End User Programing of Intelligent Agents Using
Demonstrations and Natural Language Instructions

Toby Jia-Jun Li
tobyli@cs.cmu.edu
Human-Computer Interaction Institute, Carnegie Mellon University
Pittsburgh, PA

ABSTRACT

End-user programmable intelligent agents that can learn new tasks
and concepts from users’ explicit instructions are desired. This pa-
per presents our progress on expanding the capabilities of such
agents in the areas of task applicability, task generalizability, user
intent disambiguation and support for IoT devices through our
multi-modal approach of combining programming by demonstra-
tion (PBD) with learning from natural language instructions. Our
future directions include facilitating better script reuse and sharing,
and supporting greater user expressiveness in instructions.

CCS CONCEPTS

+ Human-centered computing — Natural language interfaces;
Interactive systems and tools.

KEYWORDS

Programming by demonstration, end user development, multi-
modal interaction, natural language programming.

ACM Reference Format:

Toby Jia-Jun Li. 2019. End User Programing of Intelligent Agents Using
Demonstrations and Natural Language Instructions. In 24th International
Conference on Intelligent User Interfaces (IUI '19 Companion), March 17—
20, 2019, Marina del Rey, CA, USA. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3308557.3308724

1 INTRODUCTION

Enabling end users to “teach” intelligent agents new tasks and
concepts has become increasingly important due to the growing
ubiquity of such agents residing in “smart” devices, such as phones,
wearables, and speakers. Although these agents have a set of built-
in functionalities, and most provide expandability by allowing users
to add third-party “skills”, they still fall short in the “long-tail” of
tasks and suffer from the lack of customizability and flexibility [6].
From the user experience perspective, the lack of user programma-
bility in agents results in frustration [8]. When a user gives an out-
of-domain command, current agents either respond with a generic
error message (e.g., ‘Sorry I don’t understand.”) or perform a generic

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

IUI °19 Companion, March 17-20, 2019, Marina del Rey, CA, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6673-1/19/03...$15.00
https://doi.org/10.1145/3308557.3308724

fallback action (e.g., a web search). Often, neither response is help-
ful - a more useful response would be to ask the user to instruct the
agent how to perform the new task or to learn the new concept [8].

My research focuses on empowering end users to program agents
for new tasks and concepts using a combination of programming
by demonstration (PBD) and natural language instructions. Unlike
learning systems that learn from passively collecting massive data
from many users, my project focuses on interactive learning from
a user’s explicit demonstrations and instructions. While the input
scale is small, carefully designed interactions can guide users to
provide useful inputs for learning the generalized task procedure,
the underlying user intentions, and the concepts involved.

The idea of using PBD in the end user development of task au-
tomation has been investigated in many contexts (e.g., [5]), but its
adoption has been limited due to challenges of issues such general-
ization, reusability and applicability [2]. We are leveraging state-of-
art natural language understanding techniques (e.g., [1]) to address
those long-standing issues in PBD while preserving its low learning
barrier. We used human-centered design methods [11] to achieve a
balance between providing users with the necessary control, suf-
ficient explainability and adequate expressive power instead of
completely relying solely on Al techniques to perform the required
generalizations and inferences.

2 RESEARCH PROGRESS UP TO DATE
2.1 Task Applicability and Generalizability

As a major foundation of my Ph.D. research, SUGILITE [6] addresses
two limitations in prior PBD work: applicability, and generalizabil-
ity. For applicability, SUGILITE supports users in programming tasks
across diverse domains by allowing automating procedures and
extracting information from one or multiple third-party Android
apps. It can extract a Ul snapshot knowledge graph [7] from every
screen in each app, from which it infers a generalized query used
for manipulating and extracting information from the app’s GUI
through the Android Accessibility APIL.

SUGILITE s novel multi-modal interface leverages the user’s natu-
ral language description of the task and the GUI structure of apps to
support automatic generalization of recorded procedures through
parameterization. For example, if the user describes the task as
“order a cup of cappuccino” and demonstrates its procedure in the
Starbucks app, SuciLiTE will identify “cappuccino” as a parameter
by observing the user choosing it from a list of available drinks in
the Starbucks app GUI SUGILITE extracts other possible values for
this parameter from different branches in the GUI so that the user
can perform, for example, “order a cup of caramel macchiato” with
SuGILITE without having to teach it again, even when “caramel mac-
chiato” is in a different subsection of the menu from “cappuccino”.

https://doi.org/10.1145/3308557.3308724
https://doi.org/10.1145/3308557.3308724

IUI ’19 Companion, March 17-20, 2019, Marina del Rey, CA, USA

In our lab evaluation, SUGILITE was shown to be usable and
useful even for users with no programming background.

2.2 Natural Language for Data Description
Disambiguation

Another long-standing challenge in PBD is to deal with ambiguities
in demonstrations. From the demonstrations, the agent should pro-
duce more than a literal record-and-replay macro, but instead learn
the task at a higher level of abstraction so it can perform similar
tasks in new contexts. For example, suppose the user demonstrates
choosing a restaurant from a search results list, the chosen item
can have many properties. (e.g., screen location, relative position in
the list, or review rating) The agent needs to understand the user’s
intention to correctly learn what to select in the context of the task.
This is also known as the data description problem [2].

Our APPINITE [7] interface addresses this challenge using mutual
disambiguation [12] in multi-modal interaction, where APPINITE
asks the user to provide a natural language explanation (e.g., “choose
the highest rated restaurant within a mile” for the previous example)
for an ambiguous demonstration. APPINITE uses the explanation to
disambiguate the demonstration to create a data description that
reflects the user’s underlying intention. Meanwhile, the demonstra-
tion and the GUI are also used for grounding and disambiguating
the verbal explanation for semantic parsing. If the explanation is
still ambiguous, APPINITE engages in multi-turn mixed-initiative
dialogs with the user to resolve the data description, and provides
interactive visualization over the app’s GUISs to help the user focus
on explaining the key aspects that are useful for the disambiguation.

Compared with prior systems with Al-based programming syn-
thesis methods (e.g., [3, 10]) running on multiple examples, AppI-
NITE’s approach for resolving data descriptions provides higher
transparency and explainability, more user control, and greater user
expressiveness, as well as better usability by not requiring users
to provide multiple meaningfully different examples for inferring
the programming logic, which has been shown to be difficult and
error-prone for non-programmers [4]. Our study has shown that
APPINITE’s approach is feasible for end users.

2.3 Support for Smart Home and IoT Devices

In the EPIDOSITE extension [9] to our SUGILITE agent, we expanded
the domain to support tasks for smart home devices. The main moti-
vation is interoperability — current agents have limited support for
tasks involving multiple devices as sensors and actuators, because
they only support devices from the same company, within the same
“eco-system”, or providing open-access APIs. To address this, Ep1-
DOSITE uses the smartphone as a hub for devices, controlling and
reading data from them through the corresponding mobile apps.

3 FUTURE DIRECTIONS
3.1 Reusability and Shareability

First, we seek to enable the agent to learn reusable and transferable
sub-concepts and procedures through a new top-down instruc-
tion framework, where the agent can break the task into smaller
pieces and learn them independently, where each component may
be reused individually in different tasks. Second, we will design

Toby Jia-Jun Li

new representations for learned procedures and new interfaces for
editing existing procedures to handle different situations. Third,
we also plan to enable secure and privacy-preserving knowledge
sharing, where the agent can remove private information, and gen-
eralize learned procedures and knowledge so that they can be used
by other users.

3.2 Script Expressiveness

We are also working to raise the ceiling of our agent, so it can
learn more complex tasks. We are especially interested in enabling
users to instruct the agent about flexible control structures such as
conditionals, loops, triggers and exceptions.

We have conducted a study on how users naturally express these
structures verbally in the context of mobile apps [13]. Based on the
findings, we are designing new interfaces to provide users with
greater expressiveness in instructions by enabling them to specify
more sophisticated control structures.

3.3 Deployment Study

Based on our lab studies, the new features in our agent have been
shown to be usable and useful. We look forward to conducting a
field study to understand how users use our system in real contexts.
Our current prototype has already been open-sourced, and deployed
in small-scale through the Google Play Store. We eventually plan
to release our software to the public for general use.

ACKNOWLEDGMENTS

I would like to thank my Ph.D. advisor Prof. Brad Myers for his
support and guidance. This research was supported in part by Oath
through the InMind project and in part by NSF grant IIS-1814472.

REFERENCES

[1] Amos Azaria, Jayant Krishnamurthy, and Tom M. Mitchell. 2016. Instructable
Intelligent Personal Agent. In AAAT '16.

[2] Allen Cypher and Daniel Conrad Halbert. 1993. Watch what I do: programming
by demonstration. MIT press.

[3] Sumit Gulwani. 2011. Automating String Processing in Spreadsheets Using
Input-output Examples. In POPL ’11.

[4] Tak Yeon Lee, Casey Dugan, and Benjamin B. Bederson. 2017. Towards Under-
standing Human Mistakes of Programming by Example: An Online User Study.
In IUI ’17.

[5] Gilly Leshed, Eben M. Haber, Tara Matthews, and Tessa Lau. 2008. CoScripter:
Automating & Sharing How-to Knowledge in the Enterprise. In CHI "08.

[6] Toby Jia-Jun Li, Amos Azaria, and Brad A. Myers. 2017. SUGILITE: Creating
Multimodal Smartphone Automation by Demonstration. In CHI ’17.

[7] Toby Jia-Jun Li, Igor Labutov, Xiaohan Nancy Li, Xiaoyi Zhang, Wenze Shi,
Tom M. Mitchell, and Brad A. Myers. 2018. APPINITE: A Multi-Modal Interface
for Specifying Data Descriptions in Programming by Demonstration Using Verbal
Instructions. In VL/HCC ’18.

[8] Toby Jia-Jun Li, Igor Labutov, Brad A. Myers, Amos Azaria, Alexander I. Rudnicky,

and Tom M. Mitchell. 2018. Teaching Agents When They Fail: End User Devel-

opment in Goal-oriented Conversational Agents. In Studies in Conversational UX

Design. Springer.

Toby Jia-Jun Li, Yuanchun Li, Fanglin Chen, and Brad A. Myers. 2017. Program-

ming IoT Devices by Demonstration Using Mobile Apps. In IS-EUD ’17.

Toby Jia-Jun Li and Oriana Riva. 2018. KITE: Building conversational bots from

mobile apps. In MobiSys ’18.

Brad A. Myers, Andrew J. Ko, Chris Scaffidi, Stephen Oney, YoungSeok Yoon,

Kerry Chang, Mary Beth Kery, and Toby Jia-Jun Li. 2017. Making End User

Development More Natural. In New Perspectives in End-User Development.

[12] Sharon Oviatt. 1999. Mutual disambiguation of recognition errors in a multimodel

architecture. In CHI *99.

Marissa Radensky, Toby Jia-Jun Li, and Brad A. Myers. 2018. How End Users

Express Conditionals in Programming by Demonstration for Mobile Apps. In

VL/HCC ’18.

=

=
S

—_
o

=
&

	Abstract
	1 Introduction
	2 Research Progress Up to Date
	2.1 Task Applicability and Generalizability
	2.2 Natural Language for Data Description Disambiguation
	2.3 Support for Smart Home and IoT Devices

	3 Future Directions
	3.1 Reusability and Shareability
	3.2 Script Expressiveness
	3.3 Deployment Study

	Acknowledgments
	References

