arbitrary field F unless explicitly specified.
Coefficients of equations originate from the field Q of ratio-
nal numbers. Solutions of the equations are in the field C of
complex numbers. We carry out symbolic computations in
a finite field Z,, for a prime p for the sake of exactness and
computational efficiency. Numerical algorithms use float-
ing point to approximate complex numbers. *

4. Problem Specification

Our main result applies to problems in which points, lines,
and point-line incidences are observed. We first introduce
a point-line problem as a tuple (p,1,Z,m) specifying that p
points and [ lines in space, which are incident according to
a given incidence relation Z c {1,...,p} x {1,...,1} (i.e.
(i,7) € Z means that the i-th point is on the j-th line) are
projected to m views. So a point-line problem captures the
numbers of points, lines and views as well as the incidences
between points and lines. We will model intersecting lines
by requiring that each intersection point of two lines has to
be one of the p points in the point-line problem. Throughout
this article we will only consider incidence relations which

4 See Sec. Notation and Concepts of Supplementary material for more
details.

can be realized by a point-line arrangement in P3. In partic-
ular, two distinct lines cannot be incident to the same two
distinct points. In addition, we will always assume that the
incidence relation Z is complete in the sense that every in-
cidence which is automatically implied by the incidences in
7 must also be contained in Z. An instance of a point-line
problem is specified by the following data:

(1) A point-line arrangement in space consisting of p
points X1,..., X, and [ lines Ly,...,L; in P3 which are
incident exactly as specified by Z c {1,...,p} x{1,...,1}.
Hence, the point Xj; is on the line L; if and only if (¢, j) € Z.
We write

Xpi1 = {(X’L) € (Pg)p X (G1,3)l | V(i,j) €eZ:X; € LJ‘}

for the associated variety of point-line arrangements. Note
that this variety also contains degenerate arrangements,
where not all points and lines have to be pairwise distinct or
where there are more incidences between points and lines
than those specified by Z.

(2) A list of m calibrated cameras which are represented
by matrices

Py =[Ry|t1],..., Py =[Rm | tm]

with Ry,...,R,, €SO(3) and ty,...,t,, e F3.

(3) The joint image consisting of the projections
T lse-rTyp € IP? of the points X1, .. ., Xp and the pro-
jections £y, 1,...,¢,; € Gy o of the lines Ly, ..., L; by the
cameras Py,..., P, tothev=1,...,m views. We write

Yp 1. Z,m = {(1'76) € (P2)mp X (G172)ml ‘ Yv=1,...,m
V(Z,]) EI:I?)J’, € g?),j}

for the image variety which consists of all m-tuples of two-
dimensional point-line arrangements which satisfy the inci-
dences specified by Z.

Given a joint image, we want to recover an arrangement
in space and cameras yielding the given joint image. We
refer to a pair of such an arrangement and such a list of m
cameras as a solution of the point-line problem for the given
joint image. We note that an m-tuple in ), ; 7,,, does not
necessarily admit a solution, i.e. a priori it does not have
to be a joint image of a common point-line arrangement in
3-space.

To fix the arbitrary space coordinate system [15], we set
Py = [I]0] and the first coordinate of ¢5 to 1. Hence, our
camera configurations are parameterized by

Con = {(P1,. .., Py) e (PPN | P = [R; | 1],
R; €SO(3),t; e F* Ry =1,t, =0,t2 = 1}~

We will always assume that the camera positions in an in-
stance of a point-line problem are sufficiently generic such
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that the following three natural conditions are satisfied for
each camera: Firstly, two distinct lines or points in the
given arrangement in 3-space are viewed as distinct lines
or points. Secondly, a point and a line in the space arrange-
ment, which are not incident in 3-space, are viewed as non-
incident. Thirdly, three non-colinear points in the space ar-
rangement are viewed as non-colinear points.

We say that a point-line problem is minimal if a generic
image tuple in ), ; 7, has a nonzero finite number of so-
lutions. We may phrase this definition formally:

Definition 1. Let ®,; 7, : Xp1,7 X Cy, -> Vp1,7,m denote
the joint camera map, which sends a point-line arrangement
in space and m cameras to the resulting joint image. We say
that the point-line problem (p,!,Z, m) is minimal if

e &, 7., is a dominant map’, i.e. a generic element (z, /)

. X 4

in Yp,1,7,m has a solution, so @+ (z,¢) # @, and
; -1

o the preimage ®, 7,

Yp,1,Z,m 1s finite.

(x,£) of a generic element (z, ¢) in

Remark 1. For a given a minimal problem (p,,Z,m), the
joint camera map ®,,; 7, maps X, ; 7 x C,, onto a con-
structible subset of ), ; 7, of the same dimension. Given
a solution for a generic joint image (x,¢) when F =R or C,
there exists a ball around (z, £), say B(z, /), and for each
solution (X, C) € ®,} 7, (x,€) aball Bs(X,C) such that

(pp7l7l-7m (Bé(Xv C)) c Be(l',ﬁ)

In this sense, we may deduce that solutions to minimal
problems are stable under perturbation of the data.

The joint camera map ®,,; 7 ,,, reflects that we want to
recover world points and lines as well as camera poses from
a given joint image. In the case of complete visibility, this is
equivalent to only recovering camera poses. We formalize
this observation in Lemma 2 and Corollary 2.

Over the complex numbers, the cardinality of the preim-
age @;}ll’m(x, £) is the same for every generic joint image
(z,¢) of a minimal point-line problem (p,l,Z, m). We re-
fer to this cardinality as the degree of the minimal problem.
Our goal is to list all minimal point-line problems and to
compute their degrees. For this, we pursue the following
strategy:

Step 1: A classical statement from algebraic geometry
states for a dominant map ¢ : X -» Y from a variety X
to another variety Y that the preimage ¢~ *(y) of a generic
point y in Y has dimension dim(X) — dim(Y"). When ¢ is
a linear map between linear spaces, this is simply the rank-
nullity theorem of linear algebra. As the generic preim-
age of the joint camera map ®,,; 7, associated to a mini-
mal point-line problem (p, 1,7, m) is zero-dimensional, we
see that every minimal point-line problem must satisfy the

SDominant maps are analogs of surjective maps in birational geometry.

equality dim(&, ; 7xCp,) = dim(Yp 1,7,m ). This motivates
the following definition.

Definition 2. We say that a point-line problem (p,1,Z,m)
is balanced if dim(X), ;7 x Cpp,) = dim(Vp 1. 7,m)-

As we have now established that all minimal point-line
problems are balanced, we classify all balanced point-line
problems in Sec. 5. We will see that there are only finitely
many such problems, explicitly given in Tab. 1, up to arbi-
trarily many lines in the case of two views; see Remark 2.

Step 2: The classical statement from algebraic geome-
try mentioned above further implies that a balanced point-
line problem (p,!,Z,m) is minimal if and only if its joint
camera map ®,; 7., is dominant. Hence, to determine the
exhaustive list of all minimal point-line problems, we only
have to check for each balanced point-line problem in Tab. 1
if its joint camera map is dominant. We perform this check
computationally, as described in Sec. 7.

Step 3: Finally, we use symbolic and numerical com-
putations to calculate the degrees of the minimal point-line
problems. We describe these computations in Sec. 7.

5. Balanced Point-Line Problems

To understand balanced point-line problems we need to de-
rive formulas for the dimensions of the varieties &}, ; 7, Cp,
and YV, 1. 7,m. As SO(3) is three-dimensional, and we set
the first camera to []0] and one parameter in the second
camera to 1, the parameter space of camera configurations
for m > 2 has dimension dim(C,,) = 6m - 7.

Let us now consider a generic point-line arrangement
in &), ;7. Some of its points may be dependent on other
points, in the sense that such a dependent point lies on a
line spanned by two other points. In any arrangement of
points in 3-space, each minimal set of independent points
has the same cardinality. For our arrangement of p points
we denote this cardinality by p’ (the upper index f stands
for free). We write pd = p — p for the number of dependent
points. Each free point is defined by three parameters. A
dependent point X is only defined by one further parame-
ter after the two points, which span the line containing X,
are defined. In total, the p points in our arrangement are
defined by 3p’ + p? parameters. Each of the [ lines in our
arrangement is either incident to zero, one or at least two
points. We refer to lines which are incident to no points as
free lines. We denote the number of free lines by If. As the
Grassmannian Gy 3 of lines is four-dimensional, each free
line is defined by four parameters. A line which is incident
to a fixed point is defined by only two parameters. We de-
note the number of lines which are incident to exactly one
point by [* (the upper index a stands for adjacent). Finally,
each of the remaining [ — If — [? lines is incident to at least
two points and thus already uniquely determined by the two
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Table 1: All balanced point-line problems, modulo adding arbitrarily many lines to the problems with 2 views. Some
problems are not uniquely identified by their vector (pf,p?,1!,1%). To make the identification unique, we extend the vector
by a subscript «, which is the maximum number of lines adjacent to the same point in the case of at least three views or the
maximum number of points on a common line in the case of two views. Degrees marked with * have been computed with
numerical methods, the others with symbolic algorithms; see Section 7. Problem 32003 has all five points in a single 3D

plane: it corresponds to the calibrated homography relative pose computation [13,

points. Hence, we have derived

dim(X,,7) =3p" +pt + 41" + 217, (1)

In particular, we see that we might as well assume that there
is no line passing through two or more points, as such lines
do not contribute to our parameter count.

We derive the dimension of the image variety YV, ;.7,m
similarly. Since we assume all camera positions to be suffi-
ciently generic, each camera views exactly p' independent
points, pd dependent points, If free lines and [* lines which
are incident to exactly one of the points. Each independent
point is defined by two parameters, whereas each dependent
point is defined by a single parameter. A free line is defined
by two parameters. A line which is incident to a fixed point
is defined by a single parameter. All in all, we have that

dim(Vpiz.m) =m (2p" +pt + 218 +1%). )

Note that there is no balanced point-line problem for a sin-
gle camera. For m > 1 cameras, combining dim(C,,) =
6m — 7 with (1) and (2) yields that a point-line problem is
balanced if and only if

3pf+pd+4lf+21a+6m—7:m(2pf+pd+21f+la).

]; see Supplementary Material.

This is equivalent to
6m-7=2m-3)p'+(m-1)pd+2(m-2)I" +(m-2)1*. (3)

Lemma 1. Every balanced point-line problem with at least
five points has exactly two cameras.

Proof. Suppose (p,1,Z,m) is a balanced point-line prob-
lem with m > 1 cameras and at least five points, i.e.
p' +pd > 5. In this case, the equality (3) implies

6m—7> (2m-3)p" +(m-1)(5-p") = (p'+5)m—(2p' +5),
which is equivalent to
2p' - 1) 2 (p' - )m. )

Among the five or more points at least two have to be (by
definition) independent, i.e. pf > 1. So (4) yieldsm < 2. [

Theorem 1. There is no balanced point-line problem with
seven or more cameras.

Proof. Let (p,1,Z,m) be a balanced point-line problem
with m > 7 cameras. By equality (3), we have

5=p +p? mod (m-2). 5)
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This implies pf + p? > 5 if m > 8, which contradicts
Lemma 1, and thus we have only one remaining case to
check: m = 7. From (5) and Lemma 1, we have p' + pd = 0
in the case of seven cameras. It means that there are no
points, and thus there cannot be lines which are incident to
points. So we have pf =0, pd =0, (* =0, and (3) reduces to
35 = 101f, which is clearly not possible. So there are no bal-
anced point-line problems with seven or more cameras. [

Theorem 2. There are 34 balanced point-line problems
with 3, 4, 5 or 6 cameras. They are all listed in Tab. 1.

Proof. We consider the different cases for 3 < m < 6 and
reason by cases.

em = 6: Due to (5) and Lemma 1, every balanced point-line
problem with six cameras must have exactly one point. So
we have pf = 1, pd = 0, and (3) reduces to 5 = 2If + [*. This
gives us three possibilities: (If,1*) € {(2,1),(1,3),(0,5)}
(see first row of Tab. 1).

em =5: Dueto (5) and Lemma 1, every balanced point-line
problem with five cameras must have exactly two points. So
we have pf = 2, pd = 0, and (3) reduces to 3 = 2If + [*. This
gives us two possibilities: (If,1%) € {(1,1), (0,3)}, which
yield three point-line problems (see the first row of Tab. 1).
e m = 4: Due to (5) and Lemma 1, every balanced point-
line problem with four cameras must have either one point
or three points. Let us first consider the case of a single
point. Here we have pf =1, pd = 0, and (3) reduces to
6 = 21 + 1% This gives us four possibilities: (If,1%) e
{(3,0),(2,2),(1,4),(0,6)} (see first row of Tab. 1). Sec-
ondly, we consider balanced point-line problems with four
cameras and three points. If all three points are indepen-
dent, (3) reduces to 1 = 21f + 12, which has a single solution:
(1f,1*) = (0,1). If not all three points are independent, we
have pf = 2, p? = 1, and (3) reduces to 2 = 2If + [, This
gives us two possibilities: (I*,1%) € {(1,0), (0,2)}, which
yield three point-line problems (see the first two rows of
Tab. 1 for all four point-line problems with four cameras
and three points).

e m = 3: We first observe that each balanced point-line
problem with three cameras must have at least one point.
Otherwise we would have pf =0, pd =0and[* =0, so (3)
would reduce to 11 = 2if, which is impossible. Let us first
consider the case of a single point. Here we have pf = 1,
p? =0, and (3) reduces to 8 = 21f +12. This gives us five pos-
sibilities: (1f,1%) € {(4,0),(3,2),(2,4),(1,6),(0,8)} (see
second row of Tab. 1). Secondly, in the case of two points,
we have pf = 2, pd = 0, and (3) reduces to 5 = 2If + [*. This
gives us three possibilities: (If,1*) € {(2,1),(1,3),(0,5)},
which yield six point-line problems (see second row of
Tab. 1). Thirdly, we consider the case of three points. If all
three points are independent, (3) reduces to 2 = 2/f + 2. The
two solutions (If,1%) € {(1,0), (0,2)} yield three point line
problems (see last two rows of Tab. 1). If not all three points

are independent, we have pf =2, pd =1, and (3) reduces to
3 = 2If + 1. The two solutions (If,1*) € {(1,1),(0,3)}
yield four point-line problems (see last row of Tab. 1). Fi-
nally, we consider balanced point-line problems with three
cameras and four points. We see from (3) that not all four
points can be independent. Hence, we either have pf = 3 and
pd = 1 such that (3) reduces to 0 = 2If + {2, which has a sin-
gle solution (If,1*) = (0,0), or we have pf = 2 and p? = 2
such that (3) reduces to 1 = 2If + 12, which also has a single
solution (If,1*) = (0,1) (see the last row of Tab. 1) O

Remark 2. For the case of two cameras, we see from (3)
that the number of free and incident lines do not contribute
to the parameter count for balanced point-line problems. In
fact, (3) reduces form = 2to 5 = p' +p?. Hence, we have the
classical minimal problem of recovering five points from
two camera images. More precisely, a point-line problem
with two cameras is balanced if and only if it has five points.
Therefore, it is irrelevant how many lines are contained in
the arrangement or how many points are independent. There
are 5 combinatorial possibilities to distribute dependent and
independent points (see the last row of Tab. 1).

Corollary 1. There are 39 balanced point-line problems,
modulo any number of lines in the case of two views. They
are listed in Tab. 1.

6. Eliminating world points and lines

In order to do computations, it is customary to describe
problems with implicit equations that do not depend on the
world variables. Before we describe such equations, let us
phrase the elimination of the world variables geometrically.

We consider the Zariski closure® of the graph of the joint
camera map:

Inc = {(X, C,Y) eX 1T X Cm X yp’l’z}m |
Y =2,,7.m(X,C)}.

The joint camera map @, ; 7 ,,, is dominant if and only if the
projection 7y : Inc = Y, ; 7 ,,, onto the last factor is domi-
nant (since this is the projection from the graph of ®,,; 7,
on its codomain). Moreover, the cardinality of the preimage
of a generic point Y € ), ; 7 ., under both maps ®,,; 7 .,
and 7y is the same.

To make computations simpler, we want to derive the
same statement for the following restricted incidence vari-
ety, which does not include the 3D structure X, ; 7:

Inc' ={(C,Y) €Cpo x Ypi.z,m |
1X € Xp,l,I 'Y = (I)p7l717m(X, C)}

The Zariski closure of a set is the smallest algebraic variety containing
the set. See Sec. Notation and Concepts in Supplementary Material.
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We have the canonical
projections on the right,
where 7¢ 3 omits the first
factor and 73, projects
onto the last factor:

Ty
Inc —— yp,l,l',m

Trc,yl /
™
’
Inc

Lemma 2. If m > 2, a generic point (C,Y) € Inc’ has a
single point in its preimage under ¢ y.

Proof. Y = (x,¢) consists of points = (z1,1,...,Zm.p)
and lines £ = (€11,...,4m,) in the m views. Each point
Ty, € P2 in a view v is pulled back via the v-th camera to a
line in 3-space. Asm > 2, the m pull-back lines for generic’
21, .-, Tm, iDtersect in a unique point in P3. Similarly,
each line ¢, ; in a view v is pulled back via the v-th camera
to a plane in P3. As m > 2, the m generic® pull-back planes
for ¢y ;,..., 4y, ; intersect in a unique line in 3. Il

Corollary 2. A balanced point-line problem (p,1,Z,m) is
minimal if and only if the projection 71'3, is dominant. In
that case, the degree of the minimal problem is the cardi-
nality of the preimage 773,_1(Y) of a generic joint image
Y € Vp.1.7,m over the complex numbers.

Proof. As we have observed in Step 2 in Section 4, a bal-
anced point-line problem is minimal if and only if its joint
camera map ®,,; 7 ,, is dominant. This happens if and only
if 7y is dominant. Due to Lemma 2, this is equivalent to
that 7r3, is dominant. Similarly, for a generic Y € V), ; 7.,

the cardinalities of the preimages ®, 7, (Y), 73! (Y') and

71'3,_1 (Y") coincide due to Lemma 2. O

We note that it is possible to describe the variety Inc’ as
a component of the variety cut out by the equations that we
establish in the remainder of this section.

For any instance of a point-line problem, the solutions
must satisfy certain equations defined in terms of joint im-
ages (z,¢) € Ypi1z,m. Our scheme for generating such
equations relies on an alternate representation of (z, ¢) de-
fined solely in terms of lines. The equations result from
two types of constraints. The first type of constraint is a
line correspondence (LC): if /1, ..., ¢, are images of the
same world line, with respective homogeneous coordinates
li,...,1, e F>! then

rank [P{1; P, P, ] <2. (6)
That is, the planes with homogeneous coordinates P/1;
share a common line in P2, We distinguish two classes of
lines in P? :

(1) Visible lines define valid line correspondences. Be-
sides m [ observed lines in the joint image, for generic x

7e.g. no epipoles for two views.
e.g., no corresponding epipolar lines for two views.

Example (1)

Example (2)

Example (3)

Figure 2: Encoding prob- Figure 3: The lifting of

lems with visible and ghost the loop in the parameter

lines. space (downstairs) meets
all solutions (upstairs).

there is a unique visible line between any two observed
points. Taken across all views, any pair of points thus pro-
vides a line correspondence which must be satisfied.

(2) Two generic visible lines suffice to define a point.
We may use an additional set of (non-corresponding) ghost
lines to define any points which meet fewer than two visible
lines. A generic ghost line contains exactly one observed
point — it is simply a device for generating equations’.

Thus we obtain common point (CP) constraints: given
visible and ghost lines 1, 1,...1, 5, which meet z, ;, the
projection of the ¢-th point in the view v € 1,...,m, we
must have

rank [ P 1 Pl ] <3, i=1,....p. (7)

We may encode a point-line problem by specifying some
number of visible lines, some number of ghost lines, and
which of these lines are incident at each point. We illustrate
this encoding with several examples appearing in Figure 2:

Example 1. (1) Consider the point-line problem labeled
“20132” in Tab. 1. The lines explicitly drawn in the table
together with a visible line between the two free points, as
in Fig. 2, suffice to define the scene for generic data.

(2) Consider now the problem labeled “2011;” in Tab. 1.
The encoding given in Fig. 2 includes the given lines, a vis-
ible line between the given points, as well as a single ghost
line needed to define one of the points.

(3) Finally, consider the problem labeled “32003” in
Tab. 1. The extra visible lines appearing in Fig. 2 fix the
positions of all points.

9«“Canonical” ghost lines, which are rows of [:1:]>< are often used to

eliminate point  from equations by [c], = = 0[15, 33].
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LC and CP constraints immediately translate into deter-
minantal conditions: the 3 x 3 minors of the matrix in (6)
must vanish for each visible line, and the 4 x 4 minors of
the matrix in (7) must vanish for each point. Thus, we ob-
tain explicit polynomials for each point-line problem once
we fix some encoding and the cameras parametrization, i.e.
a rational map G : F6"~7 -> C,,. In our computations, we
define G via the Cayley parametrization for SO(3):

R([a,b,¢]) = (I +[[a,b,]])(I - [[a,b.c]1) 7" (8®)
7. Checking minimality & computing degrees

Denote by F' = F},; 1, the system of polynomials result-
ing from a given point-line problem (p,!,Z, m) using our
construction of the LC and CP constraints in Sec. 6 with
the cameras parameterization GG plugged in. The variety
of points satisfying F'(C,Y) = 0 contains Inc’ as an irre-
ducible component'”.

Remark 3. The variety of points satisfying F'(C,Y) = 0
may also have spurious components corresponding to solu-
tions (C,Y") where the ranks of the matrices (6) or (7) are
smaller than desired. Such spurious solutions do not corre-
spond to world lines in G; 3 and must be ruled out. These
spurious components are naturally avoided by sampling a
point on Inc’. For implicit symbolic calculations, the spu-
rious solutions may be eliminated by including inequations
enforcing nonvanishing of the minors of size one smaller.

The following algorithm checks minimality of a point-
line problem locally; geometrically this amounts to passing
to the tangent space of Inc’.

Algorithm 1 (Minimal).
Input: (p,1,Z,m), a balanced point-line problem.
Output: “Y” if the problem is minimal;, “N” otherwise.
1: J(C,Y) « 2HCY))
2: Take random Cy € C,,, and random Xy € X, ; 1.
3: Yo < @p1.7.m(Xo,Co)
4: return “Y” if rank J(Cy,Yy) = 6m -7, else “N.”

Proof of Correctness for Algorithm 1. In terminology de-
scribed in the beginning of Sec. 6, the algorithm checks if
the conditions of the Inverse Function Theorem hold at a
generic point on Inc’. If they do, the map ) is dominant,
since in a neighborhood of Y[, the map has an inverse: i.e if
Y is near ;) then there is C near Cy satisfying F'(C,Y") = 0.
If these conditions do not hold generically, 73, is not domi-
nant. By Cor. 2, the given point-line problem is minimal if
and only if 73, is dominant. O

For the minimal problems with two and three views we
use the following symbolic algorithm to compute their de-
grees, i.e. the cardinality of the preimage of a generic joint
image Y € ), 1.7, under the projection 3, (by Cor. 2).

10Tn¢’ cannot be written as a finite union of strictly smaller varieties.

Algorithm 2 (Degree).
Input: (p,1,Z,m), a point-line minimal problem.
Output: The degree of this problem.
1: Take a random Yy € Vp 1.1 ,m.
2: Compute the Grobner basis B of the ideal generated by
F(C,Yy) cF[C].
3: return the number of monomials in variables C not
divisible by the leading monomials of B.

Proof of Correctness. Using Grobner bases to solve a sys-
tem of polynomial equations is a standard technique in com-
putational nonlinear algebra. Since we are interested only
in the solution count, not the solutions, we are able to carry
out computations relatively quickly; see Remark 4. O

Remark 4. Algorithms 1 and 2 are valid over an arbitrary
field F. Our main problem is stated over Q, the rational
numbers, but since the algorithms rely heavily on symbolic
techniques such as Grobner bases we use the so-called mod-
ular technique: we perform computations over a finite field,
namely F = Z, for p < 2'5. There is a slight chance that
this approach fails for a particular exceptional “unlucky”
prime p, but it is possible to compute the result using several
primes and confirm it over QQ via rational reconstruction.

Algorithms 1 and 2 were implemented and executed in
the Macaulay2 [14] computer algebra system '!. Due to
limitations of Grobner basis algorithms we were unable to
compute the degrees of any of the problems with m > 3 with
our implementation of Algorithm 2. On the other hand, the
degrees of all minimal problems in Tab. | are within reach
for the monodromy method, a technique based on numerical
homotopy continuation. Specifically, we follow the mon-
odromy solver framework outlined in [9] carrying out com-
putation via a Macaulay?2 package MonodromySolver!!.
Similar techniques have been successfully employed in a
number of studies in applied algebraic geometry [17, 22, 8].

Imagine the projection 7}, : Inc" -> ¥, 1 7., as the cover
map from top to the bottom in Fig. 3. The seed solution
(Co,Ys) produced as in Algorithm 1 is one of the solutions
that project to Y at the bottom. Since the Galois group of
7r3, acts transitively on the solutions, one can create enough
random paths connecting Y and an auxiliary point Y; so
that walking on the liftings of the bottom paths, it is possible
to visit all solutions that are above Y{; and, hence, discover
the degree. See Supplementary Material for how these ran-
dom paths are created as well as what assurances of com-
pleteness this technique provides.

8. Conclusion

We characterized a new class of minimal problems and
discovered problems with small numbers of solutions that
call for constructing their efficient solvers [12].

T Available at https://github.com/timduf£35/PLMP.
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