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Abstract

We show how to solve a number of problems in numerical linear algebra, such as least squares regres-
sion, £p-regression for any p > 1, low rank approximation, and kernel regression, in time T'(A)poly(log(nd)),
where for a given input matrix A € R™*? T(A) is the time needed to compute A -y for an arbitrary
vector y € R, Since T(A) < O(nnz(A)), where nnz(A) denotes the number of non-zero entries of A, the
time is no worse, up to polylogarithmic factors, as all of the recent advances for such problems that run
in input-sparsity time. However, for many applications, T (A) can be much smaller than nnz(A), yielding
significantly sublinear time algorithms. For example, in the overconstrained (1 + €)-approximate polyno-
mial interpolation problem, A is a Vandermonde matrix and T'(A) = O(nlogn); in this case our running
time is n - poly(logn) + poly(d/e) and we recover the results of Avron, Sindhwani, and Woodruff (2013)
as a special case. For overconstrained autoregression, which is a common problem arising in dynamical
systems, T'(A) = O(nlogn), and we immediately obtain n - poly(logn) + poly(d/e) time. For kernel
autoregression, we significantly improve the running time of prior algorithms for general kernels. For
the important case of autoregression with the polynomial kernel and arbitrary target vector b € R", we
obtain even faster algorithms. Our algorithms show that, perhaps surprisingly, most of these optimiza-
tion problems do not require much more time than that of a polylogarithmic number of matrix-vector
multiplications. *

1 Introduction

A number of recent advances in randomized numerical linear algebra have been made possible by the tech-
nique of oblivious sketching. In this setting, given an n x d input matrix A to some problem, one first
computes a sketch SA where S is a random matrix drawn from a certain random family of matrices. Typi-
cally S is wide and fat, and therefore applying S significantly reduces the number of rows of A. Moreover,
S A preserves structural information about A.

For example, in the least squares regression problem one is given an n x d matrix A and an n x 1 vector
b and one would like to output a vector z € R¢ for which

[Az —bll2 < (1 4 €) min | Az — b| 2, (1)

where for a vector y, [yl2 = (3, [vi[?) 12, Typically the n rows of A correspond to observations, and one
would like the prediction {A4;, z) to be close to the observation b;, where A; denotes the i-th row of A. While it
can be solved exactly via the normal equations, one can solve it much faster using oblivious sketching. Indeed,
for overconstrained least squares where n » d, one can choose S to be a subspace embedding, meaning that
simultaneously for all vectors x € R?, |SAz|s = (1+¢)|Az|2. In such applications, S has only poly(d/e) rows,
independent of the large dimension n. By computing SA and Sb, and solving ' = argmin, |SAx — Sb|a,
one has that 2’ satisfies (1) with high probability. Thus, much of the expensive computation is reduced to
the “sketch space”, which is independent of n.

1A first version of this paper appeared in AAAI in February, 2019.
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Another example is low rank approximation, in which one is given an n x d matrix A and would like to
find an n x k matrix U and a k x d matrix V so that

UV = A} < (1+ )] A — A3, (2)

where for a matrix B € R™*?, |B|% = Y | Z;l:l B}, and where Ay = argmin,, ;. p|A — B|% is the
best rank-k approximation to A. While it can be solved via the singular value decomposition (SVD), one
can solve it much faster using oblivious sketching. In this case one chooses S so that the row span of SA
contains a good rank-k space, meaning that there is a matrix V' € R¥*? whose row span is inside of the
row span of SA, so that there is a U for which this pair (U, V) satisfies the guarantee of (2). Here SA only
has poly(k/e) rows, independent of n and d. Several known algorithms approximately project the rows of
A onto the row span of SA, then compute the SVD of the projected points to find V', and then solve a
regression problem to find U. Other algorithms compute the top k& directions of SA directly. Importantly,
the expensive computation involving the SVD can be carried out in the much lower poly(k/e)-dimensional
space rather than the original d-dimensional space.

While there are numerous other examples, such as £,-regression and kernel variations of the above prob-
lems (see Woodruff (2014) for a survey), they share the same flavor of first reducing the problem to a smaller
problem in order to save computation. For this reduction to be effective, the matrix-matrix product SA
needs to be efficiently computable. One typical sketching matrix .S that works is a matrix of i.i.d. Gaussians;
however since S is dense, computing SA is slow. Another matrix which works is a so-called fast Johnson-
Lindenstrauss transform, see Sarlés (2006). As in the Gaussian case, S has a very small number of rows in
the above applications, and computing SA can be done in O(nd) time, where O(f) denotes a function of the
form f - poly(log f). This is useful if A is dense, but often A is sparse and may have a number nnz(A) of
non-zero entries which is significantly smaller than nd. Here one could hope to compute SA in nnz(A) time,
which is indeed possible using a CountSketch matrix, see Clarkson and Woodruff (2013); Meng and Mahoney
(2013); Nelson and Nguyen (2013), also with a small number of rows.

For most problems in numerical linear algebra, one needs to at least read all the non-zero entries of A, as
otherwise one could miss reading a potentially very large entry. For example, in the low rank approximation
problem, if there is one entry which is infinite and all other entries are small, the best rank-1 approximation
would first fit the single infinite-valued entry. From this perspective, the above nnz(A)-time algorithms are
optimal. However, there are many applications for which A has additional structure. For example, the
polynomial interpolation problem is a special case of regression in which the matrix A is a Vandermonde
matrix. As observed in Avron, Sindhwani, and Woodruff (2013), in this case if S € RPOW(4/)*x" j5 a CountS-
ketch matrix, then one can compute SA in O(nlogn) + poly(d/e) time. This is sublinear in the number of
non-zero entries of A, which may be as large as nd thus may be much larger than O(nlogn) + poly(d/e).
The idea of Avron, Sindhwani, and Woodruff (2013) was to simultaneously exploit the sparsity of S, together
with the fast multiplication algorithm based on the Fast Fourier Transform associated with Vandermonde
matrices to reduce the computation of SA to a small number of disjoint matrix-vector products. A key
fact used in Avron, Sindhwani, and Woodruff (2013) was that submatrices of Vandermonde matrices are
also Vandermonde, which is a property that does not hold for other structured families of matrices, such
as Toeplitz matrices, which arise in applications like autoregression. There are also sublinear time low
rank approximation algorithms of matrices with other kinds of structure, like PSD and distance matrices,
see Musco and Woodruff (2017); Bakshi and Woodruff (2018).

An open question, which is the starting point of our work, is if one can extend the results of Avron, Sindhwani, and Woodrutf
(2013) to any structured matrix A. More specifically, can one solve all of the aforementioned linear al-
gebra problems in time T(A) instead of nnz(A) , where T(A) is the time required to compute Ay for a
single vector y? For many applications, discussed more below, one has a structured matrix A with
T(A) = O(nlogn) « nnz(A).

Our Contributions. We answer the above question in the affirmative, showing that for a number
of problems in numerical linear algebra, one can replace the nnz(A) term with a T(A) term in the time
complexity. Perhaps surprisingly, we are not able to achieve these running times via oblivious sketching, but
rather need to resort to sampling techniques, as explained below. We state our formal results:



e Low Rank Approzimation: Given an n x d matrix A, we can find U € R™** and V e RF*? satisfying
(2) in O (T'(A)logn + n - poly(k/e)) time.

e /,-Regression: Given an n x d matrix A and an n x 1 vector b, one would like to output an x € R? for
which

| Az~ b, < (1 + €) min Az — b, ®)

where for a vector y, |yll, = (3 [vi[?)}/P. We show for any real number p > 1, we can solve this
problem in O (T'(A)logn + poly(d/e)) time. This includes least squares regression (p = 2) as a special
case.

o Kernel Autoregression: A kernel function is a mapping ¢ : RP — R? where p’ = p so that the inner
product (¢(z), d(y)) between any two points ¢(z), p(y) € R?" can be computed quickly given the inner
product (x,y) between z,y € RP. Such mappings are useful when it is not possible to find a linear
relationship between the input points, but after lifting the points to a higher dimensional space via ¢
it become possible. We are given a matrix A € R™*? for which the rows can be partitioned into n
contiguous p x d block matrices A',..., A". Further, we are in the setting of autoregression, so for
j=2,...,n, Al is obtained from A7~! by setting the ¢-th column A} of A7 to be the (£ —1)-st column
of A7~ namely, to A}"|. The first column A} of A7 is allowed to be arbitrary. Let ¢(A) be the matrix
obtained from A by replacing each block A7 with ¢(A7), where ¢(A7) is obtained from A7 by replacing
each column A) with ¢(A4}). We are also given an (np’) x 1 vector b, perhaps implicitly. We want
x € R? to minimize |p(A)z — b|>.

For general kernels not much is known, though prior work Kumar and Jawahar (2007) shows how to find
a minimizer z assuming i.i.d. Gaussian noise. Their running time is O(n?t), where t is the time to evaluate
(p(x),¢p(y)) given = and y. We show how to improve this to O(ndt + d¥) time, where w ~ 2.376 is the
exponent of fast matrix multiplication. Note for autoregression that b has the form [¢(ct); ¢(c?);. .. ; ¢(c)]
for certain vectors c!,...,c" that we know. As n » d in overconstrained regression, our O(ndt + d*) time
is faster than the O(n?t + d*) time of earlier work. For dense matrices A, describing A already requires
Q(ndp) time, so in the typical case when ¢ ~ p, we are optimal for such matrices. We note that prior work
Kumar and Jawahar (2007) assumes Gaussian noise, while we do not make such an assumption.

While the above gives an improvement for general kernels, one could also hope for much faster algorithms.
In general we would like an « for which:

[¢(A)z = bl2 < (1 + ¢) min [$(A)z — b,. (4)

We show how to solve this in the case that ¢ corresponds to the polynomial kernel of degree 2, though
discuss extensions to ¢ > 2. In this case, {(¢(z),d(y)) = {(x,y)?. The running time of our algorithm is
O(nnz(A)) + poly(pd/e). Note that b is an arbitrary np’-dimensional vector, and our algorithm runs in
sublinear time in the length of b - this is possible by judiciously sampling certain coordinates of b. Note
even for dense matrices, nnz(A) < npd, which does not depend on the large value p’. We also optimize the
poly(pd/e) term.

Applications. Our results are quite general, recovering the results of Avron, Sindhwani, and Woodruff
(2013) for Vandermonde matrices which have applications to polynomial fitting and additive models as a
special case. We refer the reader to Avron, Sindhwani, and Woodruff (2013) for details, and here we focus on
other implications. One application is to autoregression, which is a time series model which uses observations
from previous time steps as input to a regression problem to predict the value in the next time step, and
can provide accurate forecasts on time series problems. It is often used to model stochastic time-varying
processes in nature, economics, etc. Formally, in autoregression we have:

d
b= > b + €, ()
i=1



where d + 1 <t < n + d, and the ¢ correspond to the noise in the model. We note that by is defined to be
0. This model is known as the d-th order Autoregression model (AR(d)).

The underlying matrix in the AR(d) model corresponds to the first d columns of a Toeplitz matriz, and
consequently one can compute ATA in O(ndlogn) time, which is faster than the O(nd“~!) time which
assuming d > poly(logn) for computing AT A for general matrices A, where w ~ 2.376 is the exponent
of matrix multiplication. Alternatively, one can apply the above sketching techniques which run in time
O(nnz(A)) + poly(d/e) = O(nd) + poly(d/e). Either way, this gives a time of Q(nd). We show how to
solve this problem in O(nlog® n) + poly(d/e) time, which is a significant improvement over the above meth-
ods whenever d > log®n. There are a number of other works on Toeplitz linear systems and regression
see Van Barel, Heinig, and Kravanja (2001, 2003); Heinig (2004); Sweet (1984); Bini, Codevico, and Van Barel
(2003); Pan et al. (2004); our work is the first row sampling-based algorithm, and this technique will be cru-
cial for obtaining our polynomial kernel results. More generally, our algorithms only depend on T'(A), rather
than on specific properties of A. If instead of just a Toeplitz matrix A, one had a matrix of the form A + B,
where B is an arbitrary matrix with T'(B) = O(nlogn), e.g., a sparse perturbation to A, we would obtain
the same running time.

Another stochastic process model is the vector autoregression (VAR), in which one replaces the scalars
b, € R in (5) with points in RP. This forecast model is used in Granger causality, impulse responses, forecast
error variance decompositions, and health research van der Krieke et al. (2016). An extension is kernel
autoregression Kumar and Jawahar (2007), where we additionally have a kernel function ¢ : R? — R?" with
p’ > p, and further replace b; with ¢(b;) in (5). One wants to find the coefficients x1, . ..,z fitting the points
@(by) without computing ¢(b;), which may not be possible since p’ could be very large or even infinite. To
the best of our knowledge, our results give the fastest known algorithms for VAR and kernel autoregression.

Our Techniques. Unlike the result in Avron, Sindhwani, and Woodruff (2013) for Vandermonde ma-
trices, many of our results for other structured matrices do not use oblivious sketching. We illustrate the
difficulties for least squares regression of using oblivious sketching. In Avron, Sindhwani, and Woodruff
(2013), given an n x d Vandermonde matrix A, one wants to compute SA, where S is a CountSketch matrix.
For each i, the i-th row of A has the form (1,z;,2?,..., xffl). S has r = poly(d/e) rows and n columns,
and each column of S has a single non-zero entry located at a uniformly random chosen position. Denote
the entry in the é-th column as h(¢), then SA decomposes into r matrix-vector products, where each row
of A participates in exactly one matrix product. Namely, we can group the rows of A into submatrices A°
and create a vector z° which indexes the subset of coordinates j of x for which h(j) = i. The i-th row of
SA is precisely 2°A?. For a submatrix A’ of a Vandermonde matrix, the product 2*A? can be computed in
O(s;log s;) time, where s; is the number of rows of A?. The total time to compute SA is thus O(nlogn).

Now suppose A € R"*4 d « n, is a rectangular Toeplitz matrix, i.e., the i-th row of A is obtained by
shifting the (i — 1)-st row to the right by one position, and including an arbitrary entry in the first position.
Toeplitz matrices are the matrices which arise in autoregression. We can think of A as a submatrix of a
square Toeplitz matrix C, and can compute xC for any vector z in O(nlogn) time. Unfortunately though,
an 7 x d submatrix A° of a Toeplitz matrix, » > d, may not have an efficient multiplication algorithm. Indeed,
imagine the r rows correspond to disjoint subsets of d coordinates of a Toeplitz matrix. Then computing
x A" would take O(rd) time, whereas for a Vandermonde matrix one could always multiply a vector times an
r x d submatrix in only O(rlogr) time. Vandermonde matrices are a special sub-class of structured matrices
which are closed under taking sub-matrices, which we do not have in general.

Rather than using oblivious sketching, we instead use sampling-based techniques. A first important
observation is that the sampling-based techniques for subspace approximation Cohen et al. (2015b), low
rank approximation Cohen, Musco, and Musco (2017), and ¢,-regression Cohen and Peng (2015), can each
be implemented with only ¢ = O(logn) matrix-vector products between the input matrix A and certain
arbitrary vectors v!,... v! arising throughout the course of the algorithm. We start by verifying this
property for each of these important applications, allowing us to replace the nnz(A) term with a T'(A) term.
We then give new algorithms for autoregression, for which the design matrix is a truncated Toeplitz matrix,
and more generally composed with a difference and a diagonal matrix.

Our technically more involved results are then for kernel autoregression. First for general kernels, we show



how to accelerate the computation of ¢(A)” ¢(A) using the Toeplitz nature of autoregression, and observe that
only O(nd) inner products ever need to be computed, even though there are ©(n?) possible inner products.
We then show how to solve polynomial kernels of degree q. We focus on ¢ = 2 though our arguments can
be extended to ¢ > 2. We first use oblivious sketching to compute a d x O(logn) matrix RG from which,
via standard arguments, it suffices to sample O(dlogd + d/¢) row indices i proportional to [e;¢(A)RG|3,
where e; is the i-th standard unit vector. Given the sampled row indices i, one can immediately find the
i-th row of ¢(A), since the index i corresponds to a g-tuple (i1, ..., i) of a block ¢(A?) with columns ¢(47),

for £ € {1,2,...,d}, and so e;p(A)ex, = A‘thAJ.%k . 'qu,k' We can also directly read off the corresponding

K3
entry from b. The j-th row of S is also just 4 /%ei if row index i is the j-th sampled row, where p; is the

probability of sampling i. Further, the matrices RG and S can be found in O(nnz(A) + d3) time using
earlier work Clarkson and Woodruff (2013); Avron, Nguyen, and Woodruff (2014). We show to find the set
of O(dlogd + d/e) sampled row indices quickly. Here we use that ¢(A) is “block Toeplitz”, together with a
technique of replacing blocks of ¢(A) with “sketched blocks”, which allows us to sample blocks of ¢(A)RG
proportional to their squared norm. We then need to obtain a sampled index inside of a block, and for the
polynomial kernel of degree 2 we use the fact that the entries of ¢(A7)y for a vector y are in one-to-one
correspondence with the entries of 4771 D, (A7~1)T where D, is a diagonal matrix with y along the diagonal.
We do not need to compute 47~1D,(A7~1)T | but can compute HA’'D,(A7~1HT for a matrix H of i.i.d.
Gaussians in order to sample a column of A7~1D,(A7=1)T proportional to its squared norm, after which we
can compute the sampled column exactly and output an entry of the column proportional to its squared
value. Here we use the Johnson Lindenstrauss lemma to argue that H preserves column norms. A similar
identity holds for degrees ¢ > 2, and that identity was used in the context of Kronecker product regression
Diao et al. (2019).

2 Fast Algorithms Based on Sampling

We first consider min,, |Az—b||2, where A € R**4 b e R"*! ‘and n > d. We show how, in O(T(A)poly(logn)+
poly(d(logn)/e)) time, to reduce this to a problem min,, |SAz — Sb|2, where SA € R™*? and Sb e R™*! such
that if & = argmin,|S Az — Sb|2, then

|Az — bl2 < (1 + €) min ||Az — b2 (6)

z|

Here 7 = O(d/e?). Given SA and Sb, one can compute & = (SA)~Sb in poly(d/e) time. For (6) to hold,
it suffices for the matrix S to satisfy the property that for all z, |SAz — Sb|2 = (1 + €)| Az — bl|2. This is
implied if for any fixed n x (d + 1) matrix C, |[SCz|2 = (1 % €)||Cz|2 for all 2. Indeed, in this case we may
set C' = [A,b]. This problem is sometimes called the matriz approximation problem.

The REPEATED HALVING Algorithm. The following algorithm for matrix approximation is given in
Cohen et al. (2015b), and called REPEATED HALVING.

Algorithm 1 Repeated Halving

. procedure REPEATEDHALVING(C € R™*(d+1))

Uniformly sample n/2 rows of C' to form C’

If ¢ has more than O((dlog d)/e?) rows, recursively compute a spectral approximation ¢’ of ¢
Approximate generalized leverage scores of C' w.r.t. C’

Use these estimates to sample rows of C' to form C'

return C

end procedure

Leverage Score Computation. We first clarify step 4 in REPEATED HALVING, which is a standard
Johnson-Lindenstrauss trick for speeding up leverage score computation Drineas et al. (2012). The i-th gen-
eralized leverage score of a matrix C' with n rows w.r.t. a matrix B is defined to be 72(C) = ¢! (BT B)*¢; =



|B(BT B)*c;|3, where c; is the i-th row of C, written as a column vector. The idea is to instead compute
|GB(BT B)*c;||3, where G is a random Gaussian matrix with O(logn) rows. The Johnson-Lindenstrauss
lemma and a union bound yield |GB(BTB)*¢;|2 = ©(1)|B(BTB)*c¢;|3. If B is O((dlogd)/e?) x d,
then (BTB)* can be computed in poly(d/e) time. We compute GB in O((d?/€?)logn) time, which is
an O(logn) x d matrix. Then we compute (GB)(BT B)*, which now takes only O(d?logn) time, and is
an O(logn) x d matrix. Finally one can compute GB(BT B)*CT in O(nnz(C)logn) time, and the squared
column norms are constant factor approximations to the 7%(C) values. The total time to compute all i-th
generalized leverage scores is O(nnz(C') logn) + poly(dlogn/e).
Sampling. We clarify how step 5 in REPEATED HALVING works, which is a standard leverage score
sampling-based procedure, see, e.g., Mahoney (2011). Given a list of approximate generalized leverage
scores 72 (C), we sample O((dlogd)/e?) rows of C independently proportional to form C. We write this
as C = SC, where the i-th row of S has a 1/,/Pj) in the j(i)-th position, where j(i) is the row of C
sampled in the i-th trial, and p;¢;) = %Z-B(C')/Zi,:l’m)n 7B(C) is the probability of sampling j(i) in the i-th
trial. Here S is called a sampling and rescaling matrix. Sampling independently from a distribution on n
numbers with replacement O((dlogd)/e?) times can be done in O(n + (dlogd)/€*) time Vose (1991), giving
a total time spent in step 5 of O(nlogn + (dlogd)(logn)/e?) across all O(logn) recursive calls. As argued in
Cohen et al. (2015b), the error probability is at most 1/100, which can be made an arbitrarily small constant
by appropriately setting the constants in the big-Oh notation above.
Speeding up REPEATED HALVING. We now show how to speed up the REPEATED HALVING algorithm.
Step 2 of REPEATED HALVING can be implemented just by choosing a subset of row indices in O(n) time.
Step 3 just involves checking if the number of uniformly sampled rows is larger than O((dlogd)/€?), which
can be done in constant time, and if so, a recursive call is performed. The number of recursive calls
is at most O(logn), since Step 1 halves the number of rows. So the total time spent on these steps is
O(nlogn + (dlogd)(logn)/€?).

In step 4 of REPEATED HALVING, we compute generalized leverage scores of C' with respect to a matrix
C’, and is only (non-recursively) applied when C’ has O((dlogd)/e?) rows. As described when computing
leverage scores with B = C’, we must do the following:

1. Compute GC’ € ROUogm)xd iy time O((d?/e?)logn)

[\

. Compute ((C")TC")* in time O(d?/€?)

w

. Compute (GC")((CYTC"* in time O(d? logn)
. Compute GC'((C"HTCH+CT

Since GC'((C")TC")* has O(logn) rows that already be computed, one can compute GC'((C")TC")*CT in
O(logn)T(C) time, where T'(C) is the time needed to multiply C by a vector (note that computing yCT
is equivalent to computing Cy”). In our application to regression, C = [A,b]. Consequently, T(C) <
T(A) + n. As the number of recursive calls is O(logn), it follows that the total time spent for step 4 of
REPEATED HALVING, across all recursive calls, is O(T'(A)logn + nlogn + (d? log? n)/e* + d®(logn)/€?). The
fifth step of REPEATED HALVING is to find the sampling and rescaling matrix as described above, which
can be done in O(nlogn + (dlogd)(logn)/e?) total time, across all recursive calls. Thus, the total time is
O(T(A)logn+nlogn+ (d?log? n)/e? + d*(logn)/e?). We summarize our findings with the following theorem.

S

Theorem 1. Given an n x d matriz A, an n X 1 vector b, an accuracy parameter 0 < ¢ < 1, and a failure
probability bound 0 < § < 1, one can output a vector & € R¢ for which |AZ — b|2 < (1 + €) min, || Az — b|2
with probability at least 1 — &, in total time

O((T'(A)logn + poly(dlogn/e))log(1/6)).

Proof. From the discussion above, our modified version of REPEATED HALVING produces a vector & for
|Az — b2 < (1 + €) min, |Az — b2 with probability at least 99/100. Repeating r = O(log(1/d)) times



independently, obtaining candidate solutions #!,... 2", and choosing the #! for which | A%¢ —b| is smallest,
one reduces the failure probability to ¢ via standard Chernoff bounds. The time to compute | AZ* —b| 3 given
2" is at most T'(A) + O(n), which is negligible compared to other operations in a repetition.

Low Rank Approximation. We look at the low-rank approzimation problem, where for A € R™*% one
tries to find a matrix Z € R™"** with orthonormal columns such that

|A—ZZTAlE < (1 + )| A~ Al (7)

Here, Ay is the best rank k approximation to A. It is shown in Cohen et al. (2015a) that the low-rank
approximation problem can be solved by finding a subset of rescaled columns C' € R"*? with d’ < d, such
that for every rank k orthogonal projection matrix X:

|C - XClE = (1 £e)|A- XAE. (®)

Basic Recursive Algorithm. In Cohen, Musco, and Musco (2017), a slightly different version of Algo-
rithm 1 with ridge leverage score approximation is used to solve (8):

Algorithm 2 Repeated Halving

1: procedure REPEATEDHALVING(A € R"*?)

Uniformly sample d/2 columns of A to form C’

If ¢’ has more than O(klogk) columns, recursively compute a constant approximation ¢’ for ¢’ with
O(klogk) columns

Get generalized ridge leverage scores of A w.r.t. C’

Use estimates to sample columns of A to form C

return C'

end procedure

Improved Running Time. With a similar argument as for least squares regression, we obtain the following
theorem.

Theorem 2. There is an iterative column sampling algorithm that, in time O (T'(A)logn + n - poly(k/e)),
returns Z € R™** satisfying: |A — ZZTA|%2 < (1 +€)|A — Ax|%.

¢,-Regression. Another important problem is the £,-regression problem. Given A € R"*¢ and b € R"*!,
we want to output an x € R? satisfying (3). We first consider the problem: for C' = [A,b] € R**(4+1) find a
matrix S such that for every z € R(@+1)x1,

(1 =9)[Czlp, < [SCz], < (1 + €)[Cp. 9)

The following APPROXLEWISFORM Algorithm is given in Cohen and Peng (2015) to solve (9), and for them
it suffices to set the parameter 6 in the algorithm description to a small enough constant. This is because
in Step 7 of APPROXLEWISFORM, they run the algorithm of Theorem 4.4 in their paper, which runs in at
most n time provided 6 is a small enough constant and n > d° for a large enough constant C’ > 0. We
refer the reader to Cohen and Peng (2015) for the details, but remark that by setting 6 to be a constant,
Step 5 of APPROXLEWISFORM can be implemented in T'(A) time. Also, due to space constraints, we do
not define the quadratic form @ in what follows; the algorithm for computing it is also in Theorem 4.4
of Cohen and Peng (2015). The only property we need is that it is computable in m logmloglogm - d“
time, for an absolute constant C' > 0, if it is applied to a matrix with at most m rows. Theorem 4.4 of
Cohen and Peng (2015) can be invoked with constant €, giving the so-called Lewis weights up to a constant
factor, after which one can sample O(d(log d)/e?) rows according to these weights. Note that our running time
is O(T'(A) logn +poly(d/e)) even for constant 6, since in each recursive call we may need to spend T'(A) time,
unlike Cohen and Peng (2015), who obtain a geometric series of nnz(A) + nnz(A)/2 + nnz(A)/4 + -+ 1 <
2nnz(A) time in expectation. Here, we do not know if T'(A) decreases when looking at submatrices of A.



Algorithm 3 ApproxLewisForm

1: procedure APPROXLEWISFORM(C' € R™*(4+1))

2: If n < d+ 1, apply Theorem 4.4 in Cohen and Peng (2015) to return Q.

3 Umformly sample n/2 rows of C' to form c

4 Let Q = APPROXLEWISFORM(C, p, )

5. Let u; be an n?/? multiplicative approximation of ciT@cl-

6: Nonuniformly sample rows of C, taking an expected p; = min(1, f(p)n?/2dP/? log duf/ 2) copies of row 14

1/p
)

(each scaled down by p;” producing C’

7. Apply Theorem 4.4 in Cohen and Peng (2015) to C”, and return the quadratic form Q.
8 return Q
9: end procedure

Combined with sampling by Lewis weights we obtain an approximation for C' with only poly(d/e) rows.
Applying our earlier arguments to this setting yields the following;:

Theorem 3. Given e € (0,1), a constant p > 1, A€ R"*4 and b e R"*1, there is an algorithm that, in time
O (T(A)logn + poly(d/e)), returns & € R4*! such that

|AZ —b], < (1+¢€) Imn | Az —b]p.

3 Applications

Autoregression and General Dynamical Systems. In the original AR(d) model, we have:

bd+1 bd RPN b1 T Ed+1

ba+2 bay1 .. ba| |22 €d+2
= ) } ) | ) (10)

anrd bn+d71 s bn Td En+d
Here we can create an n x d matrix A where the i-th row is (b;y4—1,bitd—2,-..,0;). One obtains the
{y-regression problem min, |Az — b|s with b7 = (bgy1,...,bnsa). In order to apply Theorem 1, we need to

bound T(A). The following lemma follows from the fact that A is a submatrix of a Toeplitz matrix.
Lemma 4. T(A) = O(nlogn).
Combining Lemma 4 with Theorem 1, we can conclude:

Theorem 5. Given an instance min, |Ax —b|2 of autoregression, with probability at least 1 — & one can find
a vector & so that | A% — b|2 < (1 + €) min, | Az — b|2 in total time

O ((n log®n + (d*log®n)/e? + d*(logn)/e?) log(1/4)) .

General Dynamical Systems. When dealing with more general dynamical systems, the A in Theorem 5
would become A = TUD, where T is a Toeplitz matrix, U is a matrix that represents computing successive
differences, and D = dlag{l, T %} Note that T is n x d, as for linear dynamical systems, U is d x d
and the operation 2U corresponds to replacing x with (xo — 21,23 — x2,24 — X3, ..., 24 — 4—1,0), and D
is a d x d diagonal matrix, and so U and D can each be applied to a vector in O(d) time. Consequently by
Lemma 4, we still have T(A) < T(T) + T(U) + T(D) = O(nlogn), and we obtain the same time bounds in
Theorem 5.

Kernel Autoregression. Let ¢ : RP — R? be a kernel transformation, as defined in the introduction.
The kernel autoregression problem is: ¢(b;) = Z?Zl @d(bi—i)x; + €, where now note that e; € R?’. Note that



there are still only d unknowns z1,...,24. One way of solving this would be to compute ¢(b;) for each ¢,
represented as a column vector in R? | and then create the linear system by stacking such vectors on top of
each other:

é(bat1) d(bar1) oo d(b1) | [ €d+1
(bat2) H(bar2) .. B(ba) | |22 Ed+2

: - : . : ST : (11)
&(bnta) d(bnga—1) .. o(bn) | |24 En+d

One can then compute a (1 + €)-approximate least squares solution to (11). Now the design matrix ¢(A)
in the regression problem is the vertical concatenation of p’ matrices A, and an analogous argument shows
that T'(¢(A)) = O(np'log(np)), which gives us the analogous version of Theorem 5, showing least squares
regression is solvable in O(np’log?(np’)) + poly((dlogn)/e) with constant probability. While correct, this is
prohibitive since p’ may be large.

Speeding up General Kernels. Let ¢(A) denote the design matrix in (11), where the i-th block is
A(A) = [¢(biya—1); d(bitda—2);-..;0(bi)]. Here bis [¢(bgs1);--.; @(bnra)], which we know. We first compute
#(A)Tp(A). To do so quickly, we again exploit the Toeplitz structure of A. More specifically, we have that
P(A)TP(A) = 3, (d(A))Tp(A)". In order to compute (F(A)")? #(A), we must compute d* inner products,
namely, (¢(bg—;+i), (ba—; 1)y for all j,j" € {1,2,...,d}. Using the kernel trick, (¢(ba—;+:), ¢(ba—jr+i)) =
f({ba—j+i,bi—jr+i)) for some function f that we assume can be evaluated in constant time, given (bq—;+:, ba—j +i)-
Note that the latter inner product can be computed in O(p) time and thus we can compute (¢(A))Tp(A)?
for a given 4, in O(d?p) time. Thus, naively, we can compute ¢(A4)7 ¢(A) in O(nd?p) time.

We can reuse most of our computation across different blocks i. As we range over all ¢, the inner products
we compute are those of the form {(¢(bg—;+i), p(ba—j 1)) for i e {1,...,n} and 7,7 € {1,2,...,d}. Although
a naive count gives nd? different inner products, this overcounts since for each point ¢(bg—;1;) we only need
its inner product with O(d) points other than with itself, and so O(nd) inner products in total. This is total
time O(ndp).

Given these inner products, we quickly evaluate ¢(A)T¢(A). The crucial point is that not only is each
entry in ¢(A)T¢(A) a sum of n inner products we already computed, but one can quickly determine entries
from other entries. Indeed, given an entry on one of the 2d — 1 diagonal bands, one can compute the next
entry on the band in O(1) time by subtracting off a single inner product and adding one additional inner
product, since two consecutive entries along such a band share n — 1 out of n inner product summands.

Thus, each diagonal can be computed in O(n + d) time, and so in total ¢(A)T ¢(A) can be computed in
O(nd+ d?) time, given the inner products. We can compute ¢(A)T ¢(A) in O(ndp) time assuming d < n. We
then define R = (¢(A)T¢(A))~!, which can be computed in an additional O(d*) time, where w ~ 2.376 is
the exponent of fast matrix multiplication. Thus, R is computable in O(ndp + d*) time. Note this is optimal
for dense matrices A, since just reading each entry of A takes O(ndp). We can compute ¢(A)7b e R? using
the kernel trick, which takes O(ndp) time. By the normal equations, z = Rb, which can be computed in d*
time. Overall, we obtain O(ndp + d*) time.

The Polynomial Kernel. We focus on the polynomial kernel of degree ¢ = 2. Using the subspace
embedding analysis for TensorSketch in Avron, Nguyen, and Woodruff (2014), combined with a leverage
score approximation algorithm in Clarkson and Woodruff (2013), we can find a matrix R in O(nnz(A) + d*)
time, where w ~ 2.376 is the exponent of matrix multiplication, with the following guarantee: if we sample
O(dlogd + d/e) rows of ¢(A) proportional to the squared row norms of ¢(A4)R, forming a sampling and
rescaling matrix S, then |S¢(A)r — Sblls = (1 £ €)|#(A)x — b|2 simultaneously for all vectors x. Here the
i-th row of S contains a 1/,/p; in the j-th entry if the j-th row of @(A) is sampled in the i-th trial, and the
j-th entry is 0 otherwise. Here p; = %,
sample indices i € [np’] proportional to the squared row norms of ¢(A)R.

Instead of sampling indices i € [np’] proportional to the exact squared row norms of ¢(A)R, it is well-
known (see, e.g., Woodruff (2014)) that it suffices to sample them proportional to approximations 7; to the

actual squared row norms 7;, where 4 < 7; < 27; for every 4. As in Drineas et al. (2012), to do the latter,

where e; is the j-th standard unit vector. We show how to



we can instead sample indices according to the squared row norms of ¢(A)RG, where G € R¥*OUogn) jg 5
matrix of i.i.d. Gaussian random variables. To do this, we can first compute RG in O(d?logn) time, and
now we must sample row indices proportional to the squared row norms of ¢(A)RG. Note that if we sample
an entry (i, 7) of $(A)RG proportional to its squared value, then the row index ¢ is sampled according to its
squared row norm. Since RG only has O(logn) columns v¢, we can do the following: we first approximate
the squared norm of each ¢(A)v’. Call our approximation v; with 3[¢(A)v?(|3 < ~; < 2[p(A)v’|3. Since we
need to sample s = O(dlogd + d/e) total entries, we sample each entry by first choosing a column ¢ € [d]

with probability ﬁ, and then outputting a sample from column 7 proportional to its squared value. We
j=1"7i

show (1) how to obtain the +; and (2) how to obtain s sampled entries, proportional to their squared value,
from each column ¢(A)v.

For the polynomial kernel of degree 2, the matrix ¢(A) is in R %4 since each of the n points is expanded
to p? dimensions by ¢. Then ¢(A) is the vertical concatenation of Bl,..., B", where each B’ € RP°xd g 5
subset of columns of the matrix C% o C? € RP"*?° where C* € RP*? and C o C' consists of the Kronecker
product of C* with itself, i.e., the ((a,b), (c,d))-th entry of C* o C* is C?. ,C? ;. Notice that B’ consists of
the subset of d columns of C? corresponding to b = d. Fix a column vector v € {v!,...,v%} defined above.
Let S be the TensorSketch of Pham and Pagh (2013); Avron, Nguyen, and Woodruff (2014) with O(1) rows.
Then S¢é(z) can be computed in O(nnz(z)) time for any z. For block B?, ||[SBw|3 = (1 £ 1/10)|Bv|3
with probability at least 2/3. We can repeat this scheme O(logn) times independently, creating a new
matrix S with O(logn) rows, for which S¢(b;) can be computed in O(nnz(b;)logn) time and thus S¢(A)
can be computed in O(nnz(A)logn) time overall. Further, we have the property that for each block B?,
|SB™|mea = (1 £ (1/10))|Biv||3, with probability 1 — 1/n?, where the med operation denotes taking the
median estimate on each of the O(logn) independent repetitions. By a union bound, with probability

1-0(1/n),
|S B ]mea = (1 % (1/10)) | B'], (12)

simultaneously for every i = 1,...,n. Notice ¢(A) is a block-Toeplitz matriz, truncated to its first d columns,
where each block corresponds to ¢(b;) for some i. Suppose we replace the blocks ¢(b;) with S¢(b;), obtaining
a new block Toeplitz matrix A’, truncated to its first d columns, where now each block has size O(logn).
The new block Toeplitz matrix can be viewed as O(logn) disjoint standard (blocks of size 1) Toeplitz
matrices with n rows, and truncated to their first d columns. Thus, T(A’) = O(nlog®n). The i-th block
of coordinates of size O(logn) is equal to SB'v, and by (12) we can in O(logn) time compute a number
¢; = (1 £ (1/10))|B*v|3. Since this holds for every i, we can compute the desired estimate ; to |¢(A)v;|3
if v = v;. The time is O(nnz(A)logn + nlog®n).

After computing the ;, suppose our earlier sampling scheme samples v = v;. Then to output an entry
of ¢(A)v proportional to its squared value, we first output a block B? proportional to |Bv|3. Note that
given the ¢;, we can sample such a B? within a (1 4 1/10) factor of the actual sampling probability. Next,
we must sample an entry of Bv proportional to its squared value. The entries of Bv are in one-to-one
correspondence with the entries of C*D,(C%)T, where D, € R?*9 is the diagonal matrix with the entries
of v along the diagonal. Let H € RO(°8™)*P he a matrix of i.i.d. normal random variables. We first
compute HC?. This can be done in O(pdlogn) time. We then compute HC®D, in O(dlogn) time, and then
(HC'D,)(CHT in O(pdlogn) time. By the Johnson-Lindenstrauss lemma (see, e.g., 7), each squared column
norm of HC'D,(C*)T is the same as that of C*D,(C*)T up to a factor of (1 £ 1/10), for an appropriate
O(log n) number of rows of H. So we first sample a column j of C*D,(C*)T proportional to this approximate
squared norm. Next we compute C*D,(C%)Te; in O(pd + d?) time, and then in O(p) time we output an
entry of the j-th column proportional to its squared value. Thus we find our sample.

To bound the overall time, note that we only need to compute the 7; values once, for j = 1,...,0(logn)
and for each j this takes O(nnz(A)logn + nlog?n) time. So in total across all indices j this takes
O(nnz(A)log®n + nlog®n) time. Moreover, this procedure also gave us the values ¢; for each v7. Sup-

pose we also sort the partial sums Zz;l ¢; for each 1 < i’ < n and corresponding to each v7. This takes
O(nlog®n) time and fits within our time bound. Then for each of our O(dlogd + d/e) samples we need to

10



take, we can first sample j based on the «; values and sample ¢ based on the sorted partial sums of ¢; values
in O(logn) time via a binary search. Having found ¢, we perform the procedure in the previous paragraph
which takes O(pdlogn + d?) time. Thus, the time for sampling is O((pd? logn + d®)(1/e + log d)).

The overall time is, up to a constant factor, O(nnz(A)log®n + nlog®n + (pd*logn + d*) (L +logd)).
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