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ABSTRACT Mobile privacy is broadly concerning in the mobile big data era, as user mobility behaviors are
privacy-sensitive and unique. User identification attacks consist of one of the most critical privacy concerns
on mobile big data. In this paper, we study mobile privacy in terms of user identifiability from the perspective
of privacy adversaries. User identification in two datasets from the same data source or two different data
sources is generally formulated as a linear assignment problem (LAP), in which the cost matrix of users is
generated by a single distance measure. However, user identification via one single distance measure may
lead to a large portion of false matches, especially when only a few users coexist across these two datasets. In
addition, the cubic computational complexity of LAP limits the scale of user identification analysis. In this
paper, we propose a multi-feature ensemble matching framework to improve the user identification precision
based on a majority voting rule, by integrating multiple distance measures. The computational complexity
of the proposed ensemble matching algorithm is an order of magnitude less than that of the single-distance
based approach, which results from solving an LAP on a highly sparse matrix rather than a dense matrix.
Experiments demonstrate the superior performance of our proposed scalable ensemble matching framework
with respect to matching precision as well as the vulnerability of mobile network subscribers’ privacy.

INDEX TERMS

I. INTRODUCTION
With the explosive growth of mobile phone users, mobile big
data collected by mobile network operators start to attract
remarkable attention from various research communities [1]–
[3]. At the same time, the privacy of mobile big data is
primarily concerning, as human mobility is highly regular-
ized and highly predictable [4], [5]. Mobile big data with
spatiotemporal information may need to be released to third
parties or even to the public, to facilitate various mobile
data-driven applications and services. However, data pub-
lishing may lead to subscriber privacy leakage threats and
risks [1], immediately resulting in data availability issues.

The associate editor coordinating the review of this manuscript and

approving it for publication was Angelos Antonopoulos .

For subscribers’ privacy protection, the common practice is
to anonymize the dataset by replacing subscribers’ identi-
fiers (e.g., name, social security number, etc.) with pseudo
identifiers.Moreover, the anonymized identifiers are replaced
frequently (e.g., every other month) as a data management
practice for further privacy protection. However, these prac-
tices may not be able to effectively protect subscriber’s pri-
vacy [6]–[12], due to the uniqueness of human spatiotemporal
mobility trajectory. Such uniqueness of subscriber mobility
behaviors can lead to another significant concern on sub-
scribers’ privacy risk, user identification [10], [13]. In this
work, we study the mobile privacy in terms of user identity
linkage across two datasets from the privacy attacker’s point
of view based on their spatiotemporal behaviors, where these
two datasets could be collected at different two time periods
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from the same data source or at the same time period yet
from different data sources. The primary purpose of this work
is to evaluate subscribers’ privacy leakage risk in terms of
user identifiability across two datasets. User identification
was studied in [10] in terms of a linear assignment problem
(LAP) formulation, with the prior knowledge that at most
one trace can be exclusively generated by one user in a
dataset (termed as exclusiveness). It has been proved [14] that
the exclusiveness prior can effectively improve user identi-
fication recall performance. The success of the LAP-based
user identification relies on effective quantitative distance
measures between two spatiotemporal traces. Hence, most
work in the literature aim to improve the user identifica-
tion recall performance with advanced user mobility behav-
ior modeling and effective distance measures between two
users.

On the contrary, this paper is aimed to address two other
issues of LAP-based user identification with one single dis-
tance measure. On the one hand, user identification with one
single distance measure may lead to a large portion of false
matches, especially when the number of coexisting users in
two datasets is small. In this work, we argue that a privacy
adversary not only concerns the recall performance of a user
identification algorithm—howmany user pairs out of the total
ground-truth user pairs can be identified, but also seriously
considers the precision performance of a user identifica-
tion algorithm—how many user pairs out of the total pairs
declared by the algorithm are correct. Note that the latter indi-
cates the reliability of a user identification algorithm. In fact,
to discover as many as possible correct pairs (i.e., improving
the recall performance) has been the primary objective, but
with false matches not considered before. Although correctly
matched pairs are mostly identified in declared matching
results, user’s privacy could still be maintained to some
extent. That is, correctly matched user pairs could be hidden
under large amount of false positives, especially when the
number of coexisting users across two datasets is small. On
the other hand, the solution to LAP-based user identification
problem is computationally expensive (O(N 3)), which cannot
handle the large-scale user identification analysis. In addition,
the classic LAP algorithms on dense cost matrices are diffi-
cult to be horizontally scaled by parallelization, due to the
sequential nature of LAP algorithms [15], [16].

To address the issues described previously, a scalable
multi-feature ensemble matching framework is proposed in
this paper, which is aimed to reduce false positives and
improve the precision from the perspective of privacy attack-
ers with the computational complexity significantly reduced.
The intuition underlying the proposed ensemble matching
mechanism is to cross validate matched candidates generated
by different semantic spatiotemporal user modeling and their
associative distance measures. As a result, a match candidate
with minority votes will be considered as a false positive
so that the precision of the proposed multi-feature ensemble
matching framework can be significantly enhanced, though
the recall performance could be slightly compromised. Our

proposed ensemble matching approach acts as an informa-
tion/result fusion inspired by the ‘‘stacking’’ approach [17].

The ensemble matching framework is divided into two
phases, namely the vote generation phase and final matching
phase. Vote generation is to collect thematching candidates as
a vote matrix generated based on different distance measures,
while final matching is to produce the final matching result
based on the obtained vote matrix. In this work, the proposed
ensemble matching framework tackles the high computa-
tional complexity problem in both the vote generation and
final matching phases. Instead of solving the LAP, a dual-
selection strategy in the vote generation phase is proposed
by relaxing the exclusiveness constraints in LAP, which can
significantly reduce the complexity from O(N 3) to O(N 2).
The exclusiveness enforcement is moved to the final match-
ing phase. In the final matching phase, a bipartite partition-
ing and matching (P&M) algorithm is proposed in the final
matching phase by taking advantage of the extremely high
sparsity of the vote matrix. The bipartite P&M algorithm is
to first segment the bipartite graph to subgraphs, by solving
LAP on which the final user identification result could be
generated. As a result, the computational complexity in the
final matching phase is significantly reduced from O(N 3)
to O(N logN ). The ensemble matching algorithms, dual-
selection ensemble partitioning & matching (DS-Ensemble
P&M), is proposed by taking advantage of the approaches
described previously. It is worthing noting that the proposed
ensemble matching framework could be adapted to the gen-
eral modern big data processing paradigm (e.g., Map-Reduce
[18]) to deal with large-scale user identification analysis. The
dual selection in the voting phase can be paralleled in terms of
the matrix rows and columns, while the bipartite P&M could
be paralleled with respect to bipartite subgraphs.

Experiment results suggest that the proposed ensemble
matching framework can significantly reduce false positives,
while the maximal recall performance is slightly compro-
mised. Based on user identification analysis, the mobile
privacy of users revealed by the mobile data is at high
risk even only with the two-day data collection periods,
where the result of two-day identification analysis shows
that about 30% users can be identified with 70% confidence.
The main contributions of this work are summarized as
follows:
• In this paper, we identify the matching precision as
another important dimension, on which a privacy adver-
sary is mostly concerned. The proposed ensemble
matching framework can significantly improve the pre-
cision of user identificationwith a slightly-compromised
recall, compared with the ones based on single distance
measure.

• The proposed ensemble matching framework is gen-
eral and can utilize any data model, feature extraction
scheme, and distance measure, so long as they are effec-
tive and better than random guesses. This is also an
important requirement of weak learners in the traditional
ensemble learning.
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• The computational complexity of the proposed ensem-
ble matching framework is an order of magnitude less
than the one based on the classical LAP formulation,
although the proposed ensemble matching framework
uses multiple distance measures rather than a single
distance measure. The proposed ensemble matching
framework can be easily adapted to the modern big data
processing paradigm, which can facilitate large scale
user identification analysis.

The rest of this paper is organized as follows. In Section II,
related works in the literature will be reviewed. Prob-
lem description and formulation is addressed in Section III.
In Section IV, the ensemble matching framework with the
computational complexity analyzed is studied and discussed.
Experiment results are presented in Section V to demonstrate
the good performance of our proposed framework. Finally,
concluding remarks are made in Section VI.

II. RELATED WORK
Generally, privacy protection is highly concerning in any
personal-data-related services and applications. k-anonymity
is a common metric to evaluate the effectiveness of privacy
preservation [19], which requires any record in a database
to be indistinguishable to at least k − 1 other records in
the database. The most common anonymization technique
is to replace critical identifiers (e.g., phone number, IMEI,
etc.) with random pseudo identifiers. However, such identi-
fier anonymization fails for the mobile data with which the
subscriber spatiotemporal behavior is recorded, due to the
uniqueness of human mobile trajectories [7].

In [20], Zang and Bolot studied a large-scale nationwide
dataset with more than 30 billion call records corresponding
to 25 million users with different spatial granularities (i.e.,
cell sector, cell, zip code, city, state). The spatiotemporal
footprint of each user is represented by the N most visited
places within a pre-defined time (e.g., day, week, month,
ect.), based on which the privacy leakage risk could be eval-
uated. The authors concluded that the spatiotemporal data
sharing or publishing that is only anonymized by pseudo
identifiers leads to a severe privacy leakage risk. The potential
privacy-preserving solution is at least to coarsen the tempo-
ral resolution, which restricts the accuracy of extracting N
most visited locations from the dataset. However, the privacy
protection mechanism, including detail-reduction [21] and
obfuscation [22] may primarily reduce the utility of the data.
It is concluded in [7] that spatiotemporal resolution curtail-
ments may not be useful as expected, based on a human
mobility study with 15-month mobile data and 1.5 million
people in a country. That is, the uniqueness reduction is orders
of magnitude slower than the resolution coarsening.

Therefore, a generalized scheme on the spatiotemporal
privacy preserving based on k-anonymity was proposed in
[11]. Based on such uniqueness of user mobility behavior,
a data-driven spatiotemporal routing generator is developed
in [23] to simulate mobility trajectories of users. In addition,

it is demonstrated in [24] that the aggregated mobility dataset
(e.g., the number of subscribers covered by a cell at a spe-
cific time) may also lead to a privacy breach of individual
mobility trajectory. In [25], a visualization method is devel-
oped to infer one’s living address based on twitter check-in
data.

The user identification (or user reconciliation) [6], [10],
[13], [26]–[34] is another critical problem in privacy protec-
tion, which is to link the spatiotemporal records generated
by the same user in two datasets. The user identification
is closely related to ‘‘de-anonymization’’ attacks. A typi-
cal example is the Netflix prize task that is aimed to de-
anonymize user identities by public user reviews [26]. Two
types of user identification can be roughly categorized,
namely matching users from different data domains but in the
same time [13], [27], [28] and matching the users from the
same data domains in different time spans [10]. In addition,
two types of location information, namely actual GPS coordi-
nates [27], [31], [33] and base station location [6], [10], [32],
are mainly studied in the literature.

In [6], DeMulder et al. studied the user identification based
on the location update dataset from GSM networks, which
records the phone’s network location with geographical infor-
mation periodically. The mobility Markovian model of each
user is constructed based on their spatiotemporal history.
However, such a Markovian model requires the dataset with
subscribers’ transitions among cells to be recorded, whereas
such data is not widely adopted or collected by mobile net-
work operators. In [10], [13], user identification is formulated
as the minimum (maximum) cost bipartite matching with two
vertex sets representing users in two datasets, respectively,
where the edge weight is obtained by the distance (similarity)
measure between any pair of nodes in the bipartite graph. In
[10], Naini et al. suppress the temporal information of users’
spatiotemporal trajectories and represent the user fingerprint
as the histogram of visited location for a given time length.
The distance between the two histograms is calculated by the
Jensen-Shannon divergence. Instead of temporal information
suppression, Riederer et al. in [13] models the number of
spatiotemporal appearances of a given spatial and temporal
bins by a Poisson process for each dataset, based on which
the similarity scores could be generated. However, the task
of [13] is to identify the user of two datasets from different
domains during the same time. In [31], the user matching
based on vehicle trajectories is investigated based on the
improved term frequency and inverse document frequency
(ITF-IDF) mobility feature. The modified Hausdorff distance
between two GPS traces has been studied in [27] to distin-
guish users from different domains. In [29], a privacy risk
assessment is studied by assuming that the privacy adversarial
has a small portion of the information on users’ trajecto-
ries, based on which the assessment is aimed to match the
prior knowledge with the full record. The privacy leakage
assessment is evaluated based on the identification rate—
the reciprocal of the total number of users that matched the
prior information. In [34], a partition-and-group framework
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is proposed to prevent user identification attacks from the
adversarial with random prior knowledge.

Although a similar bipartite matching (LAP) formulation
for user identification is adopted in this work, the unique con-
tributions of this work stand out from previous works in the
following aspects. The ensemble concept or cross-validation
via different spatiotemporal features is studied to enhance
the robustness of user identification. Accordingly, a scalable
ensemble matching algorithm with user grouping and bipar-
tite graph partitioning is proposed, which can reliably re-
identify users. Although we study the user identification in
the same data domain with different time spans in this work,
the proposed ensemble matching framework can be easily
extended to the user identification in heterogeneous domains,
as it provides an effective and scalable approach to integrate
the matching results by diverse distance measures.

III. PROBLEM STATEMENT
Assume that a spatiotemporal dataset X is collected by
a mobile network operator during a specific time period,
in which the i-th subscriber with his/her correspondingmobil-
ity trace Xi is represented as a tuple, i.e, (i,Xi) ∈ X . The
mobility traceXi is a sequence of timestamped location points
(time th and location xh). That is,

Xi = [(t1, x1), · · · , (th, xh), · · · ], xl ∈ A, (1)

where A denotes the discrete location point set (i.e., base
stations) covered by themobile network. A typical example of
such data is the commonly studied call detail records (CDR)
[1], which are voice or text event logs collected by network
operators for service charging. A privacy attacker can access
two of such datasets, X and Y , collected in two time periods.

A. USER IDENTIFICATION PROBLEM [10]
Without loss of generality, the true user identity information
of dataset Y is assumed to be known to the privacy attacker.
The attacker attempts to connect the spatiotemporal informa-
tion generated by the same user in datasetsX and Y based on
their attributes, despite these mobility traces are associated
with different anonymized IDs within these two datasets. By
the assumption that each user can have at most one record
in a dataset [10], [14], the user identification problem can
be formulated into a k-cardinality linear assignment problem
(kLAP) as in [10], that is,

minimize
cij

N∑
i

M∑
j

cijwij

subject to
M∑
j

cij ≤ 1,
N∑
i

cij ≤ 1, cij ∈ {0, 1}

N∑
i

M∑
j

cij = k, ∀j ∈ [M ], ∀i ∈ [N ], (2)

where N = |X | and M = |Y| denote the number of
users in datasets X and Y , respectively.1 k denotes the num-
ber of users coexisting in both the datasets with different
anonymized IDs, i.e., k = |X ∩ Y|. It is worth noting that
such a kLAP formulation would mainly take advantage of
the prior knowledge that one user can generate at most one
record in one dataset, termed as exclusiveness in this paper.
The classic solution to the LAP problem is theKuhn-Munkres
(Hungarian) algorithm [15] and the Jonker-Volgenant (JV)
algorithm [16], both of which the complexity is O(N 3).

The weight wij in (2) denotes the distance between user i
from X and user j from Y , i.e.,

wij = 1(Xi,Yj), (3)

where 1(Xi,Yj) is a distance measure between two traces,
Xi and Yj. In fact, user identification performance will be
determined by how well the weight wij can measure two
mobility traces, as kLAP is deterministic once weights are
decided.

B. ISSUES OF SINGLE-DISTANCE-BASED USER
IDENTIFICATION
To evaluate the performance of distance measures (a.k.a.
user identification performance), the criterion—how many
correct pairs out of the ground truth across two datasets are
identified (a.k.a., recall)—is mostly concerning as stated in
[10], [14]. As the nature of bipartite matching problem, one
incorrect matched user pair may lead to multiple incorrect
matched user pairs in the matching result. However, we argue
that a privacy adversarial not only concerns about the recall
performance but also want a robust user identifier, which is
evaluated by precision— the ratio of the number of correctly
identified pairs over the total number of declared pairs.

The argument results from the reality that the privacy
adversarial does not have the prior knowledge of how many
users coexists in two datasets. In other words, k in (3) is
unknown. As a common practice, one would assume a max-
imum coexisting user number k (i.e., k = min(N ,M ) [10])
in (2) to extract as many correct pairs as possible, regardless
of inevitable false positives. Nevertheless, such assumption
will definitely lead to inferior precision performance (many
falsely matched user pairs are included in the matching),
especially when k is less than min(N ,M ). User identification
based on single distance measure could lead to a large amount
of false positives, as themobility behaviors of two users could
be similar because of details reduction duringmobility behav-
ior modeling. On the other hand, the high computational
complexity of LAP (O(N 3)) prevents the single-distance-
measure-based user identifier from dealing with large-scale
user identification.

C. ENSEMBLE MATCHING FOR USER IDENTIFICATION
It is intuitive that cross validation based on multiple sources
can effectively eliminate false positives. In this paper, we pro-

1Without loss of generality, we assume N ≤ M in the rest of this paper.
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pose a scalable ensemble matching framework to cross val-
idate and identify users, taking advantage of multiple dis-
tances modeled in different aspects. Generally, each distance
measure is modeled and extracted from a perspective of user
mobility. As a result, the proposed multi-feature ensemble
matching framework is aimed to cross validate the identi-
fied candidates by diverse semantic features and eventually
determine the final matching via majority voting strategy.
Accordingly, false positives could be eliminated.

Moreover, our proposed ensemble matching framework
can reduce the computational complexity from O(N 3) to
O(N 2), compared with the one based on single-distance-
measure matching. The complexity reduction of the proposed
ensemble matching framework results from that one only
needs to solve LAP on a highly-sparse matrix rather than a
dense matrix in the proposed ensemble matching framework.
Thus, the proposed ensemble matching has the capability of
dealing with large scale user identification analysis.

IV. ENSEMBLE MATCHING FRAMEWORK
Let W denote the set of G user distance matrices,

W =
{
W1,W2, · · · ,WG

}
, (4)

where the element of each distance matrix is the pair-wise
distancewij generated by a specific distancemeasure between
user i from X and user j from Y . Accordingly, the proposed
ensemble matching is aimed to generate reliable user pairs
between datasets X and Y based on the distance matrix set
W , consisting of two phases:

• Vote Generation: the vote generation phase is to identify
the matched candidates corresponding to each distance
matrix so that a sparse vote matrix could be obtained;

• Final Matching: the final matching phase is to generate
the final matching result on the generated sparse vote
matrix with majority voting and exclusiveness property
ensured.

Based on different vote generation strategies, we first propose
two ensemble matching algorithms in this paper, namely
matching-filtered ensemble (MF-Ensemble) matching and
dual-selection ensemble (DS-Ensemble) matching. For the
final matching phase, we further propose a low-complexity
Partitioning and Matching (P&M) algorithm by taking
advantage of the extreme sparsity of vote matrix.

A. MATCHING-FILTERED ENSEMBLE MATCHING
Each distance matrix can produce k matched pairs by (2)
from the perspective of its underlying spatiotemporal mod-
eling and user representation. Such matching based on
kLAP (2) can be regarded as a filter to select k matched
candidates out of massive

(N
k

)(M
k

)
k! possibilities. There-

fore, the first phase of the proposed ensemble matching
mechanism—vote generation—is fulfilled based on kLAP
matching, which termed as matching-filtered ensemble (MF-
Ensemble) matching.

With distance matrix setW , let matrix C(g,k)
∈ {0, 1}N×M

denotes the matching result by (2) based on the g-th distance
measure with the assumption of k̂ coexisting user number,

C(g,k̂)
= kLAP(Wg, k̂) .

Let vote matrix V k̂
MF ∈ ZN×M collect the matching results

by total G distance measures on each possible matching pair,
that is,

V (k̂)
MF =

G∑
g=1

C(g,k̂). (5)

Therefore, by the strategy of majority votes, the proposed
MF ensemble matching algorithm is aimed to maximize the
sum vote by solving following combinatoric optimization
problem,

maximize
zk̂ij

N∑
i

M∑
j

zk̂ijv
(k̂)
ij,MF

subject to
M∑
j

zk̂ij ≤ 1,
N∑
i

zk̂ij ≤ 1, zk̂ij ∈ {0, 1}

zk̂ij(v
(k̂)
ij,MF − τ ) ≥ 0, ∀i ∈ [N ], j ∈ [M ]. (6)

where Zk̂ ∈ {0, 1}N×M denotes the final result generated by
the proposed MF-Ensemble algorithm. The first two condi-
tions in (6) are the same as kLAP (2), which guarantee the
exclusiveness property. The τ denotes the vote threshold that
ensures that the final result is voted bymajority, whose typical
value is τ = dG/2e. Thus, the third condition, zk̂ij(v

(k̂)
ij,MF −

τ ) ≥ 0, is designed to ensure the solution voted by majority.
The objective function in (6) is aimed to maximize total votes
generated by multiple distance measures without any specific
restriction on the cardinality of final results, as the cardinality
restriction condition has already been enforced in (2) before
ensemble matching.

In fact, the intuition behind sum vote maximization in (6) is
to choose the one with more votes when the selection of cer-
tain two candidate pairs violates the exclusiveness property,
e.g.,

max(vij, vil), vij ≥ τ, , vil ≥ τ.

Moreover, we reformulate (6) into the classical linear assign-
ment problem (LAP) as follows,

minimize
zij

n∑
i

m∑
j

zij
(
G− vk̂,τij,MF

)

subject to
M∑
j

zij = 1,
N∑
i

zij ≤ 1

∀i ∈ [N ], ∀j ∈ [M ], zij ∈ {0, 1}. (7)

VOLUME 8, 2020 97247



L. Fang et al.: Mobile Privacy: Scalable Ensemble Matching for User Identification Attacks

Algorithm 1 Matching-Filtered Ensemble Matching

1: Input:W =
{
W1,W2, · · · ,WG}, k , τ

2: Output: Z
3: Initiating vote collection matrix V = 0
4: for g ∈ {1, 2, · · · ,G} do F for each distance measure
5: C(g,k)

← kLAP(Wg, k) F solve (2) onWg

6: V ← V + C(g,k)

7: end for
8: Z← LAP(V ,G, τ ) F solve (7)
9: for i, j ∈ [N ]× [M ] do
10: if zij <> 0 and vk̂ij == 0 then
11: zij← 0 F remove non-major-voted
12: end if
13: end for

where vk̂,τij,MF = ξ (v
(k̂)
ij,MF, τ ) denotes the votes after threshold-

ing as follows,

ξ (v, τ ) =

{
v, v ≥ τ
0, otherwise.

(8)

Via the Hungarian or JV algorithm of the classic LAP,N pairs
are generated (Line 8, Algorithm 1), from which final results
are determined by removing the matched pairs whose votes
do not satisfy vk̂,τij,MF > 0. Details of the proposed ensemble
matching framework are demonstrated in Algorithm 1.

B. DUAL-SELECTION ENSEMBLE MATCHING
The proposed MF-Ensemble matching needs to solve kLAP
G times in the vote generation phase and solve the LAP in
the final matching phase, both of which the computational
complexity is O(N 3). Such high computational complexity
may make the proposed MF-Ensemble matching infeasible
when user size is large. In fact, the MF-Ensemble algorithm
enforces the exclusiveness property in both the vote genera-
tion phase and the final matching phase, which may not be
necessary. Therefore, we propose a dual selection strategy in
the vote generation phase by relaxing the exclusiveness con-
straint in the vote generation phase, termed as dual-selection
ensemble (DS-Ensemble) matching.

For each distance matrix Wg, matched candidates can be
generated based on the minimum distance in terms of each
user in both the datasets. For example, each user in dataset X
would select the most similar user from dataset Y in terms of
distance measure g, i.e.,

C(g,X )
=

{
(i, j)

∣∣∣∣j = arg min
j∈[M ]

wgij, i ∈ [N ]
}

(9)

Similarly, each user in dataset Y can again identify their
candidates, i.e.,

C(g,Y)
=

{
(i, j)

∣∣∣∣i = arg min
i∈[N ]

wgij, j ∈ [M ]
}

(10)

Therefore, such procedure is termed as dual selection (Line
7&10, Algorithm 2). By regarding each pair via the dual

selection procedure as one vote, the candidate matrix takes
the form as follows,

C(g,{·})
ij =

{
1 (i, j) ∈ C(g,{·})

0 otherwise,

where {·} denotes dataset X or Y . Hence, the final candidate
matrix can be obtained by superimposing these two candidate
matrix (Line 12 in Algorithm 2), i.e.,

Cg
= C(g,X )

+ C(g,Y). (11)

It is worth noting that each true pair can get two votes for one
distance matrix in the ideal case. Also, an incorrect selection
in one dataset does not impact the selection of the other,
as the selection in two datasets are independent of each other.
The computational complexity of dual selection is O(NM ),
an order of magnitude less than matching filtering based vote
generation.

The vote collection can be achieved according to (5),
i.e.,VDS =

∑
g C

g. In the DS-Ensemblematching algorithm,
the final matching phase needs to ensure k-cardinality con-
dition and exclusiveness property, in order to determine the
final matching. Similar to (7), the DS-Ensemble matching
algorithm is to solve the assignment problem with the con-
straint of majority voting (Line 14, Algorithm 2) as follows,

minimize
zij

n∑
i

m∑
j

zij[2G− vτij,DS]

subject to
M∑
j

zij < 1,
N∑
i

zij ≤ 1, zij ∈ {0, 1}

N∑
i

M∑
j

zij = k̂, ∀i ∈ [N ], ∀j ∈ [M ], (12)

where vτij,DS = ξ (vij,DS, τ ). It is worth noting that the maxi-
mum votes for one pair (i, j) through dual selection procedure
is 2G. Thus, the majority voting threshold is τ = G. Details
of the proposed DS-Ensemble matching can be found in
Algorithm 2.

C. DUAL-SELECTION ENSEMBLE PARTITIONING &
MATCHING
The DS-ensemble matching can reduce the computational
complexity from O(N 3) to O(NM ) in the vote generation
phase, compared with the MF-ensemble matching algorithm.
Nonetheless, the scalability issue of our proposed ensemble
matching framework still exists due to the high-complexity
LAP-based approach in the final matching phase (i.e., (7)
and (12)). In this subsection, we aim to tackle the scalability
issue in the final matching phase by reducing the average time
complexity from O(N 3) to O(N logN ).
It is worth noting that the vote matrix V is an extremely

sparse matrix, as each candidate matrix by a distance mea-
sure (i.e., Cg) has at most 2N non-zero elements. Besides,
the superimposition of a total G candidate matrices will
further reduce the number of non-zero elements in the vote
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Algorithm 2 Dual-Selection Ensemble Matching

1: Input:W =
{
W1,W2, · · · ,WG}, k , τ

2: Output: Z
3: Initiating vote collection matrix V = 0
4: for g ∈ {1, 2, · · · ,G} do F candidate dual selection
5: C(g,X )

← 0, C(g,Y)
← 0

6: for i ∈ [N ] do
7: j← argminjW

g
ij, C

(g,X )
ij ← 1 F solve (9)

8: end for
9: for j ∈ [M ] do
10: i← argminiW

g
ij, C

(g,Y)
ij ← 1 F solve (10)

11: end for
12: V ← V + C(g,X )

+ C(g,Y)

13: end for
14: Z← kLAP(V ,G, τ ) F solve (12)
15: for i, j ∈ [N ]× [M ] do
16: if zij <> 0 and vij < τ then
17: zij← 0 F remove non-major-voted
18: end if
19: end for

matrix V . In the worst case, the nonzero element number of
vote matrix V will be at the level of O(GN ), where G �
N . Also, the majority voting strategy can further reduce the
nonzero element number of vote matrix V , as each element
of V less than vote threshold τ will be set to zero. One can
regard the vote matrix as the adjacency matrix of a bipartite
graph, G(X ,Y,V ), whose nonzero elements can be regarded
as weighted edges between two vertex sets in the bipartite
graph. The intuition to resolve the scalability issue in the final
matching phase is to first partition the bipartite graph into
subgraphs and then conduct matching on the subgraphs to
generate final matching results, by taking advantage of the
high sparsity of V .

1) BIPARTITE GRAPH PARTITIONING WITHOUT LOSS
The sparsity of vote matrix indicates that the entire bipartite
graph may be partitioned without loss of votes, as most of
the matrix elements are already zero. In other words, vote
matrix V may be rearranged into the block diagonal form by
shuffling rows and columns as follows,

V = diag{V1,V2, · · · ,V r }, (13)

where V i denotes a submatrix of V that cannot be further
diagonalized without loss of nonzero elements. As a result,
one could perform bipartite matching (i.e., (12)) on each
submatrix V i to generate final matching results. Rearranging
the vote matrix V into a block diagonal form is equivalent to
searching the connected components of the bipartite graphV .
Hence, an efficient tree-based data structure in the literature,
union find or disjoint set [35, Chapter 1], can be easily
employed to find the connected components with the time
complexity O(GN ).

2) BIPARTITE GRAPH PARTITIONING WITH LOSS
Although the sparsity of the vote matrix may reduce the
size for bipartite matching without loss of nonzero elements,
the size of each submatrix cannot either be controllable nor be
guaranteed to be small enough. In the worse case, the bipartite
graph V cannot be partitioned at all, especially when users
have very similar mobility behaviors, while vote matrix V
still remains extremely sparse as previously discussed. As a
result, we propose to partition the bipartite graph with the
minimum nonzero loss, where the size of submatrices could
be controllable to a certain degree.

Starting from binary partitioning (i.e., each vertex set of a
bipartite graph is partitioned into two subsets), the minimiza-
tion of normalized cut is commonly employed as an objective
function for bipartite graph partitioning [36], [37]. Let vote
matrix V be expressed in a block format as follows,

V =
[
V11 V12
V21 V22

]
.

where V ij corresponds to vertex subsets Xi and Yj, i, j ∈
{1, 2}. Thus, the normalized cut is defined as follows,

NCut =
Cut

21TV111+ Cut
+

Cut

21TV221+ Cut
, (14)

where Cut = (1TV121 + 1TV211) denotes the loss of
elements due to bipartite graph partitioning. It is worth noting
that the normalized cut minimization is not only aimed to
minimize the loss of elements due to graph partitioning, but
also designed to balance the partitioning (i.e., the cardinality
difference between two vertex subsets should approach to
zero).

It has been shown in [37] that the normalized cut min-
imization based bipartite graph partitioning can boil down
to finding the second largest singular vectors (ũ and ṽ) of
Ṽ = D−1/2X VD−1/2Y

Ṽ ũ = σ2ṽ,

where DX = diag{V1} and DY = diag{VT1} denote the
degree of each vertex in X and Y , respectively. As a result,
both user set X and Y can be segmented as follows,

X1 = {i|ui ≥ 0} and Y1 = {j|vj ≥ 0}, (15)

where u = DX ũ and v = DY ṽ. Furthermore, X2 and Y2
can be obtained by finding the complement of X1 and Y1,
respectively.

3) DS-ENSEMBLE PARTITIONING AND MATCHING
Based on the previous discussions on vote matrix sparsity
and bipartite graph partitioning, we propose a recursive DS-
Ensemble partitioning and matching (P&M) algorithm with
a much lower computational complexity, compared with the
DS-Ensemble matching. First, the bipartite graph will be
partitioned without loss based on the union find (Algorithm 3
Line 4). For each subgraph, a recursive partitioning and
matching algorithm (Algorithm 3 Line 12-29) is employed
to further segment the graph into multiple subgraphs, whose
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Algorithm 3 DS-Ensemble Partitioning&Matching

1: Input: VDS, X , Y , k̂ , G, τ , t
2: Output: Z
3: V τDS = ξ (VDS, τ ) F vote thresholding
4: V1, · · · ,VR← UnionFind(V τDS) F partitioning w/o

loss
5: Initialize Z ← ∅
6: for r ∈ [R] do F partitioning w/ loss
7: Zr ←PartitionAndMatch(V r , Xr , Yr )
8: Z ∩ {Zr }
9: end for
10: Z← diag(Z)
11: Find top k̂ pair based on Z and V τDS
12: function PartitionAndMatch(V , X , Y )
13: if |X | > t or |Y | > t then F partitioning
14: û, v̂← Lanczos(D−1/2X VD−1/2Y )
15: X1← {i|(DX û)i ≥ 0} and X2← X − X1
16: Y1← {j|(DY v̂)j ≥ 0} and Y2← Y − Y1
17: Z11← PartitionAndMatch(V11, X1, Y1)
18: Z22← PartitionAndMatch(V22, X2, Y2)
19: Z← diag{Z11,Z22}
20: else F matching
21: Z← LAP(V , 2G)
22: end if
23: for i, j ∈ [N ]× [M ] do F clean via majority voting
24: if zij <> 0 and vij < τ then
25: vij← 0
26: end if
27: end for
28: return Z
29: end function

size is not greater than the size threshold (t in Algorithm 3).
In each final subgraph, the Hungarian or JV algorithm (Algo-
rithm 3Line 21) will be employed to obtain the finalmatching
result (7) with the majority voting ensured (Algorithm 3 Line
23-27). After collecting all the matching pairs from all the
subgraphs, one can output the top-k̂ matched pairs. It is worth
noting that the DS-Ensemble P&M algorithm is a suboptimal
algorithm, compared with the DS-Ensemble matching. For
Details of the algorithm, refer to Algorithm 3.

In the DS-Ensemble P&M algorithm, the heaviest com-
putational load of bipartite graph partitioning is the second
largest singular vector calculation, where the full singu-
lar value decomposition is computationally intensive (i.e.,
O(N 3)). However, thanks to the high sparsity of Ṽ , the com-
putational complexity of the second largest singular vector
calculation can be reduced to O(nnz(Ṽ )) based on Lanczos
method in [37] and [38, Chapter 8], where nnz(Ṽ ) denotes
the number of nonzeros in matrix Ṽ . As a result, the time
complexity of binary bipartite graph partitioning is O(GN ).
The recursive number of bipartite graph partitioning depends
on the size threshold t . By roughly assuming that each bipar-
tite graph partitioning can exactly divide the graph into two

equal-size subgraphs, the recursive number is O(log(N/t)),
and each recursive layer is on the complexity of O(GN ).
Thus, the computational complexity of the proposed P&M
algorithm isO(Nt2+ log(N/t)GN ), whereO(Nt2) originates
fromN/t matchings on subgraphs with the size less than t . As
t and G are fixed and predefined, the average computational
complexity of the DS-Ensemble P&M algorithm could be
simplified to O(NM + N logN ), where O(NM ) originates
from the dual selection procedure in the vote generation
phase.

V. EXPERIMENTS
In this section, we validate our proposed ensemble match-
ing via experiments on a real-world signaling dataset [39]
collected in a mobile network, which is an extension of the
commonly studied call detail record (CDR) dataset.

A. STUDIED DATASET
The signaling data is a typical example of control-plane data
collected from mobile networks [1], which is collected at the
mobility management entity of LTE networks. The signaling
dataset records every communication/location update event
of all active subscribers in a mobile network. Data fields of
the signaling data include subscriber’s anonymized identi-
fier, time stamp, location coordinates (i.e., the longitude and
latitude of the base station), event type, and cell type (i.e.,
small cell or macro cell). In addition, the signaling data logs
event type as well as the direction of the event (e.g., initiating
a call or being called). Compared with the commonly used
call detail record (CDR) data, the signaling data does not
record the duration information of voice services. However,
the signaling data further logs two types of location update
events in addition to the regular event types (calls or texts),
namely the regular location update and the periodic location
update. In cellular networks, location updating is a funda-
mental technique of idle mobile device mobility manage-
ment. Regular location updates are triggered by tracking area
crossing, while periodic location updates are prompted by a
timeout event when no event occurs for a subscriber within
a predefined time period. In the studied dataset, the time-
out interval is about 1 hour, which can guarantee that any
active subscribe has at least one observation per hour in the
dataset.

To mimic the data publish process, three scenarios
generated from the studied dataset are tested to evaluate
the proposed multi-feature ensemble matching framework,
in comparison with the existing methods in the literature.

• In Scenario 1, a two-week dataset of total 15, 000 users
is recorded from July 1st, 2016 to July 14th, 2016. This
scenario is employed to mimic that the network operator
publishes a different subset of subscribers during differ-
ent periods. In the experiments, 10, 000 users in the first
week and the second week are randomly sampled out of
total 15, 000 as dataset X and Y , respectively, while the
number of overlapping users over two datasets k will be
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FIGURE 1. Performance comparison in Scenario 1.

specified later. The experiment results shown later are
average of 10 such tests.

• In Scenario 2, a two-week dataset of total 5976 users are
extracted based on their mobility behaviors in specific
regions of interest for certain applications. This scenario
is to mimic that the network operator publishes a region-
based dataset. Although the total user number of this
scenario is less than the one in Scenario 1, the user
identification in this scenario is much more challeng-
ing, for users in this scenario have much more similar
mobility behavior. Similar to Scenario 1, 2, 500 users
are randomly sampled out of total 5976 users, while the
number of coexisting user k is controlled in different test
cases. Again, dataset X and Y covers the first week and
the second week, respectively.

• Scenario 3 is aimed to illustrate privacy risk via large-
scale user identification analysis on 150, 000 users with
different data collection periods, ranging from 2 days to
7 days. It is worth noting that single-distance-based LAP
user identification cannot deal with such a scale of users.

B. USER IDENTIFICATION PERFORMANCE
To evaluate the user identification performance, the classical
precision-recall is employed. The precisionmetric is to assess

TABLE 1. Distance measures for each ensemble.

how accurate a user identification algorithm is, which is
defined as

precision =
correct identified pairs #
total declared pairs #

. (16)

The recall metric is to evaluate how many user pairs can be
correctly identified out of the total number of coexisting users
k ,

recall =
correct identified pairs #

total existed pairs #
. (17)

In general, the tradeoff between the precision and recall could
be controlled by a preset parameter k̂ . In the experiments,
we use k̂ ∈ [0.01 × N , 0.02 × N , · · · ,N ] to generate
precision-recall points in the figures.

Figs. 1 and 2 show the precision-recall comparison
between the best single matching (VFO-JSD & VFD-JSD)
[40], MF-Ensemble Matching (Algorithm 1), DS-Ensemble
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FIGURE 2. Performance comparison in Scenario 2.

Matching (Algorithm 2), and DS-Ensemble P&M (Algo-
rithm 3) algorithms. The distance measures involved in each
ensemble can be found in Table 1, and their details can be
found in Appendix. It can be observed in both scenarios
that the ensemble can broadly outperform the best individual
matching in terms of the precision. The performance gain
is more significant as one distance measure is not capable
of distinguishing certain user pairs, due to their similar resi-
dency areas. However, the proposed MF-Ensemble algorithm
can effectively take advantage of multiple diverse distance
measures.

The tradeoff between the maximum recall and precision
rates can also be observed in Figs. 1 and 2. In other words,
the proposed ensemble matching framework can achieve
much higher precision at the same recall, while it has a
smaller maximum recall compared with the individual ones
(i.e., the absolute user pairs that the ensemble matching can
discover is less than that of individual matchings). How-
ever, the maximum recall gap between the ensemble and
the individual is shown negligible compared with the preci-
sion performance gain. Besides, the more distance measures
involved in the ensemble can result in a better precision
performance but with maximum recall performance slightly
compromised.

It can be observed that the DS-Ensemble algorithm can
achieve higher precision and trade off more maximum recall
performance. The DS-Ensemble can achieve almost 100%
precision at low recall rates and more than 95% at high
recall rates. As a result, the DS-Ensemble algorithm can be
viewed as the most reliable user identification algorithm.
However, the reliability of DS-Ensemble comes at the cost of
the maximum recall performance, especially when users are
similar to each other, as shown in Scenario 2. The proposed
low-complexity DS-Ensemble P&M algorithm has a similar
performance as the DS-Ensemble matching, as the size of
most subgraphs after partitioning without loss is less than the
threshold (t = 1, 000 in Algorithm 3).

C. USER GROUPING
The complexity of each distance measure between two users
depends on the support of histogram or the number of points
in two convex hulls. However, one needs to calculate N ×M
distances across two datasets so that a distance matrixWg can
be generated. The complexity of distance matrix generation,
O(ψNM ), may lead to scalability issue when the user size
of two datasets is tremendous. Here, ψ denotes the computa-
tional complexity of distance measures per pair. Inspired by
the graph partitioning concept employed in the DS-Ensemble
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FIGURE 3. Large-scale user identification analysis in Scenario 3.

P&M algorithm, we propose to first cluster users into small
groups so that the distance matrix generation and the ensem-
ble matching within each group could be conducted.

The mobility feature of user i on each base station takes the
form as follows,

f i = [fi1, fi2, · · · , fiL]T . (18)

In fact, fil characterizes the mobility behavior of user i on
location l, fil = 5̂il × log(N/nl), where nl is the number
of users visiting location l out of total user number N . The
term log(N/nl) is similar to inverse document frequency in
the field of document clustering [41], which is designed to
depict the importance of location points for clustering. In
other words, if most users visit one location, the value of
log(N/nl) will be small, meaning that such location is less
important to distinguish users.

Hence, one can obtain a feature matrix by stacking the
feature of all the users from both datasets as follows,

F = [f 1, · · · , f (N+M )] ∈ RL×(N+M ), (19)

where each column represents themobility behavior of a user.
Two characteristics of feature matrix F could be observed:
1) the number of base stations could be very large, up to 6, 500
in the studied dataset, due to a large geographic area studied;
2) the mobility feature of users f i could be very sparse,
as one user can most likely visit a small portion out of all the
base stations. It is worth recalling that the objective of user
grouping is to reduce the user set size for matching, whose
complexity is O(NM ). In other words, the computational
complexity of the clustering algorithm cannot be as high as
O(NM ). Otherwise, direct user identification on the entire
user set would be more meaningful. Besides, the high dimen-
sion of user mobility feature can lead to the uselessness of
the commonly employed low-complexity k-means clustering
algorithm.

As a result, the clustering algorithm based on non-negative
matrix factorization (NMF) [41] is employed to cluster users

in this work. The NMF is essentially to minimize the Frobe-
nius norm of the difference between the original matrix and
the multiplication of two non-negative factorized matrices as
follows,

minimize
P,Q

‖F− PQ‖F

subject to P = [p1, · · · , pR] ∈ RL×R
+

Q = [q1, · · · , q(M+N )] ∈ RR×(N+M )
+ , (20)

where R denotes the factorization rank and also the number
of user groups. Based on the non-negativity of both matrices,
each user can be represented by the non-negative weights qi
on group representations P as follows,

f i =
R∑
r=1

qirpr ,

where qir denotes the weight on group r of user i. As qir
is non-negative, the user group for each user could be deter-
mined by finding the maximum user group weight as follows,

ri = argmax
r
qir . (21)

Therefore, one could obtain user grouping results with the
complexity ofO(R(N+M )), once the feature matrix is factor-
ized. In the literature, the multiplicative update method [41],
[42] is commonly employed for NMF with the complexity
of O(iR(N +M )), where i denotes the overall iteration. As a
result, by combining with the DS-Ensemble P&M algorithm,
the complexity of the entire user identification procedure
could be significantly less than O(NM ).

D. PRIVACY EVALUATION
Figs. 3 shows the precision and recall performance of large-
scale user identification analysis on a 150, 000 user set, based
on the proposed DS-Ensemble P&M algorithm. In Figs. 3,
the length of user data collection ranges from 2 to 7 days
(x axis). For complexity reduction, the entire user set is first
partitioned by user grouping, as discussed in Section V-C.
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The user grouping would lead to the loss of recall perfor-
mance, since some users may be clustered into different
groups. The incorrect clustering rate ranges from 16.36% (7-
day data collection) to 19.64% (2-day data collection). It can
be observed that both the recall and precision performance
can be improved as the data collection length grows, which
suggests the reduction of data collection could lead to privacy
protection to some degree. Overall, the subscriber privacy is
vulnerable in terms of user identifiability across two datasets,
if the dataset is released only with ID anonymization. In
Figs. 3, it shows that the user privacy is still at high risk, as the
proposed DS-Ensemble P&M algorithm still can recognize
almost half of the user pairs at very high confidence (up to
90%).

VI. CONCLUSIONS
In this paper, we studied the privacy attack in terms of user
identifiability across two datasets based on the spatiotemporal
data collected from mobile networks. By integrating multiple
distance measures, a scalable ensemble matching framework
was proposed to reduce false positives significantly. Taking
advantage of the extreme sparsity of the vote matrix, the com-
putational complexity of the proposed ensemble matching
framework was an order of magnitude lower. In addition, user
grouping was studied to further reduce the overall computa-
tional complexity so that large-scale user identification can
be facilitated. Experiments demonstrated that our proposed
multi-feature ensemble matching achieves superior perfor-
mance (up to 100% precision), which also suggested the
vulnerability of mobile network subscribers’ privacy.

APPENDIX A
VISITING FREQUENCY ONLY (VFO) MODELING [10]
The location visiting frequency only (VFO) was proposed in
[10], [14] to distinctly characterize a user.

A. DATA MODELING
With the location point set (base station set) being abstracted
as an alphabet set A = {a1, · · · , aL}, the raw mobility
trace (1) can be first modeled as a string with length T by
discarding the time information,

Xi = xi1, xi2, · · · , xiT . (22)

Every element xit ∈ A in the string is assumed to be i.i.d. from
the alphabet set A based on an unknown location visiting
probability mass function 5i.

B. REPRESENTING FEATURE
Based on the i.i.d assumption of the string generation,
the location visiting probability5i could be estimated by the
empirical probability distribution or histogram 5̂i, i.e.,

5̂i,l =
Ni(al)
T

, al ∈ A , (23)

whereNi(al) =
∑

xit=al 1 denotes the number of appearance
of letter al in the string Xi, counting the number of visits of

user i at location al . Thus, the spatiotemporal behaviors of
a user could be represented by the histogram, characterizing
his/her visiting frequency over location point set A.

C. DISTANCE MEASURES
The intuitive yet heuristic L1 distance function could be
employed to assess the distance between two histograms as
follows,

1VFO-L1(Xi,Yj) =
1
2

∑
al∈A

∣∣5̂i,l − 5̂j,l
∣∣ . (24)

Based on the multi-hypothesis test framework discussed in
[14], to determine the optimal hypothesis using the likeli-
hood test is equivalent to solving the kLAP with distance
generated by the Jensen-Shannon divergence (JSD). Thus,
the JSD could serve as a distance measure on the histograms
as follows [10],

1VFO-JSD(Xi,Yj) = JSD(5̂i, 5̂j) . (25)

where

JSD(p, q)=KL (p ‖(p+q)/2 )+KL (q ‖(p+q)/2 ) . (26)

APPENDIX B
VISITING FREQUENCY AND DURATION (VFD) MODELING
In the literature, the visiting frequency only (VFO) proposed
in [10], [14] can effectively capture the traces generated by
two users. However, the VFO captures one spatial aspect
of the available mobility traces, while neglecting the poten-
tial temporal information valuable for user identification.
Though the collected dataset may be an event log with users’
spatiotemporal trajectory sporadically sampled, the temporal
information could still be employed to characterize users. In
this subsection, we propose a visiting frequency and duration
(VFD) feature to jointly capture the distance in both the
spatial and temporal aspects.

A. DATA MODELING
Atop the string model (22) described in Appendix A, the raw
spatiotemporal attribute (1) could bemodeled as a tuple string
with size Pi as follows:

Xi = (xi1, ti1), (xi2, ti2), · · · , (xiPi , tiPi ) , (27)

where xip ∈ A denotes the p-th recorded location of user
i, and tip denotes the corresponding duration between the
current event and the next one.

Based on the spatiotemporal tuple string modeling, we also
assume that each tuple is i.i.d. generated by an unknown
probability distribution, where the duration of a user at a
given location al ∈ A is modeled as an exponential (EXP)
distribution conditioned upon the location al ,

f (t|al; λi,l) = λi,lexp(−λi,l t), t > 0, (28)

where λi,l denotes the reciprocal of the average duration of
user i at location point al .
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B. REPRESENTING FEATURE
Assume that duration generated at locations are uncorrelated,
the likelihood of Xi takes the form

L(Xi) =
∏
l

L(Xi; al)5i(al) (29)

where L(Xi; al) denotes the likelihood of Xi observed at
location al as in (28).
As a result, one can obtain two representations to charac-

terize users in both the spatial and temporal aspects. The spa-
tial representation is the visiting frequency by the empirical
probability distribution 5̂i calculated via (23). The temporal
representation could be obtained by the location-dependent
exponential distribution parameter set 3̂i = {̂λi,l}, where
each element λi,l can be estimated at each al ∈ A,

λ̂i,l = Nl(al)/
∑
xip=al

tip. (30)

C. DISTANCE MEASURES
With the similar multi-hypothesis test framework in [14],
a distance measure between two users in terms of both 5̂i
and 3̂i can be derived. With respect to the likelihood function
(29), the derived distance measure can be decomposed into
two components, namely visited frequency only (VFO) and
visited duration only (VDO), as follows,

1VFD-WD(Xi,Yj) = 1VFO-WD(Xi,Yj)+1VDO-WD(Xi,Yj)

(31)

Here, the ‘‘WD’’ is short for weighted divergence, which is a
generalization of Jensen-Shannon divergence. The1VFO-WD
is originated from (26) with weighted divergence employed,
while the 1VDO-WD is obtained based on the divergence
between two exponential distributions on their corresponding
visited durations as follows,

1VDO-WD(Xi,Yj) =
∑
al∈A

[
qi5̂i,lKL

(
λ̂i,l‖λ̂ij,l

)
+ qj5̂j,lKL

(
λ̂j,l‖λ̂ij,l

)]
.(32)

where KL(λ1‖λ2) denotes the KL divergence on two EXP
distributions, i.e., KL(λ1‖λ2) = log(λ1/λ2) + (λ2/λ1) − 1.
And λ̂ij,l is the weighted harmonic average over λ̂i,l and λ̂j,l .
Assume that the string length of each user and the number
of each observation are the same, the JSD could be easily
obtained as well as the L1 distance,

1VFD-L1(Xi,Yj) =
∑
al∈A

∣∣∣∣∣5̂i,l

λ̂i,l
−
5̂j,l

λ̂j,l

∣∣∣∣∣ . (33)

APPENDIX C
DAILY HABITAT REGION (DHR) MODELING
The previously discussed spatiotemporal features abstract
discrete location points as independent and unrelated letters
in an alphabet set A. Such modeling discards the critical
geospatial information. The geospatial information may help
combat the information loss due to the sporadic sampling

of users’ spatiotemporal trajectories. Thus, a heuristic spa-
tiotemporal feature is employed for user identification [39],
daily habitat regions (DHR), as well as its corresponding
distancemeasures, based on the geospatial information in this
subsection. The daily habitat regions capture the daily spatial
coverage of a subscriber, which are expected to be consistent
to some degree and may serve as the subscriber’s mobility
fingerprints.

A. DATA MODELING
The spatiotemporal attribute (1) is first formulated into sets
of location points:

Xi = {Xi1,Xi2, · · · ,XiQX }, (34)

where each set Xiq ⊆ A denotes a set of location points that
the user visits during a calendar date q andQX andQY denote
the number of days collected in datasetX andY , respectively.

B. REPRESENTING FEATURE
Here, we employ a classical computational geometry concept,
convex hull, to approximate the spatial coverage that a user
visits daily. By approximating a small region of geo-surface
as an Euclidean space, the convex hull of a given point setXiq
in a 2-dimensional surface is defined as the set of the convex
combination of the given finite point set. Thus, the daily
convex hull, Ciq, is employed to represent the spatiotemporal
behaviors of a user for a given day. Hence, the mobility traces
of user i is represented as a set of daily convex hulls,

Ci =
{
Ci1,Ci2, · · · ,CiQi

}
, (35)

where each convex hull is again assumed to be i.i.d. generated
from an unknown probability distribution.

C. DISTANCE MEASURES
With the convex hull set representing users’ spatiotemporal
behaviors, we first define two distance measures between
two convex hulls based on the cosine distance and the
intersection-over-union (IoU), respectively,

δcos(Cp,Cq) = 1−
area(Cp ∧ Cq)√

area(Cp)× area(Cq)
,

δiou(Cp,Cq) = 1−
area(Cp ∧ Cq)
area(Cp ∨ Cq)

, (36)

where Cp∧Cq and Cp∨Cq denote the intersection and union
of the two convex hulls, respectively, and the operator area(·)
is to calculate the area of a polygon. Therefore, a distance
measure between two convex hull sets is proposed based on
(36) to evaluate the similarity of two subscribers as follows,

1DHR-COS(Xi,Yj) =
1

Qi × Qj

∑
Cip∈Xi

∑
Ciq∈Yj

δcos(Cip,Ciq),

1DHR-IOU(Xi,Yj) =
1

Qi × Qj

∑
Cip∈Xi

∑
Ciq∈Yj

δiou(Cip,Ciq).

(37)
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Intuitively, the distancemeasure between two convex hull sets
is to calculate the average distance between any two convex
hulls in two respective sets. When the convex hull cannot
be obtained because the number of distinct visited location
points within a day is less than 3, the daily habitat region
would be omitted. If no convex hull could be generated,
the user will be labeled as non-identifiable.
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