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Abstract

We show how to solve a number of problems in numerical linear algebra, such as least squares regres-
sion, ℓp-regression for any p ě 1, low rank approximation, and kernel regression, in time T pAqpolyplogpndqq,
where for a given input matrix A P R

nˆd, T pAq is the time needed to compute A ¨ y for an arbitrary
vector y P R

d. Since T pAq ď OpnnzpAqq, where nnzpAq denotes the number of non-zero entries of A, the
time is no worse, up to polylogarithmic factors, as all of the recent advances for such problems that run
in input-sparsity time. However, for many applications, T pAq can be much smaller than nnzpAq, yielding
significantly sublinear time algorithms. For example, in the overconstrained p1 ` ǫq-approximate polyno-
mial interpolation problem, A is a Vandermonde matrix and T pAq “ Opn log nq; in this case our running
time is n ¨ polyplog nq ` polypd{ǫq and we recover the results of Avron, Sindhwani, and Woodruff (2013)
as a special case. For overconstrained autoregression, which is a common problem arising in dynamical
systems, T pAq “ Opn log nq, and we immediately obtain n ¨ polyplognq ` polypd{ǫq time. For kernel
autoregression, we significantly improve the running time of prior algorithms for general kernels. For
the important case of autoregression with the polynomial kernel and arbitrary target vector b P R

n, we
obtain even faster algorithms. Our algorithms show that, perhaps surprisingly, most of these optimiza-
tion problems do not require much more time than that of a polylogarithmic number of matrix-vector
multiplications. 1

1 Introduction

A number of recent advances in randomized numerical linear algebra have been made possible by the tech-
nique of oblivious sketching. In this setting, given an n ˆ d input matrix A to some problem, one first
computes a sketch SA where S is a random matrix drawn from a certain random family of matrices. Typi-
cally S is wide and fat, and therefore applying S significantly reduces the number of rows of A. Moreover,
SA preserves structural information about A.

For example, in the least squares regression problem one is given an n ˆ d matrix A and an n ˆ 1 vector
b and one would like to output a vector x P R

d for which

}Ax ´ b}2 ď p1 ` ǫqmin
x

}Ax ´ b}2, (1)

where for a vector y, }y}2 “
`ř

i |yi|2
˘1{2

. Typically the n rows of A correspond to observations, and one
would like the prediction xAi, xy to be close to the observation bi, where Ai denotes the i-th row of A. While it
can be solved exactly via the normal equations, one can solve it much faster using oblivious sketching. Indeed,
for overconstrained least squares where n " d, one can choose S to be a subspace embedding, meaning that
simultaneously for all vectors x P R

d, }SAx}2 “ p1˘ǫq}Ax}2. In such applications, S has only polypd{ǫq rows,
independent of the large dimension n. By computing SA and Sb, and solving x1 “ argminx}SAx ´ Sb}2,
one has that x1 satisfies (1) with high probability. Thus, much of the expensive computation is reduced to
the “sketch space”, which is independent of n.

1A first version of this paper appeared in AAAI in February, 2019.
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Another example is low rank approximation, in which one is given an n ˆ d matrix A and would like to
find an n ˆ k matrix U and a k ˆ d matrix V so that

}UV ´ A}2F ď p1 ` ǫq}A ´ Ak}2F , (2)

where for a matrix B P R
nˆd, }B}2F “ řn

i“1

řd
j“1 B

2
i,j , and where Ak “ argminrank-k B}A ´ B}2F is the

best rank-k approximation to A. While it can be solved via the singular value decomposition (SVD), one
can solve it much faster using oblivious sketching. In this case one chooses S so that the row span of SA
contains a good rank-k space, meaning that there is a matrix V P R

kˆd whose row span is inside of the
row span of SA, so that there is a U for which this pair pU, V q satisfies the guarantee of (2). Here SA only
has polypk{ǫq rows, independent of n and d. Several known algorithms approximately project the rows of
A onto the row span of SA, then compute the SVD of the projected points to find V , and then solve a
regression problem to find U . Other algorithms compute the top k directions of SA directly. Importantly,
the expensive computation involving the SVD can be carried out in the much lower polypk{ǫq-dimensional
space rather than the original d-dimensional space.

While there are numerous other examples, such as ℓp-regression and kernel variations of the above prob-
lems (see Woodruff (2014) for a survey), they share the same flavor of first reducing the problem to a smaller
problem in order to save computation. For this reduction to be effective, the matrix-matrix product SA

needs to be efficiently computable. One typical sketching matrix S that works is a matrix of i.i.d. Gaussians;
however since S is dense, computing SA is slow. Another matrix which works is a so-called fast Johnson-
Lindenstrauss transform, see Sarlós (2006). As in the Gaussian case, S has a very small number of rows in
the above applications, and computing SA can be done in Õpndq time, where Õpfq denotes a function of the
form f ¨ polyplog fq. This is useful if A is dense, but often A is sparse and may have a number nnzpAq of
non-zero entries which is significantly smaller than nd. Here one could hope to compute SA in nnzpAq time,
which is indeed possible using a CountSketch matrix, see Clarkson and Woodruff (2013); Meng and Mahoney
(2013); Nelson and Nguyen (2013), also with a small number of rows.

For most problems in numerical linear algebra, one needs to at least read all the non-zero entries of A, as
otherwise one could miss reading a potentially very large entry. For example, in the low rank approximation
problem, if there is one entry which is infinite and all other entries are small, the best rank-1 approximation
would first fit the single infinite-valued entry. From this perspective, the above nnzpAq-time algorithms are
optimal. However, there are many applications for which A has additional structure. For example, the
polynomial interpolation problem is a special case of regression in which the matrix A is a Vandermonde
matrix. As observed in Avron, Sindhwani, and Woodruff (2013), in this case if S P R

polypd{ǫqˆn is a CountS-
ketch matrix, then one can compute SA in Opn lognq ` polypd{ǫq time. This is sublinear in the number of
non-zero entries of A, which may be as large as nd thus may be much larger than Opn log nq ` polypd{ǫq.
The idea of Avron, Sindhwani, and Woodruff (2013) was to simultaneously exploit the sparsity of S, together
with the fast multiplication algorithm based on the Fast Fourier Transform associated with Vandermonde
matrices to reduce the computation of SA to a small number of disjoint matrix-vector products. A key
fact used in Avron, Sindhwani, and Woodruff (2013) was that submatrices of Vandermonde matrices are
also Vandermonde, which is a property that does not hold for other structured families of matrices, such
as Toeplitz matrices, which arise in applications like autoregression. There are also sublinear time low
rank approximation algorithms of matrices with other kinds of structure, like PSD and distance matrices,
see Musco and Woodruff (2017); Bakshi and Woodruff (2018).

An open question, which is the starting point of our work, is if one can extend the results of Avron, Sindhwani, and Woodruff
(2013) to any structured matrix A. More specifically, can one solve all of the aforementioned linear al-
gebra problems in time T pAq instead of nnzpAq , where T pAq is the time required to compute Ay for a
single vector y? For many applications, discussed more below, one has a structured matrix A with
T pAq “ Opn lognq ! nnzpAq.

Our Contributions. We answer the above question in the affirmative, showing that for a number
of problems in numerical linear algebra, one can replace the nnzpAq term with a T pAq term in the time
complexity. Perhaps surprisingly, we are not able to achieve these running times via oblivious sketching, but
rather need to resort to sampling techniques, as explained below. We state our formal results:
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• Low Rank Approximation: Given an n ˆ d matrix A, we can find U P R
nˆk and V P R

kˆd satisfying
(2) in O pT pAq logn ` n ¨ polypk{ǫqq time.

• ℓp-Regression: Given an n ˆ d matrix A and an n ˆ 1 vector b, one would like to output an x P R
d for

which

}Ax ´ b}p ď p1 ` ǫqmin
x

}Ax ´ b}p, (3)

where for a vector y, }y}p “ při |yi|pq1{p. We show for any real number p ě 1, we can solve this
problem in O pT pAq logn ` polypd{ǫqq time. This includes least squares regression (p “ 2) as a special
case.

• Kernel Autoregression: A kernel function is a mapping φ : Rp Ñ R
p1

where p1 ě p so that the inner
product xφpxq, φpyqy between any two points φpxq, φpyq P R

p1

can be computed quickly given the inner
product xx, yy between x, y P R

p. Such mappings are useful when it is not possible to find a linear
relationship between the input points, but after lifting the points to a higher dimensional space via φ

it become possible. We are given a matrix A P R
npˆd for which the rows can be partitioned into n

contiguous p ˆ d block matrices A1, . . . , An. Further, we are in the setting of autoregression, so for
j “ 2, . . . , n, Aj is obtained from Aj´1 by setting the ℓ-th column A

j
ℓ of Aj to be the pℓ´ 1q-st column

of Aj´1, namely, to A
j´1
ℓ´1 . The first column A

j
1 of Aj is allowed to be arbitrary. Let φpAq be the matrix

obtained from A by replacing each block Aj with φpAjq, where φpAjq is obtained from Aj by replacing
each column A

j
ℓ with φpAj

ℓq. We are also given an pnp1q ˆ 1 vector b, perhaps implicitly. We want
x P R

d to minimize }φpAqx ´ b}2.
For general kernels not much is known, though prior work Kumar and Jawahar (2007) shows how to find

a minimizer x assuming i.i.d. Gaussian noise. Their running time is Opn2tq, where t is the time to evaluate
xφpxq, φpyqy given x and y. We show how to improve this to Opndt ` dωq time, where ω « 2.376 is the
exponent of fast matrix multiplication. Note for autoregression that b has the form rφpc1q;φpc2q; . . . ;φpcnqs
for certain vectors c1, . . . , cn that we know. As n " d in overconstrained regression, our Opndt ` dωq time
is faster than the Opn2t ` dωq time of earlier work. For dense matrices A, describing A already requires
Ωpndpq time, so in the typical case when t « p, we are optimal for such matrices. We note that prior work
Kumar and Jawahar (2007) assumes Gaussian noise, while we do not make such an assumption.

While the above gives an improvement for general kernels, one could also hope for much faster algorithms.
In general we would like an x for which:

}φpAqx ´ b}2 ď p1 ` ǫqmin
x

}φpAqx ´ b}2. (4)

We show how to solve this in the case that φ corresponds to the polynomial kernel of degree 2, though
discuss extensions to q ą 2. In this case, xφpxq, φpyqy “ xx, yyq. The running time of our algorithm is
OpnnzpAqq ` polyppd{ǫq. Note that b is an arbitrary np1-dimensional vector, and our algorithm runs in
sublinear time in the length of b - this is possible by judiciously sampling certain coordinates of b. Note
even for dense matrices, nnzpAq ď npd, which does not depend on the large value p1. We also optimize the
polyppd{ǫq term.

Applications. Our results are quite general, recovering the results of Avron, Sindhwani, and Woodruff
(2013) for Vandermonde matrices which have applications to polynomial fitting and additive models as a
special case. We refer the reader to Avron, Sindhwani, and Woodruff (2013) for details, and here we focus on
other implications. One application is to autoregression, which is a time series model which uses observations
from previous time steps as input to a regression problem to predict the value in the next time step, and
can provide accurate forecasts on time series problems. It is often used to model stochastic time-varying
processes in nature, economics, etc. Formally, in autoregression we have:

bt “
dÿ

i“1

bt´ixi ` ǫt, (5)
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where d ` 1 ď t ď n ` d, and the ǫt correspond to the noise in the model. We note that b1 is defined to be
0. This model is known as the d-th order Autoregression model (AR(d)).

The underlying matrix in the AR(d) model corresponds to the first d columns of a Toeplitz matrix, and
consequently one can compute ATA in Opnd log nq time, which is faster than the Opndω´1q time which
assuming d ą polyplog nq for computing ATA for general matrices A, where ω « 2.376 is the exponent
of matrix multiplication. Alternatively, one can apply the above sketching techniques which run in time
OpnnzpAqq ` polypd{ǫq “ Opndq ` polypd{ǫq. Either way, this gives a time of Ωpndq. We show how to
solve this problem in Opn log2 nq ` polypd{ǫq time, which is a significant improvement over the above meth-
ods whenever d ą log2 n. There are a number of other works on Toeplitz linear systems and regression
see Van Barel, Heinig, and Kravanja (2001, 2003); Heinig (2004); Sweet (1984); Bini, Codevico, and Van Barel
(2003); Pan et al. (2004); our work is the first row sampling-based algorithm, and this technique will be cru-
cial for obtaining our polynomial kernel results. More generally, our algorithms only depend on T pAq, rather
than on specific properties of A. If instead of just a Toeplitz matrix A, one had a matrix of the form A`B,
where B is an arbitrary matrix with T pBq “ Opn log nq, e.g., a sparse perturbation to A, we would obtain
the same running time.

Another stochastic process model is the vector autoregression (VAR), in which one replaces the scalars
bt P R in (5) with points in R

p. This forecast model is used in Granger causality, impulse responses, forecast
error variance decompositions, and health research van der Krieke et al. (2016). An extension is kernel
autoregression Kumar and Jawahar (2007), where we additionally have a kernel function φ : Rp Ñ R

p1

with
p1 ą p, and further replace bt with φpbtq in (5). One wants to find the coefficients x1, . . . , xd fitting the points
φpbtq without computing φpbtq, which may not be possible since p1 could be very large or even infinite. To
the best of our knowledge, our results give the fastest known algorithms for VAR and kernel autoregression.

Our Techniques. Unlike the result in Avron, Sindhwani, and Woodruff (2013) for Vandermonde ma-
trices, many of our results for other structured matrices do not use oblivious sketching. We illustrate the
difficulties for least squares regression of using oblivious sketching. In Avron, Sindhwani, and Woodruff
(2013), given an nˆ d Vandermonde matrix A, one wants to compute SA, where S is a CountSketch matrix.
For each i, the i-th row of A has the form p1, xi, x

2
i , . . . , x

d´1
i q. S has r “ polypd{ǫq rows and n columns,

and each column of S has a single non-zero entry located at a uniformly random chosen position. Denote
the entry in the i-th column as hpiq, then SA decomposes into r matrix-vector products, where each row
of A participates in exactly one matrix product. Namely, we can group the rows of A into submatrices Ai

and create a vector xi which indexes the subset of coordinates j of x for which hpjq “ i. The i-th row of
SA is precisely xiAi. For a submatrix Ai of a Vandermonde matrix, the product xiAi can be computed in
Opsi log siq time, where si is the number of rows of Ai. The total time to compute SA is thus Opn lognq.

Now suppose A P R
nˆd, d ! n, is a rectangular Toeplitz matrix, i.e., the i-th row of A is obtained by

shifting the pi ´ 1q-st row to the right by one position, and including an arbitrary entry in the first position.
Toeplitz matrices are the matrices which arise in autoregression. We can think of A as a submatrix of a
square Toeplitz matrix C, and can compute xC for any vector x in Opn lognq time. Unfortunately though,
an rˆd submatrix Ai of a Toeplitz matrix, r ą d, may not have an efficient multiplication algorithm. Indeed,
imagine the r rows correspond to disjoint subsets of d coordinates of a Toeplitz matrix. Then computing
xAi would take Oprdq time, whereas for a Vandermonde matrix one could always multiply a vector times an
rˆd submatrix in only Opr log rq time. Vandermonde matrices are a special sub-class of structured matrices
which are closed under taking sub-matrices, which we do not have in general.

Rather than using oblivious sketching, we instead use sampling-based techniques. A first important
observation is that the sampling-based techniques for subspace approximation Cohen et al. (2015b), low
rank approximation Cohen, Musco, and Musco (2017), and ℓp-regression Cohen and Peng (2015), can each
be implemented with only t “ Oplog nq matrix-vector products between the input matrix A and certain
arbitrary vectors v1, . . . , vt arising throughout the course of the algorithm. We start by verifying this
property for each of these important applications, allowing us to replace the nnzpAq term with a T pAq term.
We then give new algorithms for autoregression, for which the design matrix is a truncated Toeplitz matrix,
and more generally composed with a difference and a diagonal matrix.

Our technically more involved results are then for kernel autoregression. First for general kernels, we show
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how to accelerate the computation of φpAqT φpAq using the Toeplitz nature of autoregression, and observe that
only Opndq inner products ever need to be computed, even though there are Θpn2q possible inner products.
We then show how to solve polynomial kernels of degree q. We focus on q “ 2 though our arguments can
be extended to q ą 2. We first use oblivious sketching to compute a d ˆ Oplog nq matrix RG from which,
via standard arguments, it suffices to sample Opd log d ` d{ǫq row indices i proportional to }eiφpAqRG}22,
where ei is the i-th standard unit vector. Given the sampled row indices i, one can immediately find the
i-th row of φpAq, since the index i corresponds to a q-tuple pi1, . . . , iqq of a block φpAjq with columns φpAj

ℓq,
for ℓ P t1, 2, . . . , du, and so eiφpAqek “ A

j
i1,k

A
j
i2,k

¨ ¨ ¨Aj
iq,k

. We can also directly read off the corresponding

entry from b. The j-th row of S is also just
b

1
pi
ei if row index i is the j-th sampled row, where pi is the

probability of sampling i. Further, the matrices RG and S can be found in OpnnzpAq ` d3q time using
earlier work Clarkson and Woodruff (2013); Avron, Nguyen, and Woodruff (2014). We show to find the set
of Opd log d ` d{ǫq sampled row indices quickly. Here we use that φpAq is “block Toeplitz”, together with a
technique of replacing blocks of φpAq with “sketched blocks”, which allows us to sample blocks of φpAqRG

proportional to their squared norm. We then need to obtain a sampled index inside of a block, and for the
polynomial kernel of degree 2 we use the fact that the entries of φpAjqy for a vector y are in one-to-one
correspondence with the entries of Aj´1DypAj´1qT , where Dy is a diagonal matrix with y along the diagonal.
We do not need to compute Aj´1DypAj´1qT , but can compute HAj´1DypAj´1qT for a matrix H of i.i.d.
Gaussians in order to sample a column of Aj´1DypAj´1qT proportional to its squared norm, after which we
can compute the sampled column exactly and output an entry of the column proportional to its squared
value. Here we use the Johnson Lindenstrauss lemma to argue that H preserves column norms. A similar
identity holds for degrees q ą 2, and that identity was used in the context of Kronecker product regression
Diao et al. (2019).

2 Fast Algorithms Based on Sampling

We first consider minx }Ax´b}2, where A P R
nˆd, b P R

nˆ1, and n ą d. We show how, in OpT pAqpolyplognq`
polypdplog nq{ǫqq time, to reduce this to a problem minx }SAx´Sb}2, where SA P R

rˆd and Sb P R
rˆ1 such

that if x̂ “ argminx}SAx ´ Sb}2, then

}Ax̂ ´ b}2 ď p1 ` ǫqmin
x

}Ax ´ b}2. (6)

Here r “ Opd{ǫ2q. Given SA and Sb, one can compute x̂ “ pSAq´Sb in polypd{ǫq time. For (6) to hold,
it suffices for the matrix S to satisfy the property that for all x, }SAx ´ Sb}2 “ p1 ˘ ǫq}Ax ´ b}2. This is
implied if for any fixed n ˆ pd ` 1q matrix C, }SCx}2 “ p1 ˘ ǫq}Cx}2 for all x. Indeed, in this case we may
set C “ rA, bs. This problem is sometimes called the matrix approximation problem.
The Repeated Halving Algorithm. The following algorithm for matrix approximation is given in
Cohen et al. (2015b), and called Repeated Halving.

Algorithm 1 Repeated Halving

1: procedure RepeatedHalving(C P R
nˆpd`1q)

2: Uniformly sample n{2 rows of C to form C 1

3: If C 1 has more than Oppd log dq{ǫ2q rows, recursively compute a spectral approximation C̃ 1 of C 1

4: Approximate generalized leverage scores of C w.r.t. C̃ 1

5: Use these estimates to sample rows of C to form C̃

6: return C̃

7: end procedure

Leverage Score Computation. We first clarify step 4 in Repeated Halving, which is a standard
Johnson-Lindenstrauss trick for speeding up leverage score computation Drineas et al. (2012). The i-th gen-
eralized leverage score of a matrix C with n rows w.r.t. a matrix B is defined to be τBi pCq “ cTi pBTBq`ci “
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}BpBTBq`ci}22, where ci is the i-th row of C, written as a column vector. The idea is to instead compute
}GBpBTBq`ci}22, where G is a random Gaussian matrix with Oplog nq rows. The Johnson-Lindenstrauss
lemma and a union bound yield }GBpBTBq`ci}22 “ Θp1q}BpBTBq`ci}22. If B is Oppd log dq{ǫ2q ˆ d,
then pBTBq` can be computed in polypd{ǫq time. We compute GB in Oppd2{ǫ2q log nq time, which is
an Oplog nq ˆ d matrix. Then we compute pGBqpBTBq`, which now takes only Opd2 lognq time, and is
an Oplog nq ˆ d matrix. Finally one can compute GBpBTBq`CT in OpnnzpCq lognq time, and the squared
column norms are constant factor approximations to the τBi pCq values. The total time to compute all i-th
generalized leverage scores is OpnnzpCq log nq ` polypd logn{ǫq.
Sampling. We clarify how step 5 in Repeated Halving works, which is a standard leverage score
sampling-based procedure, see, e.g., Mahoney (2011). Given a list of approximate generalized leverage
scores τ̃Bi pCq, we sample Oppd log dq{ǫ2q rows of C independently proportional to form C̃. We write this
as C̃ “ SC, where the i-th row of S has a 1{?

pjpiq in the jpiq-th position, where jpiq is the row of C

sampled in the i-th trial, and pjpiq “ τ̃Bi pCq{ři1“1,...,n τ̃
B
i1 pCq is the probability of sampling jpiq in the i-th

trial. Here S is called a sampling and rescaling matrix. Sampling independently from a distribution on n

numbers with replacement Oppd log dq{ǫ2q times can be done in Opn ` pd log dq{ǫ2q time Vose (1991), giving
a total time spent in step 5 of Opn log n` pd log dqplog nq{ǫ2q across all Oplog nq recursive calls. As argued in
Cohen et al. (2015b), the error probability is at most 1{100, which can be made an arbitrarily small constant
by appropriately setting the constants in the big-Oh notation above.
Speeding up Repeated Halving. We now show how to speed up the Repeated Halving algorithm.
Step 2 of Repeated Halving can be implemented just by choosing a subset of row indices in Opnq time.
Step 3 just involves checking if the number of uniformly sampled rows is larger than Oppd log dq{ǫ2q, which
can be done in constant time, and if so, a recursive call is performed. The number of recursive calls
is at most Oplog nq, since Step 1 halves the number of rows. So the total time spent on these steps is
Opn log n ` pd log dqplog nq{ǫ2q.

In step 4 of Repeated Halving, we compute generalized leverage scores of C with respect to a matrix
C̃ 1, and is only (non-recursively) applied when C̃ 1 has Oppd log dq{ǫ2q rows. As described when computing
leverage scores with B “ C̃ 1, we must do the following:

1. Compute GC̃ 1 P R
Oplog nqˆd in time Oppd2{ǫ2q lognq

2. Compute ppC̃ 1qT C̃ 1q` in time Opd3{ǫ2q

3. Compute pGC̃ 1qppC̃ 1qT C̃ 1q` in time Opd2 lognq

4. Compute GC̃ 1ppC̃ 1qT C̃ 1q`CT

Since GC̃ 1ppC̃ 1qT C̃ 1q` has Oplog nq rows that already be computed, one can compute GC̃ 1ppC̃ 1qT C̃ 1q`CT in
Oplog nqT pCq time, where T pCq is the time needed to multiply C by a vector (note that computing yCT

is equivalent to computing CyT ). In our application to regression, C “ rA, bs. Consequently, T pCq ď
T pAq ` n. As the number of recursive calls is Oplog nq, it follows that the total time spent for step 4 of
Repeated Halving, across all recursive calls, is OpT pAq log n`n logn` pd2 log2 nq{ǫ2 ` d3plognq{ǫ2q. The
fifth step of Repeated Halving is to find the sampling and rescaling matrix as described above, which
can be done in Opn logn ` pd log dqplognq{ǫ2q total time, across all recursive calls. Thus, the total time is
OpT pAq log n`n logn` pd2 log2 nq{ǫ2 `d3plognq{ǫ2q. We summarize our findings with the following theorem.

Theorem 1. Given an n ˆ d matrix A, an n ˆ 1 vector b, an accuracy parameter 0 ă ǫ ă 1, and a failure
probability bound 0 ă δ ă 1, one can output a vector x̂ P R

d for which }Ax̂ ´ b}2 ď p1 ` ǫqminx }Ax ´ b}2
with probability at least 1 ´ δ, in total time

OppT pAq log n ` polypd logn{ǫqq logp1{δqq.

Proof. From the discussion above, our modified version of Repeated Halving produces a vector x̂ for
}Ax̂ ´ b}2 ď p1 ` ǫqminx }Ax ´ b}2 with probability at least 99{100. Repeating r “ Oplogp1{δqq times
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independently, obtaining candidate solutions x̂1, . . . , x̂r, and choosing the x̂i for which }Ax̂i ´ b}2 is smallest,
one reduces the failure probability to δ via standard Chernoff bounds. The time to compute }Ax̂i ´b}2 given
x̂i is at most T pAq ` Opnq, which is negligible compared to other operations in a repetition.

Low Rank Approximation. We look at the low-rank approximation problem, where for A P R
nˆd one

tries to find a matrix Z P R
nˆk with orthonormal columns such that

}A ´ ZZTA}2F ď p1 ` εq}A ´ Ak}2F . (7)

Here, Ak is the best rank k approximation to A. It is shown in Cohen et al. (2015a) that the low-rank
approximation problem can be solved by finding a subset of rescaled columns C P R

nˆd1

with d1 ă d, such
that for every rank k orthogonal projection matrix X :

}C ´ XC}2F “ p1 ˘ εq}A ´ XA}2F . (8)

Basic Recursive Algorithm. In Cohen, Musco, and Musco (2017), a slightly different version of Algo-
rithm 1 with ridge leverage score approximation is used to solve (8):

Algorithm 2 Repeated Halving

1: procedure RepeatedHalving(A P R
nˆd)

2: Uniformly sample d{2 columns of A to form C 1

3: If C 1 has more than Opk log kq columns, recursively compute a constant approximation C̃ 1 for C 1 with
Opk log kq columns

4: Get generalized ridge leverage scores of A w.r.t. C̃ 1

5: Use estimates to sample columns of A to form C

6: return C

7: end procedure

Improved Running Time. With a similar argument as for least squares regression, we obtain the following
theorem.

Theorem 2. There is an iterative column sampling algorithm that, in time O pT pAq logn ` n ¨ polypk{ǫqq,
returns Z P R

nˆk satisfying: }A ´ ZZTA}2F ď p1 ` ǫq}A ´ Ak}2F .
ℓp-Regression. Another important problem is the ℓp-regression problem. Given A P R

nˆd and b P R
nˆ1,

we want to output an x P R
d satisfying (3). We first consider the problem: for C “ rA, bs P R

nˆpd`1q, find a
matrix S such that for every x P R

pd`1qˆ1,

p1 ´ ǫq}Cx}p ď }SCx}p ď p1 ` ǫq}Cx}p. (9)

The following ApproxLewisForm Algorithm is given in Cohen and Peng (2015) to solve (9), and for them
it suffices to set the parameter θ in the algorithm description to a small enough constant. This is because
in Step 7 of ApproxLewisForm, they run the algorithm of Theorem 4.4 in their paper, which runs in at
most n time provided θ is a small enough constant and n ą dC

1

for a large enough constant C 1 ą 0. We
refer the reader to Cohen and Peng (2015) for the details, but remark that by setting θ to be a constant,
Step 5 of ApproxLewisForm can be implemented in T pAq time. Also, due to space constraints, we do
not define the quadratic form Q in what follows; the algorithm for computing it is also in Theorem 4.4
of Cohen and Peng (2015). The only property we need is that it is computable in m logm log logm ¨ dC
time, for an absolute constant C ą 0, if it is applied to a matrix with at most m rows. Theorem 4.4 of
Cohen and Peng (2015) can be invoked with constant ǫ, giving the so-called Lewis weights up to a constant
factor, after which one can sample Opdplog dq{ǫ2q rows according to these weights. Note that our running time
is OpT pAq logn`polypd{ǫqq even for constant θ, since in each recursive call we may need to spend T pAq time,
unlike Cohen and Peng (2015), who obtain a geometric series of nnzpAq ` nnzpAq{2 ` nnzpAq{4 ` ¨ ¨ ¨ ` 1 ď
2nnzpAq time in expectation. Here, we do not know if T pAq decreases when looking at submatrices of A.
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Algorithm 3 ApproxLewisForm

1: procedure ApproxLewisForm(C P R
nˆpd`1q)

2: If n ď d ` 1, apply Theorem 4.4 in Cohen and Peng (2015) to return Q.

3: Uniformly sample n{2 rows of C to form pC
4: Let pQ “ ApproxLewisFormp pC, p, θq
5: Let ui be an nθ{p multiplicative approximation of cTi

pQci

6: Nonuniformly sample rows of C, taking an expected pi “ minp1, fppqnθ{2dp{2 log du
p{2
i q copies of row i

(each scaled down by p
´1{p
i ), producing C 1

7: Apply Theorem 4.4 in Cohen and Peng (2015) to C 1, and return the quadratic form Q.
8: return Q

9: end procedure

Combined with sampling by Lewis weights we obtain an approximation for C with only polypd{ǫq rows.
Applying our earlier arguments to this setting yields the following:

Theorem 3. Given ǫ P p0, 1q, a constant p ě 1, A P R
nˆd and b P R

nˆ1, there is an algorithm that, in time
O pT pAq logn ` polypd{ǫqq, returns x̂ P R

dˆ1 such that

}Ax̂ ´ b}p ď p1 ` ǫqmin
x

}Ax ´ b}p.

3 Applications

Autoregression and General Dynamical Systems. In the original AR(d) model, we have:

»
———–

bd`1

bd`2

...
bn`d

fi
ffiffiffifl “

»
———–

bd . . . b1
bd`1 . . . b2

...
. . .

...
bn`d´1 . . . bn

fi
ffiffiffifl

»
———–

x1

x2

...
xd

fi
ffiffiffifl `

»
———–

εd`1

εd`2

...
εn`d

fi
ffiffiffifl (10)

Here we can create an n ˆ d matrix A where the i-th row is pbi`d´1, bi`d´2, . . . , biq. One obtains the
ℓ2-regression problem minx }Ax ´ b}2 with bT “ pbd`1, . . . , bn`dq. In order to apply Theorem 1, we need to
bound T pAq. The following lemma follows from the fact that A is a submatrix of a Toeplitz matrix.

Lemma 4. T pAq “ Opn lognq.

Combining Lemma 4 with Theorem 1, we can conclude:

Theorem 5. Given an instance minx }Ax´ b}2 of autoregression, with probability at least 1´ δ one can find
a vector x̂ so that }Ax̂ ´ b}2 ď p1 ` ǫqminx }Ax ´ b}2 in total time

O
`
pn log

2 n ` pd2 log2 nq{ǫ2 ` d3plog nq{ǫ2q logp1{δq
˘
.

General Dynamical Systems. When dealing with more general dynamical systems, the A in Theorem 5
would become A “ TUD, where T is a Toeplitz matrix, U is a matrix that represents computing successive
differences, and D “ diag

 
1, 1

h
, . . . , 1

hd´1

(
. Note that T is n ˆ d, as for linear dynamical systems, U is d ˆ d

and the operation xU corresponds to replacing x with px2 ´ x1, x3 ´ x2, x4 ´ x3, . . . , xd ´ xd´1, 0q, and D

is a d ˆ d diagonal matrix, and so U and D can each be applied to a vector in Opdq time. Consequently by
Lemma 4, we still have T pAq ď T pT q ` T pUq ` T pDq “ Opn log nq, and we obtain the same time bounds in
Theorem 5.

Kernel Autoregression. Let φ : Rp Ñ R
p1

be a kernel transformation, as defined in the introduction.
The kernel autoregression problem is: φpbtq “ řd

i“1 φpbt´iqxi ` ǫt, where now note that ǫt P R
p1

. Note that
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there are still only d unknowns x1, . . . , xd. One way of solving this would be to compute φpbtq for each t,
represented as a column vector in R

p1

, and then create the linear system by stacking such vectors on top of
each other:

»
———–

φpbd`1q
φpbd`2q

...
φpbn`dq

fi
ffiffiffifl “

»
———–

φpbd`1q . . . φpb1q
φpbd`2q . . . φpb2q

...
. . .

...
φpbn`d´1q . . . φpbnq

fi
ffiffiffifl

»
———–

x1

x2

...
xd

fi
ffiffiffifl `

»
———–

εd`1

εd`2

...
εn`d

fi
ffiffiffifl (11)

One can then compute a p1` ǫq-approximate least squares solution to (11). Now the design matrix φpAq
in the regression problem is the vertical concatenation of p1 matrices A, and an analogous argument shows
that T pφpAqq “ Opnp1 logpnp1qq, which gives us the analogous version of Theorem 5, showing least squares
regression is solvable in Opnp1 log2pnp1qq ` polyppd log nq{ǫq with constant probability. While correct, this is
prohibitive since p1 may be large.

Speeding up General Kernels. Let φpAq denote the design matrix in (11), where the i-th block is
φpAqi “ rφpbi`d´1q;φpbi`d´2q; . . . ;φpbiqs. Here b is rφpbd`1q; . . . ;φpbn`dqs, which we know. We first compute
φpAqT φpAq. To do so quickly, we again exploit the Toeplitz structure of A. More specifically, we have that
φpAqT φpAq “ ř

ipφpAqiqTφpAqi. In order to compute pφpAqiqTφpAqi, we must compute d2 inner products,
namely, xφpbd´j`iq, φpbd´j1`iqy for all j, j1 P t1, 2, . . . , du. Using the kernel trick, xφpbd´j`iq, φpbd´j1`iqy “
fpxbd´j`i, bd´j1`iyq for some function f that we assume can be evaluated in constant time, given xbd´j`i, bd´j1`iy.
Note that the latter inner product can be computed in Oppq time and thus we can compute pφpAqiqTφpAqi
for a given i, in Opd2pq time. Thus, naïvely, we can compute φpAqT φpAq in Opnd2pq time.

We can reuse most of our computation across different blocks i. As we range over all i, the inner products
we compute are those of the form xφpbd´j`iq, φpbd´j1`iqy for i P t1, . . . , nu and j, j1 P t1, 2, . . . , du. Although
a naïve count gives nd2 different inner products, this overcounts since for each point φpbd´j`iq we only need
its inner product with Opdq points other than with itself, and so Opndq inner products in total. This is total
time Opndpq.

Given these inner products, we quickly evaluate φpAqTφpAq. The crucial point is that not only is each
entry in φpAqTφpAq a sum of n inner products we already computed, but one can quickly determine entries
from other entries. Indeed, given an entry on one of the 2d ´ 1 diagonal bands, one can compute the next
entry on the band in Op1q time by subtracting off a single inner product and adding one additional inner
product, since two consecutive entries along such a band share n ´ 1 out of n inner product summands.

Thus, each diagonal can be computed in Opn ` dq time, and so in total φpAqT φpAq can be computed in
Opnd`d2q time, given the inner products. We can compute φpAqT φpAq in Opndpq time assuming d ď n. We
then define R “ pφpAqT φpAqq´1, which can be computed in an additional Opdωq time, where ω « 2.376 is
the exponent of fast matrix multiplication. Thus, R is computable in Opndp`dωq time. Note this is optimal
for dense matrices A, since just reading each entry of A takes Opndpq. We can compute φpAqT b P R

d using
the kernel trick, which takes Opndpq time. By the normal equations, x “ Rb, which can be computed in dω

time. Overall, we obtain Opndp ` dωq time.
The Polynomial Kernel. We focus on the polynomial kernel of degree q “ 2. Using the subspace

embedding analysis for TensorSketch in Avron, Nguyen, and Woodruff (2014), combined with a leverage
score approximation algorithm in Clarkson and Woodruff (2013), we can find a matrix R in OpnnzpAq ` dωq
time, where ω « 2.376 is the exponent of matrix multiplication, with the following guarantee: if we sample
Opd log d ` d{ǫq rows of φpAq proportional to the squared row norms of φpAqR, forming a sampling and
rescaling matrix S, then }SφpAqx ´ Sb}2 “ p1 ˘ ǫq}φpAqx ´ b}2 simultaneously for all vectors x. Here the
i-th row of S contains a 1{?

pj in the j-th entry if the j-th row of φpAq is sampled in the i-th trial, and the

j-th entry is 0 otherwise. Here pj “ }ejφpAqR}2
2

}φpAqR}2
F

, where ej is the j-th standard unit vector. We show how to

sample indices i P rnp1s proportional to the squared row norms of φpAqR.
Instead of sampling indices i P rnp1s proportional to the exact squared row norms of φpAqR, it is well-

known (see, e.g., Woodruff (2014)) that it suffices to sample them proportional to approximations τ̃i to the
actual squared row norms τi, where τi

2
ď τ̃i ď 2τi for every i. As in Drineas et al. (2012), to do the latter,
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we can instead sample indices according to the squared row norms of φpAqRG, where G P R
dˆOplognq is a

matrix of i.i.d. Gaussian random variables. To do this, we can first compute RG in Opd2 lognq time, and
now we must sample row indices proportional to the squared row norms of φpAqRG. Note that if we sample
an entry pi, jq of φpAqRG proportional to its squared value, then the row index i is sampled according to its
squared row norm. Since RG only has Oplog nq columns vi, we can do the following: we first approximate
the squared norm of each φpAqvi. Call our approximation γi with 1

2
}φpAqvi}22 ď γi ď 2}φpAqvi}22. Since we

need to sample s “ Opd log d ` d{ǫq total entries, we sample each entry by first choosing a column i P rds
with probability γiř

d
j“1

γj
, and then outputting a sample from column i proportional to its squared value. We

show (1) how to obtain the γi and (2) how to obtain s sampled entries, proportional to their squared value,
from each column φpAqvi.

For the polynomial kernel of degree 2, the matrix φpAq is in R
np2ˆd, since each of the n points is expanded

to p2 dimensions by φ. Then φpAq is the vertical concatenation of B1, . . . , Bn, where each Bi P R
p2ˆd is a

subset of columns of the matrix Ci ˝ Ci P R
p2ˆd2

, where Ci P R
pˆd and Ci ˝ Ci consists of the Kronecker

product of Ci with itself, i.e., the ppa, bq, pc, dqq-th entry of Ci ˝ Ci is Ci
a,bC

i
c,d. Notice that Bi consists of

the subset of d columns of Ci corresponding to b “ d. Fix a column vector v P tv1, . . . , vdu defined above.
Let S be the TensorSketch of Pham and Pagh (2013); Avron, Nguyen, and Woodruff (2014) with Op1q rows.
Then Sφpzq can be computed in Opnnzpzqq time for any z. For block Bi, }SBiv}22 “ p1 ˘ 1{10q}Biv}22
with probability at least 2{3. We can repeat this scheme Oplog nq times independently, creating a new
matrix S with Oplog nq rows, for which Sφpbiq can be computed in Opnnzpbiq log nq time and thus SφpAq
can be computed in OpnnzpAq log nq time overall. Further, we have the property that for each block Bi,
}SBiv}med “ p1 ˘ p1{10qq}Biv}22, with probability 1 ´ 1{n2, where the med operation denotes taking the
median estimate on each of the Oplog nq independent repetitions. By a union bound, with probability
1 ´ Op1{nq,

}SBiv}med “ p1 ˘ p1{10qq}Biv}22, (12)

simultaneously for every i “ 1, . . . , n. Notice φpAq is a block-Toeplitz matrix, truncated to its first d columns,
where each block corresponds to φpbiq for some i. Suppose we replace the blocks φpbiq with Sφpbiq, obtaining
a new block Toeplitz matrix A1, truncated to its first d columns, where now each block has size Oplog nq.
The new block Toeplitz matrix can be viewed as Oplog nq disjoint standard (blocks of size 1) Toeplitz
matrices with n rows, and truncated to their first d columns. Thus, T pA1q “ Opn log2 nq. The i-th block
of coordinates of size Oplog nq is equal to SBiv, and by (12) we can in Oplog nq time compute a number
ℓi “ p1 ˘ p1{10qq}Biv}22. Since this holds for every i, we can compute the desired estimate γj to }φpAqvj}22
if v “ vj . The time is OpnnzpAq log n ` n log2 nq.

After computing the γj , suppose our earlier sampling scheme samples v “ vj . Then to output an entry
of φpAqv proportional to its squared value, we first output a block Bi proportional to }Biv}22. Note that
given the ℓi, we can sample such a Bi within a p1 ˘ 1{10q factor of the actual sampling probability. Next,
we must sample an entry of Biv proportional to its squared value. The entries of Biv are in one-to-one
correspondence with the entries of CiDvpCiqT , where Dv P R

dˆd is the diagonal matrix with the entries
of v along the diagonal. Let H P R

Oplognqˆp be a matrix of i.i.d. normal random variables. We first
compute HCi. This can be done in Oppd lognq time. We then compute HCiDv in Opd log nq time, and then
pHCiDvqpCiqT in Oppd log nq time. By the Johnson-Lindenstrauss lemma (see, e.g., ?), each squared column
norm of HCiDvpCiqT is the same as that of CiDvpCiqT up to a factor of p1 ˘ 1{10q, for an appropriate
Oplog nq number of rows of H . So we first sample a column j of CiDvpCiqT proportional to this approximate
squared norm. Next we compute CiDvpCiqT ej in Oppd ` d2q time, and then in Oppq time we output an
entry of the j-th column proportional to its squared value. Thus we find our sample.

To bound the overall time, note that we only need to compute the γj values once, for j “ 1, . . . , Oplog nq
and for each j this takes OpnnzpAq logn ` n log2 nq time. So in total across all indices j this takes
OpnnzpAq log2 n ` n log3 nq time. Moreover, this procedure also gave us the values ℓi for each vj . Sup-

pose we also sort the partial sums
ři1

i“1 ℓi for each 1 ď i1 ď n and corresponding to each vj . This takes
Opn log

2 nq time and fits within our time bound. Then for each of our Opd log d ` d{ǫq samples we need to
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take, we can first sample j based on the γj values and sample i based on the sorted partial sums of ℓi values
in Oplog nq time via a binary search. Having found i, we perform the procedure in the previous paragraph
which takes Oppd log n ` d2q time. Thus, the time for sampling is Opppd2 logn ` d3qp1{ǫ ` log dqq.

The overall time is, up to a constant factor, O
`
nnzpAq log2 n ` n log3 n ` ppd2 logn ` d3qp1

ǫ
` log dq

˘
.
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