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ABSTRACT
Taxonomies consist of machine-interpretable semantics and pro-

vide valuable knowledge for many web applications. For example,

online retailers (e.g., Amazon and eBay) use taxonomies for product

recommendation, and web search engines (e.g., Google and Bing)
leverage taxonomies to enhance query understanding. Enormous

efforts have been made on constructing taxonomies either manually

or semi-automatically. However, with the fast-growing volume of

web content, existing taxonomies will become outdated and fail

to capture emerging knowledge. Therefore, in many applications,

dynamic expansions of an existing taxonomy are in great demand.

In this paper, we study how to expand an existing taxonomy by

adding a set of new concepts. We propose a novel self-supervised

framework, named TaxoExpan, which automatically generates a set

of ⟨query concept, anchor concept⟩ pairs from the existing taxon-

omy as training data. Using such self-supervision data, TaxoExpan
learns a model to predict whether a query concept is the direct

hyponym of an anchor concept. We develop two innovative tech-

niques in TaxoExpan: (1) a position-enhanced graph neural net-

work that encodes the local structure of an anchor concept in the

existing taxonomy, and (2) a noise-robust training objective that

enables the learned model to be insensitive to the label noise in the

self-supervision data. Extensive experiments on three large-scale

datasets from different domains demonstrate both the effectiveness

and the efficiency of TaxoExpan for taxonomy expansion.
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1 INTRODUCTION
Taxonomies have been fundamental to organizing knowledge for

centuries [39]. In today’s Web, taxonomies provide valuable knowl-

edge to supportmany applications such as query understanding [14],

content browsing [46], personalized recommendation [15, 55], and

web search [24, 45]. For example, many online retailers (e.g., eBay
and Amazon) organize products into categories of different granular-
ities, so that customers can easily search and navigate this category

taxonomy to find the items they want to purchase. In addition,
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Figure 1: An example of expanding one computer science
field-of-study taxonomy to include new concepts such as
“Quantum Computing”, “Meta Learning”, and “TPU”.

web search engines (e.g., Google and Bing) leverage a taxonomy

to better understand user queries and improve the search quality.

Existing taxonomies are mostly constructed by human experts

or in a crowdsourcing manner. Such manual curations are time-

consuming, labor-intensive, and rarely complete. To reduce the hu-

man efforts, many automatic taxonomy construction methods [26,

34, 52] are proposed. They first identify “is-A” relations (e.g., “iPad”
is an “Electronics”) using textual patterns [13, 31] or distributional
similarities [2, 37], and then organize extracted concept pairs into a

directed acyclic graph (DAG) as the output taxonomy [7, 11, 20]. As

the web contents and human knowledge are constantly growing,

people need to expand an existing taxonomy to include new emerg-

ing concepts. Most of previous methods, however, construct a taxon-

omy entirely from scratch and thus when we add new concepts, we

have to re-run the entire taxonomy construction process. Although

being intuitive, this approach has several limitations. First, many

taxonomies have a top-level design provided by domain experts

and such design shall be preserved. Second, a newly constructed

taxonomy may not be consistent with the old one, which can lead

to instabilities of its dependent downstream applications. Finally,

as targeting the scenario of building taxonomy from scratch, most

previous methods are unsupervised and cannot leverage signals

from the existing taxonomy to construct a new one.

In this paper, we study the taxonomy expansion task: given an

existing taxonomy and a set of new emerging concepts, we aim

to automatically expand the taxonomy to incorporate these new

concepts (without changing the existing relations in the given taxon-

omy).
1
Figure 1 shows an example where a taxonomy in computer

science domain is expanded to include new subfields (e.g., “Quantum
Computing”) and new techniques (e.g., “Meta Learning” and “UDA”).
Some previous studies [17, 18, 32] attempt this task by using an

1
We recognize that the modification of an existing taxonomy is necessary in some cases. However,

it happens much less frequently and requires high cautiousness from human curator. Therefore, we

leave it out of the scope of automation.
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additional set of labeled concepts with their true insertion positions

in the existing taxonomy. However, such labeled data are usually

small and thus forbid us from learning a more powerful model that

captures the subsumption semantics in the existing taxonomy.

We propose a novel framework named TaxoExpan to tackle the

lack-of-supervision challenge. TaxoExpan formulates a taxonomy

as a directed acyclic graph (DAG), automatically generates pseudo-

training data from the existing taxonomy, and uses them to learn

a matching model for expanding a given taxonomy. Specifically,

we view each concept in the existing taxonomy as a query and

one of its parent concepts as an anchor. This gives us a set of

positive ⟨query concept, anchor concept⟩ pairs. Then, we generate

negative pairs by sampling those concepts that are neither the

descendants nor the direct parents of the query concept in the

existing taxonomy. In Figure 1, for example, the ⟨“GPU ”, “Integrated
Circuit”⟩ is a positive pair and ⟨“GPU ”, “Label Propagation”⟩ is a
negative pair. We refer to these training pairs as self-supervision
data, because they are procedurally generated from the existing

taxonomy and no human curation is involved.

To make the best use of above self-supervision data, we develop

two novel techniques in TaxoExpan. The first one is a position-

enhanced graph neural network (GNN) which encodes the local

structure of an anchor concept using its ego network (egonet) in the

existing taxonomy. If we view this anchor concept as the “parent” of

the query concept, this ego network includes the potential “siblings”

and “grand parents” of the query concept. We apply graph neural

networks (GNNs) to model this ego network. However, regular

GNNs fail to distinguish nodes with different relative positions to

the query (i.e., some nodes are grand parents of the query while

the others are siblings of the query). To address this limitation, we

present a simple but effective enhancement to inject such position

information into GNNs using position embedding. We show that

such embedding can be easily integrated with existing GNN archi-

tectures (e.g., GCN [19] and GAT [43]) and significantly boosts the

prediction performance. The second technique is a new noise-robust

training scheme based on the InfoNCE loss [41]. Instead of predict-

ing whether each individual ⟨query concept, anchor concept⟩ pair

is positive or not, we first group all pairs sharing the same query

concept into a single training instance and learn a model to select

the positive pair among other negative ones from the group. We

show that such training scheme is robust to the label noise and

leads to performance gains.

We test the effectiveness of TaxoExpan framework on three real-

world taxonomies from different domains. Our results show that

TaxoExpan can generate high-quality concept taxonomies in sci-

entific domains and achieves state-of-the-art performance on the

WordNet taxonomy expansion challenge [18].

Contributions. To summarize, our major contributions include:

(1) a self-supervised framework that automatically expands existing

taxonomies without manually labeled data; (2) an effective method

for enhancing graph neural network by incorporating hierarchical

positional information; (3) a new training objective that enables the

learned model to be robust to label noises in self-supervision data;

and (4) extensive experiments that verify both the effectiveness

and the efficiency of TaxoExpan framework on three real-world

large-scale taxonomies from different domains.

2 RELATEDWORK

Taxonomy Construction and Expansion. Most existing taxon-

omy construction methods focus on building the entire taxonomy

by first extracting hypernym-hyponym pairs and then organiz-

ing all hypernymy relations into a tree or DAG structure. For the

first hypernymy discovery step, methods fall into two categories:

(1) pattern-based methods which leverage pre-defined patterns

[13, 16, 29] to extract hypernymy relations from a corpus, and

(2) distributional methods which calculate pairwise term similarity

metrics based on term embeddings [22, 25, 36] and use them to

predict whether two terms hold the hypernymy relation. For the

second hypernymy organization step, most methods formulate it as

a graph optimization problem. They first build a noisy hypernymy

graph using hypernymy pairs extracted and then derive the output

taxonomy as a particular tree or DAG structure (e.g., maximum

spanning tree [4], and minimum-cost flow [11]). Finally, there are

somemethods that leverage entity set expansion techniques [33, 54]

to incrementally construct a taxonomy either from scratch or from

a tiny seed taxonomy.

In many real-world applications, some existing taxonomies may

have already been laboriously curated by experts [9, 23] or via

crowdsourcing [27], and are deployed in online systems. Instead of

constructing the entire taxonomy from scratch, these applications

demand the feature of expanding an existing taxonomy dynami-

cally. There exist some studies on expanding WordNet with named

entities from Wikipedia [40] or domain-specific concepts from dif-

ferent corpora [3, 10, 17]. Task 14 of SemEval 2016 challenge [18]

is specifically setup to enrich WordNet with domain-specific con-

cepts. One limitation of these approaches is that they depend on

the synset structure unique to WordNet and thus cannot be easily

generalized to other taxonomies.

To address the above limitation, more recent works try to de-

velop methodologies for expanding a generic taxonomy. Wang et
al. [44] design a hierarchical Dirichlet model to extend the cate-

gory taxonomy in search engines using query logs. Plachouras et
al. [30] learn paraphrase models on external paraphrase datasets

and apply learned models to directly find paraphrases of concepts

in the existing taxonomy. Vedula et al. [42] combine multiple fea-

tures, some of which are retrieved from an external Bing Search

API, into a ranking model to score candidate positions in terms

of their matching scores with the query concept. Comparing with

these methods, our TaxoExpan framework explicitly models the

local structure around each candidate position, which boosts the

quality of expanded taxonomy.

GraphNeural Network.Our work is also related to Graph Neural
Network (GNN) which is a generic method of learning on graph-

structure data. Many GNN architectures have been proposed to

either learn individual node embeddings [12, 19, 43] for the node

classification and the link prediction tasks or learn an entire graph

representation [48, 53] for the graph classification task. In this

work, we tackle the taxonomy expansion task with a fundamentally

different formulation from previous tasks. We leverage some ex-

isting GNN architectures and enrich them with additional relative

position information. Recently, You et al. [50] propose a method

to add position information into GNN. Our methods are different

from You et al.. They model the absolute position of a node in a full



graph without any particular reference points; while our technique

captures the relative position of a node with respect to the query

node. Finally, some work on graph generation [21, 49] involves a

module to add a new node into a partially generated graph, which

shares the similar goal as our model. However, such graph gener-

ation model typically requires fully labeled training data to learn

from. To the best of our knowledge, this is the first study on how to

expand an existing directed acyclic graph (as we model a taxonomy

as a DAG) using self-supervised learning.

3 PROBLEM FORMULATION
In this section, we first define a taxonomy, then formulate our

problem, and finally discuss the scope of our study.

Taxonomy. A taxonomy T = (N , E) is a directed acyclic graph

where each node n ∈ N represents a concept (i.e., a word or a

phrase) and each directed edge ⟨np ,nc ⟩ ∈ E indicates a relation

expressing that concept np is the most specific concept that is more

general than concept nc . In other words, we refer to np as the

“parent” of nc and nc as the “child” of np .

Problem Definition. The input of the taxonomy expansion task
includes two parts: (1) an existing taxonomy T 0 = (N 0, E0), and
(2) a set of new concepts C. This new concept set can be either

manually specified by users or automatically extracted from text

corpora. Our goal is to expand the existing taxonomy T 0
into a

larger taxonomy T = (N 0 ∪ C, E0 ∪ R ), where R is a set of newly

discovered relations each including one new concept c ∈ C.

Example 1. Figure 1 shows an example of our problem. Given a
field-of-study taxonomy T 0 in the computer science domain and a
set of new concepts C = {“UDA”, “Meta Learning”, . . . }, we find each
new concept’s best position in T 0 (e.g., “UDA” under “Semi-supervised
Learning” as well as “GPU” under “Integrated Circuit”) and expand
T 0 to include those new concepts.

Simplified Problem. A simplified version of the above problem

is that we assume the input set of new concepts contains only one

element (i.e., |C| = 1), and we aim to find one single parent node of

this new concept (i.e., |R | = 1). We discuss the connection between

these two problem settings at the end of Section 4.1.

Discussion. In this work, we follow previous studies [1, 18, 42]

and assume each concept in N 0 ∪ C has an initial embedding

vector learned from this concept’s surface name, or if available, its

definition sentences [32] and associated web pages [44]. We also

note that our problem formulation assumes those relations in the

existing taxonomy are not modified. We acknowledge that such

modification is necessary in some cases, but it is much less frequent

and requires high cautiousness from human curators. Therefore,

we leave it out of the scope of automation in this study.

4 THE TAXOEXPAN FRAMEWORK
In this section, we first introduce our taxonomy model and expan-

sion goal. Then, we elaborate how to represent a query concept

and an insertion position (i.e., an anchor concept), based on which

we present our query-concept matching model. Finally, we discuss

how to generate self-supervision data from the existing taxonomy

and use them to train the TaxoExpan framework.
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Figure 2: Two egonets correspond to two anchor concepts.

4.1 Taxonomy Model and Expansion Goal
A taxonomy T describes a hierarchical organization of concepts.

These concepts form the node set N in T . Mathematically, we

model each node n ∈ N as a categorical random variable and the

entire taxonomyT as a Bayesian network.We define the probability

of a taxonomy T as the joint probability of node setN which can be

further factorized into a set of conditional probabilities as follows:

P(T |Θ) = P(N |T , Θ) =
|N |∏
i=1

P(ni |parentT (ni ), Θ),

where Θ is the set of model parameters and parentT (ni ) is the set
of ni ’s parent node(s) in taxonomy T .

Given learned model parameters Θ, an existing taxonomy T 0 =

(N 0, E0), and a set of new concepts C, we can ideally find the best

taxonomy T ∗ by solving the following optimization problem:

T ∗ = argmax

T

P(T |Θ) = argmax

T

|N 0∪C|∑
i=1

log P(ni |parentT (ni ), Θ).

This naïve approach has two limitations. First, the search space

of all possible taxonomies over the concept set |N 0 ∪ C| is prohibi-

tively large. Second, we cannot guarantee the structure of existing

taxonomy T 0
remains unchanged, which can be undesirable from

the application point of view.

We address the above limitations by restricting the search space

of our output taxonomy to be the exact expansion of the existing

taxonomy T 0
. Specifically, we keep the parents of each existing

taxonomy node n ∈ N 0
unchanged and only try to find a single

parent node of each new concept in C. As a result, we divide the

above computationally intractable problem into the following set

of |C| tractable optimization problems:

a∗i = argmax

ai ∈N 0

log P(ni |ai , Θ), ∀i ∈ {1, 2, . . . , |C | }, (1)

where ai is the parent node of a new concept ni ∈ C and we refer

to it as the “anchor concept”.

Discussion. The above equation defines |C| independent optimiza-

tion problems and each problem aims to find one single parent

of a new concept ni . Therefore, we essentially reduce the more

generic taxonomy expansion problem into |C | independent simpli-

fied problems (c.f. Section 3) and tackle it by inserting new concepts

one-by-one into the existing taxonomy. As a result of the above re-

duction, possible interactions among new concepts are ignored and

we leave it to the future work. In the following sections, we continue

to answer two keys questions: (1) how to model the conditional

probability P(ni |ai ,Θ), and (2) how to learn model parameters Θ.
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4.2 Modeling Query-Anchor Matching
We model the matching score between a query concept ni and
an anchor concept ai by projecting them into a vector space and

calculating matching scores using their vectorized representations.

We show the entire model architecture of TaxoExpan in Figure 3.

4.2.1 Representing Query Concept.
In this study, we assume each query concept has an initial feature

vector learned based on some text associated with this concept. Such

text can be as simple as the concept surface name, or in some prior

studies [18, 44], the definition sentences and clicked web pages

about the concept. We represent each query concept ni using its

initial feature vector denoted as ni . We will discuss how to obtain

such initial feature vectors using embedding learning methods in

the experiment section.

4.2.2 Representing Anchor Concept.
Each anchor concept corresponds to one node in the existing

taxonomy T 0
that could be the “parent” of a query concept. One

naïve way to represent an anchor concept is to directly use its initial

feature vector. A key limitation of this approach is that it captures

only the “parent” node information and loses other surrounding

nodes’ signals. We illustrate this limitation below:

Example 2. Suppose we are given a query concept “high depen-

dency unit” to predict whether it should be under the “hospital room”
node in an existing taxonomy. As these two concepts have dissimilar
embeddings based on their surface names, we may believe this query
concept shouldn’t be placed underneath this anchor concept. How-
ever, if we know that this anchor concept has two children nodes, i.e.,
“ intensive care unit” and “ low dependency unit”, that are closely re-
lated to the query concept, we are more likely to put the query concept
under this anchor concept, correctly.

The above example demonstrates the importance of capturing

local structure information in the anchor concept representation.

We model the anchor concept using its ego network. Specifically,

we consider the anchor concept to be the “parent” node of a query
concept. The ego network of the anchor concept consists of the

“sibling” nodes and “grand parent” nodes of the query concept, as

shown in Figure 2. We represent the anchor concept based on its

ego network using a graph neural network.

GraphNeural NetworkArchitectures.Given an anchor concept
ai with its corresponding ego network Gai and its initial represen-

tation ai , we use a graph neural network (GNN) to generate its final

representation ai . This GNN contains two components: (1) a graph
propagation module that transforms and propagates node features

over the graph structure to compute individual node embeddings

in Gai , and (2) a graph readout module that combines node embed-

dings into the full ego network embedding which encodes all local

structure information centered around the anchor concept.

A graph propagation module uses a neighborhood aggregation

strategy to iteratively update the representation of a node u by

aggregating representations of its neighbors N (u) and itself. We de-

note N (u)∪ {u} as IN (u). After K iterations, a node’s representation

captures the structural information within its K-hop neighborhood.

Formally, we define a GNN with K-layers as follows:

h (k )u = AGG
(k )
(
{h (k−1)v |v ∈ IN (u ) }

)
, k ∈ {1, . . . , K }, (2)

where h
(k )
u is node u’s feature in the k-th layer; h

(0)
u is node u’s

initial feature vector, and AGG
(k )

is an aggregation function in the

k-th layer. We instantiate AGG
(k )

using two popular architectures:

Graph Convolutional Network (GCN) [19] and Graph Attention

Network (GAT) [43]. GCN defines the AGG function as follows:

AGG
(k )
(
{h (k−1)v |v ∈ IN (u ) }

)
= ρ

*..
,

∑
v∈JN (u )

α (k−1)
uv W(k−1)h (k−1)v

+//
-
, (3)

where α
(k−1)
uv = 1/

√
|IN (u) | |IN (v ) | is a normalization constant

(same for all layers); ρ is a non-linear function (e.g., ReLU), and
W(k−1)

is the learnable weight matrix. If we interpret α
(k−1)
uv as the

importance of node v’s feature to node u, GCN calculates it using

only the graph structure without leveraging the node features. GAT

addresses this limitation by defining α
(k−1)
uv as follows:

α (k−1)
uv =

exp

(
γ
(
z(k−1) ˙[W(k−1)h (k−1)u ∥W(k−1)h (k−1)v ]

))
∑
v′∈JN (u )

exp

(
γ
(
z(k−1) ˙[W(k−1)h (k−1)u ∥W(k−1)h (k−1)

v′
]

)) , (4)

where both z(k−1) and W(k−1)
are learnable parameters; γ (·) is

another non-linear function (e.g., LeakyReLU), and “∥” represents

the concatenation operation. Plugging the above α
(k−1)
uv into Eq. (3)

we obtain the aggregation function in a single-head GAT. Finally,We

execute M independent transformations of Eq. (3) and concatenate



their output features to compose the final output embedding of

node u. This defines the aggregation function in a multi-head GAT

(withM heads) as follows:

AGG
(k )
(
{h (k−1)v |v ∈ IN (u ) }

)
=

M

∥
m=1

ρ
*..
,

∑
v∈JN (u )

α (k−1)
uv W(k−1)

m h (k−1)v
+//
-
, (5)

whereW(k−1)
m is them-th weight matrix in them-th attention head.

After obtaining each node’s final representation h
(K )
u , we gen-

erate the ego network’s representation hG using a graph readout

module as follows:

hG = READOUT( {h (K )
u |u ∈ G }), (6)

where READOUT is a permutation invariant function [51] such as

element-wise mean or sum.

Position-enhanced Graph Neural Networks. One key limita-

tion of the above GNNmodel is that they fail to capture each node’s

position information relative to the query concept. Take Figure 2

as an example, the “hospital room” node in the left ego network is

the anchor node itself while in the right ego network it is the child

of the anchor node. Such position information will influence how

node feature propagates within the ego network and how the final

graph embedding is aggregated.

An important innovation in TaxoExpan is the design of position-

enhanced graph neural networks. The key idea is to learn a set

of “position embeddings” and enrich each node feature with its

corresponding position embedding. We denote node u’s position

as pu and its position embedding at k-th layer as p(k )u . We re-

place each node feature h
(k−1)
u with its position-enhanced version

h
(k−1)
u ∥p(k−1)u in Eqs. (3-5) and adjust the dimensionality ofW(k−1)

accordingly. Such position embeddings help us to learn better node

representations from two aspects. First, we can capture more neigh-

borhood information. Take W(k−1)h
(k−1)
v in the right hand side of

Eq. (3) as an example, we enhance it to the following:

[
W(k−1) ∥O(k−1)

] [
h (k−1)v ∥p(k−1)v

]
=W(k−1)h (k−1)v + O(k−1)p(k−1)v ,

where O(k−1)
is another weight matrix used to transform position

embeddings. The above equation shows that a node’s new rep-

resentation is jointly determined by its neighborhoods’ contents

(i.e., h(k−1)v ) and relative positions in the ego network (i.e., p(k−1)v ).

Second, for GAT architecture, we can better model neighbor im-

portance as the term α
(k−1)
uv in Eq. (3) currently depends on both

p(k−1)u and p(k−1)v .

Furthermore, we propose two schemes to inject position infor-

mation in the graph readout module. The first one, called weighted

mean readout (WMR), is defined as follows:

READOUT( {h (K )
u |u ∈ G }) =

∑
u∈G

log(1 + exp(αpu ))∑
u′∈G log(1 + exp(αp′u

))
h (K )
u , (7)

where αpu is the parameter indicating the importance of position

pu . The second scheme is called concatenation readout (CR) which

combines the average embeddings of nodes with the same position

as follows:

READOUT( {h (K )
u |u ∈ G }) = ∥

p∈P

I (pu = p )h
(K )
u∑

u′∈G I (pu′ = p )
, (8)
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Figure 4: Self-supervision generation.

where P is the set of all positions we are modeling and I (·) is an
indicator function which returns 1 if its internal statement is true

and returns 0 otherwise.

4.2.3 Matching Query Concept and Anchor Concept.
Based on the learned query concept representation ni ∈ RD1

and anchor concept representation ai ∈ RD2
, we calculate their

match score using a matching module f (·) : RD2 × RD1 → R. We

study two architectures. The first one is a multi-layer perceptron

with one hidden layer, defined as follows:

fMLP (ai , ni ) = σ (W2γ (W1 (ai ∥ni ) + B1 ) + B2 ) , (9)

where {W1,B1,W2,B2} are parameters; σ (·) is the sigmoid func-

tion, and γ (·) is the LeakyReLU activation function. The second

architecture is a log-bilinear model defined as follows:

f LBM (ai , ni ) = exp

(
aTi Wni

)
, (10)

whereW is a learnable interactionmatrix.We choose theseMLP and

LBM as they are representative architecures in linear and bilinear

interaction models, respectively.

4.3 Model Learning and Inference
The above section discusses how to model query-anchor matching

using a parameterized function f (·|Θ). In this section, we first intro-
duce how we learn those parameters Θ using self-supervision from

the existing taxonomy. Then, we establish the connection between

the matching score with the conditional probability P(ni |ai ), and
discuss how to conduct model inference.

Self-supervision Generation. Figure 4 shows the generation pro-

cess of self supervision data. Given one edge ⟨np ,nc ⟩ in the ex-

isting taxonomy T 0 = (N 0, E0), we first construct a positive

⟨anchor, query⟩ pair by using child node nc as the “query” and
parent node np as the “anchor”. Then, we construct N negative

pairs by fixing the query node nc and randomly selecting N nodes

{nlr |
N
l=1} ⊂ N

0
that are neither parents nor descendants ofnc . These

N + 1 pairs (one positive and N negatives) collectively consist of

one training instance X = {⟨np ,nc ⟩, ⟨n1r ,nc ⟩, . . . , ⟨nNr ,nc ⟩}. By re-

peating the above process for each edge in T 0
, we obtain the full

self-supervision dataset X = {X1, . . . ,X |E0 | }. Notice that a node
with C parents in T 0

will derive C training instances in X.

Model Training. We learn our model on X using the InfoNCE

loss [41] as follows:

L (Θ) = −
1

|X |

∑
Xi ∈X


log

f (np, nc )∑
⟨nj ,nc ⟩∈Xi f (nj , nc )


, (11)

where the subscript j ∈ [1, 2, . . . ,N + 1]. If j = 1, ⟨nj ,nc ⟩ is a
positive pair, otherwise, ⟨nj ,nc ⟩ is a negative pair. The above loss is



the cross entropy of classifying the positive pair ⟨np ,nc ⟩ correctly,

with

f (np,nc )∑
⟨nj ,nc ⟩∈Xi f (nj ,nc )

as the model prediction. Optimizing this

loss results in f (ai ,ni ) estimating the following probability density

(up to a multiplicative constant):

f (ai , ni ) ∝
P(ai |ni )
P(ai )

. (12)

We prove the above result in Appendix and summarize our self-

learning procedure in Algorithm 1. We establish the connection

between matching score f (ai ,ni ) with the probability P(ni |ai ) in
Eq. 1 as follows:

P(ni |ai ) =
P(ai |ni )
P(ai )

· P(ni ) ∝ f (ai , ni ) · P(ni ). (13)

We elaborate the implication of this equation below.

Model Inference.At the inference stage, we are given a new query

concept ni and apply the learned model f (·|Θ) to predict its parent
node in the existing taxonomy T 0

. Mathematically, we aim to find

the anchor position ai that maximizes P(ni |ai ), which is equivalent

to maximizing f (ai ,ni ) because of Eq. (13) and the fact that P (ni )
is the same across all positions. Therefore, we rank all candidate

positions ai based on their matching scores with ni and select the

top ranked one as the predicted parent node of this query concept.

Although we currently select only the top one as query’s single

parent, we can also choose top-k ones as query’s parents, if needed.

Summary. Given an existing taxonomy and a set of new concepts,

our TaxoExpan first generates a set of self-supervision data and

learns its internal model parameters using Algorithm 1. For each

new concept, we run the inference procedure and find its best

parent node in the existing taxonomy. Finally, we place these new

concepts underneath their predicted parents one at a time, and

output the expanded taxonomy.

Computational Complexity Analysis.At the training stage, our
model uses |E (0) | training instances every epoch and thus scales

linearly to the number of edges in the existing taxonomy. At the in-

ference stage, for each query concept, we calculate |N (0) | matching

scores, one for every existing node in T 0
. Although suchO ( |N (0) |)

cost per query is expensive, we can significantly reduce it using two

strategies. First, most computation efforts of TaxoExpan are ma-

trix multiplications and thus we use GPU for acceleration. Second,

as the graph propagation and graph readout modules are query-

independent (c.f. Fig. 4), we pre-compute all anchor representations

and cache them. When a set of queries are given, we only run the

matching module.

5 EXPERIMENTS
In this section, we study the performance of TaxoExpan on three

large-scale real-world taxonomies.

5.1 Expanding MAG Field-of-Study Taxonomy
5.1.1 Datasets. We evaluate TaxoExpan on the public Field-of-

Study (FoS) Taxonomy
2
in Microsoft Academic Graph (MAG) [38].

This FoS taxonomy contains over 660 thousand scientific concepts

and more than 700 thousand taxonomic relations. Although being

constructed semi-automatically, this taxonomy is of high quality,

2
https://docs.microsoft.com/en-us/academic-services/graph/reference-data-schema

Algorithm 1: Self-supervised learning of TaxoExpan

Input: A taxonomy T 0
; negative size N , batch size B; model f ( · |Θ).

Output: Learned model parameters Θ.
1 Randomly initialize Θ;

2 while L (Θ) in Eq. (11) not converge do
3 Enumerate edges in T 0

and sample B edges without replacement;

4 X = { } # current batch of training instances;

5 for each sampled edge ⟨np, nc ⟩ do
6 Generate N negative pairs {⟨nlr , nc ⟩ |

N
l=1 };

7 X← X ∪ {⟨np, nc ⟩, ⟨n1

r , nc ⟩, . . . , ⟨n
N
r , nc ⟩};

8 Update Θ based on X.

9 Return Θ;

Table 1: Dataset Statistics. |N | and |E | are the number of
nodes and edges in the existing taxonomy. |D| indicates the
taxonomy depth and |C| is the number of new concepts.

Dataset |N | |E | |D| |C|

MAG-CS 24,754 42,329 6 2,450

MAG-Full 355,808 638,674 6 37,804

SemEval 95,882 89,089 20 600

as shown in the previous study [35]. Thus we treat each concept’s

original parent nodes as its correct anchor positions. We remove

all concepts that have no relation in the original FoS taxonomy

and then randomly mask 20% of leaf concepts (along with their

relations) for validation and testing
3
. The remaining FoS taxonomy

is then treated as the input existing taxonomy. We refer to this

dataset as MAG-Full. Based on MAG-Full, we construct another

dataset focusing on the computer science domain. Specifically, we

first select a subgraph consisting of all descendants of “computer

science” node and then mask 10% of leaf concepts in this subgraph

for validation and another 10% of leaf nodes for testing. We name

this dataset as MAG-CS.
To obtain the initial feature vector, we first construct a corpus

that consists of all paper abstracts mentioning at least one con-

cept in the original MAG dataset. Then, we use “ ” to concate-

nate all tokens in one concept (e.g., “machine learning” → “ma-

chine_learning”) and learn 250-dimension word embeddings using

skipgram model in word2vec
4
[28]. Finally, we use these learned

embeddings as the initial feature vector. Table 1 lists the statistics

of these two datasets. All datasets and our model implementations

are available at: https://github.com/mickeystroller/TaxoExpan.

5.1.2 Evaluation Metrics. As our model returns a rank list of all

candidate parents for each input query concept, we evaluate its

performance using the following three ranking-based metrics.

• MeanRank (MR)measures the average rank position of a query

concept’s true parent among all candidates. For queries with

multiple parents, we first calculate the rank position of each

individual parent and then take the average of all rank positions.

Smaller MR value indicates better model performance.

3
Here we mask only leaves because if we remove intermediate nodes, we have to remove their

descendants from the candidate parent pool, which causes different masked nodes (as testing query

concepts) having different candidate pools.

4
We also test CBOW model, fastText [5] and BERT embedding [8] (averaged across all concept

mentions), and empirically we find skipgram model in word2vec works best on this dataset.

https://docs.microsoft.com/en-us/academic-services/graph/reference-data-schema
https://github.com/mickeystroller/TaxoExpan


Table 2: Overall results on MAG-CS and MAG-Full datasets. We run all methods three times and report the averaged result
with standard deviation. Note that smallerMR indicates bettermodel performance. For all othermetrics, larger values indicate
better performance. We highlight the best two models in terms of the average performance under each metric.

Method MAG-CS MAG-Full

MR Hit@1 Hit@3 MRR MR Hit@1 Hit@3 MRR

Closest-Parent 1327.16 (±0.000) 0.0531 (±0.000) 0.0986 (±0.000) 0.2691 (±0.000) 14355.5 (±0.000) 0.0360 (±0.000) 0.0728 (±0.000) 0.1897 (±0.000)

Closest-Neighbor 382.07 (±0.000) 0.1085 (±0.000) 0.2000 (±0.000) 0.3987 (±0.000) 4160.8 (±0.000) 0.0221 (±0.000) 0.0419 (±0.000) 0.1405 (±0.000)

dist-XGBoost 136.86 (±1.832) 0.1903 (±0.010) 0.3483 (±0.014) 0.6618 (±0.003) 426.70 (±8.047) 0.1498 (±0.076) 0.3046 (±0.009) 0.5621 (±0.002)

ParentMLP 114.79 (±12.25) 0.0729 (±0.088) 0.2656 (±0.037) 0.6454 (±0.009) 457.14 (±39.81) 0.098 (±0.094) 0.1928 (±0.086) 0.4950 (±0.012)

DeepSetMLP 115.26 (±9.159) 0.1988 (±0.005) 0.3581 (±0.016) 0.6653 (±0.015) 444.83 (±27.59) 0.1461 (±0.005) 0.2971 (±0.064) 0.6392 (±0.017)

TaxoExpan 80.33 (±5.470) 0.2121 (±0.010) 0.3823 (±0.012) 0.6929 (±0.003) 341.31 (±33.62) 0.1523 (±0.009) 0.3087 (±0.010) 0.6453 (±0.035)

• Hit@k is the number of query concepts whose parent is ranked

in the top k positions, divided by the total number of queries.

• Mean Reciprocal Rank (MRR) calculates the reciprocal rank
of a query concept’s true parent. We follow [47] and use a scaled

version of MRR in the below equation:

MRR =
1

|C|

∑
c ∈C

1

|parent (c ) |

∑
i ∈parent (c )

1

⌈Ri,c/10⌉
,

where parent (c ) represents the parent node set of the query

concept c , and Ri,c is the rank position of query concept c’s true
parent i . We scale the original MRR by a factor 10 in order to

amplify the performance gap between different methods.

5.1.3 Compared Methods. We compare the following methods:

(1) Closest-Parent: A rule-based method which first scores each

candidate position in the existing taxonomy based on its cosine

distance to the query concept between their initial embedding,

and then ranks all positions using this score. The position with

the smallest distance is chosen to be query concept’s parent.

(2) Closest-Neighbor: Another rule-based method that scores

each position based on its distance to the query concept plus

the average distance between its children nodes and the query.

(3) dist-XGBoost: A self-supervised boosting method that works

directly on 39 manually-designed features generated using ini-

tial node embeddings without any embedding transformation.

We input these features into XGBoost [6], a tree-based boosting

model, to predict the matching score between a query concept

and a candidate position.

(4) ParentMLP: A self-supervised method that first concatenates

the query concept embedding with the candidate position em-

bedding and then feeds them into a Multi-Layer Perceptron

(MLP) for prediction.

(5) DeepSetMLP: Another self-supervised method that extends

ParentMLP by adding information of candidate position’s chil-

dren nodes. Specifically, we first use DeepSet architecture [51]

to generate the representation of the children node set and then

concatenate it with query & candidate position representations

before the final MLP module.

(6) TaxoExpan: Our proposed framework using position-enhanced

GAT (PGAT) as graph propagationmodule, weightedmean read-

out (WMR) for graph readout, and log-bilinear model (LBM)

for query-anchor matching. We learn this model using our pro-

posed InfoNCE loss.

5.1.4 Implementation Details and Parameter Settings. For a fair

comparison, we use the same 250-dimension embeddings across

Table 3: Ablation analysis of model architectures on MAG-
CS dataset.We assign an index to eachmodel variant (shown
in the first column). All models are run three times with
their averaged scores reported.

Ind

Graph Graph

Matching MR Hit@1 Hit@3 MRR

Propagate Readout

1 GCN Mean MLP 167.82 0.1581 0.2964 0.6002

2 GAT Mean MLP 131.46 0.1584 0.3192 0.6409

3 PGCN Mean MLP 148.54 0.1809 0.3015 0.6255

4 PGAT Mean MLP 100.80 0.1896 0.3304 0.6525

5 PGCN WMR MLP 144.81 0.1798 0.3014 0.6309

6 PGCN CR MLP 135.89 0.1902 0.3118 0.6348

7 PGAT WMR MLP 92.62 0.1945 0.3584 0.6619
8 PGAT CR MLP 95.84 0.1897 0.3512 0.6596

9 PGCN WMR LBM 139.41 0.1829 0.3370 0.6642

10 PGCN CR LBM 130.12 0.1934 0.3462 0.6776

11 PGAT WMR LBM 80.33 0.2121 0.3823 0.6929
12 PGAT CR LBM 84.40 0.2089 0.3813 0.6894

all compared methods. We use Google’s original word2vec imple-

mentation
5
for learning embeddings and employ gensim

6
to load

trained embeddings for calculating term distances in Closest-Parent,

Closest-Neighbor, and dist-XGBoost methods. For the other three

methods, we implement them using PyTorch and DGL framework
7
.

We tune hyper-parameters in all self-supervised methods on the

masked validation set. For TaxoExpan, we use a two-layer position-
enhanced GATwhere the first layer has four attention heads (of size

250) and the second layer has one attention head (of size 500). For

both layers, we use 50-dimension position embeddings and apply

dropout with rate 0.1 on the input feature vectors. We use Adam

optimizer with initial learning rate 0.001 and ReduceLROnPlateau

scheduler
8
with three patience epochs. We discuss the influence of

these hyper-parameters in the next subsection.

5.1.5 Experimental Results. We present the experimental results

in the following aspects.

1. Overall Performance. Table 2 presents the results of all com-

pared methods. First, we find that Closest-Neighbor method clearly

outperforms Closest-Parent method and DeepSetMLP is much bet-

ter than ParentMLP. This demonstrates the effectiveness of model-

ing local structure information. Second, we compare dist-XGBoost

method with Closest-Neighbor and show that self-supervision in-

deed helps us to learn an effective way to combine various neighbor

distance information. All four self-supervised methods outperform

5
https://github.com/tmikolov/word2vec

6
https://github.com/RaRe-Technologies/gensim

7
https://github.com/dmlc/dgl

8
https://pytorch.org/docs/stable/optim.html#torch.optim.lr_scheduler.ReduceLROnPlateau

https://github.com/tmikolov/word2vec
https://github.com/RaRe-Technologies/gensim
https://github.com/dmlc/dgl
https://pytorch.org/docs/stable/optim.html#torch.optim.lr_scheduler.ReduceLROnPlateau
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Figure 5: Ablation analysis of training schemes on MAG-CS
dataset. We compare models trained using Binary Cross En-
tropy (BCE) loss with those trained using InfoNCE loss.

rule-based methods. Finally, our proposed TaxoExpan has the over-

all best performance across all the metrics and defeats the second

best method by a large margin.

2. Ablation Analysis of Model Architectures. TaxoExpan con-

tains three key components: a graph propagation module, a graph

readout module, and a matching model. Here, we study how differ-

ent choices of these components affect the performance of TaxoExpan.
Table 3 lists the results and the first column contains the index of

each model invariant.

First, we analyze graph propagation module by using simple

average scheme for graph readout and MLP for matching. By com-

paring model 1 to model 3 and model 2 to model 4, we can see that

graph attention architecture (GAT) is better than graph convolution

architecture (GCN). Furthermore, the position-enhanced variants

clearly outperform their non-position counterparts (model 3 versus

model 1 and model 4 versus model 2). This illustrates the efficacy

of the position embeddings in the graph propagation module.

Second, we study graph readout module by fixing the graph

propagation module to be the best two variants among models 1-4.

We can see both model 5 & 6 outperform model 3 and model 7 & 8

outperform model 4. This signifies that the position information

also helps in the graph readout module. However, the best strategy

of incorporating position information depends on the graph prop-

agation module. The concatenation readout scheme works better

for PGCN while the weighted mean readout is better for PGAT.

One possible explanation is that the concatenation readout leads to

more parameters in matching model and as PGAT itself has more

parameters than PGCN, further introducing more parameters in

PGAT may cause the model to be overfitted.

Finally, we examine the effectiveness of different matching mod-

els. We replace the MLP in models 5-8 with LBM to create model

variants 9-12. We can clearly see that LBM works better than MLP.

It could be that LBM better captures the interaction between the

query representation and the final anchor representation.

3. Ablation Analysis of Training Schemes. In this subsection,

we evaluate the effectiveness of our proposed training scheme. In

this study, we first group a set of positive and negative ⟨query,anchor ⟩
pairs into one single training instance (c.f. Sect. 4.3) and learn the

model using InfoNCE loss (c.f. Eq. (11)). An alternative is to treat

these pairs as different instances and train the model using standard
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Figure 6: Hyper-parameter sensitivity analysis on MAG-CS
dataset. We use PGAT for graph propagation, WMR for
graph readout, and LBM for query-graph matching. Model
is trained using InfoNCE loss.

binary cross entropy (BCE) loss. Under this training scheme, we

formulate our problem as a binary classification task. We compare

these two training schemes for the top 4 best models in Table 3

(i.e., model 7, 8, 11, and 12). Results are shown in Figure 5. Our

proposed training scheme with InfoNCE loss is overall much better,

it beats the BCE loss scheme on 14 out of total 16 cases. One reason

is that BCE loss is very sensitive to the noises in the generated

self-supervision data while InfoNCE loss is more robust to such

label noise. Furthermore, we find that LBM matching can benefit

more from our training scheme with InfoNCE loss – with larger

margin on all 8 cases, compared with the simple MLP matching.

4. Hyper-parameter SensitivityAnalysis.Weanalyze how some

hyper-parameters in TaxoExpan affect the performance in Figure 6.

First, we find that choosing an approximate position embedding

dimension is important. The model performance increases as this

dimensionality increases until it reaches about 50. When we further

increase position embedding dimension, the model will overfit and

the performance decreases. Second, we study the effect of negative

sampling ratio N . As shown in Figure 6, the model performance

first increases as N increases until it reaches about 30 and then

becomes stable. Finally, we examine two hyper-parameters control-

ling the model complexity: the number of heads in PGAT and the

final graph embedding dimension. We observe that the best model

performance is reached when the number of attention heads falls

in range 3 to 5 and the graph embedding dimension is set to 500.

Too many attention heads or too large graph embedding dimension

will lead to overfit and performance degradation.

5. Efficiency and Scalability.We further analyze the scalability of

TaxoExpan and its efficiency during model inference stage. Figure 7

(left) tests the model scalability by running on MAG-CS dataset

sampled using different ratios. The training time (of 20 epochs)

are measured on one single K80 GPU. TaxoExpan demonstrates

a linear runtime trend, which validates our complexity analysis

in Sect. 4.3. Second, Figure 7 (right) shows that TaxoExpan is very
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efficient during model inference stage. Using GPU, TaxoExpan takes
less than 30 seconds to predict the anchor positions for all 2450

new query concepts.

6. Case Study. Figure 8 shows some outputs of TaxoExpan on

both MAG-CS and MAG-Full datasets. On MAG-CS dataset, we

can see that over 20% of queries have their true parents correctly

ranked at the first position and less than 1.5% queries have their

“true” parents ranked outside of top 1000 positions. Among these

1.5% significantly wrong queries, we find some of them actually

have incorrect existing parents. For example, the concept “boils
and carbuncles”, which is a disease entity, is mistakenly put un-

der parent node “dataset”. Similar cases also happen on MAG-Full

dataset where we find the concept “blood staining” is currently
under “laryngeal mask airway”.

Besides the above label errors, we also observe two common

mistake patterns. The first type of mistakes is caused by term am-

biguity. For instance, the term “java” in concept “java apple” refers
to an island in Indonesia where fruit apple is produced, rather than

a programming language used in Apple company. The second type

of mistakes results from term granularity. For example, TaxoExpan
outputs the two most likely parent nodes of concept “captcha” are
“artificial intelligence” and “computer security”. Although these two

concepts are certainly relevant to “captcha”, they are too general

compared to its true parent node “internet privacy”.
Finally, we observe that TaxoExpan can return very sensible an-

chor positions of query concepts, even though they are not exactly

the current “true” parents. For example, the concept “medline plus”
refers to a large online medical library and thus is related to both

“world wide web” and “library science”. Also, the concept “email
hacking” is clearly relevant to both “internet privacy” and “hacker”.

7. TaxoExpan for Taxonomy Self-Cleaning. From the above

case studies, we find another interesting application of TaxoExpan
is to use it for cleaning the existing taxonomy. Specifically, we par-

tition all leaf nodes of the existing taxonomy into 5 groups and

randomly mask one group of nodes. Then, we train a TaxoExpan
model on the remaining nodes and predict on the masked leaf nodes.

Next, we select those entities whose true parents appear at the bot-

tom of the rank lists returned by TaxoExpan (i.e., the long-tail part
of two histograms in Figure 8). The parents of those selected entities

are highly questionable and calls for further manual inspections.

Our preliminary experiments on the MAG-CS taxonomy shows

that about 30% of these entities have existing parent nodes which

are less appropriate than the parents inferred by TaxoExpan.

5.2 Evaluation on SemEval Task Benchmark
5.2.1 Datasets. We further evaluate TaxoExpan using SemEval

Task 14 Benchmark dataset
9
[18] which includes WordNet 3.0 as

the existing taxonomy and additional 1,000 domain-specific con-

cepts with manual labels, split into 400 training concepts and 600

testing concepts. Each concept is either a verb or a noun and has a

textual definition of a few sentences. The original task goal is to

enrich the taxonomy by performing two actions for each new con-

cept: (1) attach, where a new concept is treated as a new synset and

is attached as a hyponym of one existing synset in WordNet, and

(2) merge, where a new concept is merged into an existing synset.

However, previous state-of-the-art methods [18, 32, 42], including

the winning solution, are only performing the attach operation.

In this work, we also follow this convention and attach each new

concept to the top-ranked synset in the WordNet. Finally, we obtain

the initial feature vectors (for both new concepts and existing words

in the WordNet) using pre-trained subword-aware fasttext embed-

dings
10
. For each concept, we generate its definition embedding

and name embedding by averaging the embedding of each token

in its textual definition and name string, correspondingly. Then,

we sum the definition and name embeddings of a concept and use

them as the initial embeddings for the TaxoExpan model.

5.2.2 Evaluation Metrics. We use the three official metrics defined

in original SemEval Task 14 for evaluation:

(1) Accuracy (Wu&P) is the semantic similarity between a pre-

dicted parent node xp and the true parent xt , calculated as

Wu&P(xp ,xt ) =
2·depthLCA(xp ,xt )

depthxp +depthxt
, where depthx is the depth

of node x is the WordNet taxonomy and LCA(xp ,xt ) represents
the Least Common Ancestor of xp and xt .

(2) Recall is the percentage of concepts for which an attached

parent is predicted
11
.

(3) F1 is the harmonic mean of Wu&P accuracy and recall.

5.2.3 Baseline Methods. We compare the following methods:

(1) FWFS [18]: The original baseline in Task 14. Given a concept

c with its definition dc , this method picks the first word w in

dc that has the same part of speech as c and treats this word as

the parent node of c .
(2) MSejrKU [32]: The winning solution of Task 14. This method

leverages distributional and syntactic features to train a SVM

classifier which is then used to predict the goodness of fit for a

new concept with an existing synset in WordNet.

(3) ETF [42]: The current state-of-the-art method that learns a

LambdaMART model with 15 manually designed features, in-

cluding topological features from the taxonomy’s graph struc-

ture and semantic features from corpus and Bing search results.

(4) ETF-FWFS [42]: The ensemble model of FWFS and ETF, which

adds the FWFS property as a binary feature into the Lamb-

daMART model in ETF.

(5) dist-XGBoost: The same tree boosting model described in the

previous subsection 5.1.3.

(6) TaxoExpan: Our proposed taxonomy expansion framework.

9
http://alt.qcri.org/semeval2016/task14/.

10
We use the wiki-news-300d-1M-subword.vec.zip version on fastText official website.

11
This metric is used because the original task allows a model to decline to place new concepts in

order to avoid making placements with low confidence.

http://alt.qcri.org/semeval2016/task14/
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Figure 8: Example output of TaxoExpan on MAG-CS and MAG-Full datasets. We draw a histogram of the ranks of query
concepts’ true parents within the rank list returned by TaxoExpan. In subfigure (a), for example, we have 519 (out of 2450)
queries that their parents are exactly ranked in the first position.

Table 4: Model performance on SemEval dataset. TaxoExpan
versus all previous state-of-the-art methods. We report the
best performance of all existing methods in the literature.

Method Wu&P Recall F1

MSejrKU [32] 0.523 0.973 0.680

FWFS [18] 0.514 1.000 0.679

ETF [42] 0.473 1.000 0.642

ETF-FWFS [42] 0.562 1.000 0.720

dist-XGBoost 0.528 1.000 0.691

TaxoExpan 0.543 1.000 0.704

TaxoExpan-FWFS 0.566 1.000 0.723

(7) TaxoExpan-FWFS: Similar to ETF-FWFS, this is the ensemble

model of FWFS and TaxoExpan. We treat the FWFS heuristic as

a binary feature and add it into the final matching module.

For all previous methods, we directly report their best performance

in the literature. For the remaining methods, we tune them follow-

ing the same procedure described in the Section 5.1.4.

5.2.4 Experimental Results. Table 4 shows the experimental re-

sults on SemEval dataset. We can see that both dist-XGBoost and

TaxoExpan methods can outperform the previous winning system

of this task (i.e., MSejrKU) and the baseline ETF. In addition, we

can see the FWFS heuristic is indeed very powerful for this dataset

and incorporating it as a strong feature can significantly boost the

performance. Finally, we show that TaxoExpan-FWFS can achieve

the new state-of-the-art performance on this dataset.

6 CONCLUSION
This paper studies taxonomy expansion when no human labeled

supervision data are given. We propose a novel TaxoExpan frame-

work which generates self-supervision data from the existing tax-

onomy and learns a position-enhanced GNN model for expansion.

To make the best use of self-supervision data, we design a noise-

robust objective for effective model training. Extensive experiments

demonstrate the effectiveness and efficiency of TaxoExpan on three

taxonomies from different domains. Interesting future work in-

cludes modeling inter-dependency among new concepts, leverag-

ing current method to cleaning the input existing taxonomy, and

incorporating feedbacks from downstream applications (e.g., search
& recommendation) to generate more diverse supervision signals

for expanding the taxonomy.
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APPENDIX
Proof of Loss Function
Here we prove that optimizing the loss function in Eq. (11) will

result in f (·) estimating the probability density in Eq. (12). By con-

struction, X contains query nc ’s one positive anchor (i.e., its true
parent np ) sampled from the true distribution P(ai |nc ) and N nega-

tive anchors {nlr |
N
l=1} sampled from a uniform distribution P(ai ). If

we merge these N + 1 anchors into a small set and consider the task

of selecting true anchor np ’s position j∗ in [1, 2, . . . ,N + 1], we can

view Eq. (11) as the cross entropy of position distribution P̂ from

model prediction relative to the true distribution P∗. Specifically,
the model predicted position distribution P̂j =

f (aj ,nc )∑N+1
k=1 f (ak ,nc )

where

one of {ak |
N+1
k=1 } is the true anchor and all the others are negative

anchors. Meanwhile, in the true position distribution:

P∗j =
P(aj |nc )

∏
l,j P(al )∑N+1

k=1

(
P(ak |nc )

∏
l,k P(al )

) =
P(aj |nc )
P(aj )∑N+1

k=1
P(ak |nc )
P(ak )

.

From above, we can see that the optimal value for f (aj ,nc ) is

proportional to

P(aj |nc )
P(aj )

.
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