
Relation Learning on Social Networks with
Multi-Modal Graph Edge Variational Autoencoders

Carl Yang
∗
, Jieyu Zhang

∗
, Haonan Wang

∗
, Sha Li

∗
, Myungwan Kim

#
, Matt Walker

#
, Yiou Xiao

#
,

Jiawei Han
∗

∗
University of Illinois, Urbana Champaign, 201 N. Goodwin Ave, Urbana, IL 61801, USA

#
LinkedIn Co., 599 N. Mathilda Ave, Sunnyvale, CA 94085, USA

∗
{jiyang3, jieyuz2, haonan3, shal2, hanj}@illinois.edu,

#
{mukim, mtwalker, yixiao}@linkedin.com

ABSTRACT

While node semantics have been extensively explored in social

networks, little research attention has been paid to profile edge

semantics, i.e., social relations. Ideal edge semantics should not only

show that two users are connected, but also why they know each

other and what they share in common. However, relations in social

networks are often hard to profile, due to noisy multi-modal signals

and limited user-generated ground-truth labels.

In this work, we aim to develop a unified and principled frame-

work that can profile user relations as edge semantics in social

networks by integrating multi-modal signals in the presence of

noisy and incomplete data. Our framework is also flexible towards

limited or missing supervision. Specifically, we assume a latent

distribution of multiple relations underlying each user link, and

learn them with multi-modal graph edge variational autoencoders.

We encode the network data with a graph convolutional network,

and decode arbitrary signals with multiple reconstruction networks.

Extensive experiments and case studies on two public DBLP author

networks and two internal LinkedIn member networks demonstrate

the superior effectiveness and efficiency of our proposed model.

KEYWORDS

relation learning, social networks, graph variational autoencoder

ACM Reference Format:

Carl Yang, Jieyu Zhang, HaonanWang, Sha Li, Myungwan Kim,MattWalker,

Yiou Xiao, Jiawei Han. 2020. Relation Learning on Social Networks with

Multi-Modal Graph Edge Variational Autoencoders. In The Thirteenth ACM
International Conference on Web Search and Data Mining (WSDM’20), Feb-
ruary 3–7, 2020, Houston, TX, USA. ACM, New York, NY, USA, 9 pages.

https://doi.org/10.1145/3336191.3371829

1 INTRODUCTION

On social networks, while nodes are explicitly associated with rich

contents (e.g., attributes, diffusions), the semantics of each link is

often implicit. Without such semantics, we cannot truly understand

the interaction between users. In this work, we propose and study

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

WSDM ’20, February 3–7, 2020, Houston, TX, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6822-3/20/02. . . $15.00

https://doi.org/10.1145/3336191.3371829

the problem of relation learning on social networks. The goal is to
learn the relation semantics underlying each existing link in the

social network, which naturally improves the targeting of various

downstream services, such as friend suggestion, attribute profiling,

user clustering, influence maximization and recommendation.

Unlike relation prediction or extraction among entities [2, 9, 13,

20, 22, 29, 38, 40, 41, 55], relation learning on social networks is

hard due to the anonymous nature of users, lack of large-scale

free-text as context, and very limited labeled data [43]. Moreover,

information on social networks ismulti-modal, noisy and incomplete
[46, 47], leading to various useful but low-quality signals, which are

challenging for a unified model to properly regulate and integrate.
Figure 1 gives an example of a toy social network. As shown

in (a), we assume the existence of some latent relation(s) for each

link in the network. For example, Tom and Maria are colleagues,
whereas Jack and Michael are schoolmates. Furthermore, to better

reflect reality, we model each link with a relation distribution. For
example, the relationship between Tom and Emily is built up by 80%
relatives and 20% schoolmates, i.e., they are from the same family,

which makes the relative relation dominate their link, but they also

go to the same school, thus forming a weaker schoolmate relation.
We also allow a link to carry an unknown relation, modeling the

uncertainty of relation strength.

This example also demonstrates three types of signals that are

helpful in relation inference.

• Network proximity. As illustrated in Figure 1 (b), the network

structure is highly useful for inferring unknown relations. If

we are confident that Tom andMaria as well asMaria and Bob
are colleagues, we can easily deduce that Tom and Bob are also

colleagues. Similar situations exist for other pairs like Jack and

Linda, who are likely schoolmates.
• User attribute.As the homophily phenomenon [24, 49] suggests,

user attributes can be highly indicative of their relations. As

shown in Figure 1 (c), if Cindy and Sherry share similar skills

(programming) and salary level (100K-150K), their relation is

more likely to be colleagues (e.g., 60%) than others (e.g., 40%).
• Information diffusion. As shown in Figure 1 (d), users on

social networks often interact in different ways, where links be-

come biased information routes. For example,Maria often shares

Michael’s posts about scientific breakthroughs or professional
activities, while Tom likes to comment on Michael’s posts on
restaurants and photography. Intuitively, it is more likely for

Maria and Michael to be colleagues or schoolmates, and Tom
and Michael to be relatives or close friends.

https://doi.org/10.1145/3336191.3371829

(a) Latent relations (b) Leveraging network proximities (c) Leveraging user attributes (d) Leveraging information diffusions

Figure 1: A running toy example of a LinkedIn social network of 9 users and 11 links.

Note that in real-world social networks, each of the three types

of information can be highly noisy and incomplete. Moreover, high-

quality training data is highly limited, if any. This requires a model

for relation learning on social networks to be: (1) powerful to fully

leverage and coherently integrate the multi-modal signals; (2) ro-
bust to produce reliable results when certain data are missing or

inaccurate; (3) flexible to operate with limited or no supervision.

In the face of such challenges, we develop ReLearn, a unified

multi-modal graph edge variational autoencoder framework. Essen-

tially, our model belongs to the class of unsupervised representation

learning models using autoencoders, which has been shown effec-

tive for various machine learning tasks [18, 28, 36]. On top of it,

we design a Gaussian mixture variational autoencoder to encode

link semantics, with the mixture weights representing the distri-

bution over relation types local to the link. We further assume

global relation prototype variables for the latent relations, which

are instantiated as a Gaussian distribution in our model. Variational

inference with two-step Monte Carlo sampling is designed to infer

both the global Gaussian parameters and local relation distributions.

To compute graph edge representations on large-scale social

networks, we combine graph convolutional networks (GCN) [17]

with fully-connected feedforward networks (FNN) for our encoder,

and enable batch-wise training with fixed-size neighborhood sam-

pling. To fully leverage and integrate multi-modal signals, we attach

multiple decoders to the GCN-based encoder, which can be flexi-

bly trained with any combination of available signals. Finally, the

framework can be trained with varying amount of labeled data by

using the labels as priors in the objective function.

We conduct extensive experiments on four real-world large-scale

social networks, i.e., two public DBLP author networks and two in-

ternal LinkedIn member networks
1
. Through the comparison with

various state-of-the-art baselines, we observe consistent significant

improvements of 8%-28% over the best baselines. The generative

nature of ReLearn further enables interpretable case studies that

provide insights into the learned relations.

2 RELATEDWORK AND PRELIMINARIES

Social network analysis. Some works on social network analysis

have looked into the latent relations underlying uniform social

links. Among them, [5, 11, 32] aim to jointly learn user attributes

and relations, by assuming the relations to be mutually exclusive

and determined by user attributes, whereas [19, 27, 51, 52] attempt

to detect groups constructed by homogeneous relations. While

1
DBLP source: https://dblp.uni-trier.de/; LinkedIn source: https://www.linkedin.com/

both groups of methods implicitly learn the relation semantics,

their assumptions about relations are restricted and unrealistic,

since relations are not necessarily mutually exclusive and are not

only learnable among groups. Moreover, their methods also do not

integrate various signals as we consider in this work. [33] leverages

text context to encode relation semantics in node embeddings. In

comparison, we directly learn edge representations and text is only

one of the signals we consider.

Relation learning in other contexts. The problem of relation

learning has been intensively studied in knowledge graph com-

pletion and relation extraction. Some existing works rely more on

the reasoning over existing knowledge graphs with typed links

[2, 9, 29, 40, 41], while others leverage more on the modeling of

textual contexts with weak supervision [13, 20, 22, 38, 55]. However,

on social networks, nodes are untyped as well as links, and they

are often anonymous without textual contexts. On the other hand,

noisy signals like link structures, user attributes and information

diffusions widely exist, which urges us to develop novel models for

relation learning on social networks.

Network embedding After the great success of DeepWalk [25],

network embedding has attracted much research attention in recent

years. We mainly compare with those on content-rich networks.

For example, models like TADW [45], PTE [30], Planetoid [53],

paper2vec [8], STNE [21], AutoPath [44] and NEP [48] have been

designed to improve network embedding by incorporating node

contents like types, attributes and texts. Moreover, the convolution

based models like GCN [17], GAT [34], GraphSage [10], CANE [33],

DiffPool [54], JK-Net [42], FastGCN [6] and DGI [35] naturally take

the input of both node features and links. However, most of them

cannot be trained in an unsupervised fashion, and none of them

can easily incorporate additional signals like information diffusions

on networks.

Moreover, a few recent works on diffusion prediction also com-

putes network embedding by modeling the diffusions as DAGs or

trees, such as CDSK [3], DCB [1], EmbIC [4], TopoLSTM [39] and

inf2vec [7]. In this way, they combine the signals of diffusions and

network links. However, they often only care about local network

embedding that captures the diffusion structures rather than all

links on the network, and they do not integrate node contents.

Variational autoencoders Variational autoencoders (VAEs) [15,

26] combine Bayesian inference with the flexibility of neural net-

works for robust representation learning. By applying the reparam-

eterization trick, VAE allows the use of standard backpropagation

to optimize continuous stochastic variables. In its simplest form,

VAE can be viewed as a one-layer latent variable model:

p (x , z) = p (z)p (x |z) (1)

where x is an observed variable and z is a hidden variable. Using

variational inference, the goal is to maximize the evidence lower

bound (ELBO):

L
(
pθ ,qϕ

)
= Eqϕ (z |x)

[
logpθ (x , z) − logqϕ (z |x)

]

= Eqϕ (z |x) [logpθ (x |z)] − KL
(
qϕ (z |x)∥p (z)

)
.

(2)

We refer readers to [15] for the derivation of this lower bound.

Both qϕ (z |x) and pθ (x |z) are parameterized by neural networks.

They are referred to as the encoder network and the decoder network,
respectively. The first term in the ELBO is a reconstruction loss that

encourages the decoded x to be close to the observed x . The second
term is a regularization term where the posterior distribution of z
is pulled towards the prior, which is often a simple distribution.

To extend the use of VAE to discrete variables, [12, 23] introduced

the Gumbel-Softmax distribution which is a continuous approxima-

tion of categorical variables. Given a categorical variable z and its

class probabilities π1, . . . ,πk , we can sample from this distribution

by first sampling k times from the Gumbel(0,1) distribution. The

argmax operation in the original Gumbel-Max trick is replaced by

a softmax operation to ensure the differentiability of the function

zi =
exp ((log (πi) + дi) /τ)∑k

j=1 exp
((
log

(
πj
)
+ дj
)
/τ
) , for i = 1, . . . ,k . (3)

3 RELEARN

3.1 Problem Definition

Input.Aswe have discussed in Section 1, we aim to jointly consider

multiple signals on social networks that are indicative of relation

semantics. We use a graph G = {V, E,A,D} to model all data

we consider in this work.V = {vi }
N
i=1 is the set of nodes (users).

E = {ei j }
N
i, j=1 is the set of edges (links), where ei j = 1 denotes an

existing link betweenvi andvj , and ei j = 0 otherwise. We consider

undirected links in this work, while the model can be easily general-

ized for directed links.A is the set of node features (user attributes)

associated with V , where each ai ∈ A is a fixed-sized vector of

dimension L associated with vi . The exact features encoded inA is

dataset-dependent and we refer the reader to Section 4 for details.

D = {ds }
M
s=1 is the set of diffusion induced networks generated from

the information diffusions over the network, which we formally

define as follows.

Definition 1. Diffusion Induced Network. A network ds = {Vs ,
Es ,Cs } is a diffusion induced network generated by a piece of infor-
mation ξs that flows on the whole network N = {V, E}, ifVs ⊂ V
is the set of nodes affected by ξs , Es ⊂ E is the set of edges among
Vs , and Cs is the contents associated with ξs .

Taking G as input, our goal is to compute the following output

of edge representationsH , which in an ideal case should encode

the underlying relation semantics we aim to learn from G.

Output. We aim to output H = {hi j }
N
i, j=1 as a set of edge repre-

sentations. Each hi j ∈ H is a fixed-sized vector learned for edge

ei j .

We especially care about the representations of existing links

(i.e., ei j = 1), so as to further understand their underlying relation

semantics and make relation predictions through generic classifica-

tion or clustering algorithms. The representations of non-existing

links (i.e., ei j = 0) might also be useful for tasks like typed link

prediction but is not the focus of this work.

We now formally define the relation learning problem as follows.

Definition 2. Relation Learning on Social Networks. Given a
social network G = {V, E,A,D}, learn the edge representationH
by integrating the multiple signals from E,A andD, which captures
the relations underlying E.

3.2 Model

In this work, we propose ReLearn, a unified model of multi-modal

graph edge variational autoencoder. It follows a novel design of a

single-encoder-multi-decoder framework, so as to coherently model

the multi-modal signals on social networks, and flexibly operate

when any of the signals are missing. A robust Gaussian mixture

model with global Gaussian distributions and local mixture weights

is injected to regulate the latent edge embedding space and capture

the underlying relation semantics.

3.2.1 Gaussian Mixture Variational Autoencoder. Motivated by re-

cent success of autoencoders, our idea is to find latent relations that

inherently generate the observed various signals on social networks.

Following this insight, we believe that the edge representationH ,

as the codec computed via encoding and decoding the observed

signals through the autoencoder framework, should reflect the un-

derlying relations and follow a certain relation-specific distribution

in the embedding space.

Particularly, we assumeH can be further decomposed into the

combination of a relation factorZ and an embedding factorW :

hi j =
K∑
k=1

zi jkwi jk , (4)

where for each pair of nodes vi and vj ,wi j follows the same set of

K independent global multivariate Gaussian distributions, i.e.,
∀k = 1, . . . ,K : wi jk ∼ N (µk ,σ

2

k), (5)

and zi j follows a local multinomial distribution, i.e.,
zi j ∼ Mul (K ,πi j), πi j = (πi j1, . . . ,πi jK). (6)

The idea behind this design is intuitive: We assume there are

K possible latent relations, which is directly modeled by the local

relation factor zi j ∈ R
K
. The multinomial distribution is chosen to

respect the fact that multiple relations can co-exist on the same link.

The edge representation hi j is then a weighted summation over

the global embedding factor wi j ∈ R
K×P

. We use a multivariate

Gaussian to model the edge semantics as a probability distribution

instead of a deterministic value so that the uncertainty in the data

due to noisy and inaccurate signals can be captured by its variance.

Note that, for any pair of nodesvi andvj ,wi j follows the sameK
global Gaussian components, which are fixed across all edges, while

the mixture assignment is inferred on each edge. Such a design

helps us largely reduce the number of parameters to be learned for

H and alleviate the problem of data sparsity.

To learn the edge embeddingH , we assume that all observable

signals on social networks are independently generated givenH ,

Figure 2: The multi-modal graph edge variational autoen-

coder architecture of ReLearn.

H
W

Z

E

A

D

K

K

Figure 3: Plate diagram for our variational autoencoder.W
is the embedding factor, Z is the relation factor (mixture

weight for the Gaussian random variables), H is the edge

embedding, E indicates edge existence, A encodes edge at-

tributes and D encodes diffusion information. All random

variables are defined separately for each edge.

as reflected in Figure 3. Consider a particular observed signal X

to learn (e.g., if we consider user attribute, then X = A), we can

derive the corresponding evidence lower bound objective (ELBO):

L (pθ ,qϕ)

=Eqϕ (Z ,W ,H |X)[logpθ (Z ,W ,H ,X) − logqϕ (Z ,W ,H |X)]

=Eqϕ (Z ,W ,H |X)[logpθ (X |H)]

− KL[(qϕ (W)∥p (W)] − KL[qϕ (Z |X)∥p (Z)].

(7)

In the equation, the first term is the reconstruction loss on X,

which allows the model to extract useful patterns from observed

network signals that are indicative of relation semantics. The sec-

ond and third terms regularize the latent variables towards the

priors. When no prior knowledge is available, the unit Gaussian dis-

tribution and uniform multinomial distributions can be applied to

regularizeW andZ, respectively. However, when labeled relations

are available during training, we can use a smoothed one-hot multi-

nomial distribution per labeled node pair as the prior to effectively

inject supervision, i.e.,

p (zi j = k) =
I(k = z∗i j) + η

1 + Kη
, (8)

where z∗i j is the ground-truth relation label on ei j and η is a smooth-

ing parameter. In this way, our model can flexibly leverage any

amount of supervision, and even work under no supervision.

3.2.2 Graph Edge Encoder. The goal of our encoder network is

to output the local relation factorZ, which is combined with the

global embedding factorW to generate the edge embeddingH .

GCN [17] has been widely used to compute latent representa-

tions from node feature and network structure [16, 50]. To consider

multiple signals for edge representations, we design a graph edge

encoder based on GCN. Specifically, we have

U (l+1) = ReLU(D̃−
1

2 ẼD̃−
1

2U (l)W
(l)
д), (9)

which is a standard GCN layer. In our setting,U (0) = A, Ẽ = E+IN ,

D̃ii =
∑
j Ẽi j , andWд are the learnable GCN parameters. E is the

0-1 edge existence matrix. For the sake of scalability, we imple-

ment batch-wise training for GCN via fixed-sized neighborhood

sampling [10].

For a pair of nodes vi and vj (i < j), we concatenate their node
features to form an edge feature yi j ∈ Y

yi j = [ui , uj], (10)

where ui , uj ∈ U are the node features of vi and vj , respectively.
In this work, we do not differentiate the head and tail nodes for an

edge, since we only consider undirected links in the social networks.

Finally, we add a feed-forward neural network (FNN) with ReLU

activations that takes edge features to compute the relation factors

as Z = fr (Y). Altogether, the parameters ϕ to be learned in the

encoder network is {ϕд ,ϕr ,ϕw }, where ϕд is the set of parameters

in GCN, ϕr is the set of parameters in FNN, and ϕw is the set of

parameters in the K global relation-specific Gaussian distributions.

Detailed configurations of the GCN and FNN are described in Sec. 4.

3.2.3 Multi-Modal Decoder. Figure 2 illustrates our particular de-
sign of multi-modal graph edge variational autoencoder that jointly

models the network proximities E, user attributes A and informa-

tion diffusions D on social networks, while various other possibly

useful signals can be easily plugged in with flexibility upon avail-

ability.

In this work, the decoder network consists of three decoders,

each of which models the generation process of a particular ob-

served signal given the edge representationH .

(1) A network proximity decoder, which models pθ (E|H).
(2) A user attribute decoder, which models pθ (A|H).
(3) An information diffusion decoder, which models pθ (D|H).

In Eq. 7, we used X as a placeholder for any possible signal on G.

By plugging in all three decoders, we have our final ELBO.

L (pθ ,qϕ) = Eqϕ (Z ,W ,H |G)[λ1 logpθ (E |H) + λ2 logpθ (A|H) + λ3

logpθ (D |H)] − KL[(qϕ (W)∥p (W)] − KL[qϕ (Z |G)∥p (Z)], (11)

where λi ’s are the weighting parameters with

∑
3

i=1 λi = 1.

Each of the three decoders are implemented as simple FNNs. De-

coder 1 tries to reconstruct links on the network with the following

cross-entropy loss on E:

L1 =Eqϕ (Z ,W ,H |E)[logpθ (E |H)] =
∑
i, j
Eh∼qϕ logpθ (ei j |hi j)

=
∑
i, j
{ei j log ς (fd1 (hi j)) + (1 − ei j) log[1 − ς (fd1 (hi j))]},

(12)

where ς (x) = 1

1+e−x is the sigmoid function and fd1 is the FNN of

decoder 1. During training, we sample positive and negative pairs

of nodes, where positive samples are from node pairs with observed

links (i.e., ei j = 1) on G, and for each positive pair, we randomly

corrupt one end of the link to get negative samples.

Decoder 2 tries to recover the edge attributes, which are the

concatenations of node (user) attributes on the two ends (i.e., ai j =

[ai ,aj]). It computes an ℓ2 loss on A (constant terms omitted):

L2 =Eqϕ (Z ,W ,H |A)[logpθ (A|H)]

=
∑
i, j
Eh∼qϕ logpθ (ai j |hi j) =

∑
i, j
Eh∼qϕ ∥ai j − fd2 (hi j)∥

2

2
,

(13)

where fd2 is the FNN of decoder 2. Since hi j is the generated from

the two-step Monte Carlo sampling, variance has been pushed to

the encoder parametersZ andW .

Decoder 3 tries to recover diffusion contents on links covered by

the corresponding diffusions, by computing a similar ℓ2 loss on D:

L3 =Eqϕ (Z ,W ,H |D)[logpθ (D |H)]

=
∑
i, j
Eh∼qϕ logpθ (ci j |hi j) =

∑
i, j
Eh∼qϕ ∥ci j − fd3 (hi j)∥

2

2
,

(14)

where fd3 is the FNN of decoder 3. For each diffusion induced

network d , we sample pairs of nodes that are covered by links in

Ed (where edi j = 1), and ci j is set to Cd . During training. we firstly

sample a diffusion induced network ds from D, and then only

sample positive pairs of nodes w.r.t. Es and make decoder 3 learn

to reconstruct the diffusion contents Cs and diffusion structures

Es simultaneously.

For the KL-divergence terms:

KL(qϕ (W)∥p (W)) =
∑
i, j

K∑
k=1

KL(qϕ (wk)∥N (0, I))

=
∑
i, j

K∑
k=1

1

2

{∥σk ∥
2

2
+ ∥µk ∥

2

2
− κH − log det(diag(σ

2

k)))}.

(15)

The unit Gaussian is used as the prior for all Gaussian models in

W . κH is the dimension of the edge representationH .

For edges with no relation labels, we set the prior p (Z) to be

the uniform distribution. When relation labels are available, we set

p (Z) to the one-hot distribution and apply Laplace smoothing with

parameter η to avoid the magnitude explosion of KL-divergence:

KL(qϕ (Z |E,A,D)∥p (Z))

=
∑

i, j,unsup
{

K∑
k=1

zi jk log zi jk } +
∑

i, j,sup
{

K∑
k=1

zi jk log
zi jk

I(k = z∗i j) + η
},

(16)

where unsup and sup denote the unsupervised and supervised node
pairs respectively, and z∗i j = k means ei j is labeled with the k-th re-

lation. Under this setting, the model is trained in a semi-supervised

learning fashion, and we only consider single label supervision in

this work.

3.2.4 Training. Training our model involves the learning of all

parameters in the encoder network qϕ (Z ,W ,H |G) and decoder

network pθ (G |Z ,W ,H). As our multi-modal decoders jointly inte-

grate multiple observed signals on social networks, pθ (G |Z ,W ,H)
can be further decomposed into

pθ (G |Z ,W ,H) = pθ1 (E |H)pθ2 (A|H)pθ3 (D |H), (17)

The equation holds because we assume the variable dependence

structure in Figure 3, which allows us to learn the whole decoder

network pθ by iteratively optimizing each of the three decoders

w.r.t. their corresponding losses. During the iterative training pro-

cess, each decoder is jointly trained with the same encoder qϕ ,

which allows the model to effectively integrate the multiple ob-

served signals, capture the underlying relation semantics and regu-

larize it with proper prior knowledge.

The training of each encoder-decoder combination generally

follows that of variational inference for variational autoencoders.

We design an efficient variational inference algorithm with two-

step Monte Carlo sampling and reparameterization tricks. It allows

joint learning ofW and Z, together with other non-stochastic

parameters in the encoder and decoder networks through principled

Bayesian inference. Except for the particular reconstruction losses,

the algorithm works in the exact same way for all three decoders.

Algorithm 1 ReLearn Training

1: procedure Training ▷ Input

2: G: the social network; B: batch size; T : number of batches.

3: for t = 1 : T do

4: for X in {E, A, D} do

5: Sample B pairs of nodes with observed signals of X.

6: Use the encoder network to compute qϕ (Z |G).
7: for k = 1 : K do

8: Draw B random variables ϵk ∼ N (0, I).
9: Compute Ŵk = µk + σk ϵk .
10: Draw B random variables Gk ∼ Gumbel(0, 1).

11: Compute Ẑk =
exp((log(Zk)+Gk)/τ)∑K

k′=1
exp((log(Zk′)+Gk′)/τ)

.

12: end for

13: Compute H =
∑K
k=1 Ẑk ⊙ Ŵk .

14: Use the decoder network to compute pθ (X |H).
15: Compute the ELBO with qϕ and pθ .
16: Update {ϕ, θ } with gradient backpropagation.

17: end for

18: end for

19: end procedure

Without loss of generality, in Algorithm 1, we again use X to

refer to any of the three signals to describe our training process.

In Line 8-9 and 10-11, we apply the reparameterization trick to

W andZ by drawing random samples from the standard Normal

distribution and Gumbel distribution [12, 23], respectively, which

allows us to push the randomness to the continuous variables ϵ and
discrete variables G, and directly optimize the encoder parameters

ϕ through standard backpropagation.

As shown in Algorithm 1, besides the sampling process which

takes O (1) time for each batch, the whole training process of Re-

Learn can be done through standard stochastic gradient backprop-

agation, which allows us to fully leverage well-developed optimiza-

tion software like mini-batch adam [14] and hardware like GPU.

Due to the inductive nature of ReLearn, we do not need to enu-

merate every pair of nodes in the network. Therefore, the overall

computational complexity of training isO (TBK), which are all con-

stant numbers irrelevant of the network size. In other words, the

actual training time of ReLearn depends more on the quality and

consistency of the network signals than the size of the network.

In our experiments, we observe that the training of ReLearn

often converges with TB = ρ |V | with ρ ∈ [1, 10], which gives a

rough computational complexity ofO (|V |), where |V | is the number

of nodes. This often leads to much less training time than most

baselines on the same networks.

4 EXPERIMENTS

4.1 Experimental Settings

4.1.1 Datasets. We use two public DBLP author networks and two

internal LinkedIn member networks for our experiments.

In theDBLP networks, nodes are authors and links are co-authorships.

Node attributes are generated from publications and information

diffusions are generated from citations. Particularly, user attributes

are computed by averaging the word embedding
2
of keywords

and titles in their publications, which are 300-dim. Information

diffusions are generated by firstly selecting papers with 10 − 100

citations, and construct author subnetworks by including authors

who cite the corresponding papers and their links. Diffusion con-

tents are then the paper embedding of the cited paper, which are

also 300-dim. We use the ground-truth relation labels of advisor-
advisee and colleague relations from [37]. A subnetwork DBLP-Sub

is generated by including all pairs of authors with ground-truth

relation labels and their direct co-authors. DBLP-All is the whole

network with all authors and links on DBLP.

In the LinkedIn networks, nodes are members (users) and links

are bi-directional member connections. We generate two relatively

small and complete networks of members in Bay Area, US and

Australia. Node attributes are generated based on the anonymous

user profiles, including features like skills, locations, languages and
so on. Numerical features like longitudes and latitudes are directly
adopted, whereas categorical features like skills and languages are
firstly converted into bag-of-skill and bag-of-language vectors, and

then further reduced to smaller dimensions via incremental PCA
3
.

The final dimension of user attributes is 466.

Ideally, information diffusions should be generated based on

public posts, such as popular articles shared by users. However,

due to privacy concern, we could not get that data in this work.

Alternatively, we use users’ following of influential individuals to

model the influence propagation. This following relation is one-

directional and different from connections, which we believe to be

indicative to users’ personal interests. Particularly, we randomly

choose influential individuals with 10 − 100 followers and generate

diffusion induced networks by including the followees and their

own connections. Diffusion contents are generated by embedding

the textual descriptions of the influential individuals from their

profile, by averaging the word embedding in the same way as we

do for papers on DBLP. The diffusion content vectors are 300-dim.

To generate the ground-truth relation labels, if two connected

members attend the same school in the same time, we label their

relation as schoolmate, and the same is done for colleague. Note
that, we exclude the education and working experience for gener-
ating node attributes, because they are highly correlated with the

ground-truth relation we use for evaluation. However, this does

not weaken the utility of our model, since this reliable generation

of schoolmate and colleague relations can only cover a small por-

tion of all observable connections (< 0.3%). Moreover, ReLearn

can be used to learn many other relations that cannot be easily

verified or even defined (e.g., relatives, townsmen, close friends), in

an unsupervised way.

2
http://nlp.stanford.edu/data/glove.840B.300d.zip

3
https://scikit-learn.org/stable/auto_examples/decomposition/plot_incremental_pca.html

Dataset #Nodes #Links #Diff. Rel.(%)

DBLP-Sub 23,418 282,146 100,859 0.4341

DBLP-All 1,476,370 4,109,102 410,822 0.0196

LinkedIn-Bay 1,481,521 67,819,313 45,686 0.2239

LinkedIn-Aus 6,598,127 328,005,877 129,510 0.1592

Table 1: Statistics of the four datasets we use. #Diff. is the

number of information diffusions, and Rel.(%) is the cover-

age of labeled relations over all observable links.

4.1.2 Compared algorithms. Since the problem setting of ReLearn

is quite different from relation learning on knowledge graphs, we

find a comprehensive list of baselines from the state-of-the-art on

network inference and embedding. However, none of the existing

models can combine all signals as we consider in this work. Besides

existing baselines, we also compare multiple variants of ReLearn

to provide in-depth understanding over the utilities of different

model components.

• GraphSage [10]: One of the strongest andmost efficient variants

of the popular GCN model that integrates node attributes and

link structures for learning network embeddings.

• STNE [21]: The state-of-the-art unsupervised text-rich network

embedding algorithm based on self-translation of sequences of

text embeddings into sequences of node embeddings.

• PTE [30]: Extension of the popular network embedding algo-

rithm LINE [31] into text-rich network embedding. We also

enable supervision for PTE by constructing multiple bipartite

graphs connected by links with different relation labels.

• Planetoid [53]: Extension of the popular network embedding

algorithm DeepWalk [25] into text-rich network embedding. We

also enable supervision for Planetoid through pair-wise sampling

for relation prediction.

• TopoLSTM [39]: One of the state-of-the-art diffusion predic-

tion model with network embedding. Embedding of edges not

covered by any diffusion is computed as the average of the em-

bedding of all neighboring edges.

• Inf2vec [7]: Another State-of-the-art diffusion prediction model

with network embedding. The same process for TopoLSTM is

done for edges not covered by any diffusion.

• ReLearn w/o diff: To study the ability of ReLearn in integrat-

ing multiple signals, we decompose the model by removing each

decoder. As an example, we show the performance of ReLearn

without decoder 3 (the information diffusion decoder). We find

that with the additional attribute decoder, this model variant still

performs better than the base model of GVAE [16].

• ReLearn w/o vae: To study the effectiveness of our novel Gauss-

ian mixture VAE in capturing the latent relations, we remove

VAE and directly use the output of the graph edge encoder as

the edge representation and input of the multi-modal decoders.

• ReLearn w/o sup: The unsupervised training version of Re-

Learn by using the uniform multinomial distribution as the

prior for the mixture weights Z for all edges.

• Relearn: Our full ReLearn model
4
.

The implementations of all existing baselines are provided by their

original authors and the parameters are either set as the default

values or tuned to the best via standard five-fold cross validation.

4
Code available at: https://github.com/yangji9181/RELEARN

As for ReLearn, for the encoder network, we use a two-layer GCN,

with embedding sizes 200 and 100. We set the number of sampled

neighbors to 30. After that, we use a single-layer FNN of size 3

with ReLU activations. The edge embedding size and dimension

of Gaussian mixtures are set to 100. For the decoder network, we

use three 2-layer FNNs with ReLU activations for the three signals,

with sizes 200 and 300. For link reconstruction, we set the positive-

negative sampling ratio to 1. The weights of three decoders are

simply set to the same. The number of latent relations are set to

2 for all datasets. For training, we set the batch size to 1024 and

learning rate set to 0.001 on all datasets. For DBLP datasets, we set

the number of batches to 500, and for LinkedIn datasets, we set the

number of batches to 5000.

4.1.3 Evaluation metrics. The node embeddings learned by all com-

pared algorithms are concatenated into edge embeddings and then

fed into MLPs with the same structure, which is then trained and

tested on the same splits of labeled relations. Standard classification

accuracy is computed based on the prediction of the MLPs using

the network embedding generated by different algorithms.

4.2 Performance Comparison with Baselines

We quantitatively evaluate ReLearn against all baselines on the

task of relation learning. Table 2 shows the classification accuracy

evaluated for all compared algorithms. The results all passed the

significant t-tests with p-value 0.01.
As we can see in Table 2, ReLearn constantly outperforms all

baselines by significant margins on all datasets, while the compared

algorithms have varying performances. Taking a closer look at

the results on different datasets, we observe that the task of learn-

ing the schoolmate and colleague relations on LinkedIn is much

harder than the adviser-advisee and colleague relations on DBLP.

This is probably because the social contents and links are often

more noisy and complex than those in the publication networks.

ReLearn excels on both of the LinkedIn networks, outperforming

the best baseline by 17.9% and 28.5%, respectively. Such significant

improvements strongly indicate the power of ReLearn in capturing

complex noisy signals on social networks for high-quality relation

learning. Moreover, the full ReLearn model also consistently out-

performs all other ReLearn variants, which further corroborates

the effectiveness of ReLearn in integrating multi-modal network

signals and limited supervision.

4.3 In-depth Model Analysis

To comprehensively evaluate the performance of ReLearn in com-

parison with the baselines, we design a series of in-depth analysis,

by varying the amount of training data, as well as adding noise and

sparsity to the network signals.

Efficiency towards limited training data. One major challenge

of relation learning on social networks is the lack of high-quality

relation labels. Therefore, an ideal model should be efficient in lever-

aging limited training data. To study such efficiency of ReLearn,

we conduct experiments on all datasets with varying amounts of

training data. Particularly, for each of the 4:1 splitting of training

and testing data, we use 10% - 100% of the 80% training data to

train ReLearn and all compared algorithms, and evaluate on the

20% testing data. The results on DBLP-All and LinkedIn-Bay are

presented in Figure 4.

Figure 4: Varying amounts of training data.

Robustness towards attribute noise. On real-world social net-

works, user attributes are often highly noisy, since users might fill

in various free-style contents and even random contents. There-

fore, an ideal model for relation learning should be robust towards

attribute noise. To study such robustness of ReLearn, we conduct

experiments on all datasets by adding different amounts of random

noise onto the user attributes. Particularly, since all models take

the normalized numerical embedding of attributes as input, we

add the unit multivariate Gaussian noise scaled by 0.1-0.5 to the

attribute vector of each user. The modified input for all compared al-

gorithms (including ReLearn) is the same. The results on DBLP-All

and LinkedIn-Bay are presented in Figure 5.

Figure 5: Varying amounts of attribute noise.

Robustness towards missing links. On real-world social net-

works, real-world friends may not necessarily have established

links. Therefore, an ideal model for relation learning should be ro-

bust towards missing links. To study such robustness of ReLearn,

we conduct experiments on all datasets by randomly removing

existing links in the network. Particularly, we randomly remove

2%-10% of links in the whole networks. The modified input for all

compared algorithms (including ReLearn) is the same. The results

on DBLP-All and LinkedIn-Bay are presented in Figure 6.

Figure 6: Varying amounts of link removal.

Algorithm DBLP-Sub DBLP-All LinkedIn-Bay LinkedIn-Aus

GraphSage 0.8596 ± 0.0201 0.8482 ± 0.0158 0.6139 ± 0.0367 0.5831 ± 0.0072

STNE 0.7577 ± 0.0425 0.7434 ± 0.0214 0.5695 ± 0.0236 0.5554 ± 0.0160

PTE 0.7265 ± 0.0018 0.6988 ± 0.0222 0.5636 ± 0.0378 0.5549 ± 0.0041

Planetoid 0.8531 ± 0.0205 0.8686 ± 0.0206 0.5608 ± 0.0301 0.5448 ± 0.0045

TopoLSTM 0.6675 ± 0.0435 0.7374 ± 0.0149 0.5874 ± 0.0257 0.5616 ± 0.0062

Inf2vec 0.6618 ± 0.0401 0.7453 ± 0.0181 0.6198 ± 0.0388 0.5848 ± 0.0068

ReLearn w/o diff 0.8890 ± 0.0031 0.8465 ± 0.0138 0.6616 ± 0.0390 0.6934 ± 0.0022

ReLearn w/o vae 0.8433 ± 0.0154 0.8376 ± 0.0060 0.6293 ± 0.0194 0.6626 ± 0.0087

ReLearn w/o sup 0.8947 ± 0.0170 0.8980 ± 0.0115 0.6771 ± 0.0211 0.7134 ± 0.0048

ReLearn 0.9224 ± 0.0026 0.9208 ± 0.0042 0.7308 ± 0.0457 0.7514 ± 0.0033

Table 2: Relation learning accuracy of compared algorithms on four real-world social networks.

Area I Area II Area III

Define | Create . . . Implement | Support | Succeed Writer, Dancer, Entrepreneur Benefits Negotiation, Salary Negotiation

Training, Program Development, Exercise Prescription . . . Blogger & Youtuber . . . Corporate Advisor | Investment Banker . . . Shareholder Representative
. . . Sponsorship Program Development, Fellowship Application FASHION, BEAUTY, TRAVEL, LIFE . . . Project Manager | Leader . . . Performance Manager | PA/EA

. . . Talent Management & Success Planning Social & Environmental Justice . . . Recruitment, Performance Management . . . Gap Management

Talent Acquisition, Recruiting, Head Hunting . . . Chef Traditional Italian . . . Proactive Change & Transition Management, Programme Management . . .
Recruitment . . . Development, Relationship Management Wellness Coach-Clean Food . . . Warrior-Positive Thinker People Management, Performance Coaching, Human Resource . . .
An Entrepreneur. A Scholar . . . Food . . . Driven & Hungry . . . Beautiful Web Design & Digital Media Solutions

Portfolio Building | Training A Bohemian Fashion Boutique Test Automation, Test Management, Technical Testing . . .
Learning & Development, Organisational Culture, Engagement . . . Licensed Waterproofing Technician . . . Intellectual Property . . .

Table 3: Decoded diffusion contents on edges generated with three different latent relations.

Remarks on runtimes. While the exact runtimes of compared

algorithms are hard to determine due to different convergence rates

of each train, we observe that the runtime of ReLearn is close to

the more efficient baselines like PTE, Planetoid and GraphSage, and

is often significantly shorter than the heavier baselines like STNE,

TopoLSTM and Inf2vec.

5 CASE STUDIES

To observe how ReLearn captures the relation semantics among

users with learned edge representations, we visualize the embed-

ding space by plotting some of the labeled edges in the LinkedIn-Aus

network. We employ standard PCA to reduce the embeddings from

100-dim to 2-dim for plotting. As we can see from Figure 7, edges

carrying the two relations clearly form two clusters.

Figure 7: Visualization of edge representations on LinkedIn-

Aus computed by ReLearn. Red and blue colors denote the

ground-truth labels of schoolmate and colleague.
Moreover, the generative nature of ReLearn allows us to further

interpret the learned latent relations, by sampling edge represen-

tations from the learned Gaussian mixture model and decoding

them with the multiple learned decoders. This is especially useful

in the unsupervised learning scenario, where besides the latent

distributions, we also want to make sense of the learned relations.

In Table 3, as an example, we show the decoded textual fea-

ture from decoder 3 (i.e., the information diffusion decoder), which

provides valuable insights into the learned relations. The edge

representations are generated by sampling from the Gaussian dis-

tribution ofW1,W2 and a uniform mixture ofW1 andW2, which

roughly corresponds to the three marked areas in Figure 7.

As we can observe in Table 3, edges in Area I likely carry the

schoolmate relation, with decoded contents mainly about Learning
and Advising, whereas Area III clearly corresponds to colleagues,
due to decoded topics likeManagement and Performance. Edges
in Area II hold a mixture of the two relations, with more personal

life oriented contents like Food, Travel, Wellness, etc. Although
the encoder does not directly consider information diffusion, it

effectively helps the decoder to capture this information during the

joint training process.

Note that, in this example, we already know that the two re-

lations we learn are schoolmates and colleagues, which we use

as a verification of the utility of ReLearn. In the more realistic

situations where we have no access to ground truth, the multi-

ple decoders of ReLearn still provide meaningful interpretations

over the learned relations, which are valuable for downstream ser-

vices like relation-specific friendship recommendation and content

routing.

6 CONCLUSION

In this work, for the novel and challenging problem of relation

learning on social networks, we develop ReLearn, a multi-modal

graph edge variational autoencoder framework to coherently com-

bine multiple signals on social networks towards the capturing of

underlying relation semantics on user links. Moreover, the gener-

ative nature of ReLearn allows us to sample relational pairs for

interpreting the learned relations, while its inductive nature en-

ables efficient training regardless of the network sizes. Finally, the

general and flexible design of ReLearn makes it readily applicable

to any real-world social platforms with multi-modal network sig-

nals, where the learned node and edge embeddings can be used to

improve the targeting of various downstream services.

ACKNOWLEDGEMENT

Research was sponsored in part by U.S. Army Research Lab. under

Cooperative Agreement No. W911NF-09-2-0053 (NSCTA), DARPA

under Agreement No. W911NF-17-C-0099 and FA8750-19-2-1004,

National Science Foundation IIS 16-18481, IIS 17-04532, and IIS-17-

41317, DTRA HDTRA11810026, and grant 1U54GM114838 awarded

by NIGMS through funds provided by the trans-NIH Big Data to

Knowledge (BD2K) initiative (www.bd2k.nih.gov).

REFERENCES

[1] James Atwood and Don Towsley. 2016. Diffusion-convolutional neural networks.

In NIPS. 1993–2001.
[2] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok-

sana Yakhnenko. 2013. Translating embeddings for modeling multi-relational

data. In NIPS. 2787–2795.
[3] Simon Bourigault, Cedric Lagnier, Sylvain Lamprier, Ludovic Denoyer, and Patrick

Gallinari. 2014. Learning social network embeddings for predicting information

diffusion. InWSDM. 393–402.

[4] Simon Bourigault, Sylvain Lamprier, and Patrick Gallinari. 2016. Representation

learning for information diffusion through social networks: an embedded cascade

model. InWSDM. 573–582.

[5] Deepayan Chakrabarti, Stanislav Funiak, Jonathan Chang, and Sofus AMacskassy.

2014. Joint Inference of Multiple Label Types in Large Networks. In ICML.
[6] Jie Chen, Tengfei Ma, and Cao Xiao. 2018. FastGCN: fast learning with graph

convolutional networks via importance sampling. In ICLR.
[7] Shanshan Feng, Gao Cong, Arijit Khan, Xiucheng Li, Yong Liu, and Yeow Meng

Chee. 2018. Inf2vec: Latent Representation Model for Social Influence Embedding.

ICDE.

[8] Soumyajit Ganguly and Vikram Pudi. 2017. Paper2vec: Combining graph and

text information for scientific paper representation. In ECIR. 383–395.
[9] Matt Gardner and Tom Mitchell. 2015. Efficient and expressive knowledge base

completion using subgraph feature extraction. In EMNLP. 1488–1498.
[10] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. In NIPS. 1025–1035.
[11] Jingrui He, Jaime G Carbonell, and Yan Liu. 2007. Graph-Based Semi-Supervised

Learning as a Generative Model.. In IJCAI, Vol. 7. 2492–2497.
[12] Eric Jang, Shixiang Gu, and Ben Poole. 2017. Categorical reparameterization

with gumbel-softmax. In ICLR.
[13] Meng Jiang, Jingbo Shang, Taylor Cassidy, Xiang Ren, LanceMKaplan, Timothy P

Hanratty, and Jiawei Han. 2017. MetaPAD: Meta Pattern Discovery from Massive

Text Corpora. In KDD. 877–886.
[14] Diederik P Kingma and Jimmy Ba. 2015. Adam: A method for stochastic opti-

mization. In ICLR.
[15] Diederik P. Kingma and Max Welling. 2014. Auto-Encoding Variational Bayes.

ICLR (2014).

[16] Thomas N Kipf and Max Welling. 2016. Variational graph auto-encoders. In NIPS
Workshop on Bayesian Deep Learning.

[17] Thomas N Kipf and MaxWelling. 2017. Semi-supervised classification with graph

convolutional networks. In ICLR.
[18] Quoc V Le. 2013. Building high-level features using large scale unsupervised

learning. In ICASSP. 8595–8598.
[19] Jure Leskovec and Julian J Mcauley. 2012. Learning to discover social circles in

ego networks. In NIPS. 539–547.
[20] Yankai Lin, Shiqi Shen, Zhiyuan Liu, Huanbo Luan, and Maosong Sun. 2016.

Neural relation extraction with selective attention over instances. In ACL, Vol. 1.
2124–2133.

[21] Jie Liu, Zhicheng He, Lai Wei, and Yalou Huang. 2018. Content to node: Self-

translation network embedding. In KDD. 1794–1802.
[22] Liyuan Liu, Xiang Ren, Qi Zhu, Shi Zhi, Huan Gui, Heng Ji, and Jiawei Han. 2017.

Heterogeneous Supervision for Relation Extraction: A Representation Learning

Approach. In EMNLP.
[23] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. 2017. The concrete distribu-

tion: A continuous relaxation of discrete random variables. In ICLR.
[24] Miller McPherson, Lynn Smith-Lovin, and James M Cook. 2001. Birds of a feather:

Homophily in social networks. Annual review of sociology 27, 1 (2001), 415–444.

[25] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning

of social representations. In KDD. 701–710.

[26] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. 2014. Stochastic

backpropagation and approximate inference in deep generative models. In ICML.
[27] Yiye Ruan, David Fuhry, and Srinivasan Parthasarathy. 2013. Efficient community

detection in large networks using content and links. InWWW. 1089–1098.

[28] Jürgen Schmidhuber. 2015. Deep learning in neural networks: An overview.

Neural networks 61 (2015), 85–117.
[29] Richard Socher, Danqi Chen, Christopher D Manning, and Andrew Ng. 2013.

Reasoning with neural tensor networks for knowledge base completion. In NIPS.
926–934.

[30] Jian Tang, Meng Qu, and Qiaozhu Mei. 2015. Pte: Predictive text embedding

through large-scale heterogeneous text networks. In KDD. 1165–1174.
[31] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.

2015. Line: Large-scale information network embedding. In WWW. 1067–1077.

[32] Lei Tang and Huan Liu. 2009. Relational learning via latent social dimensions. In

KDD. ACM, 817–826.

[33] Cunchao Tu, Han Liu, Zhiyuan Liu, andMaosong Sun. 2017. Cane: Context-aware

network embedding for relation modeling. In ACL, Vol. 1. 1722–1731.
[34] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Lio, and Yoshua Bengio. 2018. Graph attention networks. In ICLR.
[35] Petar Veličković, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio,

and R Devon Hjelm. 2019. Deep graph infomax. In ICLR.
[36] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol.

2008. Extracting and composing robust features with denoising autoencoders. In

ICML. 1096–1103.
[37] ChiWang, Jiawei Han, Yuntao Jia, Jie Tang, Duo Zhang, Yintao Yu, and Jingyi Guo.

2010. Mining advisor-advisee relationships from research publication networks.

In KDD. 203–212.
[38] Chenguang Wang, Yangqiu Song, Dan Roth, Chi Wang, Jiawei Han, Heng Ji,

and Ming Zhang. 2015. Constrained Information-Theoretic Tripartite Graph

Clustering to Identify Semantically Similar Relations.. In IJCAI. 3882–3889.
[39] Jia Wang, Vincent W Zheng, Zemin Liu, and Kevin Chen-Chuan Chang. 2017.

Topological recurrent neural network for diffusion prediction. In ICDM. 475–484.

[40] Quan Wang, Bin Wang, Li Guo, and others. 2015. Knowledge Base Completion

Using Embeddings and Rules. In IJCAI. 1859–1866.
[41] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. 2014. Knowledge

graph and text jointly embedding. In EMNLP. 1591–1601.
[42] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi

Kawarabayashi, and Stefanie Jegelka. 2018. Representation Learning on Graphs

with Jumping Knowledge Networks. In ICML.
[43] Carl Yang and Kevin Chang. 2019. Relationship Profiling over Social Networks:

Reverse Smoothness from Similarity to Closeness. In SDM. 342–350.

[44] Carl Yang, Mengxiong Liu, Frank He, Xikun Zhang, Jian Peng, and Jiawei Han.

2018. Similarity Modeling on Heterogeneous Networks via Automatic Path

Discovery. In ECML-PKDD.
[45] Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, and Edward Y Chang. 2015.

Network Representation Learning with Rich Text Information.. In IJCAI. 2111–
2117.

[46] Carl Yang, Xiaolin Shi, Luo Jie, and Jiawei Han. 2018. I Know You’ll Be Back:

Interpretable New User Clustering and Churn Prediction on a Mobile Social

Application. In KDD.
[47] Carl Yang, Dai Teng, Siyang Liu, Sayantani Basu, Jieyu Zhang, Jiaming Shen,

Chao Zhang, Jingbo Shang, Lance Kaplan, Timothy Harratty, and others. 2019.

Cubenet: Multi-facet hierarchical heterogeneous network construction, analysis,

and mining. In KDD demo.
[48] Carl Yang, Jieyu Zhang, and Jiawei Han. 2019. Neural Embedding Propagation

on Heterogeneous Networks. In ICDM.

[49] Carl Yang, Lin Zhong, Li-Jia Li, and Luo Jie. 2017. Bi-directional joint inference

for user links and attributes on large social graphs. InWWW.

[50] Carl Yang, Peiye Zhuang, Wenhan Shi, Alan Luu, and Pan Li. 2019. Conditional

Structure Generation through Graph Variational Generative Adversarial Nets. In

NeurIPS.
[51] Jaewon Yang, Julian McAuley, and Jure Leskovec. 2013. Community detection in

networks with node attributes. In ICDM. 1151–1156.

[52] Tianbao Yang, Rong Jin, Yun Chi, and Shenghuo Zhu. 2009. Combining link and

content for community detection: a discriminative approach. In KDD. 927–936.
[53] Zhilin Yang, William Cohen, and Ruslan Salakhutdinov. 2016. Revisiting semi-

supervised learning with graph embeddings. In ICML.
[54] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren,Will Hamilton, and Jure

Leskovec. 2018. Hierarchical graph representation learning with differentiable

pooling. In NIPS. 4805–4815.
[55] Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou, and Jun Zhao. 2014. Relation

classification via convolutional deep neural network. In COLING. 2335–2344.

	Abstract
	1 Introduction
	2 Related Work and Preliminaries
	3 ReLearn
	3.1 Problem Definition
	3.2 Model

	4 Experiments
	4.1 Experimental Settings
	4.2 Performance Comparison with Baselines
	4.3 In-depth Model Analysis

	5 Case Studies
	6 Conclusion
	References

