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Abstract—Machine learning is enabling researchers to analyze
and understand increasingly complex physical and biological
phenomena in traditional fields such as biology, medicine, and
engineering and emerging fields like synthetic biology, automated
chemical synthesis, and bio-manufacturing. These fields require
new paradigms towards understanding increasingly complex data
and converting such data into medical products and services for
patients. The move towards deep learning and complex modeling
is an attempt to bridge the gap between acquiring massive
quantities of complex data, and converting such data into practical
insights. Here, we provide an overview of the field of machine
learning, its current applications and needs in traditional and
emerging fields, and discuss an illustrative attempt at using deep
learning to understand swarm behavior of molecular shuttles.

Index Terms — Deep learning, machine learning, neural networks,
informatics

I. INTRODUCTION

he exponential growth of big and increasingly bigger data

sets both in traditional and emerging fields has raised
important questions: 1) How can increasingly complex
phenomena in these data be correctly interpreted and analyzed?
2) How can the aforementioned data sets be converted into a
deeper understanding of complex phenomena? and 3) How can
the achieved understanding be converted into practical
applications in medicine, ranging from rapid and precise
diagnosis, over intelligent treatment, to targeted prevention? As
we face the interacting pressures of rising chronic diseases,
ageing populations, and dwindling resources, a paradigm shift
towards intelligently extracting, analyzing, interpreting, and
understanding increasingly complex data is required. The
rapidly evolving field of machine learning is key to this
paradigm shift.

Machine Learning (ML) has expanded both in scope and
complexity as computing power increased. Graphics
Processing Units (GPUs) and bigger storage spaces became
more widely available, resulting in powerful parallel data
processing. ML techniques have also evolved, and are now used
to understand large data sets in medical image processing,
speech recognition, computer vision, language processing,
bioinformatics, and drug design [1]. Previous studies have
investigated ML in bioinformatics [2], biology and medicine
[3], computational biology [4,5], biomedicine [6], and super-
resolution imaging [7].

The application of ML (and later, deep learning) has
expanded into emerging fields including, but not limited to, bio-
manufacturing [8], automated organic synthesis [9], material
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and molecular modeling [10], medical robotics [11], automated
drug discovery [12], biological networks [13], and automated
diagnosis [14]. Traditional fields are evolving in response to the
development of ML techniques: for example, in drug design, as
pressure is mounting on pharmaceutical companies to rapidly
test promising molecules, engage in clinical trials, and place
drugs on the market in a timely matter, ML can potentially aid
in reducing the timeframe for drug discovery and trials. In the
diagnosis field, rapid and precise information about the nature
of a patient’s health problem can be obtained with the help of
machine learning algorithms.

Of particular interest to the authors is the design and study of
molecular nano- and micro-robots [15-19], and their use in
medical applications, including minimally invasive surgery
[20], tissue engineering [21], and targeted drug delivery [22].
Despite rapid advances, various challenges remain with respect
to design [23], materials selection [24], and the control of
location and orientation [25].

The goal of this position paper is to provide background
information about ML for the non-expert and discuss recent
advances in ML techniques, present current applications in
traditional and emerging fields, assess the current needs that
ML can respond to, and to provide an example of how machine
learning techniques can be used in molecular robotics,
specifically in studying and understanding swarm behavior of
molecular shuttles. Finally, we aim to address possible future
trends, highlight both current challenges in implementing this
evolving field and opportunities for advancing it.

II. TECHNOLOGY BACKGROUND

A. Artificial Intelligence, Machine Learning, and Deep
Learning

The concept of artificial intelligence (Al) started at a
computer science conference at Dartmouth College in 1956
[26]. The vision was to develop machines that can mimic
human intelligence and the ability to learn. The limitation was
that it could only perform simple, specific tasks (dubbed
‘Narrow AI’) [27]. To advance further, algorithms needed to be
developed that could analyze data structures, learn from said
data structures, and determine what steps to take based on the
nature of the data structures. This engendered the concept of
ML, whereby the algorithm sifts through massive amounts of
data, ‘learns’ from it, and responds to it. Despite these
advances, ML algorithms were still limited by relying
extensively on data representations, known as ‘features,” that
required human expertise (known as ‘domain expertise’) to
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direct which features the algorithm should look for [28]. These
algorithms have shown limited success to achieve optimal Al
performance and to process highly complex data. Andrew Ng
proposed to make artificial neural network (ANN) structures
complex by increasing the number of hidden layers and neurons
in the layers, and the use of massive data [29]. The demands
placed on the Al community (more robust algorithms that
required very little domain expertise), combined with the
exponential growth in data sets and greater availability of
graphics processing units (GPUs), resulted in the development
of deep learning (DL) algorithms. Deep learning is a branch of
ML that derives its origins from the concept of ANNs.

An ANN is a computational platform composed of inter-
connected nodes (“artificial neurons’) that resemble, and mimic,
the brain’s neuronal functions. The connections between the
nodes (‘edges’) strengthen or weaken as the learning process
progresses. Figure 1 shows a traditional ANN containing an
input layer (that senses and detects signals within the
environment), a hidden layer (that processes the signals sent by
the input layer), and an output layer (the response to a signal or
stimulus). Note that each neuron in both the hidden and output
layers assigns a weight coefficient to its input. Therefore, the
final output of neural network is determined by the
contributions of each weight coefficients [30]. ANNs ‘learn’ the
same way humans learn: by interacting with, and responding to,
various stimuli within a local environment.

INPUT
LAYER

OUTPUT
LAYER

HIDDEN
LAYER

Figure 1: An ANN using a single hidden layer. S1-S6 are the nodes in the
input layer, and O1-O3 are the nodes in the output layer.

Learning algorithms use statistics and analytics to enable
computers to improve a given task’s performance (‘learn’)
using data without being given specific instructions [31]. They
use supervised and unsupervised learning tasks to match, and
identify, inputs. Supervised learning uses labelled (categorized)
data that are fed into the input layer, which produces an output
(the desired category with the highest score). Supervised ANNs
are useful when the outcome of the feature vector is known. As
in the case of regression, a feature vector is input into the net
and through backward and forward propagation the optimal

weights are found to train the network over the training
examples. The network is then tested on the testing set. The
network can then be used for prediction and accuracy
measured.

Although supervised ANNs have been successfully used in
many biomedical applications, including DNA motif discovery
[32], medical diagnosis [33], cancer identification and gene
classification using DNA microarray gene expression patterns
[34], and drug discovery [35], an ANN may exhibit inconsistent
prediction performance and long training times, especially for
architectures with many layers requiring large data sets.
Architectures need to be carefully selected and fine-tuned to
achieve the best performance. The selection of the number of
layers, the number of nodes for each layer, and the activation
functions for nodes in each layer are critical parameters that
need to be determined for each application.

Unsupervised learning uses the same method as ANNs and
can be considered as a less complex version of a DL network.
Unsupervised learning is related to logistic regression through
its (usually) sigmoid output layer. The self-organizing map
(SOM) and adaptive resonance theory (ART) are widely used
in unsupervised learning algorithms. The SOM is a topographic
organization in which nearby locations in the map represent
inputs with similar properties.

The ART model allows the number of clusters to vary with
problem size and lets the user control the degree of similarity
between members of the same clusters by means of a user-
defined constant called the vigilance parameter. ART networks
are also used for many pattern recognition tasks, such as
automatic target recognition and seismic signal processing.
Unsupervised ANNs have been used in medicine and biology,
including medical data clustering [36], classical biomedical
markers analysis [37], and tumor characterization [38]. The
unsupervised ANN needs to label and group the raw data
without any prior knowledge of patterns in the input data. This
may lead to less accurate results. Finally, the output may not be
ascertained since the number of classes is unknown and needs
to be determined by the ANN-generated results.

A deep neural network (DNN) uses the same architecture as
an ANN, except with more hidden layers between the input and
output layers. The output values are sequentially computed
within the network’s hidden layers, with each input vector
comprising the previous layer’s output vector to produce a
weighted sum. The result is a higher, abstract data
representation that is attentive to small details while ignoring
irrelevant information. DNNs have been widely been used in
protein structure prediction research [39-42], biomedical
imaging, with an emphasis on anomaly classification [43-45],
segmentation [46], recognition [47,48], and brain decoding
[49,50]. In biomedical signal processing, DNNs have been
using EEG signals for motor skill [51], emotional classification
[52], and anomaly detection using ECG signals [53,54].
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Fig. 2: A Convolutional Neural Network applied to the task of identifying objects in an image.

Convolutional Neural Networks (CNNs) and Recursive
Neural Networks (RNNs) are the most common DNNs. A
CNN, shown in Figure 2, is composed of convolution, non-
linear, and pooling layers [55]. The convolution layers obtain
local weighted sums (‘feature maps’) at every layer by
computing filters that are repeatedly applied across the entire
data set to improve training efficiency. The non-linear layers
then increase the feature maps’ non-linear properties. Finally,
the pooling layers performs sub-sampling of non-overlapping
regions in feature maps to enable the CNN to aggregate local
features to identify complex features [6]. CNNs process
multiple data types, particularly two-dimensional images. An
RNN processes inputs one element at a time, maintaining a
vector within its hidden units that contain information from all
of the preceding element’s sequence. The final output depends
on the previous inputs. RNNs are ideal for sequential
information  processing, particularly natural language
processing [56] and audio recordings [57].

CNNs have been used for gene sequence data [58],
transcription-binding  site predictions [59,60], anomaly
detection and classification using CT image datasets [61],
malignant tumor growth prediction [62], chemotherapy
response prediction [63], a finger-joint detection platform to
examine bone age and growth disorders [64,65], and brain
decoding, in which extracted features were converted into 2-D
pixel colors, to predict seizures [66]. RNNs have been used for
protein structure prediction [67], gene expression regulation
[68], protein classification [69], and seizure prediction [70].

Novel architectures have recently emerged to tackle
increasingly complex biomedical data derived from emerging
interdisciplinary fields. Capsule networks [71,72] use the CNN
method to visualize, and direct, different stimuli to specialist
capsules (modules). Rather than adding hidden layers, a capsule
network adds layers within each hidden layer. Such a network
can lead to a better understanding of disease mechanisms.

Multi-task learning exploits the ability to simultaneously
learn multiple (but similar) tasks within a model: it has been
applied to predict drug toxicity and sensitivity in cancer cell
lines [73-75]. Other exciting research avenues can include
looking for ways to minimize deleterious drug side effects
(termed ‘off-target effects’).

A transfer learning neural network architecture is based on
the logic that, since biological systems share similar
characteristics, data from one system can help to understand the

other [76]. It allows a model to be re-used from one task to
another different (but similar) task.

Deep Spatio-Temporal Neural Networks (DST-NNs) learn
multi-dimensional outputs through progressive refinement,
which looks at local correlations through input feature
components per layer: the spatial layer, where the original
inputs are used in every layer, and the temporal features, which
change to end up in the upper layers [77].

Multi-dimensional RNNs use RNN capabilities to treat non-
sequential, multi-dimensional data as sequential data groups. In
one study, a 2-D data set from four contexts under different data
processing orders are reflected in four hidden units that are
connected to a single output layer, with results that consider all
possible contexts [78].

Convolutional auto-encoders (CAEs) use both auto-encoders
(AE) and CNNs to combine good hierarchical representations
of spatial information data while being regularized via
unsupervised training. Reconstruction error is minimized using
both an encoder (to extract feature vectors) and decoder (to
recreate the data from the feature vectors) when training AEs.
The principles of CNN can mimic an AE in the sense that
encoders (deconvolution) and decoders (un-pooling) are
integrated as a CAE and trained as an AE [79,80].

B. Molecular Robotics and Swarming

In this section, we give a short introduction to an application
area of particular interest to our work, molecular robotics. One
specific problem is how molecular robots can be induced to
exhibit swarming behavior. Swarming is a phenomenon
wherein large numbers of individuals organize into a
coordinated motion. The ability of fish schools, insect swarms,
or starling murmurations to shift shape as one, and coordinate
their motion in space, has been extensively studied because of
their implications for the evolution of social cognition,
collective animal behavior, and artificial life [67],[81]-[82].
Understanding swarm mechanisms and operational principles
can provide novel approaches for developing swarm formation
control, autonomous agent distributed/cooperative control, and
robot coordination [83]-[85].

Interest has grown in using foraging and swarming-based
biomimicry for engineering applications such as distributed
optimization, collective robotics, satellite clusters, mobile
sensor networks, and autonomous aerial/underwater vehicles
[86],[87], which has further motivated research into swarming
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behavior and its applications. Intelligent, agent-based
simulations for swarm analysis has greatly improved our ability
to perform tasks such as image processing, pattern and speech
recognition, and language interpretation using advanced
computational techniques such as DNN [2] and intelligent agent
swarms [86],[87]. Simulating agents in models allows easy
parameter modification, voluminous data generation, full
experiment reproducibility, and easier identification of complex
phenomena’s underlying dynamics [88]. Exploiting swarm
behavior is a promising approach to controlling molecular
robots, due to their typically large numbers combined with
limited communication and processing abilities.

Molecular robotics takes robots, which are artifacts
exhibiting intelligent behaviors by sensing-processing-
actuating cycles [90], to the molecular level. The concept
stresses the need to borrow mechanisms from living systems
and applying them to robots [89]. Among the mechanisms
include designing systems that encourage and engender
desirable behaviors depending on the specific task at hand
(foraging, swarming, autonomous decision-making, etc.) [90].
Powering molecular robots continues to be a challenge, and
biomolecular motors have the key advantage of unmatched
energy conversion efficiency [91].

Biomolecular motors, such as the motor proteins myosin and
kinesin, convert the chemical energy stored in ATP into
mechanical work as they move along their cytoskeletal
filaments (actin filaments and microtubules, respectively) [92].
Biomolecular motors can be used as highly functional off-the-
shelf components to construct molecular robots. An example
for such a hybrid robot combining biological and synthetic
molecular components is a kinesin-powered molecular shuttle
[93],[94] (Fig. 3a): surface-adhered kinesin motor proteins
propel microtubules which are functionalized with linkers to
endow them with the ability to capture and carry cargo [95].
Depending on the ATP concentration and temperature, the
shuttles move at speeds up to 1 pm/s [96]. Millions of shuttles
can operate in parallel, and their interactions can be
programmed [97]-[99]. The operation can be visualized using
fluorescence microscopy if the microtubules are fluorescently
labeled (Fig. 3b), and automated methods relying on image
segmentation by thresholding to identify and track the
microtubules have been developed [100]. Interactions between
shuttles, or gliding actin filaments and microtubules in general,
engender complex emergent patterns [101]-[103].

Machine learning can contribute to molecular robotics at two
distinct levels: it can be applied to analyze microscopy images
of molecular robots, where it can facilitate and improve the
identification of the robots in crowded images with a high
background. This is a classic image processing task that has
been addressed with ML solutions in various fields. The second
level is to “learn” the swarm behavior, thereby enabling its
control, similar to the way a herding dog learns and controls the
behavior of a flock of sheep. It is also desirable to infer the rules
engendering the behavior [104]. An illustration of a possible
use of DL to model molecular shuttle movement and
organization will be illustrated. However in the next section, we
first highlight how ML has been used in different applications
in traditional and emerging fields.
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Fig. 3: Top and Middle: Molecular shuttles as conceived by Vogel and
Howard utilize kinesins adhered in tracks and controllably activated with
defined concentrations of ATP to propel cargo-carrying microtubules.
Bottom: Gliding, fluorescently labeled microtubules can be imaged by
fluorescence microscopy and appear as bright lines with variable shapes as
they interact with guiding structures. Adapted with permission from [209].
Copyright 2003 American Chemical Society.

III. CURRENT APPLICATIONS

Machine learning and DL have been extensively used across
traditional and emerging fields. Below is an overview of fields
that have taken advantage of current ML and DL capabilities.

A. Diagnosis of Diabetic Retinopathy

A research group at Google automated the diagnosis of the
severity of referable diabetic retinopathy using a DL algorithm,
thus potentially aiding clinicians in rapidly diagnosing and
treating this disease [14]. The algorithm obviated the need for
domain expertise, resulting in significantly reducing the time it
took to learn what to look for, and, by extension, closely match
clinician’s classification of the severity of the disease.
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B. Microrobot Localization

Sitti et al., used an advanced CNN architecture to enable real-
time localization of a minimally-invasive and therapeutic
endoscopy robot for the gastrointestinal (GI) tract [11]. This
approach enabled the robot to establish its position and
orientation within a frame of reference. They have merged the
CNN architecture with sophisticated sensor platforms to enable
precise, real-time robot localization within the GI tract. This can
open new research avenues towards fusing molecular robot
technologies with CNN (and other) architectures that can aid in
precise diagnosis and interventions, and for molecular shuttle
localization in vivo.

C. Computational Biology

Computational biology uses computers to model, and
understand, the essential functions of life, with particular
emphasis on representing and simulating biological systems
[105]. The quantitative increase of biological data, both in size
and complexity, has initially engendered the use of traditional
ML techniques that required extensive domain expertise and
manual interventions to adjust the neural network for precisely
measuring specific phenomena. Deep learning requires minimal
domain expertise and can ‘learn’ which features to look for
from available data sets.

In regulatory genomics, where specific regulatory
mechanisms and non-coding transcription factors within the
genome are studied, the main challenges are mapping the
effects of mutations within a population, especially of rare
mutations that can result in limited sample sizes, and predicting
DNA sequence because of its multi-layered abstraction among
its variations, interactions with different regulatory
mechanisms, and how it effects one region (or several regions)
of interest. DNNs have been used in predicting splicing
[106],[]107], and DNA-binding protein specificities [59].
Alipanahi et al. have expanded the use of CNNss to predict the
effects of mutations, including the visualization of all possible
mutations within a sequence, which, in turn, can lead to
identifying single nucleotide variants (SNVs) that contribute to
various mutation(s) [59]. Researchers have also started merging
different DL architectures to predict multiple trait development
across genomes and how they affect each other: Zhou and
Troyanskaya used multiple architectures to capture multiple
genomic sequences [108]: Dahl, et al. used multi-task neural
networks to predict multiple chromatin states within regions of
interest, in parallel [109].

In biological image analysis, CNNs are commonly used for
classification, feature detection and extraction, and pattern
recognition. Adding more hidden layers in the CNN results in
detecting more abstract features [62]. Image analysis
architectures and algorithms can potentially be expanded to
include multiple, stacked images, either from multi-scale, or
multi-modal imaging techniques, and trained to look for
increasingly complex features. This could greatly aid in
developing more precise diagnoses in clinical settings,
especially from patients suffering from multiple ailments.

The field has recently expanded to include analyzing entire
cells, and cell populations, to understand their interactions with
each other, and their environment. Such efforts have resulted in

architectures that have merged classification with segmentation
tasks to model entire full-resolution fungal microscopy images
[110] and quantify bacteria colonies on agar plates [111]. These
technologies can greatly expand our understanding of cell
population behavior, both in healthy and diseased states. These
data can also serve as a reference for possible rapid clinical
diagnosis of patients suffering from similar ailments.

D. Bioinformatics

Bioinformatics uses computational tools to discern biological
data. With the increasing size and complexity of data in the ‘-
omics’ field, pressure is mounting to develop sophisticated
tools that can quickly and efficiently convert data into
healthcare products and services. Deep learning architectures
have contributed immensely to this field. It is expected that, as
the field continues to evolve and more complex data is gathered,
more sophisticated architectures and algorithms will be needed
to analyze and interpret various inter-connected phenomena.

Large amounts of raw sequential data are used (DNA and
RNA sequences, for example). RNNs are used because of their
ability to process sequential information. Among avenues of
interest are protein structure prediction and classification that
can aid in deciphering under what circumstances proteins
change structurally [39-42], gene expression regulation to
decipher the circumstances where genes turn ‘on’ or ‘off’[112]-
[122], and anomaly classification and detection [123]-[125] to
ascertain when, for example, the circumstances lead to the
development of malignant tumors.

In biomedical imaging, data sources come from MRI
[126],[127], radio-graphs [128],[129], PET [130], and
histopathology [131] images. CNNs are used since they mimic
the human visual cortex that looks at the general features in the
environment (mimicking photoreceptors in the retina), and are
designed to study variable and intricate features within an
image, or set of images. Among avenues of interest are anomaly
detection [61],[132]-[137], segmentation [46],[138]-[143],
recognition [144]-[147], and brain behavior ‘decoding’ [50].

In biomedical signal processing, researchers primarily use
sequential recorded electrical activity from the human body
[115]. Sources include EEG [148], ECoG [149], ECG [150],
EMG [151], and EOG [152]. RNNs are used because
biomedical signals are sequential data. Avenues of research are,
for example, brain decoding [153]-[162] and anomaly
classification for diagnosis of neuro-degenerative disorders and
heart ailments [163]-[168].

E. Network Biology

Network biology studies biomolecule interactions that
contribute to the structure and function of living cells, the
reconstruction (and analysis) of large-scale endogenous
biological networks, and the design (and construction) of small-
scale synthetic gene networks [13]. Machine learning
algorithms can exploit, and merge, disparate biological datasets
to develop increasingly complex, and stacked, models to study
interactions of various phenomena from within cells to between
cells in tissues and organs in both healthy and diseased states.

Disease biology can be understood using network biology
principles (discovering networks and sub-networks of the
interactions required for the commencement of a disease phase)
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[169-175], and using ML to identify and comprehend disease
mechanisms from the surface to deeper levels. There has been
progress [176-179], but work remains, specifically at
understanding how disrupting biological process networks can
engender diseases. Capsule networks [71,72] use similar
approaches as CNNs to visualize different, and direct, stimuli
to specialist capsules (modules). A capsule network adds layers
within each hidden layer, rather than adding more layers.

Drug discovery, in the context of network biology and ML,
requires characterizing the actions of compounds, predicting
both on-target and off-target effects of said compounds, and the
merging of multiple drugs to attack complex diseases [180].
Large multi-omics datasets, when merged with genotype
archives and databases such as PubChem [181], DrugBank
[182], and ZINC [183], can potentially be integrated to develop
increasingly predictive complex disease outcomes, and their
interactions within the human body can be studied and
modeled. Multi-task neural networks exploit the ability to
simultaneously learn multiple, yet similar, tasks within a model:
this method has been applied to predict drug toxicity, and drug
sensitivity, in cancer cell lines [73]-[75]. Other exciting
avenues of research can include looking for ways to minimize
the deleterious side effects of drugs (‘off-target effects’).

The human microbiome is composed of micro-organisms
within the human body. These micro-organisms play essential
roles in the body’s health and development. Studying micro-
organism interactions, and the evolution of their exchange
networks, can lead to new insights towards the interaction
between these micro-organisms and their hosts. A transfer
learning neural network is the method of choice for the limited
data surrounding these ‘meta-metabolic networks’ [76].

Synthetic biology seeks to develop artificial biological
components for research, medical, and industrial applications.
One exciting avenue of research is synthetic gene circuit
development [184]-[188]. The main challenges are
understanding design principles and how multiple components
(at multiple levels) interact with each other: it demands a neural
network that combines the CNN’s ability to detect abstract and
minute details to understand the organization of regulatory units
in synthetic networks, with the RNN’s ability to sequentially
predict the outcomes of different components to ensure the
system’s stability as its complexity increases.

F. Drug Discovery

Virtual screening (VS) uses computers to peruse molecular
libraries to identify molecules that can successfully bind to
receptor sites to be used for drug development [31]. The need
for automatic search methods that successfully identify
promising molecules has resulted in the development of ML
applications used for screening and matching molecules.

Support Vector Machines (SVMs) classify and rank
properties, in the form of binary outcomes [32-39]. SVMs have
been applied towards ranking compounds to predict activity
levels of their binding sites [40], along with novel hybrid
techniques for classification purposes [41,42].

Decision Trees (DTs) outline decisions and their
consequences in the form of a tree. It takes the form of an
upside-down tree that branches out into different branches
(decisions) until the leaves (decisions, or nodes) have been

developed. DTs have been used to develop binary property
classifications ranging from drug permeation to metabolic
stability (or lack thereof) [43-51].

Naive Bayesian classifier uses Bayes’ theorem that describes
the probability of an event that has originated from two (or
more) causes [52]. The classifier provides a framework where
an established opinion, or rule, changes when new knowledge
(data) enters into the equation, and has been used with ML
techniques for similarity-based clustering [53-55].

G. Automating Small Molecule Synthesis

The move from manual small-molecule synthesis to
automated small-molecule synthesis is an attempt to create
machines that can mass-produce multiple small molecules of
different types. Challenges remain towards automating small
molecule synthesis for mass-production, with two camps
attempting to solve the problem: one group wants to use
optimized machines to customize the synthesis of one specific
small molecule, while another group wants to use general
machines to synthesize many different small molecule types
[189]. The strategies of the latter group include automating the
retrosynthetic analysis process (a three-step process whereby
one first converts all possible reactions to deconstruct a target
area into a set of starting components, decides the best route for
deconstructing the target, then manually validates the synthesis
in a laboratory [56-60]) using ML techniques [61,62]. Machine
learning has also merged with online reaction monitoring and
self-optimization ~ procedures to automate synthesis
development for both customized and generalized paradigms
[190]. Robot-mediated experimental discovery and testing has
also used ML for both laboratory automation [191] and
autonomous prediction of optimal molecular structures [192].

H. Bio-manufacturing

Bio-manufacturing uses biological products to produce bio-
materials for consumer and industrial applications. Genome-
scale modeling (GSM) has been used to predict microbial
factory performance and identify potentially useful gene targets
[9]. Machine learning, along with data mining, and genomic
modeling, can aid in deciphering complex intra- and inter-
cellular phenomena to develop prediction scenarios to improve
medical, food, and industrial yields [193]-[195]. Developing
optimal strains for industrial applications requires
understanding cellular and genetic metabolism and regulation,
respectively. Challenges remain, including accounting for
enzymatic and product consumption of critical building blocks
[196], ensuring that stresses imposed by bio-production
processes remain below minimally acceptable levels [197],
accounting for both the unpredictability in the bio-reactor
environments (random mutations, differing cell variations) and
synthetic component behavior [198].

Deep learning, especially advanced DL, can investigate both
‘noisy’ biological data and merge incomplete input/output
variables in data sets [106,199]. Despite initial problems (a
plethora of non-standardized data with different measured
variables), techniques such as transfer learning [55], and, more
importantly, developing database standards in metabolic
engineering and systems biology fields [200] will greatly aid in
advancing this novel and exciting field.
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IV. CURRENT NEEDS

As traditional and emerging fields continue to evolve, it is of
interest to identify human needs that necessitate a paradigm
shift towards intelligent approaches.

A. Drug Design

Patient-centric drug design aims to use patient meta-data to
develop personalized health solutions ranging from dietary and
exercise guidelines to timely drug delivery. Drug design must
be transformed from a top-down approach (mass-production) to
a bottom-up approach (patient-centric using meta-data).

Deep learning architectures can use predictive analysis and
patient database meta-searches to ascertain optimal drug
design, thereby preventing dangerous side-effects during the
drug regimen. Once designed, the drug must be intelligently
delivered. A futuristic approach is to merge molecular robotics
with DL architectures to develop optimal routes for drug
delivery to targeted areas. One strategy could be to send
molecular robots for ‘training runs’ to their specific targets, so
that once they are inside the patient with the drugs, they “know”
exactly where to deliver them.

B. Multi-platform Data

Unlike homogenous data that are restricted to one system and
can be opened by only one infrastructure and architecture,
Multiplatform data (MDA) can be read, and used, across
multiple platforms. This goes beyond merely opening separated
data warchouse silos: an integrated architecture can satisfy
many requirements ranging from meta-data analysis to
sophisticated modeling. The merging of previously
incompatible data sets is an opportunity that ML algorithms can
greatly benefit from.

The need to integrate raw data from different formats,
without reducing data quality, requires platforms that can be
used beyond merely stacking the raw data, but also integrating
the data into complex models to capture the depth of
phenomena. These models can be used for making intelligent
diagnoses, designing intelligent drugs (and delivery platforms),
and developing novel therapeutic strategies for complex
scenarios, for example, patients with multiple aliments who
require multiple drugs.

C. Intelligent Pre-Diagnosis

As life expectancies continue to rise, concerns are mounting
that multiple ailments due to advanced old age require multiple
drugs that are necessary for well-being but can have harmful
side effects due to drug interactions. Predictive models of drug
interactions would enable better management of drug
combinations and development of safer alternatives. Machine
learning algorithms can play a major role in addressing this
urgent clinical need.

V. DEEP LEARNING FOR MOLECULAR ROBOTICS: AN
EXAMPLE

Experiments with kinesin-powered molecular shuttles
described in section IL.b and Figure 3 deliver sequential digital
images in a fluorescence microscope’s field of view [201].
These images can be used to train a neural network that, upon

successfully “learning” the shuttle dynamics, may acquire the
ability to generate a new sequence of images from a starting
image with dynamics that are nearly indistinguishable to the
actual shuttle dynamics.

This task can be approached using a RNN, since it can
process an input sequence one element at a time while
maintaining a ‘state vector’ within their hidden units that
contains information about the sequence element’s entire
history [202]-[204]. Training RNNs requires a backpropagation
algorithm, which is problematic since the gradients either grow
or shrink at each time step [205],[206]. Further, the layers share
the same weights, making it difficult to learn to store
information for long periods of time [207],[208].

These problems can be addressed with a long short-term
memory (LSTM)-based convolutional RNNs (CRNNs). An
LSTM algorithm uses memory cells to remember preceding
inputs. It is an accumulator that connects to itself at the next
time step, copying its own real-valued state and accumulating
the external signal. This self-connection is gated by another unit
that learns when to clear its memory content [50].
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Fig. 4: The CRNN Architecture. The Training phase (A) results in the creation
of sequential estimated frames. In the Testing phase (B), the first frame of an
unused video is the starting point for the sequential estimated frames. ‘NN’ =
Neural Network.

During the training session, a sequential image batch is fed
into the first CRNN, whose output are the next estimated
images. In the first iteration (shown in Figure 4A), each original
frame (Frame 1, Frame 2...Frame N-1) is fed into sequential
CRNNs concurrently and trained in parallel, resulting in
sequential estimated frames. The CRNNs were trained to
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extract specific features (in this case, fluorescently labeled
microtubules) to estimate their trajectories using the LSTM
algorithm. During the training phase, the number of iterations
depends on how well the network learns to adjust its weights in
the internal layer to predict the correct labeling of the inputs
(the sequential image batch).

Upon the completion of the training phase, the first frame of
a second image sequence can be used as the starting point from
which all following frames are estimated by the trained neural
network. The estimated image sequence can then be compared
to the actual image sequence and validated to determine the
neural network’s performance with respect to predicting the
behavior of a swarm of molecular shuttles.

VI. TRENDS

A. Multi-modal Deep Learning Architectures

The merging of data sets from multiple sources can lead to
discovering previously unknown bio-markers, matching
genotype and phenotype relations, and developing strong
associations among various, inter-related biological
phenomena. Other data sources can include images, biomedical
signals, entire research databases, and electronic health records.
A multi-modal DL architecture can classify information from
multiple sources and by using these data streams compensate
for missing information [210]. Promising research on multi-
modal deep learning [145],[162],[211] can open the door to
advances in traditional fields and emerging fields such as
complex diseases, drug-protein and drug-drug interactions in
variable environments.

Furthermore, multi-modal architectures can develop an
overview of an entire system to elucidate complex interactions,
develop single (or multiple) scenarios using current knowledge
and permit optimal scenario development that can be tested in
the laboratory.

Molecular robotics — our field of research — can also be
expected to benefit from multi-modal DL architectures. In one
scenario, tracking a single bio-sensor or drug delivery transport
in the human body can be challenging without intrusive
equipment and expensive procedures. Multi-modal DL can use
‘incomplete’ information of the molecular robot’s surroundings
to provide a better idea of its location.

B. Multi-scale Modeling

Multi-scale modeling merges models at different scales to
describe a system [212]. The realization that intricate and inter-
related complex phenomena play important roles at multiple
levels requires a new modeling platform that balances
macroscale accuracy and microscale model efficiency.

The two multi-scale modeling paradigms are sequential
(which uses microscale models to form a macroscale model)
and concurrent (which uses microscale models as needed as a
macroscale model continues to be developed).

Interdisciplinary research and development in molecular
robotics for intelligent diagnosis and personalized drug delivery
require considerations in milli/micro-robot design, their
behavior in in vitro and in vivo environments under variable
conditions, and the internal phenomena within the human body
under variable conditions, to name a few.

In drug discovery, multi-scale modeling can be merged with
VS to find promising molecules and binding sites, and
circumvent the need for expensive clinical trials, particularly if
the emphasis is towards medical conditions that affect small
populations. Multi-scale anatomy and physiology models in
diseased conditions, when merged with ML and VS algorithms,
can be used to predict single, or multiple, drug molecule effects.

C. Molecular Robot Localization

As emerging fields develop, research is needed to ascertain
the technology’s potential in intelligent drug delivery and
release in affected areas, and real-time localization. This is
critical for individuals who suffer from multiple diseases and
require multiple drug treatments, particularly if molecular robot
‘teams’ with different drug cargoes must be injected in vivo and
have to be tracked to ensure proper drug delivery and release in
targeted regions.

Sitti et al have merged a CNN architecture with sophisticated
sensors to provide real-time robot localization [11]. More
research should focus on enhancing localization capabilities of
multiple molecular shuttles carrying cargo (drugs, nano-
manufacturing components for ‘on-site’ assembly, etc.).
Traditional and emerging DL architectures can, when merged
with multi-modal and/or multi-scale modeling, provide
opportunities for training molecular shuttles to autonomously
determine their position in vivo. The number of molecular
shuttles can increase, potentially providing the basis for an
intelligent swarm to go to multiple designated sites and release
their drug cargo.

D. Clinical Trials

The introduction of traditional and emerging ML algorithms
can potentially reduce the time and expense across the entire
drug discovery and delivery pipeline, leading to timely
discoveries that can be rapidly tested in clinical trials and
delivered to the consumer marketplace.

To begin with, VS, multi-modal, and multi-scale
technologies can be used for initial molecule discovery that can
be merged with patient data from various sources to optimally
match molecules for specific treatment. The merged meta-data
can also account for possible side-effects of molecule
combinations in patients.

Other ML aspects that can aid in clinical trials can be to use
collected meta-data to predict drug molecule outcomes. If
enough patient meta-data is acquired, one possible use can be
to mimic short-term and long-term effects of simulated drug
intake in virtual patients. An optimal drug combination, once
discovered, can be developed and tested on real patients to
validate the virtual patient models in their outcomes (the virtual
patient feeling better, or worse).

These patient models can contribute to a knowledge of the
effects of molecules in different patient profiles, potentially
obviating the need to repeat the same trials in real-time, saving
time and resources.

As lifespans continue to grow, patients will be suffering from
multiple ailments that require multiple drugs, resulting in
deleterious side effects. As personalized medicine continues to
evolve, another potential research avenue will be to use patient
meta-data, including ML architectures to account for optimal,
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and possibly multiple, drug molecule interactions and delivery
platforms to develop a personalized, patient-centric solution.
This could open the way towards research into rare diseases that
were, until fairly recently, not considered a priority by major
pharmaceutical companies. Implementing ML could provide a
paradigm shift towards treating rare diseases.

VII. CHALLENGES AND OPORTUNITIES

Implementing DL techniques and platforms in traditional and
emerging fields will require the ML research and development
community to circumvent challenges.

A. Black Box to White Box

Although DL platforms can detect increasingly abstract areas
of interest in various data platforms, how the data are analyzed
and obtained remains unknown, engendering criticisms of the
‘black box’ nature of DL platforms, where we do not know how
the results are obtained. As data becomes increasingly complex,
the shift from a ‘black box’ (where we know little about how
the results are obtained) to a ‘white box’ (where we know how
results are obtained) will be required to meaningfully interpret
results. One solution is a de-convolutional neural network (that
visualizes specific input representations in CNNs) [213].

The key problem is that when hundreds, if not thousands, of
neural units with multiple input layers are included, it is
difficult to understand how the algorithms interpret the data,
and how they come to the conclusions that they do, unlike past
studies relying on simple neural networks with few neural units
and domain expertise. One solution is to develop protocols
within the algorithm that would ‘explain’ how it came to the
conclusions that it did. However, as DL algorithms continue to
evolve to meet the demands of studying and understanding
increasingly complex data, simple messages and rationales will
be insufficient.

This urgency is not only limited to research labs and
industries, but also in the everyday lives of citizens who use
these algorithms. The main problem is that we still have a
limited understanding of how the brain actually works: we are
replicating our limited understanding of biological brains with
a ‘rough copy’ of ANNS.

One solution is use neuroscience to better understand the
biological brain’s capability and learning process, and using
these insights to develop more sophisticated DL algorithms.
This implies studying, and understanding, how the brain learns
and changes from learning.

B. Data Complexity

As traditional fields and emerging fields continue to evolve,
data are becoming increasingly complex, as multiple
phenomena are being recorded. Such complex data is making it
increasingly difficult to measure and interpret using traditional
ML approaches. Even with DL algorithms, proving correlation
and causation from numerous phenomena is becoming
increasingly difficult. The increasing demands placed on
correctly interpreting increasingly intricate phenomena require
numerous quality control mechanisms and numerous
interpretation mechanisms in the workflows. Emerging DL
algorithms can provide some means of overcoming data
complexity.

Developing casual relationships among numerous, inter-
related phenomena will require a mixed strategy of stacked,
multi-modal architectures that study features in one system to
ascertain whether phenomena affect each other (which could
have been missed if such data had been studied alone) and DL
architectures that can begin with identifying and classifying to
what extent phenomena affect each other, and begin developing
casual relationships that can be replicated in real-time.

Deep learning algorithms may also require multiple forms of
human domain expertise, or have specified capsule networks to
include different aspects of a phenomenon.

C. Small Data Sets and Overfitting

Collected data sets often remain frustratingly too small to be
used for DL algorithms. Furthermore, it is generally assumed
that data are of both sufficient quantity and generally balanced.
Imbalanced data sets extend into other areas, such as clinical
trials where less data exists with diseased groups vs. control
groups. Privacy laws further limit data availability from
diseased groups. This can severely skew the results of DL
algorithms that require large amounts of balanced data to
provide accurate measurements.

Data sets of insufficient size also result in overfitting: the
training data error is low, but the testing data error is high. This
results in the model failing to learn a proper generalization of
the knowledge in the data. Although methods exist to rectify
this problem (for example, the dropout method, where random
nodes, and their edges, are ‘dropped’ from the network during
training [214]), overfitting remains a huge problem with small
data sets. One solution is data preprocessing (sampling and
basic feature extraction) [215]-[217]: sampling balances an
imbalanced data distribution, thereby lessening imbalanced
data’s potential impact. Other methods include cost-sensitive
learning, that calculates the costs of misclassifying data [218],
and algorithmic modification, where algorithms can be
modified to suit small datasets [218].

D. Displacing the Workforce through Automation

The ability of machine learning algorithms to predict, and
model, the outcome of experiments has well been documented,
from simple chemical reactions to complex organic systems [2-
11]. This enables the construction of experiments in silico and,
potentially obviates the need for performing experiments,
especially if supplies are limited. As databases continue to grow
in quantity and modeling becomes more sophisticated, the
potential for constructing, and performing, experiments in a
‘virtual lab’ will continue to grow.

However, concerns are mounting that as automation
progresses, traditional fields are in danger of being displaced
[12]. As ML algorithms continue to be developed and
improved, concerns may mount that the entire drug discovery
and testing workflow may be automated [2]. From the drug
manufacturer’s viewpoint, such investments may pay off in the
long-term, as pressure is mounting to reduce the time and costs
towards developing new drugs, combined with calls for more
‘patient-centric’ medicine. This includes drugs that account for
the person’s genomic profile, thereby negating dangerous drug
side effects. For the workers in the drug discovery and clinical
workflow, there is little comfort towards losing one’s job to an
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ML platform. These concerns should be addressed as pressure
continues to mount to rapidly convert complex data into
products and services.

E. Data Preparation

Preparing the data to ensure that they can be correctly
interpreted by the ML algorithm is a tedious and frustrating, yet
necessary, step: the consequences of not thoroughly executing
each step would be data misinterpretation. This can result in
added cost, and, even worse, in loss of human life.

Every aspect of data preparation must be accounted for: to
begin with, the data set must be of considerable size, as too little
data can result in misinterpretations. Data sets must also be
properly partitioned into training and testing sets. The models
must be properly selected, trained to know what parameters to
look for, and tested on different data sets to prevent overfitting,
and being able to test the data properly. The raw data must then
be normalized to adjust variables from different data sets into a
common scale, which would ensure that proper results comes
out from the algorithm’s output layer.

F. Selecting Correct Architectures and Hyper-parameters

Using the correct ML algorithm is critical and requires a
thorough understanding of each algorithm’s capabilities,
advantages, and disadvantages to obtain optimal results and
prevent data misinterpretation. To begin with, the algorithms
can be divided into three classes: DNNs for internal correlations
in high-dimensional data, CNNs for spatial information
analysis, and RNNs for sequential data analysis [29]. Even
when the correct algorithm is selected, the ‘correct’ hyper-
parameters are important, as it can affect the results [2].
Automated hyper-parameter selection is slowly superseding the
use of human ML experts for hyperparameter selection [3].

G. Training the Model

Training a model involves feeding data into a network to
make it ‘learn’ to look for specific parameters within a data set.
The data is sent into the first of many neural layers, whereby
weights are assigned to specific features. An image may begin
with the first layer looking at edges, followed by the second
layer looking at specific features, followed by layers that
continue to pass the image until the final layer releases the final
output [2]. Initial parameters should be randomized to prevent
fixed initialization and independently sampled from normal
distributions with minimal variances [3],[4]. The batch size and
training rates can affect both the training speed and model
performance [5].

Overfitting continues to be a problem. The dropout method
is one way of addressing this problem: another method, called
‘early stopping,” stops the moment that validation performance
begins to either saturate or deteriorate, leaving the parameters
with the best performance. Another method is layer-wise pre-
training, which pre-trains unsupervised layers using either
autoencoders or restricted Boltzmann machines, with the entire
network then being fine-tuned.

H. Opportunities

Although ML algorithms are powerful and have been used
for multiple applications, challenges remain, despite efforts to

improve their capabilities. This can open opportunities for
researchers to advance the ML field to cope with increasingly
complex data. Two opportunities are discussed from our
attempt at organizing the swarm behavior of molecular robots,
and the third opportunity on how to advance the field using
research from neuroscience.

The first opportunity is to advance automated image analysis to
identify molecular robots and their dynamic state (position,
direction of movement, etc.). Current algorithms struggle to
quickly and reliably identify kinesin-propelled microtubules
serving as molecular shuttles when they both operate at high
densities and dynamically change their shape. Artificial neural
networks can make a significant contribution, although the best
parameter optimization approach has to be identified [104],
[219]-[221].

The second opportunity is to apply DL techniques to model
and elucidate swarm behavior. Multimodal and multiscale
information can be addressed with state-of-the-art ML
techniques [222],[223]. However, the presence of thermal noise
at the molecular and nanoscale can negatively affect the ML
algorithm’s ability to predict behavior.

The biggest opportunity can come from tackling the major
criticism that nobody really knows how an ML algorithm draws
conclusions (‘black box’). As more input layers are added
within an algorithm, confusion increases. Forging research
partnerships with neuroscientists can aid in understanding and
appreciating brain functions. Their insight could be the key
towards developing the next generation of ML algorithms that
can ‘explain’ their decision-making processes.

VIII. CONCLUSION

Machine learning is presenting limitless opportunities for
traditional and emerging fields. As more data are collected and
analyzed to understand complex phenomena and their roles in
the development, maintenance, and regulation of systems from
the nano-level to the macro-level, the field must continue to
expand into new areas. Although tremendous progress has been
made, more work remains, particularly when working with
systems that lack the massive quantity of data required for DL
algorithms. As data become increasingly complex, more
measures must be taken to ensure that the right DL algorithms
are used, and to understand how the algorithms obtained their
results.

The molecular robotics field and, in a broader sense,
microscopic agents designed and programmed by synthetic
biologists [224], promise advances in drug delivery, biosensors,
regenerative medicine and experimental therapies. The ability
of data scientists to analyze, interpret, and model, unstructured
data to convert it into a deeper understanding of complex
phenomena, can assist in understanding the underlying
dynamics in these applications. The use of DL algorithms
towards understanding the swarming dynamics in molecular
shuttles is an example of the potential applications that DL
algorithms have.

We are looking forward to the large impact ML will have in
in the decades to come.
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