Discriminative Topic Mining via Category-Name Guided Text
Embedding

Yu Meng!*, Jiaxin Huang!*, Guangyuan Wang', Zihan Wang?,
Chao Zhangz, Yu Zhangl, Jiawei Han!
'Department of Computer Science, University of Illinois at Urbana-Champaign, IL, USA
2College of Computing, Georgia Institute of Technology, GA, USA
Yyumeng5, jiaxinh3, gwang10, zihanw2, yuz9, hanj}@illinois.edu  “chaozhang@gatech.edu

ABSTRACT

Mining a set of meaningful and distinctive topics automatically
from massive text corpora has broad applications. Existing topic
models, however, typically work in a purely unsupervised way,
which often generate topics that do not fit users’ particular needs
and yield suboptimal performance on downstream tasks. We pro-
pose a new task, discriminative topic mining, which leverages a set
of user-provided category names to mine discriminative topics from
text corpora. This new task not only helps a user understand clearly
and distinctively the topics he/she is most interested in, but also
benefits directly keyword-driven classification tasks. We develop
CatE, a novel category-name guided text embedding method for dis-
criminative topic mining, which effectively leverages minimal user
guidance to learn a discriminative embedding space and discover
category representative terms in an iterative manner. We conduct
a comprehensive set of experiments to show that CatE mines high-
quality set of topics guided by category names only, and benefits a
variety of downstream applications including weakly-supervised
classification and lexical entailment direction identification.
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1 INTRODUCTION

To help users effectively and efficiently comprehend a large set of
text documents, it is of great interest to generate a set of meaning-
ful and coherent topics automatically from a given corpus. Topic
models [6, 19] are such unsupervised statistical tools that discover
latent topics from text corpora. Due to their effectiveness in uncov-
ering hidden semantic structure in text collections, topic models
are widely used in text mining [15, 29] and information retrieval
tasks [14, 52].

Despite of their effectiveness, traditional topic models suffer from
two noteworthy limitations: (1) Failure to incorporate user guidance.
Topic models tend to retrieve the most general and prominent topics
from a text collection, which may not be of a user’s particular
interest, or provide a skewed and biased summarization of the
corpus. (2) Failure to enforce distinctiveness among retrieved topics.
Concepts are most effectively interpreted via their uniquely defining
features. For example, Egypt is known for pyramids and China is
known for the Great Wall. Topic models, however, do not impose
disriminative constraints, resulting in vague interpretations of the
retrieved topics. Table 1 demonstrates three retrieved topics from
the New York Times (NYT) annotated corpus [42] via LDA [6]. We
can see that it is difficult to clearly define the meaning of the three
topics due to an overlap of their semantics (e.g., the term “united
states” appears in all three topics).

Table 1: LDA retrieved topics on NYT dataset. The meanings
of the retrieved topics have overlap with each other.

Topic 1 ‘ Topic 2 ‘ Topic 3

united states, iraq
government, president

canada, united states | sports, united states
canadian, economy olympic, games

In order to incorporate user knowledge or preference into topic
discovery for mining distinctive topics from a text corpus, we pro-
pose a new task, Discriminative Topic Mining, which takes only
a set of category names as user guidance, and aims to retrieve
a set of representative and discriminative terms under each pro-
vided category. In many cases, a user may have a specific set of
interested topics in mind, or have prior knowledge about the po-
tential topics in a corpus. Such user interest or prior knowledge
may come naturally in the form of a set of category names that
could be used to guide the topic discovery process, resulting in
more desirable results that better cater to a user’s need and fit spe-
cific downstream applications. For example, a user may provide
several country names and rely on discriminative topic mining to
retrieve each country’s provinces, cities, currency, etc. from a text


https://doi.org/10.1145/3366423.3380278
https://doi.org/10.1145/3366423.3380278

corpus. We will show that this new task not only helps the user to
clearly and distinctively understand his/her interested topics, but
also benefits keywords-driven classification tasks.

There exist previous studies that attempt to incorporate prior
knowledge into topic models. Along one line of work, supervised
topic models such as Supervised LDA [5] and DiscLDA [23] guide
the model to predict category labels based on document-level train-
ing data. While they do improve the discriminative power of unsu-
pervised topic models on classification tasks, they rely on massive
hand-labeled documents, which may be difficult to obtain in practi-
cal applications. Along another line of work that is more similar
to our setting, users are asked to provide a set of seed words to
guide the topic discovery process, which is referred to as seed-
guided topic modeling [1, 21]. However, they still do not impose
requirements on the distinctiveness of the retrieved topics and thus
are not optimized for discriminative topic presentation and other
applications such as keyword-driven classification.

We develop a novel category-name guided text embedding method,
CatE, for discriminative topic mining. CatE consists of two mod-
ules: (1) A category-name guided text embedding learning module
that takes a set of category names to learn category distinctive word
embeddings by modeling the text generative process conditioned
on the user provided categories, and (2) a category representative
word retrieval module that selects category representative words
based on both word embedding similarity and word distributional
specificity. The two modules collaborate in an iterative way: At
each iteration, the former refines word embeddings and category
embeddings for accurate representative word retrieval; and the
latter selects representative words that will be used by the former
at the next iteration.

Our contributions can be summarized as follows.

(1) We propose discriminative topic mining, a new task for topic dis-
covery from text corpora with a set of category names as the only
supervision. We show qualitatively and quantitatively that this
new task helps users obtain a clear and distinctive understand-
ing of interested topics, and directly benefits keyword-driven
classification tasks.

(2) We develop a category-name guided text embedding framework
for discriminative topic mining by modeling the text genera-
tion process. The model effectively learns a category distinctive
embedding space that best separates the given set of categories
based on word-level supervision.

(3) We propose an unsupervised method that jointly learns word
embedding and word distributional specificity, which allow us
to consider both relatedness and specificity when retrieving
category representative terms. We also provide theoretical in-
terpretations of the model.

(4) We conduct a comprehensive set of experiments on a variety of
tasks including topic mining, weakly-supervised classification
and lexical entailment direction identification to demonstrate
the effectiveness of our model on these tasks.

2 PROBLEM FORMULATION

Definition 1 (Discriminative Topic Mining). Given a text corpus
D and a set of category names C = {ci,...,cn}, discriminative
topic mining aims to retrieve a set of terms S; = {wy,...,wn}

from D for each category c; such that each term in S; semantically
belongs to and only belongs to category c;.

Example 1. Given a set of country names, c¢1: “The United States”,
co: “France” and c3: “Canada”, it is correct to retrieve “Ontario”
as an element in 83, because Ontario is a province in Canada and
exclusively belongs to Canada semantically. However, it is incorrect
to retrieve “North America” as an element in S3, because North
America is a continent and does not belong to any countries. It is
also incorrect to retrieve “English” as an element in Ss3, because
English is also the national language of the United States.

The differences between discriminative topic mining and stan-
dard topic modeling are mainly two-fold: (1) Discriminative topic
mining requires a set of user provided category names and only
focuses on retrieving terms belonging to the given categories. (2)
Discriminative topic mining imposes strong discriminative require-
ments that each retrieved term under the corresponding category
must belong to and only belong to that category semantically.

3 CATEGORY-NAME GUIDED EMBEDDING

In this section, we first formulate a text generative process under
user guidance, and then cast the learning of the generative process
as a category-name guided text embedding model. Words, docu-
ments and categories are jointly embedded into a shared space
where embeddings are not only learned according to the corpus
generative assumption, but also encouraged to incorporate category
distinctive information.

3.1 Motivation

Traditional topic models like LDA [6] use document-topic and topic-
word distributions to model the text generation process, where an
obvious defect exists due to the bag-of-words generation assumption—
each word is drawn independently from the topic-word distribution
without considering the correlations between adjacent words. In
addition, topic models make explicit probabilistic assumptions re-
garding the text generation mechanism, resulting in high model
complexity and inflexibility [16].

Along another line of text representation research, word em-
beddings like Word2Vec [33] effectively capture word semantic
correlations by mapping words with similar local contexts closer in
the embedding space. They do not impose particular assumptions
on the type of data distribution of the corpus and enjoy greater
flexibility and higher efficiency. However, word embeddings usually
do not exploit document-level co-occurrences of words (i.e., global
contexts) and also cannot naturally incorporate latent topics into
the model without making topic-relevant generative assumptions.

To take advantage of both lines of work for mining topics from
text corpora, we propose to explicitly model the text generation
process and cast it as an embedding learning problem.

3.2 Modeling Text Generation Under User
Guidance

When the user provides n category names, we assume text gener-

ation is a three-step process: (1) First, a document d is generated

conditioned on one of the n categories (this is similar to the assump-

tion in multi-class classification problems where each document



belongs to exactly one of the categories); (2) second, each word
w; is generated conditioned on the semantics of the document dj
and (3) third, surrounding words w;; in the local context window
(=h £ j < h,j # 0, his the local context window size) of w; are
generated conditioned on the semantics of the center word w;. Step
(1) explicitly models the associations between each document and
user-interested categories (i.e., topic assignment). Step (2) makes
sure each word is generated in consistency with the semantics of
its belonging document (i.e., global contexts). Step (3) models the
correlations of adjacent words in the corpus (i.e., local contexts).
Putting the above pieces together, we have the following expression
for the likelihood of corpus generation conditioned on a specific
set of user-interested categories C:

PD|C) = []pdle) [ | powild) ]  plwiss | wi)
deD w;€d wiij€d
—h<j<h,j#0
(1)

where ¢y is the latent category of d.
Taking the negative log-likelihood as our objective £, we have

L=- Z logp(d | ¢g) (Ltopic)
deD
- Z Z log p(w; | d) (-Eglobal)
deD WiEd (2)
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In Eq. (2), p(w; | d) and p(w;+j | w;) are observable (e.g., p(w; |
d) = 1if w; appears in d, and p(w; | d) = 0 otherwise), while
p(d | cgq) is latent (i.e., we do not know which category d belongs to).
To directly leverage the word level user supervisions (i.e., category
names), a natural solution is to decompose p(d | ¢4) into word-topic
distributions:

p(d ] cq) o< pleg | dp(d) o< pleg | d) o< | | plea | w),
wed
where the first proportionality is derived via Bayes rule; the second
derived assuming p(d) is constant; and the third assumes p(cy | d)
is jointly decided by all words in d.
Next, we rewrite the first term in Eq. (2) (i.e., Liopic) by reorga-
nizing the summation over categories instead of documents:

Liopic == ) logp(d | eg) == > plc | w)+const.
deD ceC wWEec
Now Ligpic is expressed in p(c | w), the category assignment
of words. This is exactly the task we aim for—finding words that
belong to the categories.

3.3 Embedding Learning

In this subsection, we introduce how to formulate the optimization

of the objective in Eq. (2) as an embedding learning problem.
Similar to previous work [7, 33], we define the three probability

expressions in Eq. (2) via log-linear models in the embedding space:

exp(c;'—uw)
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p(wij | wi) = ®)
where u,, is the input vector representation of w (usually used
as the word embedding); v,, is the output vector representation
that serves as w’s contextual representation; d is the document
embedding; c; is the category embedding. Please note that Egs. (4)
and (5) are not yet the final design of our embedding model, as
we will propose an extension of them in Section 4.2 that leads to a
more effective and suitable model for discriminative topic mining.

While Egs. (4) and (5) can be directly plugged into Eq. (2) to train
word and document embeddings, Eq. (3) requires knowledge about
the latent topic (i.e., the category that w belongs to) of a word w.
Initially, we only know the user-provided category names belong
to their corresponding categories, but during the iterative topic
mining process, we will retrieve more terms under each category,
gradually discovering the latent topic of more words.

To this end, we design the following for learning Lyop;c in Eq. (2):
Letp,, = [p(cl | w) plen | w)]T be the probability distri-
bution of w over all classes. If a word w is known to belong to
class c;, p,, computed from Eq. (3) should become a one-hot vector
I, (i.e., the category label of w) with p(c; | w) = 1. To achieve
this property, we minimize the KL divergence from each category
representative word’s distribution p., to its corresponding discrete
delta distribution I,,. Formally, given a set of class representative
words S; (we will introduce how to retrieve S; in Section 4) for
category c;, the Liqpic term is implemented as:

Liopic = Y > KL(Lw[p.,) - (©)

c;eC weS;

From the embedding learning perspective, Eq. (6) is equivalent
to a cross-entropy regularization loss, encouraging the category
embeddings to become distinctive anchor points in the embedding
space that are far from each other and are surrounded by their
current retrieved class representative terms.

4 CATEGORY REPRESENTATIVE WORD
RETRIEVAL

In this section, we detail how to retrieve category representative
words (i.e., the words that belong to and only belong to a category)
for topic mining.

As a starting point, we propose to retrieve category representa-
tive terms by jointly considering two separate aspects: Relatedness
and specificity. In particular, a representative word w of category ¢
should satisfy simultaneously two constraints: (1) w is semantically
related to ¢, and (2) w is semantically more specific than the cate-
gory name of ¢. Constraint (1) can be imposed by simply requiring
high cosine similarity between a candidate word embedding and
the category embedding. However, constraint (2) is not naturally
captured by the text embedding space. Hence, we are motivated
to improve the previous text embedding model by incorporating
word specificity signals.



In the following, we first present the concept of word distribu-
tional specificity, and then introduce how to capture the signal ef-
fectively in our model. Finally, we describe how to retrieve category
representative words by jointly considering the two constraints.

4.1 Word Distributional Specificity

We adapt the concept of distributional generality in [51] and define
word distributional specificity as below.

Definition 2 (Word Distributional Specificity). We assume there
is a scalar k,, > 0 correlated with each word w indicating how
specific the word meaning is. The bigger k., is, the more specific
meaning word w has, and the less varying contexts w appears in.

The above definition is grounded on the distributional inclusion
hypothesis [59] which states that hyponyms are expected to occur
in a subset of the contexts of their hypernyms.

For example, “seafood” has a higher word distributional speci-

«

ficity than “food”, because seafood is a specific type of food.

4.2 Jointly Learning Word Embedding and
Distributional Specificity

In this subsection, we propose an extension of Egs. (4) and (5) to
jointly learn word embedding and word distributional specificity
in an unsupervised way.

Specifically, we modify Egs. (4) and (5) to incorporate an addi-
tional learnable scalar x,, for each word w, while constraining the
embeddings to be on the unit hyper-sphere S”~! ¢ R?, motivated
by the fact that directional similarity is more effective in capturing
semantics [30].

Formally, we re-define the probability expressions in Egs. (4) and
(5) to bel:
exp(lcwiu;id)

p(wi | d) = , ()
' Yarep exp(k,ul,d’)
exp(Kw, Uy, Dy, ;)
P(wisj | wi) = Y ®)
2wev eXP(Kwiuw,-'Uw’)
st. Ywde, luyll = llowll = 1]l = llcl| = 1.

In practice, the unit norm constraints can be satisfied by simply
normalizing the embedding vectors after each update?. Under the
above setting, the parameter x,, learned is the distributional speci-
ficity of w.

4.3 Explaining the Model

We explain here why the additional parameter «,, in Egs. (7) and
(8) effectively captures word distributional specificity. We first in-
troduce a spherical distribution, and then show how our model is
connected to the properties of the distribution.

Definition 3 (The von Mises Fisher (vMF) distribution). A unit
random vector x € SP~! ¢ R? has the p-variate von Mises Fisher
distribution vMF,(p, x) if its probability dense function is

£ 1) = ep() exp(icn x),

!Eq. (3) is not refined with the k parameter because we do not aim to learn category
specificity.

2 Alternatively, one may apply the Riemannian optimization techniques in the spherical
space as described in [30].

where k > 0 is the concentration parameter, ||g|| = 1 is the mean

direction, and the normalization constant cy (k) is given by
KP/2-1

(2”)p/21p/2—1(’<)

where I, (-) represents the modified Bessel function of the first kind
at order r.

Cp(K) =

Theorem 1. When the corpus size and vocabulary size are infinite
(i.e, |D| — oo and |V| — o) and all p-dimensional word vectors
and document vectors are unit vectors, generalizing Eqgs. (7) and
(8) to the continuous cases results in the p-variate vMF distribution
with the center word vector u,,, as the mean direction and k,,, as
the concentration parameter, i.e.,

lim ploie i) = epw,) expleul, o) O)

lim p(w; | d) = cp(KWi)exp(KwiuLid). (10)
|[V]|—>0
Proor. We give the proof for Eq. (9). The proof for Eq. (10) can
be derived similarly.
We generalize the relationship proportionality p(wi+j | w;) o
exp(lcwiu;':,ivwi .;) in Eq. (8) to the continuous case and obtain the
following probability density distribution:

exp(Kw,; Uyy, Vw;, ;)
o vt oo
a eXp(KWiu—\E/ivWiﬁ)
Z ,
where Z denotes the integral in the denominator.

The probability density function of vMF distribution integrates
to 1 over the entire sphere, i.e.,

1i§1wP(Wi+j | wi) =

vl

L ot exptiul ouwdon =1,

we have

1
Z = / exp(;cwiu;rv_vw/)de/ =
sp-1 !

CP(KWi) '
Plugging Z back to Eq. (11), we obtain

|Vlllfoop(wl+j | Wi) = CP(KWi)eXp(KWiuLiUWHj)
m]

Theorem 1 reveals the underlying generative assumption of the
joint learning model defined in Section 4.2—the contexts vectors are
assumed to be generated from the vMF distribution with the center
word vector u,,,; as the mean direction and «,,, as the concentra-
tion parameter. Our model essentially learns both word embedding
and word distributional specificity that maximize the probability
of the context vectors getting generated by the center word’s vMF
distribution. Figure 1 shows two words with different distributional
specificity. “Food” has more general meaning than “seafood” and
appears in more diverse contexts. Therefore, the learned vMF dis-
tribution of “food” will have a lower concentration parameter than
that of “seafood”. In other words, “food” has a lower distributional
specificity than “seafood”.
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Figure 1: Word Distributional Specificity.

4.4 Selecting Category Representative Words

Finally, the learned distributional specificity can be used to impose
the constraint that class representative words should belong to the
category. Specifically, a category representative word must have
higher distributional specificity than the category name. However,
we also want to avoid selecting too specific terms as category repre-
sentative words. From the embedding learning perspective, words
with higher semantic specificity may appear fewer times in the
corpus and suffer from lower embedding quality and higher vari-
ance due to insufficient training, which can lead to the distortion of
the category embedding manifold if they are selected as category
representative words.

Therefore, among all the words that are more specific than the
category name, we prefer words that (1) have high embedding
cosine similarity with the category name, and (2) have low dis-
tributional specificity, which indicates wider semantic coverage.
Formally, we find a representative word of category c; and add it
to the set S by

w = arg min ranks;m(w, ¢;) - rankspec(w)
» (12)
st. wéS and Ky > K,

where ranks;m, (w, ¢;) is the ranking of w by embedding cosine simi-
larity with category c;, i.e., cos(uy, ¢;), from high to low; rankspec(w)
is the ranking of w by distributional specificity, i.e., k,y, from low
to high.

4.5 Overall Algorithm

We summarize the overall algorithm of discriminative topic mining
in Algorithm 1.

Initially, the set of class representative words S; is simply the
category name. During training, S; gradually incorporates more
class representative words so that the category embedding models
more accurate and complete class semantics. The embeddings of
class representative words are directly enforced by Eq. (6) to encode
category distinctive information, and this weak supervision signal
will pass to other words through Egs. (7) and (8) so that the resulting
embedding space is specifically fine-tuned to distinguish the given
set of categories.

Algorithm 1: Discriminative Topic Mining.

Input: A text corpus D; a set of category names
C={c}ll,
Output: Discriminative topic mining results S; |1 ;.
fori «— 1tondo
| Si—{ci}
for t < 1 to max_iter do
Train ‘W, C on D according to Equation (2);

> initialize S; with category names;

fori«— 1tondo
w «— Select representative word of ¢; by Eq. (12);
Si < Siu{w}
fori < 1tondo
| Si—Si\{ci}
Return S|l ,;

> exclude category names;
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Figure 2: Dataset statistics.

5 EXPERIMENTS
5.1 Experiment Setup

Datasets. We use two datasets, the New York Times annotated
corpus (NYT) [42], the recently released Yelp Dataset Challenge
(Yelp)®. NYT and Yelp each has two sets of categories: NYT: topic
and location; Yelp: food type and sentiment. For NYT, we first select
the major categories (with more than 100 documents) from topics
and locations, and then collect documents that are single-labeled on
both set of categories, i.e., each document has exactly one ground
truth topic label and one ground truth location label. We do the
same for Yelp. The category names and the number of documents
in each category can be found in Figure 2.

Implementation Details and Parameters. Since the full softmax
in Egs. (7) and (8) results in computational complexity proportional
to the vocabulary size, we adopt the negative sampling strategy

3https://www.yelp.com/dataset/challenge



[33] for efficient approximation. The training objective (Eq. (2))
is optimized with SGD. We pre-process the corpus by discarding
infrequent words that appear less than 5 times in the corpus. We
use AutoPhrase [44] to extract quality phrases, and the phrases
are treated as single words during embedding training. For fair
comparisons with baselines, we set the hyperparameters as below
for all methods: word embedding dimension p = 100, local context
window size h = 5, number of negative samples k = 5, training
iterations on the corpus max_iter = 10. Other parameters (if any)
are set to be the default values of the corresponding algorithm. In
CatE, the word distributional specificity parameter «,, is initialized
to 1 for each word.

5.2 Discriminative Topic Mining

Compared Methods. We compare CatE with the following base-
lines including traditional topic modeling, seed-guided topic mod-
eling and embedding-based topic modeling. For all the baseline
methods that require the number of topics N as input, we vary N
in [n,2n, ..., 10n] where n is the actual number of categories, and
report the best performance of the method. Note that our method
CatE does not require any tuning of N and directly uses the pro-
vided category names as the only supervision.

o LDA [6]: LDA is the standard topic model that learns topic-word
and document-topic distributions by modeling the generative
process of the corpus. It is unsupervised and cannot incorporate
seed words as supervision. We manually select the most relevant
topics to the provided category names.

e Seeded LDA [21]: Seeded LDA biases the regular topic model
generative process by introducing a seed topic distribution in-
duced by input seed words to encourage the model to focus on
user-interested topics. We provide the category names as seed
words.

e TWE [26]: TWE has three models for learning word embedding
under a set of topics. For all three models, we use the topic
specific word representation of the category names to retrieve
representative phrases under each category, and report the best
performance of the three models.

o Anchored CorEx [16]: CorEx does not rely on generative assump-
tions and learns maximally informative topics measured by total
correlation. Anchored CorEx incorporates user-provided seed
words by balancing between compressing the original corpus
and preserving anchor words related information. We provide
the category names as seed words.

o Labeled ETM [13]: ETM uses the distributed representation of
word embedding to enhance the robustness of topic models to
rare words. We use the labeled ETM version which is more ro-
bust to stop words. The top phrases are retrieved according to
embedding similarity with the category name.

e CatE: Our proposed method retrieves category representative
terms according to both embedding similarity and distributional
specificity, as described by Eq. (12).

Evaluation Metrics. We apply two metrics on the top-m (m = 10

in our experiments) words/phrases retrieved under each category

to evaluate all methods:

e Topic coherence (TC) is a standard metric [24] in topic modeling
which measures the coherence of terms inside each topic, and is

defined as the average normalized pointwise mutual information
of two words randomly drawn from the same document, i.e.,
P(wi,wj)
L R R -8 my v
TC= ——— -
(3)-n kzz‘; ;}.;1 log P(w;, wj)
where P(wj, w;) is the probability of w; and w; co-occurring in
a document; P(w;) is the marginal probability of w;.
e Mean accuracy (MACC) measures the proportion of retrieved
top words that actually belong to the category defined by user-
provided category names, i.e.,

1 1 &
MACC = — — 1(w; € R
"kzlmzl (wi € cg)

where 1(w; € cg) is the indicator function of whether w; belongs
to category ci. We invite five graduate students to independently
label whether each retrieved term belongs to the corresponding
category. The final results are the averaged labeling of the five
annotators.

Results. We show both qualitative and quantitative evaluation
results. We randomly select two categories from NYT-Location,
NYT-Topic, Yelp-Food Type and Yelp-Sentiment respectively, and
show top-5 words/phrases retrieved by all methods under each
category in Table 2. Terms that are determined by more than half of
the human annotators to not belong to the corresponding category
are marked with (x). We measure the topic modeling quality by TC
and MACC across all categories and report the results in Table 3.
Discussions. From Tables 2 and 3, we observe that the standard
topic model (LDA) retrieves reasonably good topics (even better
than Seeded LDA and Anchored CorEx in some cases) relevant
to category names, as long as careful manual selection of topics
is performed. However, inspecting all the topics to select one’s
interested topics is inefficient and costly for users, especially when
the number of topics is large.

When users can provide a set of category names, seed guided
topic modeling methods can directly retrieve relevant topics of
user’s interest, alleviating the burden of manual selection. Among
the four guided topic modeling baselines, Seeded LDA and An-
chored CorEx suffer from noisy retrieval results—some categories
are dominated by off-topic terms. For example, Anchored CorEx re-
trieves words related to sports under the location category “canada”,
which should have been put under the topic category “sports”.

The above issue is rarely observed in the results of the other two
embedding-based topic modeling baselines, TWE and Labeled ETM,
because they employ distributed word representations when mod-
eling topic word correlation, requiring the retrieved words to be
semantically relevant to the category names. However, their results
contain terms that are relevant but do not actually belong to the cor-
responding category. For example, Labeled ETM retrieves “france”,
“germany” and “europe” under the location category “britain”. In
short, TWE and Labeled ETM lacks discriminative power over the
set of provided categories, and fails to compare the relative gen-
erality/specificity between a pair of terms (e.g., it is correct to put
“british” under “europe”, but incorrect vice versa).

Our proposed method CatE enjoys the benefits brought by word
embeddings, and explicitly regularizes the embedding space to
become discriminative for the provided set of categories. In addition,



Table 2: Qualitative evaluation on discriminative topic mining,.

NYT-Location NYT-Topic Yelp-Food Yelp-Sentiment
Methods . . .
britain canada education politics burger desserts good bad
company (X) percent (X) school campaign fatburger ice cream great valet (X)
companies (X) economy (X) students clinton dos (x) chocolate place (x) peter (X)
LDA british canadian city (x) mayor liar (x) gelato love aid (x)
shares (X) united states (X) state (X) election cheeseburgers tea (X) friendly relief (X)
great britain trade (X) schools political bearing (x) sweet breakfast rowdy
british city (x) state (X) republican like (X) great (X) place (x) service (X)
industry (Xx) building (x) school political fries like () great did (x)
Seeded . . .
LDA deal (X) street (X) students senator just (x) ice cream service (X) order (X)
billion (x) buildings (X) city (x) president great (X) delicious (X) just (X) time (X)
business (X) york (x) board (x) democrats time (X) just (x) ordered (X) ordered (X)
germany (X) toronto arts (X) religion burgers chocolate tasty subpar
spain (X) osaka (X) fourth graders race fries complimentary (X) decent positive (X)
TWE manufacturing (X) booming (x) musicians (X) attraction (X) hamburger green tea (X) darned (x) awful
south korea (x) asia (X) advisors era (X) cheeseburger sundae great crappy
markets (X) alberta regents tale (X) patty whipped cream | suffered (X) honest (x)
moscow (X) sports (X) republican (X) military (X) order (X) make (X) selection (X) did (x)
british games (X) senator (X) war (X) know (x) chocolate prices (X) just (X)
Anchored .
CorEx london players (x) democratic (X) troops (X) called (x) people (X) great came (X)
german (X) canadian school baghdad (x) fries right (x) reasonable  asked (X)
russian (X) coach schools iraq (x) going (X) want (X) mac (X) table (x)
france (X) canadian higher education political hamburger pana decent horrible
germany (X) british columbia educational expediency (X) cheeseburger gelato great terrible
Labeled . . . .
ETM canada (X) britain (x) school perceptions (X) burgers tiramisu tasty good (x)
british quebec schools foreign affairs patty cheesecake bad (x) awful
europe (X) north america (X) regents ideology steak (X) ice cream delicious  appallingly
england ontario educational political burgers dessert delicious sickening
london toronto schools international politics | cheeseburger pastries mindful nasty
CatE britons quebec higher education liberalism hamburger cheesecakes excellent dreadful
scottish montreal secondary education political philosophy | burger king scones wonderful freaks
great britain ottawa teachers geopolitics smash burger ice cream faithful cheapskates

Table 3: Quantitative evaluation on discriminative topic
mining.

Methods NYT-Location| NYT-Topic | Yelp-Food |Yelp-Sentiment
TC MACC| TC MACC| TC MACC| TC MACC
LDA 0.007 0.489 | 0.027 0.744 |-0.033 0.213 |-0.197 0.350
Seeded LDA | 0.024 0.168 | 0.031 0.456 | 0.016 0.188 | 0.049 0.223
TWE 0.002 0.171 |-0.011 0.289 | 0.004 0.688 |-0.077 0.748
Anchored CorEx | 0.029 0.190 | 0.035 0.533 |0.025 0.313 | 0.067 0.250
Labeled ETM |0.032 0.493 | 0.025 0.889 |0.012 0.775 | 0.026  0.852
CatE 0.049 0.972 |0.048 0.967 |0.034 0.913 | 0.086 1.000

CatE learns the semantic specificity of each term in the corpus
and enforces the words/phrases retrieved to be more specific than
the category names. As shown in Tables 2 and 3, CatE correctly
retrieves distinctive terms that indeed belong to the category.

5.3 Weakly-Supervised Text Classification

In this subsection, we show that the discriminative power of CatE
benefits document-level classification, and we explore the applica-
tion of CatE to document classification under weak supervision.

Weakly-supervised text classification [8, 31, 32, 45, 58] uses cat-
egory names or a set of keywords from each category instead of
human annotated documents to train a classifier. It is especially
preferable when manually labeling massive training documents is
costly or difficult.

Previous weakly-supervised document classification studies use
unsupervised word representations to either retrieve from knowl-
edge base relevant articles to category names as training data [45],
or derive similar words and form pseudo training data for pre-
training classifiers [31, 32]. In this work, we do not propose new
models for weakly-supervised document classification, but simply
replace the unsupervised embeddings used in previous systems with
CatE, based on the intuition that when the supervision is given on
word-level, deriving discriminative word embeddings at the early
stage is beneficial for all subsequent steps in weakly-supervised
classification.

In particular, we use WeSTClass [31, 32] as the weakly-supervised
classification model. WeSTClass first models topic distribution in
the word embedding space to retrieve relevant words to the given
category names, and applies self-training to bootstrap the model
on unlabeled documents. It uses Word2Vec [33] as the word rep-
resentation. In the following, we experiment with different word
embedding models as input features to WeSTClass.

Compared Methods. We note here that our goal is not designing a
weakly-supervised classification method; instead, our purpose is to
show that CatE benefits classification tasks with stronger discrimi-
native power than unsupervised text embedding models by only
leveraging category names. In this sense, our contribution is improv-
ing the input text feature quality for document classification when



Table 4: Weakly-supervised text classification evaluation based on WeSTClass [31] model.

Embedding NYT-Location NYT-Topic Yelp-Food Yelp-Sentiment
Micro-F1  Macro-F1 | Micro-F1 Macro-F1 | Micro-F1 Macro-F1 | Micro-F1 Macro-F1
Word2Vec 0.533 0.467 0.588 0.540 0.528 0.723 0.715
GloVe 0.521 0.455 0.563 0.515 0.503 0.720 0.711
fastText 0.543 0.485 0.575 0.544 0.529 0.738 0.743
BERT 0.301 0.288 0.328 0.330 0.404 0.695 0.674
CatE 0.655 0.613 0.611 0.739 0.656 0.648 0.838 0.836

category names are available. To the best of our knowledge, this is
the first work that proposes to learn discriminative text embedding
only from category names (i.e., without requiring additional infor-
mation other than the supervision given for weakly-supervised
classification). We compare CatE with the following unsupervised
text embedding baselines as input features to the state-of-the-art
weakly-supervised classification model WeSTClass 31, 32].

o Word2Vec [33]: Word2Vec is a predictive word embedding model
that learns distributed representations by maximizing the proba-
bility of using the center word to predict its local context words
or in the opposite way.

e GloVe [38]: GloVe learns word embedding by factorizing a global
word-word co-occurrence matrix where the co-occurrence is
defined upon a fix-sized context window.

o fastText [7]: fastText is an extension of Word2Vec which learns
word embedding efficiently by incorporating subword informa-
tion. It uses the sum of vector representations of all n-grams in a
word to predict context words in a fix-sized window.

o BERT [11]: BERT is a state-of-the-art pretrained language model
that provides contextualized word representations. It trains bi-
directional Transformers [48] to predict randomly masked words
and consecutive sentence relationships.

Evaluation Metrics. We employ the Micro-F1 and Macro-F1 scores
that are commonly used in multi-class classification evaluations [31,
32] as the metrics.

Results. We first train all the embedding models on the correspond-
ing corpus (except BERT which we take its pre-trained model and
fine-tune it on the corpus), and use the trained embedding as the
word representation to WeSTClass [31, 32]. The weakly-supervised
classification results on NYT-Location, NYT-Topic, Yelp-Food Type
and Yelp-Sentiment are shown in Table 4.

Discussions. From Table 4, we observe that: (1) Unsupervised em-
beddings (Word2Vec, GloVe and fastText) do not really have notable
differences as word representations to WeSTClass; (2) Despite its
great effectiveness as a pre-trained deep language model for super-
vised tasks, BERT is not suitable for classification without sufficient
training data, probably because BERT embedding has higher di-
mensionality (even the base model of BERT is 768-dimensional)
which might require stronger supervision signals to tune; (3) CatE
outperforms all unsupervised embeddings on NYT-Location and
Yelp-Food Type and Yelp-Sentiment categories by a large margin,
and have marginal advantage on NYT-Topic. This is probably be-
cause different locations (e.g., “Canada” vs. “The United States”),
food types (e.g., “burgers” vs. “pizza”), and sentiment polarities
(e.g., “good” vs. “bad”) can have highly similar local contexts, and
are more difficult to be differentiated than themes. CatE explicitly

regularizes the embedding space for the specific categories and
becomes especially advantageous when the given category names
are semantically similar.

There have been very few previous efforts in the text classifica-
tion literature that dedicate to learning discriminative word em-
beddings from word-level supervisions, and word embeddings are
typically fine-tuned jointly with classification models [22, 50, 56] via
document-level supervisions. However, our study shows that under
label scarcity scenarios, using word-level supervision only can bring
significant improvements to weakly-supervised models. Therefore,
it might be beneficial for future weakly-supervised/semi-supervised
studies to also consider leveraging word-level supervision to gain
a performance boost.

5.4 Unsupervised Lexical Entailment Direction
Identification

In CatE, we enforce the retrieved terms to be more specific than
the given category name by comparing their learned distributional
specificity values k. Since k characterizes the semantic generality of
a term, it can be directly applied to identify the direction in lexical
entailment.

Lexical entailment (LE) [49] refers to the “type-of” relation, also
known as hyponymy-hypernymy relation in NLP. LE typically
includes two tasks: (1) Discriminate hypernymy from other rela-
tions (detection) and (2) Identify from a hyponymy-hypernymy
pair which one is hyponymy (direction identification). Recently,
there has been a line of supervised (i.e., require labeled hyponymy-
hypernymy pairs as training data) embedding studies [36, 37, 47]
that learn hyperbolic word embeddings to capture the lexical en-
tailment relationships.

In our evaluation, we focus on unsupervised methods for LE
direction identification, which is closer to the application of CatE.
Compared Methods. We compare CatE with the following un-
supervised baselines that can identify the direction in a given

hyponymy-hypernymy pair.

e Frequency [51]: This baseline simply uses the frequency of a term
in the corpus to characterize its generality. It hypothesizes that
hypernyms are more frequent than hyponyms in the corpus.

o SLQS [43]: SLQS measures the generality of a term via the entropy
of its statistically most prominent context.

e Vec-Norm: It is shown in [35] that the L-2 norm of word embed-
ding indicates the generality of a term, i.e., a general term tends
to have a lower embedding norm, because it co-occurs with many
different terms and its vector is dragged from different directions.



Benchmark Test Set. Following [43], we use the BLESS [2] dataset
for LE direction identification. BLESS contains 1, 337 unique hyponym-
hypernym pairs. The task is to predict the directionality of hyper-
nymy within each pair.

Results. We train all models on the latest Wikipedia dump* con-
taining 2.4 billion tokens and report the accuracy for hypernymy
direction identification in Table 5.

Table 5: Lexical entailment direction identification.

Methods ‘Frequency SLQS Vec-Norm CatE

Accuracy ‘ 0.659 0.861 0.562 0.895

Discussions. Our method achieves the highest accuracy on iden-
tifying the direction of lexical entailment among a pair of words,
which explains the great effectiveness of CatE on retrieving terms
that belong to a category. Another desirable property of CatE is
that distributional specificity is jointly trained along with the text
embedding, and can be directly obtained as a by-product. Our learn-
ing of word distributional specificity is based on the distributional
inclusion hypothesis [59] and has a probabilistic interpretation
presented in Section 4.3.

5.5 Case Study

Discriminative Embedding Space. In this case study, we demon-
strate the effect of regularizing the embedding space with category
representative words. Specifically, we apply t-SNE [27] to visual-
ize the embeddings trained on NYT-Location in Figure 3 where
category embeddings are denoted as stars, and the retrieved class
representative phrases are denoted as points with the same color as
their ground-truth corresponding categories. At the early stage of
training (Figure 3(a)), words from different categories are mixed to-
gether. During training, the categories are becoming well-separated.
Category representative words gather around their corresponding
category in the embedding space, which encourages other semanti-
cally similar words to move towards their belonging categories as
well (Figure 3 shows more words than class representative words
retrieved by our model during training).

Coarse-to-Fine Topic Presentation. In the second set of case
studies, we demonstrate the learned word distributional specificity
with concrete examples from NYT-Topic, and illustrate how it helps
present a topic in a coarse-to-fine manner. Table 6 lists the most
similar phrases with each category (measured by embedding cosine
similarity) from different ranges of distributional specificity. When
k is smaller, the retrieved words have wider semantic coverage.

A drawback of traditional topic modeling is that it presents each
category via a top ranked list according to topic-word distribution,
which usually seems randomly-ordered because latent probability
distribution is generally hard to be interpreted by humans. In our
model, however, one can sort the retrieved phrases under each
topic according to distributional specificity, so that the topic mining
results can be viewed in a coarse-to-fine manner.

6 RELATED WORK

We review two lines of related work that are most relevant to our
task: Topic modeling and task-oriented text embedding.

4https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2

6.1 Topic Modeling

Topic models discover semantically relevant terms that form coher-
ent topics via probabilistic generative models. Unsupervised topic
models have been studied for decades, among which pLSA [19]
and LDA [6] are the most famous ones, serving as the backbone
for many future variants. The basic idea is to represent documents
via mixtures over latent topics, where each topic is characterized
by a distribution over words. Subsequent studies lead to a large
number of variants such as Hierarchical LDA [18], Correlated Topic
Models [4], Pachinko Allocation [25] and Concept Topic Models [9].
Although unsupervised topic models are sufficiently expressive to
model multiple topics per document, they are unable to incorporate
the category and label information into their learning procedure.

Several modifications of topic models have been proposed to
incorporate supervision. Supervised LDA [5] and DiscLDA [23] as-
sume each document is associated with a label and train the model
by predicting the document category label. Author Topic Models
[40] and Multi-Label Topic Models [41] further model each docu-
ment as a bag of words with a bag of labels. However, these models
obtain topics that do not correspond directly to the labels. Labeled
LDA [39] and SSHLDA [28] can be used to solve this problem. How-
ever, all the supervised models mentioned above requires sufficient
annotated documents, which are expensive to obtain in some do-
mains. In contrast, our model relies on very weak supervisions (i.e.,
a set of category names) which are much easier to obtain.

Several studies leverage word-level supervision to build topic
models. For example, Dirichlet Forest [1] has been used as priors
to incorporate must-link and cannot-link constraints among seed
words. Seeded LDA [21] takes user-provided seed words as su-
pervision to learn seed-related topics via a seed topic distribution.
CorEx [16] learns maximally informative topics from the corpus
and uses total correlation as the measure. It can incorporate seed
words by jointly compressing the text corpus and preserving seed
relevant information. However, none of the above systems explic-
itly model distinction among different topics, and they also do not
require the retrieved terms to belong to the provided categories.
As a result, the retrieved topics still suffer from irrelevant term
intrusion, as we will demonstrate in the experiment section.

With the development of word embeddings [7, 33, 38], several
studies propose to extend LDA to involve word embeddings. One
common strategy is to convert the discrete text into continuous
representations of embeddings, and then adapt LDA to generate
real-valued data [3, 10, 54, 55]. There are a few other ways of com-
bining LDA and embeddings. For example, [34] mixes the likelihood
defined by LDA with a log-linear model that uses pre-fitted word
embeddings; [53] adopts a geometric perspective, using Wasser-
stein distances to learn topics and word embeddings jointly; [13]
uses the distributed representation of word embedding to enhance
the robustness of topic models to rare words. Motivated by the
success of these recent topic models, we model the text generation
process in the embedding space, and propose several designs to
tailor our model for the task of discriminative topic mining.

6.2 Task-Oriented Text Embedding

Discriminative text embeddings are typically trained under a su-
pervised manner with task specific training data, such as training
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Table 6: Coarse-to-fine topic presentation on NYT-Topic.

Range of k

Science (k. = 0.539)

Technology (k. = 0.566)

Health (k. = 0.527)

Ke < kK < 1.25k¢

scientist, academic, research, laboratory

machine, equipment, devices, engineering

medical, hospitals, patients, treatment

1.25k; < k < 1.5k,

physics, sociology,
biology, astronomy

information technology, computing,
telecommunication, biotechnology

mental hygiene, infectious diseases,
hospitalizations, immunizations

1.5x¢ < k¥ < 1.75k¢

microbiology, anthropology,
physiology, cosmology

wireless technology, nanotechnology,
semiconductor industry, microelectronics

dental care, chronic illnesses,
cardiovascular disease, diabetes

national science foundation,

integrated circuits,

juvenile diabetes,

> 1.75c george washington university, assemblers, high blood pressure,
e hong kong university, circuit board, family violence,
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Figure 3: Discriminative embedding space training for topic mining.

CNN s [22] or RNNs [56] for text classification. Among supervised
word embedding models, some previous studies are more relevant
because they explicitly leverage the category information to opti-
mize embedding for classification tasks. Predictive Text Embedding
(PTE) [46] constructs a heterogeneous text network and jointly
embeds words, documents and labels based on word-word and
word-document co-occurrences as well as labeled documents. Label-
Embedding Attentive Model [50] jointly embeds words and labels
so that attention mechanisms can be employed to discover cate-
gory distinctive words. All the above frameworks require labeled
training documents for fine-tuning word embeddings. Our method
only requires category names to learn a discriminative embedding
space over the categories, which are much easier to obtain.

Some recent studies propose to learn embeddings for lexical
entailment, which is relevant to our task because it may help deter-
mine which terms belong to a category. Hyperbolic models such as
Poincaré [12, 36, 47], Lorentz [37] and hyperbolic cone [17] have
proven successful in graded lexical entailment detection. However,
the above models are supervised and require hypernym-hyponym
training pairs, which may not be available under the setting of topic
discovery. Our model jointly learns the word vector representation
in the embedding space and its distributional specificity without
requiring supervision, and simultaneously considers relatedness
and specificity of words when retrieving category representative
terms.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we first propose a new task for topic discovery, dis-
criminative topic mining, which aims to mine distinctive topics
from text corpora guided by category names only. Then we intro-
duce a category-name guided word embedding framework CatE

that learns category distinctive text embedding by modeling the
text generation process conditioned on the user provided categories.
CatE effectively retrieves class representative terms based on both
relatedness and specificity of words, by jointly learning word em-
bedding and word distributional specificity. Experiments show that
CatE retrieves high-quality distinctive topics, and benefits down-
stream tasks including weakly-supervised document classification
and unsupervised lexical entailment direction identification.

In the future, we are interested in extending CatE to not only
focus on user provided categories, but also have the potential to
discover other latent topics in a text corpus, probably via distant
supervision from knowledge bases. There are a wide range of down-
stream tasks that may benefit from CatE. For example, we would
like to exploit CatE for unsupervised taxonomy construction [57]
by applying CatE recursively at each level of the taxonomy to find
potential children nodes. Furthermore, CatE might help entity set
expansion via generating auxiliary sets consisting of relevant words
to seed words [20].
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