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 Abstract—Machine learning is enabling researchers to analyze 
and understand increasingly complex physical and biological 
phenomena in traditional fields such as biology, medicine, and 
engineering and emerging fields like synthetic biology, automated 
chemical synthesis, and bio-manufacturing. These fields require 
new paradigms towards understanding increasingly complex data 
and converting such data into medical products and services for 
patients. The move towards deep learning and complex modeling 
is an attempt to bridge the gap between acquiring massive 
quantities of complex data, and converting such data into practical 
insights. Here, we provide an overview of the field of machine 
learning, its current applications and needs in traditional and 
emerging fields, and discuss an illustrative attempt at using deep 
learning to understand swarm behavior of molecular shuttles. 
 
Index Terms — Deep learning, machine learning, neural networks, 
informatics 

I.� INTRODUCTION 
he exponential growth of big and increasingly bigger data 
sets both in traditional and emerging fields has raised 

important questions: 1) How can increasingly complex 
phenomena in these data be correctly interpreted and analyzed? 
2) How can the aforementioned data sets be converted into a 
deeper understanding of complex phenomena? and 3) How can 
the achieved understanding be converted into practical 
applications in medicine, ranging from rapid and precise 
diagnosis, over intelligent treatment, to targeted prevention? As 
we face the interacting pressures of rising chronic diseases, 
ageing populations, and dwindling resources, a paradigm shift 
towards intelligently extracting, analyzing, interpreting, and 
understanding increasingly complex data is required. The 
rapidly evolving field of machine learning is key to this 
paradigm shift. 
 Machine Learning (ML) has expanded both in scope and 
complexity as computing power increased. Graphics 
Processing Units (GPUs) and bigger storage spaces became 
more widely available, resulting in powerful parallel data 
processing. ML techniques have also evolved, and are now used 
to understand large data sets in medical image processing, 
speech recognition, computer vision, language processing, 
bioinformatics, and drug design [1]. Previous studies have 
investigated ML in bioinformatics [2], biology and medicine 
[3], computational biology [4,5], biomedicine [6], and super-
resolution imaging [7]. 
 The application of ML (and later, deep learning) has 
expanded into emerging fields including, but not limited to, bio-
manufacturing [8], automated organic synthesis [9], material 

 
Altug Akay, PhD is with the Department of Biomedical Engineering, 

Columbia University, 116th Street & Broadway, New York, NY, 10027, USA 
(ara2180@columbia.edu). 

and molecular modeling [10], medical robotics [11], automated 
drug discovery [12], biological networks [13], and automated 
diagnosis [14]. Traditional fields are evolving in response to the 
development of ML techniques: for example, in drug design, as 
pressure is mounting on pharmaceutical companies to rapidly 
test promising molecules, engage in clinical trials, and place 
drugs on the market in a timely matter, ML can potentially aid 
in reducing the timeframe for drug discovery and trials. In the 
diagnosis field, rapid and precise information about the nature 
of a patient’s health problem can be obtained with the help of 
machine learning algorithms. 

Of particular interest to the authors is the design and study of 
molecular nano- and micro-robots [15-19], and their use in 
medical applications, including minimally invasive surgery 
[20], tissue engineering [21], and targeted drug delivery [22]. 
Despite rapid advances, various challenges remain with respect 
to design [23], materials selection [24], and the control of 
location and orientation [25]. 

The goal of this position paper is to provide background 
information about ML for the non-expert and discuss recent 
advances in ML techniques, present current applications in 
traditional and emerging fields, assess the current needs that 
ML can respond to, and to provide an example of how machine 
learning techniques can be used in molecular robotics, 
specifically in studying and understanding swarm behavior of 
molecular shuttles. Finally, we aim to address possible future 
trends, highlight both current challenges in implementing this 
evolving field and opportunities for advancing it. 

II.� TECHNOLOGY BACKGROUND 

A.� Artificial Intelligence, Machine Learning, and Deep 
Learning 

The concept of artificial intelligence (AI) started at a 
computer science conference at Dartmouth College in 1956 
[26]. The vision was to develop machines that can mimic 
human intelligence and the ability to learn. The limitation was 
that it could only perform simple, specific tasks (dubbed 
‘Narrow AI’) [27]. To advance further, algorithms needed to be 
developed that could analyze data structures, learn from said 
data structures, and determine what steps to take based on the 
nature of the data structures. This engendered the concept of 
ML, whereby the algorithm sifts through massive amounts of 
data, ‘learns’ from it, and responds to it. Despite these 
advances, ML algorithms were still limited by relying 
extensively on data representations, known as ‘features,’ that 
required human expertise (known as ‘domain expertise’) to 
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direct which features the algorithm should look for [28]. These 
algorithms have shown limited success to achieve optimal AI 
performance and to process highly complex data. Andrew Ng 
proposed to make artificial neural network (ANN) structures 
complex by increasing the number of hidden layers and neurons 
in the layers, and the use of massive data [29]. The demands 
placed on the AI community (more robust algorithms that 
required very little domain expertise), combined with the 
exponential growth in data sets and greater availability of 
graphics processing units (GPUs), resulted in the development 
of deep learning (DL) algorithms. Deep learning is a branch of 
ML that derives its origins from the concept of ANNs. 

An ANN is a computational platform composed of inter-
connected nodes (‘artificial neurons’) that resemble, and mimic, 
the brain’s neuronal functions. The connections between the 
nodes (‘edges’) strengthen or weaken as the learning process 
progresses. Figure 1 shows a traditional ANN containing an 
input layer (that senses and detects signals within the 
environment), a hidden layer (that processes the signals sent by 
the input layer), and an output layer (the response to a signal or 
stimulus). Note that each neuron in both the hidden and output 
layers assigns a weight coefficient to its input. Therefore, the 
final output of neural network is determined by the 
contributions of each weight coefficients [30]. ANNs ‘learn’ the 
same way humans learn: by interacting with, and responding to, 
various stimuli within a local environment.  

 
Figure 1:  An ANN using a single hidden layer.  S1-S6 are the nodes in the 
input layer, and O1-O3 are the nodes in the output layer.            
 

Learning algorithms use statistics and analytics to enable 
computers to improve a given task’s performance (‘learn’) 
using data without being given specific instructions [31]. They 
use supervised and unsupervised learning tasks to match, and 
identify, inputs. Supervised learning uses labelled (categorized) 
data that are fed into the input layer, which produces an output 
(the desired category with the highest score). Supervised ANNs 
are useful when the outcome of the feature vector is known. As 
in the case of regression, a feature vector is input into the net 
and through backward and forward propagation the optimal 

weights are found to train the network over the training 
examples. The network is then tested on the testing set. The 
network can then be used for prediction and accuracy 
measured.   

Although supervised ANNs have been successfully used in 
many biomedical applications, including DNA motif discovery 
[32], medical diagnosis [33], cancer identification and gene 
classification using DNA microarray gene expression patterns 
[34], and drug discovery [35], an ANN may exhibit inconsistent 
prediction performance and long training times, especially for 
architectures with many layers requiring large data sets. 
Architectures need to be carefully selected and fine-tuned to 
achieve the best performance. The selection of the number of 
layers, the number of nodes for each layer, and the activation 
functions for nodes in each layer are critical parameters that 
need to be determined for each application. 

Unsupervised learning uses the same method as ANNs and 
can be considered as a less complex version of a DL network. 
Unsupervised learning is related to logistic regression through 
its (usually) sigmoid output layer. The self-organizing map 
(SOM) and adaptive resonance theory (ART) are widely used 
in unsupervised learning algorithms. The SOM is a topographic 
organization in which nearby locations in the map represent 
inputs with similar properties. 

 The ART model allows the number of clusters to vary with 
problem size and lets the user control the degree of similarity 
between members of the same clusters by means of a user-
defined constant called the vigilance parameter. ART networks 
are also used for many pattern recognition tasks, such as 
automatic target recognition and seismic signal processing. 
Unsupervised ANNs have been used in medicine and biology, 
including medical data clustering [36], classical biomedical 
markers analysis [37], and tumor characterization [38]. The 
unsupervised ANN needs to label and group the raw data 
without any prior knowledge of patterns in the input data. This 
may lead to less accurate results. Finally, the output may not be 
ascertained since the number of classes is unknown and needs 
to be determined by the ANN-generated results. 

A deep neural network (DNN) uses the same architecture as 
an ANN, except with more hidden layers between the input and 
output layers. The output values are sequentially computed 
within the network’s hidden layers, with each input vector 
comprising the previous layer’s output vector to produce a 
weighted sum. The result is a higher, abstract data 
representation that is attentive to small details while ignoring 
irrelevant information. DNNs have been widely been used in 
protein structure prediction research [39-42], biomedical 
imaging, with an emphasis on anomaly classification [43-45], 
segmentation [46], recognition [47,48], and brain decoding 
[49,50]. In biomedical signal processing, DNNs have been 
using EEG signals for motor skill [51], emotional classification 
[52], and anomaly detection using ECG signals [53,54].  
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Convolutional Neural Networks (CNNs) and Recursive 

Neural Networks (RNNs) are the most common DNNs. A 
CNN, shown in Figure 2, is composed of convolution, non-
linear, and pooling layers [55]. The convolution layers obtain 
local weighted sums (‘feature maps’) at every layer by 
computing filters that are repeatedly applied across the entire 
data set to improve training efficiency. The non-linear layers 
then increase the feature maps’ non-linear properties. Finally, 
the pooling layers performs sub-sampling of non-overlapping 
regions in feature maps to enable the CNN to aggregate local 
features to identify complex features [6]. CNNs process 
multiple data types, particularly two-dimensional images. An 
RNN processes inputs one element at a time, maintaining a 
vector within its hidden units that contain information from all 
of the preceding element’s sequence. The final output depends 
on the previous inputs. RNNs are ideal for sequential 
information processing, particularly natural language 
processing [56] and audio recordings [57]. 

CNNs have been used for gene sequence data [58], 
transcription-binding site predictions [59,60], anomaly 
detection and classification using CT image datasets [61], 
malignant tumor growth prediction [62], chemotherapy 
response prediction [63], a finger-joint detection platform to 
examine bone age and growth disorders [64,65], and brain 
decoding, in which extracted features were converted into 2-D 
pixel colors, to predict seizures [66]. RNNs have been used for 
protein structure prediction [67], gene expression regulation 
[68], protein classification [69], and seizure prediction [70]. 

Novel architectures have recently emerged to tackle 
increasingly complex biomedical data derived from emerging 
interdisciplinary fields. Capsule networks [71,72] use the CNN 
method to visualize, and direct, different stimuli to specialist 
capsules (modules). Rather than adding hidden layers, a capsule 
network adds layers within each hidden layer. Such a network 
can lead to a better understanding of disease mechanisms. 

Multi-task learning exploits the ability to simultaneously 
learn multiple (but similar) tasks within a model: it has been 
applied to predict drug toxicity and sensitivity in cancer cell 
lines [73-75]. Other exciting research avenues can include 
looking for ways to minimize deleterious drug side effects 
(termed ‘off-target effects’). 

A transfer learning neural network architecture is based on 
the logic that, since biological systems share similar 
characteristics, data from one system can help to understand the 

other [76]. It allows a model to be re-used from one task to 
another different (but similar) task. 

Deep Spatio-Temporal Neural Networks (DST-NNs) learn 
multi-dimensional outputs through progressive refinement, 
which looks at local correlations through input feature 
components per layer: the spatial layer, where the original 
inputs are used in every layer, and the temporal features, which 
change to end up in the upper layers [77]. 

Multi-dimensional RNNs use RNN capabilities to treat non-
sequential, multi-dimensional data as sequential data groups. In 
one study, a 2-D data set from four contexts under different data 
processing orders are reflected in four hidden units that are 
connected to a single output layer, with results that consider all 
possible contexts [78]. 

Convolutional auto-encoders (CAEs) use both auto-encoders 
(AE) and CNNs to combine good hierarchical representations 
of spatial information data while being regularized via 
unsupervised training. Reconstruction error is minimized using 
both an encoder (to extract feature vectors) and decoder (to 
recreate the data from the feature vectors) when training AEs. 
The principles of CNN can mimic an AE in the sense that 
encoders (deconvolution) and decoders (un-pooling) are 
integrated as a CAE and trained as an AE [79,80]. 

B.� Molecular Robotics and Swarming 
In this section, we give a short introduction to an application 

area of particular interest to our work, molecular robotics. One 
specific problem is how molecular robots can be induced to 
exhibit swarming behavior. Swarming is a phenomenon 
wherein large numbers of individuals organize into a 
coordinated motion. The ability of fish schools, insect swarms, 
or starling murmurations to shift shape as one, and coordinate 
their motion in space, has been extensively studied because of 
their implications for the evolution of social cognition, 
collective animal behavior, and artificial life [67],[81]-[82]. 
Understanding swarm mechanisms and operational principles 
can provide novel approaches for developing swarm formation 
control, autonomous agent distributed/cooperative control, and 
robot coordination [83]-[85]. 

Interest has grown in using foraging and swarming-based 
biomimicry for engineering applications such as distributed 
optimization, collective robotics, satellite clusters, mobile 
sensor networks, and autonomous aerial/underwater vehicles 
[86],[87], which has further motivated research into swarming 

 
Fig. 2: A Convolutional Neural Network applied to the task of identifying objects in an image. 
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behavior and its applications. Intelligent, agent-based 
simulations for swarm analysis has greatly improved our ability 
to perform tasks such as image processing, pattern and speech 
recognition, and language interpretation using advanced 
computational techniques such as DNN [2] and intelligent agent 
swarms [86],[87]. Simulating agents in models allows easy 
parameter modification, voluminous data generation, full 
experiment reproducibility, and easier identification of complex 
phenomena’s underlying dynamics [88]. Exploiting swarm 
behavior is a promising approach to controlling molecular 
robots, due to their typically large numbers combined with 
limited communication and processing abilities. 

Molecular robotics takes robots, which are artifacts 
exhibiting intelligent behaviors by sensing-processing-
actuating cycles [90], to the molecular level. The concept 
stresses the need to borrow mechanisms from living systems 
and applying them to robots [89]. Among the mechanisms 
include designing systems that encourage and engender 
desirable behaviors depending on the specific task at hand 
(foraging, swarming, autonomous decision-making, etc.) [90]. 
Powering molecular robots continues to be a challenge, and 
biomolecular motors have the key advantage of unmatched 
energy conversion efficiency [91]. 

Biomolecular motors, such as the motor proteins myosin and 
kinesin, convert the chemical energy stored in ATP into 
mechanical work as they move along their cytoskeletal 
filaments (actin filaments and microtubules, respectively) [92]. 
Biomolecular motors can be used as highly functional off-the-
shelf components to construct molecular robots. An example 
for such a hybrid robot combining biological and synthetic 
molecular components is a kinesin-powered molecular shuttle 
[93],[94] (Fig. 3a): surface-adhered kinesin motor proteins 
propel microtubules which are functionalized with linkers to 
endow them with the ability to capture and carry cargo [95]. 
Depending on the ATP concentration and temperature, the 
shuttles move at speeds up to 1 μm/s [96]. Millions of shuttles 
can operate in parallel, and their interactions can be 
programmed [97]-[99]. The operation can be visualized using 
fluorescence microscopy if the microtubules are fluorescently 
labeled (Fig. 3b), and automated methods relying on image 
segmentation by thresholding to identify and track the 
microtubules have been developed [100]. Interactions between 
shuttles, or gliding actin filaments and microtubules in general, 
engender complex emergent patterns [101]-[103]. 

Machine learning can contribute to molecular robotics at two 
distinct levels: it can be applied to analyze microscopy images 
of molecular robots, where it can facilitate and improve the 
identification of the robots in crowded images with a high 
background. This is a classic image processing task that has 
been addressed with ML solutions in various fields. The second 
level is to “learn” the swarm behavior, thereby enabling its 
control, similar to the way a herding dog learns and controls the 
behavior of a flock of sheep. It is also desirable to infer the rules 
engendering the behavior [104]. An illustration of a possible 
use of DL to model molecular shuttle movement and 
organization will be illustrated. However in the next section, we 
first highlight how ML has been used in different applications 
in traditional and emerging fields.  

 

III.� CURRENT APPLICATIONS 
Machine learning and DL have been extensively used across 

traditional and emerging fields. Below is an overview of fields 
that have taken advantage of current ML and DL capabilities. 

A.� Diagnosis of Diabetic Retinopathy 
A research group at Google automated the diagnosis of the 

severity of referable diabetic retinopathy using a DL algorithm, 
thus potentially aiding clinicians in rapidly diagnosing and 
treating this disease [14]. The algorithm obviated the need for 
domain expertise, resulting in significantly reducing the time it 
took to learn what to look for, and, by extension, closely match 
clinician’s classification of the severity of the disease. 

 
Fig. 3: Top and Middle: Molecular shuttles as conceived by Vogel and 
Howard utilize kinesins adhered in tracks and controllably activated with 
defined concentrations of ATP to propel cargo-carrying microtubules. 
Bottom: Gliding, fluorescently labeled microtubules can be imaged by 
fluorescence microscopy and appear as bright lines with variable shapes as 
they interact with guiding structures. Adapted with permission from [209]. 
Copyright 2003 American Chemical Society. 
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B.� Microrobot Localization 
Sitti et al., used an advanced CNN architecture to enable real-

time localization of a minimally-invasive and therapeutic 
endoscopy robot for the gastrointestinal (GI) tract [11]. This 
approach enabled the robot to establish its position and 
orientation within a frame of reference. They have merged the 
CNN architecture with sophisticated sensor platforms to enable 
precise, real-time robot localization within the GI tract. This can 
open new research avenues towards fusing molecular robot 
technologies with CNN (and other) architectures that can aid in 
precise diagnosis and interventions, and for molecular shuttle 
localization in vivo. 

C.� Computational Biology 
Computational biology uses computers to model, and 

understand, the essential functions of life, with particular 
emphasis on representing and simulating biological systems 
[105]. The quantitative increase of biological data, both in size 
and complexity, has initially engendered the use of traditional 
ML techniques that required extensive domain expertise and 
manual interventions to adjust the neural network for precisely 
measuring specific phenomena. Deep learning requires minimal 
domain expertise and can ‘learn’ which features to look for 
from available data sets. 

In regulatory genomics, where specific regulatory 
mechanisms and non-coding transcription factors within the 
genome are studied, the main challenges are mapping the 
effects of mutations within a population, especially of rare 
mutations that can result in limited sample sizes, and predicting 
DNA sequence because of its multi-layered abstraction among 
its variations, interactions with different regulatory 
mechanisms, and how it effects one region (or several regions) 
of interest. DNNs have been used in predicting splicing 
[106],[107], and DNA-binding protein specificities [59]. 
Alipanahi et al. have expanded the use of CNNs to predict the 
effects of mutations, including the visualization of all possible 
mutations within a sequence, which, in turn, can lead to 
identifying single nucleotide variants (SNVs) that contribute to 
various mutation(s) [59]. Researchers have also started merging 
different DL architectures to predict multiple trait development 
across genomes and how they affect each other: Zhou and 
Troyanskaya used multiple architectures to capture multiple 
genomic sequences [108]: Dahl, et al. used multi-task neural 
networks to predict multiple chromatin states within regions of 
interest, in parallel [109]. 

In biological image analysis, CNNs are commonly used for 
classification, feature detection and extraction, and pattern 
recognition. Adding more hidden layers in the CNN results in 
detecting more abstract features [62]. Image analysis 
architectures and algorithms can potentially be expanded to 
include multiple, stacked images, either from multi-scale, or 
multi-modal imaging techniques, and trained to look for 
increasingly complex features. This could greatly aid in 
developing more precise diagnoses in clinical settings, 
especially from patients suffering from multiple ailments. 

The field has recently expanded to include analyzing entire 
cells, and cell populations, to understand their interactions with 
each other, and their environment. Such efforts have resulted in 

architectures that have merged classification with segmentation 
tasks to model entire full-resolution fungal microscopy images 
[110] and quantify bacteria colonies on agar plates [111]. These 
technologies can greatly expand our understanding of cell 
population behavior, both in healthy and diseased states. These 
data can also serve as a reference for possible rapid clinical 
diagnosis of patients suffering from similar ailments. 

D.� Bioinformatics 
Bioinformatics uses computational tools to discern biological 

data. With the increasing size and complexity of data in the ‘-
omics’ field, pressure is mounting to develop sophisticated 
tools that can quickly and efficiently convert data into 
healthcare products and services. Deep learning architectures 
have contributed immensely to this field. It is expected that, as 
the field continues to evolve and more complex data is gathered, 
more sophisticated architectures and algorithms will be needed 
to analyze and interpret various inter-connected phenomena. 

Large amounts of raw sequential data are used (DNA and 
RNA sequences, for example). RNNs are used because of their 
ability to process sequential information. Among avenues of 
interest are protein structure prediction and classification that 
can aid in deciphering under what circumstances proteins 
change structurally [39-42], gene expression regulation to 
decipher the circumstances where genes turn ‘on’ or ‘off’[112]-
[122], and anomaly classification and detection [123]-[125] to 
ascertain when, for example, the circumstances lead to the 
development of malignant tumors. 

In biomedical imaging, data sources come from MRI 
[126],[127], radio-graphs [128],[129], PET [130], and 
histopathology [131] images. CNNs are used since they mimic 
the human visual cortex that looks at the general features in the 
environment (mimicking photoreceptors in the retina), and are 
designed to study variable and intricate features within an 
image, or set of images. Among avenues of interest are anomaly 
detection [61],[132]-[137], segmentation [46],[138]-[143], 
recognition [144]-[147], and brain behavior ‘decoding’ [50].  

In biomedical signal processing, researchers primarily use 
sequential recorded electrical activity from the human body 
[115]. Sources include EEG [148], ECoG [149], ECG [150], 
EMG [151], and EOG [152]. RNNs are used because 
biomedical signals are sequential data. Avenues of research are, 
for example, brain decoding [153]-[162] and anomaly 
classification for diagnosis of neuro-degenerative disorders and 
heart ailments [163]-[168]. 

E.� Network Biology 
Network biology studies biomolecule interactions that 

contribute to the structure and function of living cells, the 
reconstruction (and analysis) of large-scale endogenous 
biological networks, and the design (and construction) of small-
scale synthetic gene networks [13]. Machine learning 
algorithms can exploit, and merge, disparate biological datasets 
to develop increasingly complex, and stacked, models to study 
interactions of various phenomena from within cells to between 
cells in tissues and organs in both healthy and diseased states. 

Disease biology can be understood using network biology 
principles (discovering networks and sub-networks of the 
interactions required for the commencement of a disease phase) 
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[169-175], and using ML to identify and comprehend disease 
mechanisms from the surface to deeper levels. There has been 
progress [176-179], but work remains, specifically at 
understanding how disrupting biological process networks can 
engender diseases. Capsule networks [71,72] use similar 
approaches as CNNs to visualize different, and direct, stimuli 
to specialist capsules (modules). A capsule network adds layers 
within each hidden layer, rather than adding more layers. 

Drug discovery, in the context of network biology and ML, 
requires characterizing the actions of compounds, predicting 
both on-target and off-target effects of said compounds, and the 
merging of multiple drugs to attack complex diseases [180]. 
Large multi-omics datasets, when merged with genotype 
archives and databases such as PubChem [181], DrugBank 
[182], and ZINC [183], can potentially be integrated to develop 
increasingly predictive complex disease outcomes, and their 
interactions within the human body can be studied and 
modeled. Multi-task neural networks exploit the ability to 
simultaneously learn multiple, yet similar, tasks within a model: 
this method has been applied to predict drug toxicity, and drug 
sensitivity, in cancer cell lines [73]-[75]. Other exciting 
avenues of research can include looking for ways to minimize 
the deleterious side effects of drugs (‘off-target effects’). 

The human microbiome is composed of micro-organisms 
within the human body. These micro-organisms play essential 
roles in the body’s health and development. Studying micro-
organism interactions, and the evolution of their exchange 
networks, can lead to new insights towards the interaction 
between these micro-organisms and their hosts. A transfer 
learning neural network is the method of choice for the limited 
data surrounding these ‘meta-metabolic networks’ [76]. 

Synthetic biology seeks to develop artificial biological 
components for research, medical, and industrial applications. 
One exciting avenue of research is synthetic gene circuit 
development [184]-[188]. The main challenges are 
understanding design principles and how multiple components 
(at multiple levels) interact with each other: it demands a neural 
network that combines the CNN’s ability to detect abstract and 
minute details to understand the organization of regulatory units 
in synthetic networks, with the RNN’s ability to sequentially 
predict the outcomes of different components to ensure the 
system’s stability as its complexity increases. 

F.� Drug Discovery 
Virtual screening (VS) uses computers to peruse molecular 

libraries to identify molecules that can successfully bind to 
receptor sites to be used for drug development [31]. The need 
for automatic search methods that successfully identify 
promising molecules has resulted in the development of ML 
applications used for screening and matching molecules. 

Support Vector Machines (SVMs) classify and rank 
properties, in the form of binary outcomes [32-39]. SVMs have 
been applied towards ranking compounds to predict activity 
levels of their binding sites [40], along with novel hybrid 
techniques for classification purposes [41,42]. 

Decision Trees (DTs) outline decisions and their 
consequences in the form of a tree. It takes the form of an 
upside-down tree that branches out into different branches 
(decisions) until the leaves (decisions, or nodes) have been 

developed. DTs have been used to develop binary property 
classifications ranging from drug permeation to metabolic 
stability (or lack thereof) [43-51]. 

Naive Bayesian classifier uses Bayes’ theorem that describes 
the probability of an event that has originated from two (or 
more) causes [52]. The classifier provides a framework where 
an established opinion, or rule, changes when new knowledge 
(data) enters into the equation, and has been used with ML 
techniques for similarity-based clustering [53-55]. 

G.� Automating Small Molecule Synthesis 
The move from manual small-molecule synthesis to 

automated small-molecule synthesis is an attempt to create 
machines that can mass-produce multiple small molecules of 
different types. Challenges remain towards automating small 
molecule synthesis for mass-production, with two camps 
attempting to solve the problem: one group wants to use 
optimized machines to customize the synthesis of one specific 
small molecule, while another group wants to use general 
machines to synthesize many different small molecule types 
[189]. The strategies of the latter group include automating the 
retrosynthetic analysis process (a three-step process whereby 
one first converts all possible reactions to deconstruct a target 
area into a set of starting components, decides the best route for 
deconstructing the target, then manually validates the synthesis 
in a laboratory [56-60]) using ML techniques [61,62]. Machine 
learning has also merged with online reaction monitoring and 
self-optimization procedures to automate synthesis 
development for both customized and generalized paradigms 
[190]. Robot-mediated experimental discovery and testing has 
also used ML for both laboratory automation [191] and 
autonomous prediction of optimal molecular structures [192]. 

H.� Bio-manufacturing 
Bio-manufacturing uses biological products to produce bio-

materials for consumer and industrial applications. Genome-
scale modeling (GSM) has been used to predict microbial 
factory performance and identify potentially useful gene targets 
[9]. Machine learning, along with data mining, and genomic 
modeling, can aid in deciphering complex intra- and inter-
cellular phenomena to develop prediction scenarios to improve 
medical, food, and industrial yields [193]-[195]. Developing 
optimal strains for industrial applications requires 
understanding cellular and genetic metabolism and regulation, 
respectively. Challenges remain, including accounting for 
enzymatic and product consumption of critical building blocks 
[196], ensuring that stresses imposed by bio-production 
processes remain below minimally acceptable levels [197], 
accounting for both the unpredictability in the bio-reactor 
environments (random mutations, differing cell variations) and 
synthetic component behavior [198].  
 Deep learning, especially advanced DL, can investigate both 
‘noisy’ biological data and merge incomplete input/output 
variables in data sets [106,199]. Despite initial problems (a 
plethora of non-standardized data with different measured 
variables), techniques such as transfer learning [55], and, more 
importantly, developing database standards in metabolic 
engineering and systems biology fields [200] will greatly aid in 
advancing this novel and exciting field. 
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IV.� CURRENT NEEDS

As traditional and emerging fields continue to evolve, it is of 
interest to identify human needs that necessitate a paradigm 
shift towards intelligent approaches. 

A.� Drug Design 
Patient-centric drug design aims to use patient meta-data to 

develop personalized health solutions ranging from dietary and 
exercise guidelines to timely drug delivery. Drug design must 
be transformed from a top-down approach (mass-production) to 
a bottom-up approach (patient-centric using meta-data).

Deep learning architectures can use predictive analysis and 
patient database meta-searches to ascertain optimal drug 
design, thereby preventing dangerous side-effects during the 
drug regimen. Once designed, the drug must be intelligently 
delivered. A futuristic approach is to merge molecular robotics 
with DL architectures to develop optimal routes for drug 
delivery to targeted areas. One strategy could be to send 
molecular robots for ‘training runs’ to their specific targets, so 
that once they are inside the patient with the drugs, they “know” 
exactly where to deliver them. 

B.� Multi-platform Data 
Unlike homogenous data that are restricted to one system and 

can be opened by only one infrastructure and architecture, 
Multiplatform data (MDA)  can be read, and used, across 
multiple platforms. This goes beyond merely opening separated 
data warehouse silos: an integrated architecture can satisfy 
many requirements ranging from meta-data analysis to 
sophisticated modeling. The merging of previously 
incompatible data sets is an opportunity that ML algorithms can 
greatly benefit from. 

The need to integrate raw data from different formats, 
without reducing data quality, requires platforms that can be 
used beyond merely stacking the raw data, but also integrating 
the data into complex models to capture the depth of 
phenomena. These models can be used for making intelligent 
diagnoses, designing intelligent drugs (and delivery platforms), 
and developing novel therapeutic strategies for complex 
scenarios, for example, patients with multiple aliments who 
require multiple drugs. 

C.� Intelligent Pre-Diagnosis 
As life expectancies continue to rise, concerns are mounting 

that multiple ailments due to advanced old age require multiple 
drugs that are necessary for well-being but can have harmful 
side effects due to drug interactions. Predictive models of drug 
interactions would enable better management of drug 
combinations and development of safer alternatives. Machine 
learning algorithms can play a major role in addressing this 
urgent clinical need.  

V.� DEEP LEARNING FOR MOLECULAR ROBOTICS: AN 
EXAMPLE 

Experiments with kinesin-powered molecular shuttles 
described in section II.b and Figure 3 deliver sequential digital 
images in a fluorescence microscope’s field of view [201]. 
These images can be used to train a neural network that, upon 

successfully “learning” the shuttle dynamics, may acquire the 
ability to generate a new sequence of images from a starting 
image with dynamics that are nearly indistinguishable to the 
actual shuttle dynamics.   

This task can be approached using a RNN, since it can 
process an input sequence one element at a time while 
maintaining a ‘state vector’ within their hidden units that 
contains information about the sequence element’s entire 
history [202]-[204]. Training RNNs requires a backpropagation 
algorithm, which is problematic since the gradients either grow 
or shrink at each time step [205],[206]. Further, the layers share 
the same weights, making it difficult to learn to store 
information for long periods of time [207],[208]. 

These problems can be addressed with a long short-term 
memory (LSTM)-based convolutional RNNs (CRNNs). An 
LSTM algorithm uses memory cells to remember preceding 
inputs. It is an accumulator that connects to itself at the next 
time step, copying its own real-valued state and accumulating 
the external signal. This self-connection is gated by another unit 
that learns when to clear its memory content [50]. 

Fig. 4: The CRNN Architecture. The Training phase (A) results in the creation 
of sequential estimated frames. In the Testing phase (B), the first frame of an 
unused video is the starting point for the sequential estimated frames. ‘NN’ = 
Neural Network. 
 

During the training session, a sequential image batch is fed 
into the first CRNN, whose output are the next estimated 
images. In the first iteration (shown in Figure 4A), each original 
frame (Frame 1, Frame 2…Frame N-1) is fed into sequential 
CRNNs concurrently and trained in parallel, resulting in 
sequential estimated frames. The CRNNs were trained to 

y
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extract specific features (in this case, fluorescently labeled 
microtubules) to estimate their trajectories using the LSTM 
algorithm. During the training phase, the number of iterations 
depends on how well the network learns to adjust its weights in 
the internal layer to predict the correct labeling of the inputs 
(the sequential image batch).  

Upon the completion of the training phase, the first frame of 
a second image sequence can be used as the starting point from 
which all following frames are estimated by the trained neural 
network. The estimated image sequence can then be compared 
to the actual image sequence and validated to determine the 
neural network’s performance with respect to predicting the 
behavior of a swarm of molecular shuttles. 

VI.� TRENDS 

A.� Multi-modal Deep Learning Architectures 
The merging of data sets from multiple sources can lead to 

discovering previously unknown bio-markers, matching 
genotype and phenotype relations, and developing strong 
associations among various, inter-related biological 
phenomena. Other data sources can include images, biomedical 
signals, entire research databases, and electronic health records. 
A multi-modal DL architecture can classify information from 
multiple sources and by using these data streams compensate 
for missing information [210]. Promising research on multi-
modal deep learning [145],[162],[211] can open the door to 
advances in traditional fields and emerging fields such as 
complex diseases, drug-protein and drug-drug interactions in 
variable environments. 

Furthermore, multi-modal architectures can develop an 
overview of an entire system to elucidate complex interactions, 
develop single (or multiple) scenarios using current knowledge 
and permit optimal scenario development that can be tested in 
the laboratory. 

Molecular robotics – our field of research – can also be 
expected to benefit from multi-modal DL architectures. In one 
scenario, tracking a single bio-sensor or drug delivery transport 
in the human body can be challenging without intrusive 
equipment and expensive procedures. Multi-modal DL can use 
‘incomplete’ information of the molecular robot’s surroundings 
to provide a better idea of its location. 

B.� Multi-scale Modeling 
Multi-scale modeling merges models at different scales to 

describe a system [212]. The realization that intricate and inter-
related complex phenomena play important roles at multiple 
levels requires a new modeling platform that balances 
macroscale accuracy and microscale model efficiency. 

The two multi-scale modeling paradigms are sequential 
(which uses microscale models to form a macroscale model) 
and concurrent (which uses microscale models as needed as a 
macroscale model continues to be developed). 

Interdisciplinary research and development in molecular 
robotics for intelligent diagnosis and personalized drug delivery 
require considerations in milli/micro-robot design, their 
behavior in in vitro and in vivo environments under variable 
conditions, and the internal phenomena within the human body 
under variable conditions, to name a few. 

In drug discovery, multi-scale modeling can be merged with 
VS to find promising molecules and binding sites, and 
circumvent the need for expensive clinical trials, particularly if 
the emphasis is towards medical conditions that affect small 
populations. Multi-scale anatomy and physiology models in 
diseased conditions, when merged with ML and VS algorithms, 
can be used to predict single, or multiple, drug molecule effects. 

C.� Molecular Robot Localization 
As emerging fields develop, research is needed to ascertain 

the technology’s potential in intelligent drug delivery and 
release in affected areas, and real-time localization. This is 
critical for individuals who suffer from multiple diseases and 
require multiple drug treatments, particularly if molecular robot 
‘teams’ with different drug cargoes must be injected in vivo and 
have to be tracked to ensure proper drug delivery and release in 
targeted regions. 

Sitti et al have merged a CNN architecture with sophisticated 
sensors to provide real-time robot localization [11]. More 
research should focus on enhancing localization capabilities of 
multiple molecular shuttles carrying cargo (drugs, nano-
manufacturing components for ‘on-site’ assembly, etc.). 
Traditional and emerging DL architectures can, when merged 
with multi-modal and/or multi-scale modeling, provide 
opportunities for training molecular shuttles to autonomously 
determine their position in vivo. The number of molecular 
shuttles can increase, potentially providing the basis for an 
intelligent swarm to go to multiple designated sites and release 
their drug cargo. 

D.� Clinical Trials 
The introduction of traditional and emerging ML algorithms 

can potentially reduce the time and expense across the entire 
drug discovery and delivery pipeline, leading to timely 
discoveries that can be rapidly tested in clinical trials and 
delivered to the consumer marketplace. 

To begin with, VS, multi-modal, and multi-scale 
technologies can be used for initial molecule discovery that can 
be merged with patient data from various sources to optimally 
match molecules for specific treatment. The merged meta-data 
can also account for possible side-effects of molecule 
combinations in patients. 

Other ML aspects that can aid in clinical trials can be to use 
collected meta-data to predict drug molecule outcomes. If 
enough patient meta-data is acquired, one possible use can be 
to mimic short-term and long-term effects of simulated drug 
intake in virtual patients. An optimal drug combination, once 
discovered, can be developed and tested on real patients to 
validate the virtual patient models in their outcomes (the virtual 
patient feeling better, or worse). 

These patient models can contribute to a knowledge of the 
effects of molecules in different patient profiles, potentially 
obviating the need to repeat the same trials in real-time, saving 
time and resources. 

As lifespans continue to grow, patients will be suffering from 
multiple ailments that require multiple drugs, resulting in 
deleterious side effects. As personalized medicine continues to 
evolve, another potential research avenue will be to use patient 
meta-data, including ML architectures to account for optimal, 
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and possibly multiple, drug molecule interactions and delivery 
platforms to develop a personalized, patient-centric solution. 
This could open the way towards research into rare diseases that 
were, until fairly recently, not considered a priority by major 
pharmaceutical companies. Implementing ML could provide a 
paradigm shift towards treating rare diseases. 

VII.� CHALLENGES AND OPORTUNITIES 
Implementing DL techniques and platforms in traditional and 

emerging fields will require the ML research and development 
community to circumvent challenges. 

A.� Black Box to White Box 
Although DL platforms can detect increasingly abstract areas 

of interest in various data platforms, how the data are analyzed 
and obtained remains unknown, engendering criticisms of the 
‘black box’ nature of DL platforms, where we do not know how 
the results are obtained. As data becomes increasingly complex, 
the shift from a ‘black box’ (where we know little about how 
the results are obtained) to a ‘white box’ (where we know how 
results are obtained) will be required to meaningfully interpret 
results. One solution is a de-convolutional neural network (that 
visualizes specific input representations in CNNs) [213]. 

The key problem is that when hundreds, if not thousands, of 
neural units with multiple input layers are included, it is 
difficult to understand how the algorithms interpret the data, 
and how they come to the conclusions that they do, unlike past 
studies relying on simple neural networks with few neural units 
and domain expertise. One solution is to develop protocols 
within the algorithm that would ‘explain’ how it came to the 
conclusions that it did. However, as DL algorithms continue to 
evolve to meet the demands of studying and understanding 
increasingly complex data, simple messages and rationales will 
be insufficient. 

This urgency is not only limited to research labs and 
industries, but also in the everyday lives of citizens who use 
these algorithms. The main problem is that we still have a 
limited understanding of how the brain actually works: we are 
replicating our limited understanding of biological brains with 
a ‘rough copy’ of ANNs. 

One solution is use neuroscience to better understand the 
biological brain’s capability and learning process, and using 
these insights to develop more sophisticated DL algorithms. 
This implies studying, and understanding, how the brain learns 
and changes from learning. 

B.� Data Complexity 
As traditional fields and emerging fields continue to evolve, 

data are becoming increasingly complex, as multiple 
phenomena are being recorded. Such complex data is making it 
increasingly difficult to measure and interpret using traditional 
ML approaches. Even with DL algorithms, proving correlation 
and causation from numerous phenomena is becoming 
increasingly difficult. The increasing demands placed on 
correctly interpreting increasingly intricate phenomena require 
numerous quality control mechanisms and numerous 
interpretation mechanisms in the workflows. Emerging DL 
algorithms can provide some means of overcoming data 
complexity. 

 Developing casual relationships among numerous, inter-
related phenomena will require a mixed strategy of stacked, 
multi-modal architectures that study features in one system to 
ascertain whether phenomena affect each other (which could 
have been missed if such data had been studied alone) and DL 
architectures that can begin with identifying and classifying to 
what extent phenomena affect each other, and begin developing 
casual relationships that can be replicated in real-time. 

Deep learning algorithms may also require multiple forms of 
human domain expertise, or have specified capsule networks to 
include different aspects of a phenomenon. 

C.� Small Data Sets and Overfitting 
Collected data sets often remain frustratingly too small to be 

used for DL algorithms. Furthermore, it is generally assumed 
that data are of both sufficient quantity and generally balanced. 
Imbalanced data sets extend into other areas, such as clinical 
trials where less data exists with diseased groups vs. control 
groups. Privacy laws further limit data availability from 
diseased groups. This can severely skew the results of DL 
algorithms that require large amounts of balanced data to 
provide accurate measurements. 

Data sets of insufficient size also result in overfitting: the 
training data error is low, but the testing data error is high. This 
results in the model failing to learn a proper generalization of 
the knowledge in the data. Although methods exist to rectify 
this problem (for example, the dropout method, where random 
nodes, and their edges, are ‘dropped’ from the network during 
training [214]), overfitting remains a huge problem with small 
data sets. One solution is data preprocessing (sampling and 
basic feature extraction) [215]-[217]: sampling balances an 
imbalanced data distribution, thereby lessening imbalanced 
data’s potential impact. Other methods include cost-sensitive 
learning, that calculates the costs of misclassifying data [218], 
and algorithmic modification, where algorithms can be 
modified to suit small datasets [218]. 

D.� Displacing the Workforce through Automation 
The ability of machine learning algorithms to predict, and 

model, the outcome of experiments has well been documented, 
from simple chemical reactions to complex organic systems [2-
11]. This enables the construction of experiments in silico and, 
potentially obviates the need for performing experiments, 
especially if supplies are limited. As databases continue to grow 
in quantity and modeling becomes more sophisticated, the 
potential for constructing, and performing, experiments in a 
‘virtual lab’ will continue to grow. 

However, concerns are mounting that as automation 
progresses, traditional fields are in danger of being displaced 
[12]. As ML algorithms continue to be developed and 
improved, concerns may mount that the entire drug discovery 
and testing workflow may be automated [2]. From the drug 
manufacturer’s viewpoint, such investments may pay off in the 
long-term, as pressure is mounting to reduce the time and costs 
towards developing new drugs, combined with calls for more 
‘patient-centric’ medicine. This includes drugs that account for 
the person’s genomic profile, thereby negating dangerous drug 
side effects. For the workers in the drug discovery and clinical 
workflow, there is little comfort towards losing one’s job to an 
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ML platform. These concerns should be addressed as pressure 
continues to mount to rapidly convert complex data into 
products and services. 

E.� Data Preparation 
Preparing the data to ensure that they can be correctly 

interpreted by the ML algorithm is a tedious and frustrating, yet 
necessary, step: the consequences of not thoroughly executing 
each step would be data misinterpretation. This can result in 
added cost, and, even worse, in loss of human life.  

Every aspect of data preparation must be accounted for: to 
begin with, the data set must be of considerable size, as too little 
data can result in misinterpretations. Data sets must also be 
properly partitioned into training and testing sets. The models 
must be properly selected, trained to know what parameters to 
look for, and tested on different data sets to prevent overfitting, 
and being able to test the data properly. The raw data must then 
be normalized to adjust variables from different data sets into a 
common scale, which would ensure that proper results comes 
out from the algorithm’s output layer. 

F.� Selecting Correct Architectures and Hyper-parameters 
Using the correct ML algorithm is critical and requires a 

thorough understanding of each algorithm’s capabilities, 
advantages, and disadvantages to obtain optimal results and 
prevent data misinterpretation. To begin with, the algorithms 
can be divided into three classes: DNNs for internal correlations 
in high-dimensional data, CNNs for spatial information 
analysis, and RNNs for sequential data analysis [29]. Even 
when the correct algorithm is selected, the ‘correct’ hyper-
parameters are important, as it can affect the results [2]. 
Automated hyper-parameter selection is slowly superseding the 
use of human ML experts for hyperparameter selection [3]. 

G.� Training the Model 
Training a model involves feeding data into a network to 

make it ‘learn’ to look for specific parameters within a data set. 
The data is sent into the first of many neural layers, whereby 
weights are assigned to specific features. An image may begin 
with the first layer looking at edges, followed by the second 
layer looking at specific features, followed by layers that 
continue to pass the image until the final layer releases the final 
output [2]. Initial parameters should be randomized to prevent 
fixed initialization and independently sampled from normal 
distributions with minimal variances [3],[4]. The batch size and 
training rates can affect both the training speed and model 
performance [5]. 

Overfitting continues to be a problem. The dropout method 
is one way of addressing this problem: another method, called 
‘early stopping,’ stops the moment that validation performance 
begins to either saturate or deteriorate, leaving the parameters 
with the best performance. Another method is layer-wise pre-
training, which pre-trains unsupervised layers using either 
autoencoders or restricted Boltzmann machines, with the entire 
network then being fine-tuned. 

H.� Opportunities 
Although ML algorithms are powerful and have been used 

for multiple applications, challenges remain, despite efforts to 

improve their capabilities. This can open opportunities for 
researchers to advance the ML field to cope with increasingly 
complex data. Two opportunities are discussed from our 
attempt at organizing the swarm behavior of molecular robots, 
and the third opportunity on how to advance the field using 
research from neuroscience. 
The first opportunity is to advance automated image analysis to 
identify molecular robots and their dynamic state (position, 
direction of movement, etc.). Current algorithms struggle to 
quickly and reliably identify kinesin-propelled microtubules 
serving as molecular shuttles when they both operate at high 
densities and dynamically change their shape. Artificial neural 
networks can make a significant contribution, although the best 
parameter optimization approach has to be identified [104], 
[219]-[221].  

The second opportunity is to apply DL techniques to model 
and elucidate swarm behavior. Multimodal and multiscale 
information can be addressed with state-of-the-art ML 
techniques [222],[223]. However, the presence of thermal noise 
at the molecular and nanoscale can negatively affect the ML 
algorithm’s ability to predict behavior. 

The biggest opportunity can come from tackling the major 
criticism that nobody really knows how an ML algorithm draws 
conclusions (‘black box’). As more input layers are added 
within an algorithm, confusion increases. Forging research 
partnerships with neuroscientists can aid in understanding and 
appreciating brain functions. Their insight could be the key 
towards developing the next generation of ML algorithms that 
can ‘explain’ their decision-making processes. 

VIII.� CONCLUSION 
Machine learning is presenting limitless opportunities for 

traditional and emerging fields. As more data are collected and 
analyzed to understand complex phenomena and their roles in 
the development, maintenance, and regulation of systems from 
the nano-level to the macro-level, the field must continue to 
expand into new areas. Although tremendous progress has been 
made, more work remains, particularly when working with 
systems that lack the massive quantity of data required for DL 
algorithms. As data become increasingly complex, more 
measures must be taken to ensure that the right DL algorithms 
are used, and to understand how the algorithms obtained their 
results. 

The molecular robotics field and, in a broader sense, 
microscopic agents designed and programmed by synthetic 
biologists [224], promise advances in drug delivery, biosensors, 
regenerative medicine and experimental therapies. The ability 
of data scientists to analyze, interpret, and model, unstructured 
data to convert it into a deeper understanding of complex 
phenomena, can assist in understanding the underlying 
dynamics in these applications. The use of DL algorithms 
towards understanding the swarming dynamics in molecular 
shuttles is an example of the potential applications that DL 
algorithms have.  

We are looking forward to the large impact ML will have in 
in the decades to come. 
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