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ABSTRACT

Flapping, flexible wings deform under both aerodynamic and in-
ertial loads. However, the fluid-structure interaction (FSI) gov-
erning flapping wing dynamics is not well understood. Conven-
tional FSI models require excessive computational resources and
are not conducive to parameter studies that consider variable
wing kinematics or geometry. Here, we present a simple two-
way coupled FSI model for a wing subjected to single-degree-of-
freedom (SDOF) rotation. The model is reduced-order and can
be solved several orders of magnitude faster than direct com-
putational methods. We construct a SDOF rotation stage and
measure basal strain of a flapping wing in-air and in-vacuum
to study our model experimentally. Overall, agreement between
theory and experiment is excellent. In-vacuum, the wing has a
large 3 response when flapping at approximately 1/3 its nat-
ural frequency. This response is attenuated substantially when
flapping in-air as a result of aerodynamic damping. These re-
sults highlight the importance of two-way coupling between the
fluid and structure, since one-way coupled approaches cannot
describe such phenomena. Moving forward, our model enables
advanced studies of biological flight and facilitates bio-inspired
design of flapping wing technologies.

* Authors contributed equally to this publication.

NOMENCLATURE

FWMAV  Flapping wing micro air vehicle
FSI  Fluid-structure interaction

CFD Computational fluid dynamics

FEA Finite element analysis

SDOF Single degree-of-freedom

MDOF Multiple degree-of-freedom

BET Blade element theory

EoM Equation of motion

INTRODUCTION
Flapping, flexible wings are integral elements in several emerg-
ing technologies, such as flapping wing micro air vehicles (FW-
MAV5s) as well as elastic airfoil energy harvesting devices. FW-
MAV5s are a robotic platform [1-3] that could enable low-cost re-
mote sensing with unprecedented spatial resolution. Foil-based
energy harvesters have the potential for highly efficient energy
extraction from ambient flows [4—6] and could power the exten-
sive sensor networks employed in many “Internet of Things” ap-
plications. But while such technologies could expedite the real-
ization of smart national infrastructure, they remain in their in-
fancy stages. This is primarily because the physics governing
flapping wings is not well understood.

As a wing flaps, it deforms under both fluid and structural
loads. This fluid-structure interaction (FSI) plays a critical role in
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flapping wing dynamics. Despite the significance of FSI to flap-
ping wing flight, we know relatively little about it. Conventional
models of flapping wing FSI require long solution times and are
consequently ill-suited for broad parametric studies considering
variables such as flapping kinematics, frequency and wing ge-
ometry. The ability to carry out parametric studies fast and effi-
ciently is critical to design of flapping wing based technologies.

High-order FSI models often rely on direct computational
methods, such as finite element analysis (FEA) and computa-
tional fluid dynamics (CFD) [7-11]. Each of these computational
methods face considerable inefficiencies in calculating flapping
wing dynamics. CFD must resolve the flow field over an en-
tire control volume in order to estimate the pressure distribution
over the wing surface [12]. This often requires solving several
thousands of equations which makes CFD computationally in-
tensive. Moreover, large flapping rotations lead to periodic cen-
trifugal forces that cause FEA stiffness matrices to become time-
varying [13]. If direct FEA is used to calculate wing deforma-
tion, the stiffness matrix must be updated at each interval of anal-
ysis. The result is a huge number of degrees of freedom (DOF),
and the time required to evaluate the response of all DOF is ex-
tensive. Then, when FEA and CFD are coupled together to solve
a full FSI problem, the inefficiencies of each solver are com-
pounded and solution times become intractable.

In an effort to reduce computational complexity, many re-
searchers leverage quasi-static methods rooted in blade element
theory (BET) [14-17]. BET discretizes a wing into airfoils
(blade elements) that run along the wing’s chord. The elemen-
tal aerodynamic forces are estimated over each individual blade
using 2D airfoil theory and are then integrated over the wing
to calculate net aerodynamic forces. While this is an efficient
method to estimate aerodynamics, BET is generally limited to
rigid wings. It has been used only a handful of times to address
the effects of wing flexibility.

Wang et al. developed a flapping wing FSI model based
upon BET, however the wing’s leading edge was assumed rigid
and consequently the model could only estimate torsional defor-
mation and not bending deformation [18]. Stanford et al. devel-
oped a FSI model that can account for bending, but their struc-
tural solver requires each physical DOF be solved for [19]. They
did not leverage modal truncation to reduce the order of the struc-
tural model. Jankauski developed a reduced-order aeroelastic
framework for flapping wings using modal truncation and BET,
however this framework was used only to study one-way coupled
FSI where the fluid was able to affect the structure but not visa
versa [20]. It is possible that two-way coupling between fluid
and structure is important to flapping wing dynamics. Moreover,
each of these three studies are computational in nature; none of
the aforementioned models were verified experimentally.

Given the motivation, the objective of this research is to
develop a reduced-order two-way coupled FSI model of a flap-
ping wing and to study this model through a simple experiment.

X,x

FIGURE 1: WING DRAWN IN ROTATING REFERENCE
FRAME. POSITION VECTOR R DRAWN FROM FIXED
POINT OF ROTATION O TO AN ARBITRARY
DIFFERENTIAL MASS ELEMENT. F4 IS THE
AERODYNAMIC FORCE ACTING NORMAL TO THE
WING SURFACE.

Due to the complexity of two-way coupled FSI, we will ini-
tially restrict our model to single-degree-of-freedom (SDOF) ro-
tation. Moving forward, we will generalize this to more realistic
multiple-degree-of-freedom (MDOF) flapping. The remainder
of the paper is organized as follows. First, we derive the FSI
model using the Lagrangian approach for the structural equation
of motion (EoM) and BET for the fluid model. Next, we detail
a simple SDOF flapping experiment used to study our model.
We then compare simulation results to experimental findings and
discuss the implications of aerodynamics on the wing’s struc-
tural response. We conclude by making brief remarks on how
our findings inform biological flight as well as the design of flap-
ping wing technologies.

THEORY

Here, we derive a reduced-order two-way coupled FSI model for
flexible wings subject to SDOF flapping. We begin by determin-
ing the structural EoM via the Lagrangian method. We then iden-
tify aerodynamic forces and coupling through a BET approach.
Aerodynamic terms are included in the EoM using the principle
of virtual work.

Structural Model

The aeroelastic model in this section originated in [13,20] for a
wing rotating in three dimensions; here, we consider only SDOF
rotation. The model is summarized briefly only to provide clarity
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to this manuscript. For a more thorough treatment, the reader is
directed to these references.

We assume an inertial X —Y — Z coordinate frame undergoes
a finite rotation about X with rotation amplitude . The resulting
x —y — z coordinate frame is bound to the rigid body rotation of
the wing (Fig. 1) and has an angular velocity

Q=de, 6]

In the rotating coordinate frame, we draw a position vector R
from the reference frame origin O to an arbitrary differential
mass dm. Position vector R is

R=r;+W(r,1)e, 2)

where r; describes the planar coordinates of dm with respect to
the x —y — z frame (e.g., r| = xe, +ye,) and W(ry,t) is an in-
finitesimal out-of-plane deflection dependent on both space and
time. In-plane deformation is neglected. The velocity of dm is

R=QxR+We, 3)

Note that e, is constant with respect to the x — y — z terminal
frame and therefore has a time derivative of zero. Then, deflec-
tion W (ry,t) is expanded as

ngkl

W(ry,t) =) (ri)qr(t) “4)

1

k

where ¢ is the k' mode shape and ¢y is the K modal response to
be determined. We normalize ¢ with respect to the wing mass
such that it satisfies orthonormal conditions. Finally, we deter-
mine the total kinetic and potential energies of the wing and use
the Lagrangian approach to determine the EoM governing modal
response gy as

G+ 28 i+ (0F — 62 qp = & / yordm+Qr (5
m

where @y is the wing’s k" natural frequency, {; is the damping
ratio of the & mode and Q; are non-conservative modal forces
from aerodynamic loading. The explicit form of Qy is detailed in
the following section. Note that the modal damping term above
does not explicitly appear in the derivation but is added as a cor-
rection factor after the undamped EoM is formulated.

Once modal responses g are known, physical quantities

such as wing strain can easily be estimated. In this work, we
measure wing strain rather than deformation to assess model ac-
curacy. Physical strain is determined at r; by

e(ry,t) Z Ekqk (6)

where &; is modal strain.

Aerodynamic Modeling and Fluid-Structure Coupling

Now, we determine the aerodynamic modal force Q. We use a
simple quasi-steady formulation and assume that unsteady fluid
phenomena are negligible. We assume an aerodynamic force per
unit area F4 acting normal to a differential surface on the wing is

1 - .
Fs = —ECpr-R sgn(R)e, )

where py is the density of air and C is a general aerodynamic co-
efficient. The sgn(R) ensures that the aerodynamic force is act-
ing in the direction opposite to the instantaneous velocity along
at any point on the surface. For the purposes of this work, we as-
sume the aerodynamic force does not vary along the wing chord.
This implies that the aerodynamic force does not vary with re-
spect to the x component of r; (Fig. 1). While this simplification
is suitable for the simple wing geometry and SDOF kinematics
considered in this work, it must be relaxed for more complex
wing geometries or flapping kinematics.

Moreover, because we assume SDOF rotation, we consider
only aerodynamic drag in this work. Aerodynamic lift or rota-
tional forces associated with dynamic pitching do not affect wing
deformation during SDOF rotation. However, the above form is
general and could be used to include lift or other aerodynamic
forces as well should one consider more complex kinematics.
The primary difference between force types will be the selection
of empirical coefficient C.

Then, expanding the above expression of F4 and neglecting
terms of &(W?) or higher, we find

Fy= —prf (2aWy + a*y*) sgn(R) e, 8)

where y is the y-axis component of r; (Fig. 1) where Fy is as-
sumed to act. Substituting the eigenfunction expansion of out-
of-plane elastic deformation W gives

Fs :_*CPf sgn(R)e;  (9)

Z (200G 0cy) + 0y
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Next, we project the physical aerodynamic force into the modal
domain using the principle of virtual work. The virtual work 6 W
done by Fy4 is

SW = /FA~5WezdS (10)
S

SW = /FA-Zd)kquezdS (11)
S k=1

where dS is the differential surface over which the aerodynamic
force acts. Recognizing that dS is simply wing chord width ¢(y)
multiplied by differential length dy, we expand the above to

1

/ (i(Z(xq,q),y) + a2y2> c(y) dy]
SV (12)

%Y ¢Sqrsen(R)
k=1

where * indicates scalar multiplication. Note that we have in-
cluded a second modal index r which also contains the k" mode
shape. Then, the non-conservative aerodynamic modal force cor-
responding to the k' vibration mode, denoted Ok, 18

1
O = —QCPf[f%2 /y yoe(y)dedy. ..

Oak

20 Y / 49 dryc(y)dyl sen(R)  (13)
r=1

Oc

The first term of Qy is simply an independent aecrodynamic modal
force term dependent only on time. We denote this term Q4 4 for
later reference. The second term, labeled QC’k, is more complex.
Generally speaking, it appears as an aerodynamic damping term
that may collectively dissipate energy from all wing vibration
modes. This term effectively couples these modes together. De-
pending on the sign of ¢; and sgn(R), it may appear as a negative
damping term as well. If so, energy may be added to the wing
which will eventually cause it to go unstable.

EXPERIMENT

In this section, we describe a simple experiment designed to
study the FSI model. We construct a SDOF rotation stage to
prescribe flapping kinematics to a rectangular paper wing. Mode
shapes and natural frequencies of the paper wing are estimated

via FEA and are subsequently verified using a scanning vibrome-
ter. During flapping experiments, we measure the spanwise strain
at a point near the base of the wing using a uniaxial strain gage.
We conduct flapping experiments both in-vacuum and in-air. De-
tails are as follows.

Rotation Stage

The SDOF rotation stage is pictured in Figure 2. All mount-
ing brackets are 3D printed with FormLabs durable resin. A 60
W DC motor (Maxon Motors, 310007) drives the motion of the
wing. The motor is equipped with an optical encoder that pro-
vides position feedback to a motor controller/driver (Maxon Mo-
tors, EPOS 24/5). The motor controller uses a PID framework
to maintain prescribed flapping kinematics and minimize over-
shoot. All motion profiles are prescribed through a laptop com-
puter running Labview. In this work, we consider discrete flap-
ping frequencies ranging from 5 - 15 Hz and a rotation amplitude
of 45°. All rotations are sinusoidal. Each trial at a particular flap-
ping frequency is conducted three times and the measurements
from each trial are averaged in the frequency domain.

The motor connects to a wing clamp through a shaft cou-
pler. The clamp secures the wing edge. A 350 ohm strain gage
(Omega Engineering, GD-2/350-DY11) is adhered near the wing
base. We use a National Instruments NI 9236 cDAQ module to
provide excitation voltage to the gage as well as to record the
temporal strain during experiments. The wing clamp is termi-
nated with a low friction flange mount ball bearing. A female-
end quantized analog encoder (US Digital, MAE3-A10-250-220-
7-B) records the angular position of the terminated shaft end.

The entire rotation stage is housed in an acrylic vacuum
chamber (Sanatron, Fig. 3) capable of operating at pressures as
low as 500 milliTorr. At this pressure, the medium density is

FIGURE 2: DC MOTOR DRIVEN SDOF ROTATION STAGE
USED FOR FSI EXPERIMENTS. PLEASE NOTE THE
WING SHOWN ABOVE DIFFERS FROM THE PAPER

WING USED IN THE EXPERIMENT.
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FIGURE 3: ACRYLIC VACUUM CHAMBER
CONSTRUCTED BY SANATRON.

roughly 0.05% of ambient air. All vacuum feed-through com-
ponents are provided by Kurt J. Lesker company. The ability to
conduct experiments in-vacuum allows us to evaluate the accu-
racy of the structural model prior to investigating the FSI model.

Experimental Paper Wing
We use a simple rectangular paper wing in all flapping experi-
ments. The wing is made of thick card stock and is cut with a
shear. We design this wing to be (1) roughly the same length
and aspect ratio of a hawkmoth M. sexta wing and (2) to have
a natural frequency less than 45 Hz. The wing is designed to
have a natural frequency less than this value because we wish
to observe a 3w resonance response and our rotation stage has a
maximum flapping rate around 15 Hz. The wing is weighed us-
ing a scale and measured using a digital caliper. Young’s moduli
are taken from available literature values. All material and geo-
metric properties of the wing and the strain gage mounted to the
wing are shown in Table 1.

We model the experimental wing in ABAQUS FEA to deter-
mine its natural frequencies and mode shapes. The FEA model

FIGURE 4: EXPERIMENTAL PAPER WING ON GRIDDED
MAT. EACH GRID BOX IS 5 MM x5 MM. CROSS
HATCHED AREA INDICATES CLAMPED BOUNDARY
CONDITION.

TABLE 1: EXPERIMENTAL WING PROPERTIES.

Variable Description Value  Unit
L, Wing Unclamped Length 5 cm
W, Wing Width 2 cm
ty Wing Thickness 0.17 mm
E, Wing Young’s Modulus 9.5 GPa
L, Gage Length 5.65 mm
W, Gage Width 6.35 mm

ty Gage Thickness 0.13 mm

E, Gage Young’s Modulus 2.5 GPa

m Total Mass 0.21 grams

assumes the wing is clamped at its base edge (Fig. 4) which im-
plies no rotation or translation in this clamped region. We include
the strain gage in the FEA model because it has a thickness on
the same order of magnitude as the paper. According to the man-
ufacturer, the gage is composed primarily of polyimide film. As
a result, the gage locally stiffens the wing in a way that cannot
be neglected. For this work, we retain only a single vibration
mode. Across the experimental parameters considered, higher-
order modes had a negligible contribution to the wing’s dynamic
response. The first natural frequency predicted via FEA is o=
31.5 Hz and corresponds to a bending mode (Fig. 6).

Next, we verify FEA-predicted mode shapes and natural fre-
quencies experimentally. Because the wing is lightweight and
has a large surface area, we measure these parameters in-air as
well as in-vacuum to remove added mass effects. We secure the
paper wing to a modal shaker (Modal Shop, K2007E007) using a
metal clamp. The shaker excites the wing at its base via a linear
swept sine signal ranging from 10 - 1000 Hz over 3.2 seconds.
We measure basal excitation with a piezoelectric accelerometer
(PCB Piezotronics, 352A21) and the response velocity of the
wing at several points using a planar scanning vibrometer (Poly-
tec PSV-400). We acquire data at 2.56 kHz, which results in a
spectral resolution of 3200 FFT lines over the frequency range
considered. We average the frequency response function over
three trials at each measurement point to reduce spectral noise.
Measured responses are reconstructed to identify the first vibra-
tion mode shape. This mode shape agrees well with that deter-
mined via FEA (Fig. 6). We then calculate the frequency re-
sponse function averaged over the wing surface G(®) and use
FEMTools modal parameter extractor to estimate the first natu-
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ral frequency and damping ratio from this averaged frequency
response (Tab. 2).

Overall, the agreement between natural frequencies calcu-
lated via FEA (@; = 31.5 Hz) and measured experimentally (w;
= 30.2 Hz) is good. We consider the natural frequency mea-
sured in-vacuum for this comparison. The discrepancy is likely
because the boundary conditions in simulation and experiment
are slightly disparate. Even for the simple boundary condition
shown in Fig. 4, it is challenging to experimentally clamp the
wing at the precise location used in FEA. Even minor changes in
wing’s free length will affect its natural frequency. The natural
frequency in-air is slightly lower than that measured in-vacuum
due to added mass. We also observe that the damping ratio is
greater in-air, which suggests that aerodynamic damping may
affect the structural response during flapping experiments. We
found no notable differences between the mode shape measured
in-air and in-vacuum. For the simulations that follow, we use
experimentally measured natural frequencies and damping ratios
rather than those determined via FEA.

TABLE 2: EXPERIMENTALLY MEASURED NATURAL
FREQUENCY AND DAMPING RATIO FOR FIRST
VIBRATION MODE OF PAPER WING IN-AIR AND

IN-VACUUM.

Air Vacuum
29.06 Hz 30.23 Hz
0.89 %

Natural Frequency @

Damping Ratio §; 1.29 %

Wing Frequency Response Function Magnitude

, — Air
—20 - ik --- Vacuum | |

|G(@)| (dB)

10 20 30 40 50
o (Hz)

FIGURE 5: MAGNITUDE OF WING FREQUENCY
RESPONSE FUNCTION RELATING BASE
ACCELERATION TO AVERAGED OUTPUT VELOCITY.

FIGURE 6: FIRST VIBRATION MODE SHAPE OF PAPER
WING. (LEFT) PREDICTED VIA FEA, (RIGHT)
MEASURED EXPERIMENTALLY.

RESULTS

We begin this section by comparing structural model predictions
to measurements taken from a wing flapping in-vacuum. We
next compare FSI model predictions to measurements taken from
a wing flapping in-air. We conclude by investigating the FSI
model to provide insight to aerodynamic damping mechanisms
observed during the experiments.

Model-Theory Comparison

We first evaluate our structural model (Eq. 5) when Q;=0. We
compare predictions made by this model to strain of a wing flap-
ping in-vacuum. Egq. 5 is solved numerically over 50 periods
for each flapping frequency to find the modal response. Then,
strain at the strain gage location is determined through Eq. 6. We
take the Fourier transform to identify peak-to-peak strain at the
driving frequency and each harmonic thereof. Across the range
of flap frequencies w considered, we only observe considerable
response components at @ and 3@. We show the magnitude of
these components as a function of flapping frequency ® in Fig. 7.

In general, agreement between the structural model and the
experimental results is fairly good, particularly at the primary
response magnitude. The largest discrepancy occurs at the third
harmonic of strain. It appears the experimental 3@ strain maxima
occurs between 30 - 31.5 Hz, slightly higher than is predicted by
the model. We also note that the experimental strain peak at 3w
is less abrupt than the model indicates. It is possible the wing is
having large enough deflections that nonlinear damping becomes
nontrivial. This would increase response magnitude at frequen-
cies immediately surrounding the strain peak. For large oscilla-
tions, the damping ratio in some structures increases monotoni-
cally with respect to oscillation amplitude [21].

One result we would like to point out is the significant 3@
response when @ = 10 Hz. The peak-to-peak strain magnitude
is almost identical at the flap frequency and the third harmonic
of the flap frequency here. This is surprising given that the exci-
tation term in Eq. 5 has only an @ component. However, due to
the time-varying stiffness in the EoM, excitation terms at @ will
generate odd harmonics in the modal response [22]. Since the
natural frequency of the wing is roughly 30 Hz, a 10 Hz flapping
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frequency is expected to cause a near-resonance of the wing. It
is interesting to see whether aerodynamics will amplify or damp
this response.

Now that we have verified that the structural model accu-
rately predicts in-vacuum dynamics, we repeat the flapping ex-
periment in-air. We include the aerodynamic modal forces given
by Eq. 13 into the EoM. We assume the aerodynamic drag coef-
ficient is C =3.0 and the density of air is py = 1.22 kg/m3. The
comparison between FSI model predictions and experimental re-
sults is shown in Figure. 8.

The model-theory agreement is excellent. There are no no-
table discrepancies to address. Interestingly, the 3 strain re-
sponse that was apparent in-vacuum is substantially reduced in-
air. This is a direct result of aerodynamic damping, which is dis-
cussed in greater detail in the following subsection. We no longer
observe any evidence of nonlinear structural damping. This is
perhaps because the wing tip deflections immediately around this
flapping frequency are smaller than those seen in-vacuum.

As important, the model solves extremely efficiently; on a
standard laptop, we are able to predict the response over a flap-
ping cycle in a mere 0.075 seconds. This time can further be
reduced by optimizing simulation parameters or by using faster
processors. Unfortunately, we were unable to find any reported

Strain Magnitude vs. Flap Frequency, In-Vacuum
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FIGURE 7: STRAIN MAGNITUDE AS A FUNCTION OF
FLAPPING FREQUENCY FOR IN-VACUUM FLAPPING
EXPERIMENTS. EQUATION 5 IS USED TO MAKE
THEORETIC PREDICTIONS WITH Qg=0. EACH
DIAMOND REPRESENTS THE AVERAGE OF THREE
20-SECOND FLAPPING TRIALS AT A PARTICULAR
FLAPPING FREQUENCY. NOTE THAT FLAPPING
FREQUENCIES RANGE FROM 5 - 15 HZ AND 3w
HARMONICS OF THE FLAPPING FREQUENCY RANGE
FROM 15 - 30 HZ.

computation times of direct FSI methods for comparison. How-
ever, in the past we have used CFD to calculate pressure distri-
butions over a rigid flapping wing. Using a relatively coarse time
step and surface mesh, it required approximately one hour per
wingbeat to resolve to the flow field — and this is without consid-
ering fluid-structure coupling. Thus, we estimate our new model
predicts the wing response at least 4 orders of magnitude faster
than direct FSI methods. In reality, the computational savings
are likely even greater.

Aerodynamic Damping

In the previous section, we observed a large 3@ dynamic re-
sponse when the wing’s flapping frequency was roughly 1/3 of
its first natural frequency. The 3w response was especially pro-
nounced for the wing flapping in-vacuum but was reduced signif-
icantly in-air. Here, we aim to identify the aerodynamic mecha-
nism responsible for attenuating the 3@ response.

According to our model, there are two ways that aerody-
namics can reduce the 3@ wing response. The first is through
the time-dependent aerodynamic modal force Q4. If we con-
sider only Q4 x and neglect the aerodynamic damping term Q¢ 4,
we ultimately have a one-coupled FSI model because Q4 x de-
pends only on time and not wing deformation. On the other hand,
by including Q¢ ;. we allow coupling between structural defor-

Strain Magnitude vs. Flap Frequency, In-Air
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FIGURE 8: STRAIN MAGNITUDE AS A FUNCTION OF
FLAPPING FREQUENCY FOR IN-AIR FLAPPING
EXPERIMENTS. EACH DIAMOND REPRESENTS THE
AVERAGE OF THREE 20-SECOND FLAPPING TRIALS AT
A PARTICULAR FLAPPING FREQUENCY. NOTE THAT
FLAPPING FREQUENCIES RANGE FROM 5 - 15 HZ AND
3w HARMONICS OF THE FLAPPING FREQUENCY
RANGE FROM 15 - 30 HZ.
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TABLE 3: STRAIN MAGNITUDE AT FLAPPING
FREQUENCY AND THREE TIMES FLAPPING
FREQUENCY FOR IN-AIR EXPERIMENTS AND
CORRESPONDING STRAIN PREDICTIONS BY ONE-WAY
AND TWO-WAY COUPLED FSI MODELS.

le()| (ue p-p)  |e(3w)| (ue p-p)

Theory, One-Way FSI 351 111
Theory, Two-Way FSI 350 69.0
Experiment (Air) 305 64.5

mation and aerodynamic forcing. This is the two-way coupled
FSI model used for theoretic predictions in the previous section.
While the two-way coupled model is more true-to-reality, one-
way coupled models often provide good estimates of dynamics
at reduced computational cost relative to two-way approaches.
Thus, we investigate both of these cases and compare them to
in-air experimental results. We now consider only a flapping
frequency w=10 Hz because this is where the 3w response is
most pronounced. We solve our EoM assuming both one-way
and two-way coupled FSI and take the Fourier transform of the
estimated physical strain. Results are shown in Table 3. We
also show the predicted strain for one-way and two-way coupled
models as a function of wingbeat fraction in Figure 9.

Clearly, the coupling between fluid and structure notably af-
fects the wing’s dynamics. While the primary strain response
is nearly identical between one-way and two-way models, the
two-way coupling model predicts a 3@ response that is 40% less
than that predicted by the one-way model. Given the close agree-
ment to the experiment, we believe the two-way coupled model
is more accurate than the one-way coupled model. From this
simulation, we conjecture that aerodynamic damping is a phe-
nomena that cannot safely be neglected. It appears that aerody-
namic damping affects higher-order harmonics of the wing re-
sponse more so than its primary response.

CONCLUSION
The simple two-way coupled FSI model presented in this pa-
per accurately predicts SDOF flapping dynamics and can be
solved several orders of magnitude faster than conventional di-
rect methods. This substantial reduction in computational time
enables broad parametric studies considering variables such as
wing geometry, flapping frequency and rotation amplitude. Con-
sequently, this research informs studies in biological flight as
well as the design of flapping-wing based technologies.
Through both experiment and simulation, we observe that

aerodynamic damping plays a significant role in attenuating
higher-order harmonics of the wing’s response. Two-way cou-
pling between the fluid and structure is required to see this ef-
fect. The presence of aerodynamic damping likely has a sig-
nificant impact on both artificial and biological flapping wing
flight. Many insects flap at roughly 1/3 the fundamental fre-
quency of their wings [23]. This flapping-to-natural frequency
ratio is thought to improve aerodynamic performance [24, 25]
and reduce the inertial costs of flight [22]. However, while com-
pliance is generally viewed as favorable in the context of flap-
ping wing flight, excessive flexibility may have adverse effects.
It is plausible that fluid damping manages the wing’s dynamic
response and ensures that it does not deform so significantly that
aerodynamic performance is compromised. Aerodynamic damp-
ing imparted by large flapping also safeguards higher-order vi-
bration modes from being excited, which is especially important
given that the linear damping ratio is very small for the stationary
wing (Tab. 2).

Moving forward, we plan to generalize the two-way FSI
model to accommodate more realistic MDOF flapping kinemat-
ics. This requires a more involved BET aerodynamic model that
includes lift and rotational forces that arise from dynamic pitch-
ing. We will also compare this reduced-order approach to direct
FSI methods to quantify increases in efficiency. Ultimately, this
will elevate our knowledge of flapping wing flight.

Strain Magnitude vs. Wingbeat Fraction
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