Relation Learning on Social Networks with
Multi-Modal Graph Edge Variational Autoencoders

Carl Yang*, Jieyu Zhang*, Haonan Wang®, Sha Li*, Myungwan Kim*, Matt Walker®, Yiou Xiao®,
Jiawei Han*
“University of Illinois, Urbana Champaign, 201 N. Goodwin Ave, Urbana, IL 61801, USA
#LinkedIn Co., 599 N. Mathilda Ave, Sunnyvale, CA 94085, USA
*{jiyang3, jieyuz2, haonan3, shal2, hanj}@illinois.edu, *{mukim, mtwalker, yixiao}@linkedin.com

ABSTRACT

While node semantics have been extensively explored in social
networks, little research attention has been paid to profile edge
semantics, i.e., social relations. Ideal edge semantics should not only
show that two users are connected, but also why they know each
other and what they share in common. However, relations in social
networks are often hard to profile, due to noisy multi-modal signals
and limited user-generated ground-truth labels.

In this work, we aim to develop a unified and principled frame-
work that can profile user relations as edge semantics in social
networks by integrating multi-modal signals in the presence of
noisy and incomplete data. Our framework is also flexible towards
limited or missing supervision. Specifically, we assume a latent
distribution of multiple relations underlying each user link, and
learn them with multi-modal graph edge variational autoencoders.
We encode the network data with a graph convolutional network,
and decode arbitrary signals with multiple reconstruction networks.
Extensive experiments and case studies on two public DBLP author
networks and two internal LinkedIn member networks demonstrate
the superior effectiveness and efficiency of our proposed model.
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1 INTRODUCTION

On social networks, while nodes are explicitly associated with rich
contents (e.g., attributes, diffusions), the semantics of each link is
often implicit. Without such semantics, we cannot truly understand
the interaction between users. In this work, we propose and study
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the problem of relation learning on social networks. The goal is to
learn the relation semantics underlying each existing link in the
social network, which naturally improves the targeting of various
downstream services, such as friend suggestion, attribute profiling,
user clustering, influence maximization and recommendation.

Unlike relation prediction or extraction among entities [2, 9, 13,
20, 22, 29, 38, 40, 41, 55], relation learning on social networks is
hard due to the anonymous nature of users, lack of large-scale
free-text as context, and very limited labeled data [43]. Moreover,
information on social networks is multi-modal, noisy and incomplete
[46, 47], leading to various useful but low-quality signals, which are
challenging for a unified model to properly regulate and integrate.

Figure 1 gives an example of a toy social network. As shown
in (a), we assume the existence of some latent relation(s) for each
link in the network. For example, Tom and Maria are colleagues,
whereas Jack and Michael are schoolmates. Furthermore, to better
reflect reality, we model each link with a relation distribution. For
example, the relationship between Tom and Emily is built up by 80%
relatives and 20% schoolmates, i.e., they are from the same family,
which makes the relative relation dominate their link, but they also
go to the same school, thus forming a weaker schoolmate relation.
We also allow a link to carry an unknown relation, modeling the
uncertainty of relation strength.

This example also demonstrates three types of signals that are
helpful in relation inference.

o Network proximity. As illustrated in Figure 1 (b), the network
structure is highly useful for inferring unknown relations. If
we are confident that Tom and Maria as well as Maria and Bob
are colleagues, we can easily deduce that Tom and Bob are also
colleagues. Similar situations exist for other pairs like Jack and
Linda, who are likely schoolmates.

e User attribute. As the homophily phenomenon [24, 49] suggests,
user attributes can be highly indicative of their relations. As
shown in Figure 1 (c), if Cindy and Sherry share similar skills
(programming) and salary level (100K-150K), their relation is
more likely to be colleagues (e.g., 60%) than others (e.g., 40%).

o Information diffusion. As shown in Figure 1 (d), users on
social networks often interact in different ways, where links be-
come biased information routes. For example, Maria often shares
Michael’s posts about scientific breakthroughs or professional
activities, while Tom likes to comment on Michael’s posts on
restaurants and photography. Intuitively, it is more likely for
Maria and Michael to be colleagues or schoolmates, and Tom
and Michael to be relatives or close friends.


https://doi.org/10.1145/3336191.3371829

Bob __ Emily Cindy Bob Emily _ Ci"d\{ <
2 T e

Tom, @™ Sherry Tom«"’\f Sherry |
‘/ ) Maria leagues (1.0A (@

/‘ " (@) Jack /\‘/

Maria/, allez (1.00
( / Jack
(

Michael

~—— i . \’
Michael S Hinog

o .‘/

(a) Latent relations (b) Leveraging network proximities

Jack

-
Michael

(c) Leveraging user attributes

(d) Leveraging information diffusions

Figure 1: A running toy example of a LinkedIn social network of 9 users and 11 links.

Note that in real-world social networks, each of the three types
of information can be highly noisy and incomplete. Moreover, high-
quality training data is highly limited, if any. This requires a model
for relation learning on social networks to be: (1) powerful to fully
leverage and coherently integrate the multi-modal signals; (2) ro-
bust to produce reliable results when certain data are missing or
inaccurate; (3) flexible to operate with limited or no supervision.

In the face of such challenges, we develop RELEARN, a unified
multi-modal graph edge variational autoencoder framework. Essen-
tially, our model belongs to the class of unsupervised representation
learning models using autoencoders, which has been shown effec-
tive for various machine learning tasks [18, 28, 36]. On top of it,
we design a Gaussian mixture variational autoencoder to encode
link semantics, with the mixture weights representing the distri-
bution over relation types local to the link. We further assume
global relation prototype variables for the latent relations, which
are instantiated as a Gaussian distribution in our model. Variational
inference with two-step Monte Carlo sampling is designed to infer
both the global Gaussian parameters and local relation distributions.

To compute graph edge representations on large-scale social
networks, we combine graph convolutional networks (GCN) [17]
with fully-connected feedforward networks (FNN) for our encoder,
and enable batch-wise training with fixed-size neighborhood sam-
pling. To fully leverage and integrate multi-modal signals, we attach
multiple decoders to the GCN-based encoder, which can be flexi-
bly trained with any combination of available signals. Finally, the
framework can be trained with varying amount of labeled data by
using the labels as priors in the objective function.

We conduct extensive experiments on four real-world large-scale
social networks, i.e., two public DBLP author networks and two in-
ternal LinkedIn member networks!. Through the comparison with
various state-of-the-art baselines, we observe consistent significant
improvements of 8%-28% over the best baselines. The generative
nature of RELEARN further enables interpretable case studies that
provide insights into the learned relations.

2 RELATED WORK AND PRELIMINARIES

Social network analysis. Some works on social network analysis
have looked into the latent relations underlying uniform social
links. Among them, [5, 11, 32] aim to jointly learn user attributes
and relations, by assuming the relations to be mutually exclusive
and determined by user attributes, whereas [19, 27, 51, 52] attempt
to detect groups constructed by homogeneous relations. While

IDBLP source: https://dblp.uni-trier.de/; LinkedIn source: https://www.linkedin.com/

both groups of methods implicitly learn the relation semantics,
their assumptions about relations are restricted and unrealistic,
since relations are not necessarily mutually exclusive and are not
only learnable among groups. Moreover, their methods also do not
integrate various signals as we consider in this work. [33] leverages
text context to encode relation semantics in node embeddings. In
comparison, we directly learn edge representations and text is only
one of the signals we consider.

Relation learning in other contexts. The problem of relation
learning has been intensively studied in knowledge graph com-
pletion and relation extraction. Some existing works rely more on
the reasoning over existing knowledge graphs with typed links
[2, 9, 29, 40, 41], while others leverage more on the modeling of
textual contexts with weak supervision [13, 20, 22, 38, 55]. However,
on social networks, nodes are untyped as well as links, and they
are often anonymous without textual contexts. On the other hand,
noisy signals like link structures, user attributes and information
diffusions widely exist, which urges us to develop novel models for
relation learning on social networks.

Network embedding After the great success of DeepWalk [25],
network embedding has attracted much research attention in recent
years. We mainly compare with those on content-rich networks.
For example, models like TADW [45], PTE [30], Planetoid [53],
paper2vec [8], STNE [21], AutoPath [44] and NEP [48] have been
designed to improve network embedding by incorporating node
contents like types, attributes and texts. Moreover, the convolution
based models like GCN [17], GAT [34], GraphSage [10], CANE [33],
DiffPool [54], JK-Net [42], FastGCN [6] and DGI [35] naturally take
the input of both node features and links. However, most of them
cannot be trained in an unsupervised fashion, and none of them
can easily incorporate additional signals like information diffusions
on networks.

Moreover, a few recent works on diffusion prediction also com-
putes network embedding by modeling the diffusions as DAGs or
trees, such as CDSK [3], DCB [1], EmbIC [4], TopoLSTM [39] and
inf2vec [7]. In this way, they combine the signals of diffusions and
network links. However, they often only care about local network
embedding that captures the diffusion structures rather than all
links on the network, and they do not integrate node contents.

Variational autoencoders Variational autoencoders (VAEs) [15,
26] combine Bayesian inference with the flexibility of neural net-
works for robust representation learning. By applying the reparam-
eterization trick, VAE allows the use of standard backpropagation



to optimize continuous stochastic variables. In its simplest form,
VAE can be viewed as a one-layer latent variable model:

px,2) = p(2)p(xl2) @
where x is an observed variable and z is a hidden variable. Using
variational inference, the goal is to maximize the evidence lower

bound (ELBO):
L (Pe, q</;) =Eq,(zIx) [10gP9 (x,2) — log q¢(ZIX)]
= Eq, (1) logpa(x]2)] = KL (q4(z1%)llp(2)) -

We refer readers to [15] for the derivation of this lower bound.
Both gy (z]x) and pg(x|z) are parameterized by neural networks.
They are referred to as the encoder network and the decoder network,
respectively. The first term in the ELBO is a reconstruction loss that
encourages the decoded x to be close to the observed x. The second
term is a regularization term where the posterior distribution of z
is pulled towards the prior, which is often a simple distribution.
To extend the use of VAE to discrete variables, [12, 23] introduced
the Gumbel-Softmax distribution which is a continuous approxima-
tion of categorical variables. Given a categorical variable z and its
class probabilities 71, . . ., 7x, we can sample from this distribution
by first sampling k times from the Gumbel(0,1) distribution. The
argmax operation in the original Gumbel-Max trick is replaced by
a softmax operation to ensure the differentiability of the function

exp ((log (7;) + gi) /7)
Zj.‘:l exp ((log (ﬂ'j) + gj) /T)
3 RELEARN
3.1 Problem Definition

, fori=1,....k. (3)

i=

Input. As we have discussed in Section 1, we aim to jointly consider
multiple signals on social networks that are indicative of relation
semantics. We use a graph G = {V,E, A, D} to model all data
we consider in this work. V = {vi}l{\il is the set of nodes (users).
E= {eij}l{:[j:l is the set of edges (links), where e;; = 1 denotes an
existing link between v; and v}, and e;; = 0 otherwise. We consider
undirected links in this work, while the model can be easily general-
ized for directed links. A is the set of node features (user attributes)
associated with V, where each a; € A is a fixed-sized vector of
dimension L associated with v;. The exact features encoded in A is
dataset-dependent and we refer the reader to Section 4 for details.
D = {ds }Qil is the set of diffusion induced networks generated from
the information diffusions over the network, which we formally
define as follows.

DEFINITION 1. Diffusion Induced Network. A network ds = {Vs,
&s, Cs) is a diffusion induced network generated by a piece of infor-
mation & that flows on the whole network N = {V, &}, if Vs ¢V
is the set of nodes affected by &, Es C & is the set of edges among
Vs, and Cs is the contents associated with &;.

Taking G as input, our goal is to compute the following output
of edge representations #, which in an ideal case should encode
the underlying relation semantics we aim to learn from G.
Output. We aim to output H = {hij}i]j:l
sentations. Each h;j € H is a fixed-sized vector learned for edge

as a set of edge repre-

€jj.

We especially care about the representations of existing links
(i.e., ejj = 1), so as to further understand their underlying relation
semantics and make relation predictions through generic classifica-
tion or clustering algorithms. The representations of non-existing
links (i.e., e;; = 0) might also be useful for tasks like typed link
prediction but is not the focus of this work.

We now formally define the relation learning problem as follows.

DEFINITION 2. Relation Learning on Social Networks. Given a
social network G = {V,E, A, D}, learn the edge representation H
by integrating the multiple signals from &, A and D, which captures
the relations underlying &.

3.2 Model

In this work, we propose RELEARN, a unified model of multi-modal
graph edge variational autoencoder. It follows a novel design of a
single-encoder-multi-decoder framework, so as to coherently model
the multi-modal signals on social networks, and flexibly operate
when any of the signals are missing. A robust Gaussian mixture
model with global Gaussian distributions and local mixture weights
is injected to regulate the latent edge embedding space and capture
the underlying relation semantics.

3.2.1 Gaussian Mixture Variational Autoencoder. Motivated by re-
cent success of autoencoders, our idea is to find latent relations that
inherently generate the observed various signals on social networks.
Following this insight, we believe that the edge representation H,
as the codec computed via encoding and decoding the observed
signals through the autoencoder framework, should reflect the un-
derlying relations and follow a certain relation-specific distribution
in the embedding space.
Particularly, we assume H can be further decomposed into the
combination of a relation factor Z and an embedding factor W:
K
hij = Zzijkwijb (4)
k=1
where for each pair of nodes v; and v;, w;; follows the same set of
K independent global multivariate Gaussian distributions, i.e.,

Vk=1,....K: wijr ~ N (. 0p), (5)
and z;; follows a local multinomial distribution, i.e.,

<5 K )- (6)

The idea behind this design is intuitive: We assume there are
K possible latent relations, which is directly modeled by the local
relation factor z;; € RX. The multinomial distribution is chosen to
respect the fact that multiple relations can co-exist on the same link.
The edge representation h;; is then a weighted summation over
the global embedding factor w;; € RKXP_ We use a multivariate
Gaussian to model the edge semantics as a probability distribution
instead of a deterministic value so that the uncertainty in the data
due to noisy and inaccurate signals can be captured by its variance.

Note that, for any pair of nodes v; and v}, w;; follows the same K
global Gaussian components, which are fixed across all edges, while
the mixture assignment is inferred on each edge. Such a design
helps us largely reduce the number of parameters to be learned for
H and alleviate the problem of data sparsity.

To learn the edge embedding #, we assume that all observable
signals on social networks are independently generated given H,

zij ~ Mul(K, ij), mij = (7ij1, - -
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Encoder

as reflected in Figure 3. Consider a particular observed signal X
to learn (e.g., if we consider user attribute, then X = A), we can
derive the corresponding evidence lower bound objective (ELBO):

L(po.q4)
=Eq,(z,w,H|x)[log pg(Z, W, H,X) —log q4(Z, W, H|X)]
=Eq,(z,w,H|x)[log po(X|H)]

= KL[(gp (W)lip(W)] — KL[q4(ZIX)lIp(Z)].

In the equation, the first term is the reconstruction loss on X,
which allows the model to extract useful patterns from observed
network signals that are indicative of relation semantics. The sec-
ond and third terms regularize the latent variables towards the
priors. When no prior knowledge is available, the unit Gaussian dis-
tribution and uniform multinomial distributions can be applied to
regularize ‘W and Z, respectively. However, when labeled relations
are available during training, we can use a smoothed one-hot multi-
nomial distribution per labeled node pair as the prior to effectively
inject supervision, i.e.,

™

I(k = z’l.“j) +7 ®
1+Kp
where z;fj is the ground-truth relation label on e;; and 5 is a smooth-

p(zij =k) =

ing parameter. In this way, our model can flexibly leverage any
amount of supervision, and even work under no supervision.

3.2.2 Graph Edge Encoder. The goal of our encoder network is
to output the local relation factor Z, which is combined with the
global embedding factor ‘W to generate the edge embedding H.
GCN [17] has been widely used to compute latent representa-
tions from node feature and network structure [16, 50]. To consider
multiple signals for edge representations, we design a graph edge

encoder based on GCN. Specifically, we have
U+ = ReLU(D 2 ED" U P WD), )

which is a standard GCN layer. In our setting, U/ 0 = A, E=E+I N>
Dj; = 2 E; j» and Wy are the learnable GCN parameters. E is the
0-1 edge existence matrix. For the sake of scalability, we imple-
ment batch-wise training for GCN via fixed-sized neighborhood
sampling [10].

For a pair of nodes v; and v; (i < j), we concatenate their node
features to form an edge feature y;; € Y

yij = [ui,u;l, (10)
where u;,u; € U are the node features of v; and vj, respectively.
In this work, we do not differentiate the head and tail nodes for an
edge, since we only consider undirected links in the social networks.

Finally, we add a feed-forward neural network (FNN) with ReLU
activations that takes edge features to compute the relation factors
as Z = f(Y). Altogether, the parameters ¢ to be learned in the
encoder network is {@g, r, ¢}, Where @y is the set of parameters
in GCN, ¢, is the set of parameters in FNN, and ¢,, is the set of
parameters in the K global relation-specific Gaussian distributions.
Detailed configurations of the GCN and FNN are described in Sec. 4.

3.2.3  Multi-Modal Decoder. Figure 2 illustrates our particular de-
sign of multi-modal graph edge variational autoencoder that jointly
models the network proximities &, user attributes A and informa-
tion diffusions D on social networks, while various other possibly
useful signals can be easily plugged in with flexibility upon avail-
ability.

In this work, the decoder network consists of three decoders,
each of which models the generation process of a particular ob-
served signal given the edge representation H.

(1) A network proximity decoder, which models pg (E|H).
(2) A user attribute decoder, which models pg (A|H).
(3) An information diffusion decoder, which models pg (D|H).

In Eq. 7, we used X as a placeholder for any possible signal on G.
By plugging in all three decoders, we have our final ELBO.

L(po-q¢) = Eq,(z,w,H|G)[A110g po (EIH) + Az log pg (AlH) + A3
log pg(DIH)] = KL[(g4 (W)lIp(W)] = KL[q4(ZIG)lIp(2)],  (11)

where A;’s are the weighting parameters with Z?:l Ai=1.

Each of the three decoders are implemented as simple FNNs. De-
coder 1 tries to reconstruct links on the network with the following
cross-entropy loss on &:

Ly =Eq,(z,w,H|E) [log pg (EIH)] = ZE}MM log po (eijlhij)

LJ
= Z{eij log 6(fa1(hij)) + (1 — eij) log[1 — ¢(fa1 (hij))1},
Lj
(12)
where ¢(x) = ﬁ is the sigmoid function and f; is the FNN of

decoder 1. During training, we sample positive and negative pairs
of nodes, where positive samples are from node pairs with observed
links (i.e., e;j = 1) on G, and for each positive pair, we randomly
corrupt one end of the link to get negative samples.

Decoder 2 tries to recover the edge attributes, which are the
concatenations of node (user) attributes on the two ends (i.e., a;; =



[ai, aj]). It computes an {2 loss on A (constant terms omitted):
Ly =Eq,(z,w,H|4)[10g po(AlH)]

= En-q, logpo(aijlhij) = > Bpg,llaij = faz(hij)l3,

i,j ij
(13)
where f, is the FNN of decoder 2. Since h;; is the generated from
the two-step Monte Carlo sampling, variance has been pushed to
the encoder parameters Z and ‘W.
Decoder 3 tries to recover diffusion contents on links covered by
the corresponding diffusions, by computing a similar 3 loss on D:

Ls =Eq,,(z,w,H|p)[log po(DIH)]
= 3" B, logpo(ciilhis) = 3. B, lcs = fus(hip) I,

ij i,j

(14)
where fy3 is the FNN of decoder 3. For each diffusion induced
network d, we sample pairs of nodes that are covered by links in
&g (where eg. = 1), and ¢;; is set to Cy. During training. we firstly
sample a diffusion induced network ds from O, and then only
sample positive pairs of nodes w.r.t. &5 and make decoder 3 learn
to reconstruct the diffusion contents Cs and diffusion structures
&s simultaneously.

For the KL-divergence terms:

K
KL(gs(W)llp(W)) = D7 > KL(gg(wi) IN(0.))
L,j k=1
(15)
1
=2 D 5 owlly + luglly — xr ~ log det(diag(o}))))-
i,j k=1
The unit Gaussian is used as the prior for all Gaussian models in
‘W. kg is the dimension of the edge representation H.

For edges with no relation labels, we set the prior p(Z) to be
the uniform distribution. When relation labels are available, we set
p(Z) to the one-hot distribution and apply Laplace smoothing with
parameter 5 to avoid the magnitude explosion of KL-divergence:

KL(q4(ZIE, A, D)[Ip(Z))

K K
Zijk
= . l ;e + P 1 —_—,
' Z {Zzzjk 08 zjjk} Z {Zzuk og I[(k:z?.)+r]}
i,j,unsup k=1 i,j,sup k=1 ]

(16)
where unsup and sup denote the unsupervised and supervised node
pairs respectively, and z;‘j = k means e;; is labeled with the k-th re-
lation. Under this setting, the model is trained in a semi-supervised
learning fashion, and we only consider single label supervision in
this work.

3.24 Training. Training our model involves the learning of all
parameters in the encoder network q4(Z, W, H|G) and decoder
network pg(G|Z, W, H). As our multi-modal decoders jointly inte-
grate multiple observed signals on social networks, py(G|Z, W, H)
can be further decomposed into

Po(GIZ,W,H) = py, (E|H)pg, (A|H)pg, (D|H), (17)
The equation holds because we assume the variable dependence
structure in Figure 3, which allows us to learn the whole decoder
network pg by iteratively optimizing each of the three decoders
w.r.t. their corresponding losses. During the iterative training pro-
cess, each decoder is jointly trained with the same encoder g,

which allows the model to effectively integrate the multiple ob-
served signals, capture the underlying relation semantics and regu-
larize it with proper prior knowledge.

The training of each encoder-decoder combination generally
follows that of variational inference for variational autoencoders.
We design an efficient variational inference algorithm with two-
step Monte Carlo sampling and reparameterization tricks. It allows
joint learning of W and Z, together with other non-stochastic
parameters in the encoder and decoder networks through principled
Bayesian inference. Except for the particular reconstruction losses,
the algorithm works in the exact same way for all three decoders.

Algorithm 1 RELEARN Training

1: procedure TRAINING

2: G: the social network; B: batch size; T: number of batches.
3 fort=1:Tdo

4 for X'in {&, A, D} do

5 Sample B pairs of nodes with observed signals of X.
6: Use the encoder network to compute g4 (Z1G).
7
8
9

> Input

fork=1:K do
Draw B random variables ex ~ N (0, I).
: Compute Wk = [l + Ok€k.
10: Draw B random variables G ~ Gumbel(0, 1).
exp((log(Zy)+Gy)/ 7)

11: Compute Zj. = Zlk('ﬂ exp(10g(Ze )+ G )/ )
12: end for

13: Compute H = Zle Zr © W.

14: Use the decoder network to compute pg (X |H).
15: Compute the ELBO with g4 and pg.

16: Update {¢, 6} with gradient backpropagation.
17: end for

18: end for

19: end procedure

Without loss of generality, in Algorithm 1, we again use X to
refer to any of the three signals to describe our training process.
In Line 8-9 and 10-11, we apply the reparameterization trick to
W and Z by drawing random samples from the standard Normal
distribution and Gumbel distribution [12, 23], respectively, which
allows us to push the randomness to the continuous variables € and
discrete variables G, and directly optimize the encoder parameters
¢ through standard backpropagation.

As shown in Algorithm 1, besides the sampling process which
takes O(1) time for each batch, the whole training process of RE-
LEARN can be done through standard stochastic gradient backprop-
agation, which allows us to fully leverage well-developed optimiza-
tion software like mini-batch adam [14] and hardware like GPU.
Due to the inductive nature of RELEARN, we do not need to enu-
merate every pair of nodes in the network. Therefore, the overall
computational complexity of training is O(TBK), which are all con-
stant numbers irrelevant of the network size. In other words, the
actual training time of RELEARN depends more on the quality and
consistency of the network signals than the size of the network.

In our experiments, we observe that the training of RELEARN
often converges with TB = p|V| with p € [1, 10], which gives a
rough computational complexity of O(|V|), where |V| is the number
of nodes. This often leads to much less training time than most
baselines on the same networks.



4 EXPERIMENTS

4.1 Experimental Settings

4.1.1 Datasets. We use two public DBLP author networks and two
internal LinkedIn member networks for our experiments.

In the DBLP networks, nodes are authors and links are co-authorships.

Node attributes are generated from publications and information
diffusions are generated from citations. Particularly, user attributes
are computed by averaging the word embedding? of keywords
and titles in their publications, which are 300-dim. Information
diffusions are generated by firstly selecting papers with 10 — 100
citations, and construct author subnetworks by including authors
who cite the corresponding papers and their links. Diffusion con-
tents are then the paper embedding of the cited paper, which are
also 300-dim. We use the ground-truth relation labels of advisor-
advisee and colleague relations from [37]. A subnetwork DBLP-Sub
is generated by including all pairs of authors with ground-truth
relation labels and their direct co-authors. DBLP-All is the whole
network with all authors and links on DBLP.

In the LinkedIn networks, nodes are members (users) and links
are bi-directional member connections. We generate two relatively
small and complete networks of members in Bay Area, US and
Australia. Node attributes are generated based on the anonymous
user profiles, including features like skills, locations, languages and
so on. Numerical features like longitudes and latitudes are directly
adopted, whereas categorical features like skills and languages are
firstly converted into bag-of-skill and bag-of-language vectors, and
then further reduced to smaller dimensions via incremental PCA3.
The final dimension of user attributes is 466.

Ideally, information diffusions should be generated based on
public posts, such as popular articles shared by users. However,
due to privacy concern, we could not get that data in this work.
Alternatively, we use users’ following of influential individuals to
model the influence propagation. This following relation is one-
directional and different from connections, which we believe to be
indicative to users’ personal interests. Particularly, we randomly
choose influential individuals with 10 — 100 followers and generate
diffusion induced networks by including the followees and their
own connections. Diffusion contents are generated by embedding
the textual descriptions of the influential individuals from their
profile, by averaging the word embedding in the same way as we
do for papers on DBLP. The diffusion content vectors are 300-dim.

To generate the ground-truth relation labels, if two connected
members attend the same school in the same time, we label their
relation as schoolmate, and the same is done for colleague. Note
that, we exclude the education and working experience for gener-
ating node attributes, because they are highly correlated with the
ground-truth relation we use for evaluation. However, this does
not weaken the utility of our model, since this reliable generation
of schoolmate and colleague relations can only cover a small por-
tion of all observable connections (< 0.3%). Moreover, RELEARN
can be used to learn many other relations that cannot be easily
verified or even defined (e.g., relatives, townsmen, close friends), in
an unsupervised way.

Zhttp://nlp.stanford.edu/data/glove.840B.300d.zip
3https://scikit-learn.org/stable/auto_examples/decomposition/plot_incremental_pca.html

Dataset H #Nodes [ #Links [ #Diff. [ Rel.(%) ]
DBLP-Sub 23,418 282,146 100,859 0.4341
DBLP-All 1,476,370 4,109,102 410,822 0.0196

LinkedIn-Bay 1,481,521 67,819,313 45,686 0.2239
LinkedIn-Aus 6,598,127 | 328,005,877 | 129,510 0.1592

Table 1: Statistics of the four datasets we use. #Diff. is the
number of information diffusions, and Rel.(%) is the cover-
age of labeled relations over all observable links.

4.1.2  Compared algorithms. Since the problem setting of RELEARN
is quite different from relation learning on knowledge graphs, we
find a comprehensive list of baselines from the state-of-the-art on
network inference and embedding. However, none of the existing
models can combine all signals as we consider in this work. Besides
existing baselines, we also compare multiple variants of RELEARN
to provide in-depth understanding over the utilities of different
model components.

e GraphSage [10]: One of the strongest and most efficient variants
of the popular GCN model that integrates node attributes and
link structures for learning network embeddings.

STNE [21]: The state-of-the-art unsupervised text-rich network

embedding algorithm based on self-translation of sequences of

text embeddings into sequences of node embeddings.

PTE [30]: Extension of the popular network embedding algo-

rithm LINE [31] into text-rich network embedding. We also

enable supervision for PTE by constructing multiple bipartite
graphs connected by links with different relation labels.

e Planetoid [53]: Extension of the popular network embedding
algorithm DeepWalk [25] into text-rich network embedding. We
also enable supervision for Planetoid through pair-wise sampling
for relation prediction.

e TopoLSTM [39]: One of the state-of-the-art diffusion predic-
tion model with network embedding. Embedding of edges not
covered by any diffusion is computed as the average of the em-
bedding of all neighboring edges.

e Inf2vec [7]: Another State-of-the-art diffusion prediction model

with network embedding. The same process for TopoLSTM is

done for edges not covered by any diffusion.

RELEARN wW/0 DIFF: To study the ability of RELEARN in integrat-

ing multiple signals, we decompose the model by removing each

decoder. As an example, we show the performance of RELEARN
without decoder 3 (the information diffusion decoder). We find
that with the additional attribute decoder, this model variant still

performs better than the base model of GVAE [16].

e RELEARN W/0 VAE: To study the effectiveness of our novel Gauss-
ian mixture VAE in capturing the latent relations, we remove
VAE and directly use the output of the graph edge encoder as
the edge representation and input of the multi-modal decoders.

o RELEARN W/0 suP: The unsupervised training version of RE-
LEARN by using the uniform multinomial distribution as the
prior for the mixture weights Z for all edges.

o RELEARN: Our full RELEARN model?.

The implementations of all existing baselines are provided by their
original authors and the parameters are either set as the default
values or tuned to the best via standard five-fold cross validation.

4Code available at: https://github.com/yangji9181/RELEARN



As for RELEARN, for the encoder network, we use a two-layer GCN,
with embedding sizes 200 and 100. We set the number of sampled
neighbors to 30. After that, we use a single-layer FNN of size 3
with ReLU activations. The edge embedding size and dimension
of Gaussian mixtures are set to 100. For the decoder network, we
use three 2-layer FNNs with ReLU activations for the three signals,
with sizes 200 and 300. For link reconstruction, we set the positive-
negative sampling ratio to 1. The weights of three decoders are
simply set to the same. The number of latent relations are set to
2 for all datasets. For training, we set the batch size to 1024 and
learning rate set to 0.001 on all datasets. For DBLP datasets, we set
the number of batches to 500, and for LinkedIn datasets, we set the
number of batches to 5000.

4.1.3  Evaluation metrics. The node embeddings learned by all com-
pared algorithms are concatenated into edge embeddings and then
fed into MLPs with the same structure, which is then trained and
tested on the same splits of labeled relations. Standard classification
accuracy is computed based on the prediction of the MLPs using
the network embedding generated by different algorithms.

4.2 Performance Comparison with Baselines

We quantitatively evaluate RELEARN against all baselines on the
task of relation learning. Table 2 shows the classification accuracy
evaluated for all compared algorithms. The results all passed the
significant t-tests with p-value 0.01.

As we can see in Table 2, RELEARN constantly outperforms all
baselines by significant margins on all datasets, while the compared
algorithms have varying performances. Taking a closer look at
the results on different datasets, we observe that the task of learn-
ing the schoolmate and colleague relations on LinkedIn is much
harder than the adviser-advisee and colleague relations on DBLP.
This is probably because the social contents and links are often
more noisy and complex than those in the publication networks.
RELEARN excels on both of the LinkedIn networks, outperforming
the best baseline by 17.9% and 28.5%, respectively. Such significant
improvements strongly indicate the power of RELEARN in capturing
complex noisy signals on social networks for high-quality relation
learning. Moreover, the full RELEARN model also consistently out-
performs all other RELEARN variants, which further corroborates
the effectiveness of RELEARN in integrating multi-modal network
signals and limited supervision.

4.3 In-depth Model Analysis

To comprehensively evaluate the performance of RELEARN in com-
parison with the baselines, we design a series of in-depth analysis,
by varying the amount of training data, as well as adding noise and
sparsity to the network signals.

Efficiency towards limited training data. One major challenge
of relation learning on social networks is the lack of high-quality
relation labels. Therefore, an ideal model should be efficient in lever-
aging limited training data. To study such efficiency of RELEARN,
we conduct experiments on all datasets with varying amounts of
training data. Particularly, for each of the 4:1 splitting of training
and testing data, we use 10% - 100% of the 80% training data to
train RELEARN and all compared algorithms, and evaluate on the

20% testing data. The results on DBLP-AIl and LinkedIn-Bay are
presented in Figure 4.
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Figure 4: Varying amounts of training data.

Robustness towards attribute noise. On real-world social net-
works, user attributes are often highly noisy, since users might fill
in various free-style contents and even random contents. There-
fore, an ideal model for relation learning should be robust towards
attribute noise. To study such robustness of RELEARN, we conduct
experiments on all datasets by adding different amounts of random
noise onto the user attributes. Particularly, since all models take
the normalized numerical embedding of attributes as input, we
add the unit multivariate Gaussian noise scaled by 0.1-0.5 to the
attribute vector of each user. The modified input for all compared al-
gorithms (including RELEARN) is the same. The results on DBLP-All
and LinkedIn-Bay are presented in Figure 5.
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Figure 5: Varying amounts of attribute noise.

Robustness towards missing links. On real-world social net-
works, real-world friends may not necessarily have established
links. Therefore, an ideal model for relation learning should be ro-
bust towards missing links. To study such robustness of RELEARN,
we conduct experiments on all datasets by randomly removing
existing links in the network. Particularly, we randomly remove
2%-10% of links in the whole networks. The modified input for all
compared algorithms (including RELEARN) is the same. The results
on DBLP-AIIl and LinkedIn-Bay are presented in Figure 6.
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Figure 6: Varying amounts of link removal.



Algorithm

DBLP-Sub

DBLP-All

LinkedIn-Bay

LinkedIn-Aus

GraphSage

0.8596 +0.0201

0.8482 +0.0158

.6139 + 0.0367

0.5831 +0.0072

STNE

0.7577 £ 0.0425

0.7434 + 0.0214

.5695 +0.0236

0.5554 + 0.0160

PTE

0.7265 = 0.0018

0.6988 + 0.0222

.5636 +0.0378

0.5549 + 0.0041

Planetoid

0.8531 + 0.0205

0.8686 = 0.0206

.5608 +0.0301

0.5448 + 0.0045

TopoLSTM

0.6675 % 0.0435

0.7374 £ 0.0149

.5874 £ 0.0257

0.5616 = 0.0062

Inf2vec

0.6618 + 0.0401

0.7453 +0.0181

.6198 +0.0388

0.5848 +0.0068

RELEARN W/O DIFF

0.8890 + 0.0031

0.8465 +0.0138

.6616 + 0.0390

0.6934 + 0.0022

RELEARN W/O VAE

0.8433 +0.0154

0.8376 + 0.0060

.6293 +0.0194

0.6626 + 0.0087

RELEARN W/0O sup

0.8947 +£0.0170

0.8980 + 0.0115

.6771 £ 0.0211

0.7134 + 0.0048

RELEARN

0.9224 + 0.0026

0.9208 + 0.0042

0
0
0
0
0
0
0
0
0
0

.7308 + 0.0457

0.7514 £ 0.0033

Table 2: Relation learning accuracy of compared algorithms on four real-world social networks.

. .. Sponsorship Program Development, Fellowship Application

. . . Talent Management & Success Planning

Talent Acquisition, Recruiting, Head Hunting . . .

Recruitment . . . Development, Relationship Management

An Entrepreneur. A Scholar . . .

Portfolio Building | Training . . .

Learning & Development, Organisational Culture, Engagement . . .

Food . . . Driven & Hungry

FASHION, BEAUTY, TRAVEL, LIFE . . .

Social & Environmental Justice . . .

Chef Traditional Italian . . . Proactive

Wellness Coach-Clean Food . . . Warrior-Positive Thinker

.. . A Bohemian Fashion Boutique
Licensed Waterproofing Technician . . .

Area Area Il Area Il
Define | Create . . . Implement | Support | Succeed ‘Writer, Dancer, Entrepreneur . . . . . . Benefits Negotiation, Salary Negotiation
Training, Program Development, Exercise Prescription . . . Blogger & Youtuber . . . Corporate Advisor | Investment Banker . . . Shareholder Representative

Project Manager | Leader . . . Performance Manager | PA/EA
Recruitment, Performance M: nt . . . Gap Man nt
Change & Transition Management, Programme Management . . .
People Management, Performance Coaching, Human Resource . . .
. . . Beautiful Web Design & Digital Media Solutions

Test Automation, Test Management, Technical Testing . . .
Intellectual Property . . .

Table 3: Decoded diffusion contents on edges generated with three different latent relations.

Remarks on runtimes. While the exact runtimes of compared
algorithms are hard to determine due to different convergence rates
of each train, we observe that the runtime of RELEARN is close to
the more efficient baselines like PTE, Planetoid and GraphSage, and
is often significantly shorter than the heavier baselines like STNE,
TopoLSTM and Inf2vec.

5 CASE STUDIES

To observe how RELEARN captures the relation semantics among
users with learned edge representations, we visualize the embed-
ding space by plotting some of the labeled edges in the LinkedIn-Aus
network. We employ standard PCA to reduce the embeddings from
100-dim to 2-dim for plotting. As we can see from Figure 7, edges
carrying the two relations clearly form two clusters.

Figure 7: Visualization of edge representations on LinkedIn-
Aus computed by RELEARN. Red and blue colors denote the
ground-truth labels of schoolmate and colleague.

Moreover, the generative nature of RELEARN allows us to further
interpret the learned latent relations, by sampling edge represen-
tations from the learned Gaussian mixture model and decoding
them with the multiple learned decoders. This is especially useful
in the unsupervised learning scenario, where besides the latent
distributions, we also want to make sense of the learned relations.

In Table 3, as an example, we show the decoded textual fea-
ture from decoder 3 (i.e., the information diffusion decoder), which
provides valuable insights into the learned relations. The edge

representations are generated by sampling from the Gaussian dis-
tribution of Wy, W, and a uniform mixture of Wy and W,, which
roughly corresponds to the three marked areas in Figure 7.

As we can observe in Table 3, edges in Area I likely carry the
schoolmate relation, with decoded contents mainly about Learning
and Advising, whereas Area III clearly corresponds to colleagues,
due to decoded topics like Management and Performance. Edges
in Area I hold a mixture of the two relations, with more personal
life oriented contents like Food, Travel, Wellness, etc. Although
the encoder does not directly consider information diffusion, it
effectively helps the decoder to capture this information during the
joint training process.

Note that, in this example, we already know that the two re-
lations we learn are schoolmates and colleagues, which we use
as a verification of the utility of RELEARN. In the more realistic
situations where we have no access to ground truth, the multi-
ple decoders of RELEARN still provide meaningful interpretations
over the learned relations, which are valuable for downstream ser-
vices like relation-specific friendship recommendation and content
routing.

6 CONCLUSION

In this work, for the novel and challenging problem of relation
learning on social networks, we develop RELEARN, a multi-modal
graph edge variational autoencoder framework to coherently com-
bine multiple signals on social networks towards the capturing of
underlying relation semantics on user links. Moreover, the gener-
ative nature of RELEARN allows us to sample relational pairs for
interpreting the learned relations, while its inductive nature en-
ables efficient training regardless of the network sizes. Finally, the
general and flexible design of RELEARN makes it readily applicable
to any real-world social platforms with multi-modal network sig-
nals, where the learned node and edge embeddings can be used to
improve the targeting of various downstream services.
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