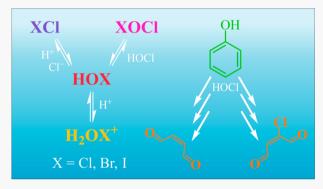


pubs.acs.org/journal/estlcu Review

Exotic Electrophiles in Chlorinated and Chloraminated Water: When Conventional Kinetic Models and Reaction Pathways Fall Short

Michael R. Rose, Stephanie S. Lau, Carsten Prasse, and John D. Sivey*

Cite This: Environ. Sci. Technol. Lett. 2020, 7, 360-370


ACCESS

Metrics & More

Article Recommendations

Supporting Information

ABSTRACT: Halogenation and oxidation of organic matter in chlorinated and chloraminated water are typically attributed to the most abundant electrophiles present. This interpretation sometimes fails to explain laboratory observations, including halogenation kinetics and product distributions. Exotic electrophiles, species commonly overlooked in the environmental literature, can help to resolve these discrepancies. Herein, we review evidence demonstrating the significance of lesser-studied electrophilic chlorinating (Cl₂ and Cl₂O), brominating (BrCl, BrOCl, and Br₂O), and iodinating (H₂OI⁺ and ICl) agents in chlor(am)inated water. The evidence includes reaction rate dependencies on [Cl⁻], [H⁺], and [HOCl] that cannot be attributed to the reactivity of hypohalous acids or hypohalites alone. For example, enhancement of chlorination and

bromination rates by Cl⁻ implicates Cl₂ and BrCl, respectively, as active halogenating agents. Herein, we discuss a new method for quantifying the sensitivity of halogenation to rate enhancement by Cl⁻. We also discuss complexities that Cl⁻ can impart on iodination kinetics. In addition, we highlight recent insights into radical-mediated reaction pathways and unexpected organic electrophiles in chlorinated water. Finally, we discuss practical implications, identify research needs, and offer recommendations to improve the design of future halogenation experiments. Overall, this review aims to spur new research into underappreciated electrophiles in chlor(am)inated water.

■ INTRODUCTION

The ubiquitous water disinfectants free chlorine (i.e., $HOCl + OCl^{-}$) and monochloramine (NH_2Cl) induce oxidation reactions that can transform contaminants and produce disinfection byproducts (DBPs). 1 HOCl and NH_2Cl quickly oxidize Br^{-} and I^{-} to produce other electrophilic halogen species (e.g., HOBr and HOI). Researchers examining electrophilic substitution often focus on reactions directly involving the most abundant halogen species [e.g., hypohalous acids (HOX), where X = Cl, Br, or I]. However, reaction models that include only the electrophiles that are prevalent in chlor(am)inated water sometimes fail to accurately predict product distributions and the effects of halide ion concentration, disinfectant concentration, and pH on reaction rates (see examples in Figures S1-S3).

The chemistry and consequences of the less abundant halogenating agents [e.g., Cl₂O, BrCl, and H₂OI⁺ (Figure S4)] have garnered increased attention in the past decade. Nevertheless, much about their influence on disinfection efficacy, disinfectant consumption rates, total organic halogen (TOX) formation rates, product distributions, reaction pathways, and toxicity remains unknown. We use the term exotic electrophiles to describe these less abundant halogenating agents because they are commonly overlooked in the environmental literature. This article focuses primarily on

exotic halogenating agents that are known to react via electrophilic addition and substitution.^{7–16} We also discuss recent discoveries of radical-mediated reaction pathways and novel organic electrophiles (e.g., 2-butene-1,4-dial and phenoxy radicals).^{6,17} Finally, we offer recommendations for future research directions and practical advice for improving halogenation experiments.

With the exception of Cl₂, ¹⁸ direct observations of exotic electrophiles in chlor(am)ination experiments have not been reported, likely due to low concentrations, instability, and drowning of spectroscopic signatures by predominant species (e.g., HOX). The influence of exotic electrophiles can, however, be inferred by examining the effects of solution conditions (e.g., pH, [Cl⁻], and chlorine dose) that are known to influence electrophile speciation on measured halogenation rates. Exotic electrophiles are expected to exert appreciable influence under conditions that increase their concentrations,

Received: March 31, 2020 Revised: May 5, 2020 Accepted: May 5, 2020 Published: May 14, 2020

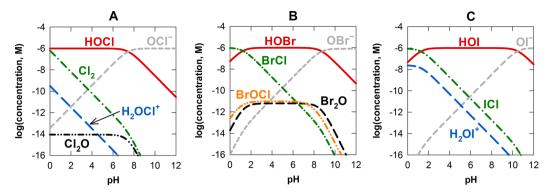


Figure 1. Speciation of (A) chlorine(+1), (B) bromine(+1), and (C) iodine(+1) in water as a function of pH. All species shown are potential electrophilic halogenating agents, except those colored gray. Concentrations were computed using the equilibrium constants listed in Table 1 (corrected to an ionic strength of 10 mM using the Davies equation). To permit comparisons across each system, all calculations assume [halogen(+1)] = 1.0μ M and [Cl⁻] = 1.0μ M. These concentrations are similar to those employed in laboratory studies (e.g., refs 13, 14, and 16) seeking to elucidate organic compound halogenation rates and mechanisms. Frame B assumes 28.0μ M (2.0μ M (2.0μ M chlorine(+1)) co-occurs with 1.0μ M bromine(+1).

Table 1. Equilibrium (K_{eq}) and Forward Reaction Rate Constants (k_+) for Free Halogen Species at 25 °C^a

reaction	$\logK_{\rm eq}$	$k_{\scriptscriptstyle +}$	μ^b (M)	ref
$2HOCl(aq) \rightleftharpoons Cl_2O(aq) + H_2O$ (1)	-2.06 ^c	undetermined	0	35
$HOCl(aq) + Cl^{-} + H^{+} \rightleftharpoons Cl_{2}(aq) + H_{2}O$ (2)	2.98	$2.14 \times 10^4 \text{ M}^{-2} \text{ s}^{-1}$	0.5	36
$HOCl(aq) + Br^{-} + H^{+} \rightleftharpoons BrCl(aq) + H_2O$ (3)	9.06	$1.32 \times 10^6 \text{ M}^{-2} \text{ s}^{-1}$	1.0	37
$BrCl(aq) + H_2O \rightleftharpoons HOBr(aq) + Cl^- + H^+$ (4)	-3.89	$3.0 \times 10^6 \text{ s}^{-1}$	1.0	37
$HOCl(aq) + Br^{-} \rightleftharpoons HOBr(aq) + Cl^{-}$ (5)	5.17	$1.6-6.8 \times 10^3 \text{ M}^{-1} \text{ s}^{-1}$	1.0	37-40
$Br_2(aq) + H_2O \rightleftharpoons HOBr(aq) + Br^- + H^+$ (6)	-8.21	97 s^{-1}	0.5	41
$2HOBr(aq) \rightleftharpoons Br_2O(aq) + H_2O$ (7)	0.80	undetermined	0	11
$HOCl(aq) + HOBr(aq) \Rightarrow BrOCl(aq) + H_2O$ (8)	-0.46	undetermined	0	11
$H_2OI^+ \rightleftharpoons HOI(aq) + H^+ $ (9)	0.3	undetermined	0.2	42
$HOI(aq) + Cl^- + H^+ \rightleftharpoons ICl(aq) + H_2O$ (10)	4.09	$2.4 \times 10^6 \text{ s}^{-1}$	0.5	43

[&]quot;Anionic halogen species (e.g., Cl_3^- , Br_2Cl^- , and ICl_2^-) are not shown as they are unlikely to contribute appreciably as electrophilic halogenating agents (see refs 3 and 12). $^b\mu$ is the ionic strength. "Corrected to 25 °C according to ref 9.

including a high disinfectant dose, low pH, and high [Cl⁻]. ^{6–16} Such conditions are particularly relevant for laboratory experiments, in which disinfectant doses often exceed those used in actual water treatment and in which Cl⁻ can be introduced unintentionally by adjusting the pH with HCl. In drinking water treatment, the coagulant ferric chloride (FeCl₃) increases the [Cl⁻] and lowers the pH. ⁹ In comparison to drinking water, lower pH, higher [Cl⁻], and higher disinfectant doses are common during treatment of nonpotable water, including wastewater, ballast water, industrial cooling water, and hydraulic fracturing waste.

Less nucleophilic moieties (e.g., aromatic ethers) are more susceptible to halogenation by exotic electrophiles, ^{12,13,15} whereas more nucleophilic moieties (e.g., phenolates) react less selectively with the most abundant electrophiles (e.g., HOX). ^{13,19} In a drinking water distribution system, halogenation of moderately nucleophilic moieties by exotic electrophiles should become more important as water travels away from the treatment facility after the reactivity of the most nucleophilic moieties has been attenuated by halogenation or other oxidation reactions (i.e., during the "slow" phase of DBP formation²⁰). Similarly, exotic electrophiles are anticipated to influence halogenation processes in systems containing preoxidized organic matter for which the fast-reacting fraction

of nucleophilic sites has been consumed; such systems include recreational waters (particularly seawater pools) and water reuse scenarios.

CHLORINE SPECIES

In free chlorine solutions, HOCl $(pK_a = 7.54; 25 \, {}^{\circ}C)^{21}$ and OCl- are the most abundant chlorine species present (Figure 1A). Thus, [free chlorine] is typically approximated as [HOCl] + [OCl⁻]. As HOCl is more reactive than OCl⁻ toward most organic compounds,²² conventional wisdom dictates that HOCl is the predominant chlorinating agent under conditions relevant to drinking water treatment. Rate constants for reactions with HOCl have been reported for numerous compounds.²² To compare results across different reaction conditions, experimentally determined pseudo-first-order rate constants (k_{obs}) are often divided by the initial [free chlorine] (i.e., [HOCl] + [OCl⁻]) to obtain apparent second-order rate constants (k_{app}) or divided by [HOCl] or [OCl⁻] to obtain second-order rate constants that are specific for HOCl (k_{HOCl}) or $\mathrm{OCl}^ (k_{\mathrm{OCl}^-})$, respectively. These calculations assume that chlorination reactions are first-order in [free chlorine] or that HOCl (or OCl⁻) is the sole chlorinating agent under the experimental conditions employed, respectively.

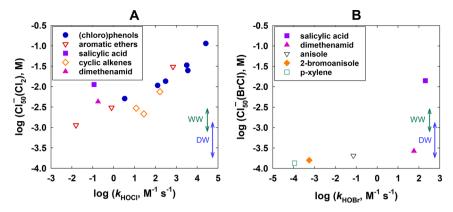


Figure 2. (A) Extent of chlorination rate enhancement by Cl^- [represented by $Cl^-_{50}(Cl_2)$, the [Cl^-] required such that Cl_2 contributes 50% to the overall chlorination rate] as a function of the reactivities of organic compounds toward HOCl (k_{HOCl}). $Cl^-_{50}(Cl_2)$ values were computed from second-order rate constants for reactions of Cl_2 , Cl_2O , and HOCl; values shown for (chloro)phenols were calculated using second-order rate constants for both the phenol and phenolate forms. (B) Extent of bromination rate enhancement by Cl^- [represented by $Cl^-_{50}(BrCl)$, the [Cl^-] required such that BrCl contributes 50% to the overall bromination rate] as a function of the reactivities of organic compounds toward HOBr (k_{HOBr}). $Cl^-_{50}(BrCl)$ values were computed from previously reported second-order rate constants for BrCl, BrOCl, and HOBr. Conditions applicable to both frames: pH 7.0, [free chlorine] = 28 μ M (2 mg/L as Cl_2), and ionic strength = 0.1 M. For organic compounds capable of reacting with free chlorine or free bromine at more than one position, data shown represent the net reactivity of all reactive positions. Only rate constants from the aforementioned references were included because they were obtained under similar experimental conditions. WW and DW denote typical [Cl^-] in municipal wastewater and drinking water, are respectively. Derivations of $Cl^-_{50}(Cl_2)$ and $Cl^-_{50}(BrCl)$ and the complete list of organic compounds are provided in Text S1 and Table S1, respectively. The extent of iodination rate enhancement by Cl^- is not illustrated because sufficient data do not exist.

Findings from multiple studies have challenged the assumption that HOCl is the predominant chlorinating agent in free chlorine solutions. The chlorination rates of allyl alcohol,²³ crotonic acid,²⁴ anisole,²⁵ biphenyl,²⁶ *p*-xylene,^{7,8} naphthalene,²⁷ and fluoranthene²⁷ show a second-order dependence on [HOCl]; most of these studies 7,8,23-26 attribute this observation to Cl₂O being the primary chlorinating agent because [Cl2O] has a second-order dependence on [HOCl] (Table 1, eq 1). Cl₂, which is present in free chlorine solutions containing Cl- (eq 2), has long been acknowledged as a potent chlorinating agent^{7,27-3} oxidant, 18,34 especially at pH <6. Both Cl₂O and Cl₂ are anticipated to be stronger electrophiles than HOCl because OCl⁻ and Cl⁻ (from Cl₂O and Cl₂, respectively) are better leaving groups compared with OH⁻ (from HOCl).^{9,10} Nonetheless, Cl₂O and Cl₂ have largely been overlooked in the environmental literature, perhaps due to their concentrations being lower (by approximately 6 orders of magnitude) than that of HOCl under conditions typical of drinking water chlorination (Figure 1A).

Studies quantifying the influence of Cl_2O , Cl_2 , and HOCl on reaction kinetics are scarce. Voudrias and Reinhard^{7,8} computed second-order rate constants for reactions of *p*-xylene with Cl_2O and Cl_2 (i.e., $k_{\text{Cl}_2\text{O}}$ and k_{Cl_2} , respectively), but *p*-xylene reacted sufficiently slowly with free chlorine that it was not possible to obtain a second-order rate constant for HOCl (i.e., k_{HOCl}), precluding quantitative comparisons of the reactivities of Cl_2O , Cl_2 , and HOCl. Unless otherwise indicated, all second-order rate constants herein are specific to the halogenating agent. Sivey et al. systematically varied the pH, chlorine dose, and $[\text{Cl}^-]$ when examining the reaction kinetics of the herbicide dimethenamid and obtained estimates of $k_{\text{Cl}_2\text{O}}$ and k_{Cl_2} that are 7 orders of magnitude larger than k_{HOCl} . Subsequent investigations of aromatic ethers, antipyrine, arbamazepine, tramadol, henols, as alicylic acid, and cyclic alkenes similarly showed that Cl_2O and

 ${\rm Cl_2}$ are more potent electrophiles than HOCl, with $k_{\rm Cl_2}$ and $k_{\rm Cl_2O}$ estimated to be 10^2-10^7 times greater than $k_{\rm HOCl}$ depending on the organic nucleophile.

The relative importance of Cl₂O, Cl₂, and HOCl depends on several factors. As $[Cl_2O]$ is proportional to $[HOCl]^2$, the influence of Cl₂O will increase with an increase in the chlorine dose at a given pH. At a fixed chlorine dose, Cl₂ will become more important as the pH decreases and as [Cl⁻] increases. The inherent nucleophilicity of organic compounds also affects the likelihood of reactions with Cl₂O and Cl₂. To illustrate, we used the second-order rate constants for Cl₂, Cl₂O, and HOCl (i.e., k_{Cl} , $k_{\text{Cl},\text{O}}$, and k_{HOCl}) reported in the literature to compute values of the chloride concentration such that Cl₂ contributes 50% to overall chlorination rates (assuming pH 7.0 and [free chlorine] = 28 μ M = 2 mg/L as Cl₂, conditions representative of a drinking water treatment chlorine contactor); we abbreviate this chloride concentration as $Cl_{50}^{-}(Cl_{2})$. The calculations are shown in Text S1. Compounds that are more sensitive to rate enhancement of chlorination by Cl⁻ are associated with lower Cl₅₀(Cl₂) values. Figure 2A shows the relationship between log $Cl_{50}^-(Cl_2)$ and $log(k_{HOCl})$, which represents a compound's inherent reactivity toward HOCl. A lower value of k_{HOCl} is associated with a lower $Cl_{50}^{-}(Cl_{2})$ value, indicating that the influence of Cl_{2} generally increases as reactivity toward free chlorine decreases, even for cyclic alkenes that do not react via electrophilic aromatic substitution. These results suggest that rate enhancement of chlorination by Cl⁻ is potentially substantial in drinking water and wastewater for organic compounds with a $k_{\rm HOCl}$ of <100 M⁻¹ s⁻¹. A similar conclusion can be drawn regarding the reactivities of organic compounds that are likely to react with Cl₂O (see Text S2). 10,13,15

A number of publications (e.g., refs 49–53) have attributed the reactivities of organic compounds at low pH to H_2OCl^+ . However, evidence from Raman spectroscopy indicates that Cl_2 , rather than H_2OCl^+ , is the predominant oxidant at low

pH. ¹⁸ It was also unnecessary to include a term for $k_{\rm H_2OCl^+}$ in the kinetic models to fit the experimental data for dimethenamid, ⁹ aromatic ethers, ¹⁰ phenols, ¹³ salicylic acid, ¹⁴ and cyclic alkenes. ¹⁵ The estimates of $k_{\rm Cl_2}$ reported in the literature ^{9,10,13-15} were obtained using data from experiments in which ≥ 1 mM NaCl was added to the reaction solution, thus promoting the influence of $\rm Cl_2$ over the potential influence of $\rm H_2OCl^+$. Nevertheless, as chloride was ostensibly present in all reactors even without added chloride, it is unclear whether the compounds examined would have similar reactivities in chloride-free solutions (i.e., free chlorine solutions that contain $\rm H_2OCl^+$ but not $\rm Cl_2$).

■ BROMINE SPECIES

Bromide (Br⁻) is ubiquitous in natural waters, with median concentrations ranging from the low micrograms per liter range in precipitation⁵⁴ to 65 mg/L in seawater.⁵⁵ In potable water and in wastewater, [Br⁻] values of ~0.1 and ~0.2 mg/L, respectively, are typical; ^{47,56} however, [Br⁻] values of >1 mg/L have been reported in some locations. ⁵⁷⁻⁶⁰ Free chlorine can oxidize Br⁻ to BrCl (Table 1, eq 3), which readily hydrolyzes to HOBr (eq 4). ^{38,40} Oxidation of Br⁻ to HOBr (eq 5) is fast (half-life of seconds) under conditions typically encountered in chlorinated drinking water. ⁴⁰ The sum of all aqueous bromine(+1) species (plus Br₂, excluding bromamines) is termed free bromine. ¹² In environmental systems, HOBr (p K_a = 8.8; 25 °C)⁶¹ is usually the most abundant free bromine species. With few exceptions, ^{7,11,62} HOBr is generally assumed to be "the" reactive bromine(+1) species in solutions of free bromine

Although often overlooked, BrCl, Br₂, BrOCl, and Br₂O can also form in solutions of free bromine and can serve as brominating agents of organic compounds 7,11,12,63 and as oxidants of Mn(II).⁶⁴ Indeed, BrCl, Br₂, BrOCl, and Br₂O were determined to be more inherently reactive (often by several orders of magnitude) compared to HOBr in reactions with dimethenamid, 11 anisoles, 12 Mn(II), 64 and salicylic acid. 14 In these studies, several lines of evidence suggested species other than HOBr were serving as active brominating agents, including observations that bromination rates were (1) firstorder in chloride, implicating BrCl, whose concentration is proportional to [Cl⁻] (eq 4); (2) first-order in bromide in the absence of residual free chlorine, implicating Br2, whose concentration is proportional to [Br⁻] (eq 6); (3) greater than first-order in HOBr, implicating Br₂O, whose concentration has a second-order dependence on [HOBr] (eq 7); and (4) first-order in HOCl, implicating BrOCl, whose concentration is proportional to [HOCl] (eq 8). These findings corroborate a previous examination of p-xylene, in which Br2 and BrCl proved to be several orders of magnitude more reactive than HOBr. 7,8

The extent to which exotic free bromine species influence bromination rates is of practical importance, and the potential ramifications for water treatment are significant. For example, when BrCl contributes to bromination rates, [Cl⁻] will be a key variable (eq 4).^{7,8,65} Consider, for instance, the use of FeCl₃ as a coagulant during drinking water treatment. The increase in [Cl⁻] upon addition of typical doses of FeCl₃ at pH 7 is sufficient to increase the bromination rate of dimethenamid by a factor of 9.¹¹ During ultraviolet/chlorine treatment of bromide-containing water at pH 7, transformation rates of nalidixic acid (a quinolone antibiotic) increased by

 $\sim\!10\text{-fold}$ in the presence of 0.54 M Cl $^-$ compared to experiments conducted in the absence of added Cl $^-$; the difference in reactivity was ascribed to BrCl. Effects of chloride may be particularly significant in drinking water impacted by road salt, $^{67-71}$ seawater intrusion, 72,73 and oil/gas exploration. S9,74–76 Chloride in municipal wastewater, 47 saline sewage, 77 salt water swimming pools, 78,79 ballast water, and desalination plants is also likely to enhance bromination rates.

The susceptibility of bromination reactions to rate enhancement by Cl $^-$ can be described by Cl $^-_{50}(BrCl)$, the [Cl $^-$] required at pH 7.0 and 28 μM free chlorine (2 mg/L as Cl $_2$) such that BrCl contributes 50% to the overall bromination rate. As Cl $^-_{50}(BrCl)$ decreases, the sensitivity of a bromination reaction to rate enhancement by Cl $^-$ increases. Of the five Cl $^-_{50}(BrCl)$ values depicted in Figure 2B, four correspond to Cl $^-$ concentrations typical of drinking water. For salicylic acid, Cl $^-_{50}(Cl_2) \approx Cl<math display="inline">^-_{50}(BrCl)$, indicating that chlorination and bromination of salicylic acid are comparably catalyzed by Cl $^-$. For dimethenamid, Cl $^-_{50}(Cl_2) > Cl<math display="inline">^-_{50}(BrCl)$ indicating that chlorination of dimethenamid is less sensitive to Cl $^-$ catalysis than is bromination.

Few previous studies have addressed the possible role of exotic bromine(+1) species in more complex systems (e.g., drinking water, wastewater, and pool water). In their examination of the effects of seawater intrusion on DBP formation in chlorinated groundwater, Ged and Boyer⁸ observed increases in molar concentrations of trihalomethanes (THMs) with increasing seawater content at pH 8.0 and noted that reactions involving BrCl could account for their observations. 86 Liu et al. 87 quantified THMs in synthetic brackish water ($[Cl^-] = 0.27 \text{ M}$) amended with free bromine (generated from NaOCl + 10% excess Br⁻) and phenol or β dicarbonyl acid. The unexpected formation of chlorinecontaining THMs (e.g., CHBr₂Cl) was attributed to reactions involving BrCl.⁸⁷ At high [Cl⁻] values, formation of C-Cl bonds could occur via nucleophilic attack of Cl⁻ at carbocation intermediates. BrCl is not, however, anticipated to serve as a chlorinating agent due to the partial positive charge on Br. 88,89

Residual free chlorine can also influence bromination reactions by promoting formation of BrOCl (eq 8), which is anticipated to serve as a brominating agent because bromine is the least electronegative atom in BrOCl. In chlorinated groundwater, Amy et al. discovered that the fraction of brominated THMs increased with increasing chlorine dose (in which bromide was the limiting reagent). In such systems, the possible influence of BrOCl cannot be ruled out. We note, however, that additional factors may be at play, including (1) generation of mixed Cl/Br-DBPs, (2) Br-/HOBr redox cycles involving HOCl, and (3) HOCl-mediated transformations (e.g., oxidation) of organic compounds that do not involve C-Cl bond formation.

reactive brominating agent in solutions of free bromine, 7,8 but the feasibility of H_2OBr^+ serving as a brominating agent has been debated. 95,96 If H_2OBr^+ were present in solutions containing Cl^- , its contribution to bromination rates could be complicated by the co-occurrence of BrCl (eq 4), whose concentration is also first-order in $[H^+]$ in the absence of Br $^-$.

■ IODINE SPECIES

Iodide (I⁻) concentrations are low in freshwater (\leq 0.1 mg/L) $^{97-100}$ and seawater (0.06 mg/L) 97 but elevated in oil-and-gas-associated brines (0.1–500 mg/L). 59,101 HOCl and NH₂Cl efficiently oxidize I⁻ to HOI, except for NH₂Cl at high pH [half-life of \geq 1 h; pH \geq 9.5, 28 μ M NH₂Cl (2 mg/L as Cl₂)]. HOI (pK_a = 10.4; 25 °C) 102 is the predominant iodine(+1) species in chlor(am)inated water (Figure 1C). HOCl further oxidizes HOI to iodate ($\mathrm{IO_3}^-$), 2 diminishing iodination because $\mathrm{IO_3}^-$ is a poor electrophile. 19 In contrast, NH₂Cl does not oxidize HOI appreciably, allowing HOI and other iodine(+1) species to persist and react with organic nucleophiles. 2 Iodamines have not been observed in water, 2 so all aqueous iodine(+1) is ostensibly "free" iodine.

Conventional wisdom designates HOI as the active iodinating agent in chor(am)inated water, although few investigations 16,19 have assessed this rigorously. This interpretation is based upon kinetic analyses of iodination of parasubstituted phenols, 19,103 α -methyl carbonyl compounds, 19 3-oxopentanedioc acid, 103 and flavone. 103 Under most circumstances, these iodinations are subject to base catalysis, which indicates that the active nucleophiles are highly reactive, ionized conjugate bases (i.e., phenolates and enolates). However, less-reactive nucleophiles (e.g., aniline and anisole) are expected to react predominantly with more-reactive iodinating agents (e.g., $\rm H_2OI^+)$ than HOI. $^{104-107}$

A recent kinetic investigation of iodination in chloraminated water employing dimethenamid, a non-ionizable and moderately nucleophilic aromatic compound, did not detect reaction with HOI and, instead, identified H2OI+ and ICl as active iodinating agents. 16 Dimethenamid iodination is first-order in [H⁺] throughout a circumneutral pH range (4–9), conditions under which [HOI] is invariant (Figure 1C). Both [H₂OI⁺] (eq 9) and [ICl] (eq 10) are directly proportional to [H⁺] at pH ≤9. The contribution of ICl (eq 10) was isolated by varying [Cl⁻] at a constant pH and a constant ionic strength. Iodination rates increased with [Cl⁻] up to ~20 mM and then plateaued up to 100 mM, indicating a complex mechanism. I₂(aq) has been proposed as an iodinating agent of phenolic compounds in chlorinated water. ¹⁰⁸ In contrast, I₂(aq) appears unreactive toward dimethenamid because iodination rates decrease as [I⁻] increases above [iodine(+1)], conditions under which $I_2(aq)$ is the predominant iodine(+1) species.¹⁶

The series of dimethenamid halogenation studies offers the best available comparison of chlorinating, brominating, and iodinating agents in chlor(am)inated water. HOX and X_2 contribute measurably to dimethenamid chlorination and bromination but not to iodination. Exotic electrophiles, primarily Cl_2 (eq 2), BrCl (eq 4), and H_2Ol^+ (eq 9), account for the observed increases in dimethenamid halogenation rates as pH decreases below pK_{HOX} values. The varying importance of XCl and H_2OX^+ as halogenating agents could be caused by differences in electrophile concentrations and/or electrophilicity. As halogen size increases (Cl < Br < I), H_2OX^+/HOX and XCl/HOX concentration ratios increase for a given pH and $[Cl^-]$, though variation in $[H_2OX^+]/[HOX]$ is greater

than in [XCl]/[HOX]. Leaving group ability, a determinant of electrophilicity, may be reflected by bond dissociation energy (BDE; e.g., BDE_{X-Cl} for XCl, BDE_{X-O} for H₂OX⁺). Lower BDE should reflect a better leaving group, assuming trends in heterolytic BDEs parallel those in homolytic BDEs. The BDE_{X-Cl}/BDE_{X-O} ratio for iodine (1.15) is greater than unity, unlike those of bromine (0.93) and chlorine (0.90), potentially contributing to the prominence of H₂OI⁺, BrCl, and Cl₂ as halogenating agents.

■ EMERGING INSIGHTS INTO REACTION PATHWAYS

In addition to incomplete knowledge of the relevance of exotic electrophiles for halogenation kinetics of organic compounds in drinking water, there is still considerable uncertainty about the identity of the majority of DBPs and the reaction mechanisms and pathways that lead to their formation. Traditionally, the chlorination of organic contaminants has been attributed almost exclusively to reactions with HOCl via electrophilic substitution, addition to unsaturated bonds, and/ or oxidation.²² One of the most extensively investigated groups of DBP precursors consists of phenolic compounds, which react with HOCl via electrophilic aromatic substitution. For phenol, this results in its quantitative transformation to orthoand para-substituted chlorophenols, including 2- and 4chlorophenol, 2,4- and 2,6-dichlorophenol, and 2,4,6-trichlorophenol. 13,28,109 This is followed by conversion of 2,4,6trichlorophenol into ring-cleavage products, including chloroform and chloroacetic acid. 20,51,110-113

Similar to the initial reactions of HOCl with phenols, previous studies have attributed ring cleavage to electrophilic substitution reactions of 2,4,6-trichlorophenol and the formation of 2,6-dichloro-p-benzoquinone (DCBQ) as an important intermediate. However, while DCBQ has been identified as a major transformation product of 2,4,6-trichlorophenol, these experiments were conducted under acidic conditions (pH <6). ^{114–116} In contrast, DCBQ yields were found to be negligible (0.2%) in chlorination experiments with 2,4,6-trichlorophenol under circumneutral conditions, ¹¹⁷ suggesting the involvement of other transformation pathways.

With the exception of resorcinol, previously identified ringcleavage products of phenols generally account for only a small fraction of the total carbon mass balance, indicating the formation of other, unknown DBPs. These results suggest the relevance of other, so far unknown transformation mechanisms, which are corroborated by the identification of DBPs that cannot be explained by reaction mechanisms postulated previously. For example, a series of publications by Onodera et al., published in the 1980s and 1990s, demonstrated the formation of phenyl-phenols in the reaction of various substituted phenols with HOCl. 119-122 This provides strong evidence for the involvement of radical intermediates that are formed via one-electron transfer reactions. Phenoxy radicals are commonly observed when phenols react with radicals such as hydroxyl radicals (*OH). 123,124 The relevance of radical-mediated mechanisms during chlorination is further supported by the identification of halogenated and nonhalogenated α,β -unsaturated dicarbonyl compounds that have recently been identified in chlorination experiments with phenol, chlorophenols, bromophenols, and alkyl-substituted phenols (Table S2).⁶ For example, 2-butene-1,4-dial (BDA) is formed during chlorination of phenol at a

maximum yield of 18%; ⁶ BDA is also generated upon reaction of phenol with [•]OH. ¹²⁵

Even though the relevance of free radical intermediates in aqueous chlorination of phenolic compounds has not been studied in detail, formation of BDA could be explained via the reaction of Cl₂O (eq 1) with phenols. Formation of phenoxy radical intermediates in the reaction of Cl₂O with phenols has been attributed to homolysis of Cl₂O into Cl[•] and ClO[•]. ¹²⁶ However, the relevance of this mechanism has so far been demonstrated in only organic solvents, while its relevance in aqueous systems remains controversial. 13,126,127 Another potential phenoxy radical formation pathway is a direct oxidation of dihydroxyphenols, in particular catechol and hydroquinone. This reaction can generate quinone species that react further with a second catechol/hydroquinone via comproportionation, yielding phenoxy radical species. 4,128,129 This is supported by the high BDA yields observed for 3,5dichlorocatechol.⁶ Overall, these recent findings indicate that in chlorinated water, reaction mechanisms beyond electrophilic substitution/addition can occur. These emerging insights also challenge the notion of HOCl as the most important electrophile under conditions typically observed in chlorinated systems.

■ FUTURE RESEARCH NEEDS AND RECOMMENDATIONS

Several research gaps exist regarding the chemistry and consequences of exotic electrophiles and understudied reaction pathways in disinfected water. For example, little is known about how exotic electrophiles might influence pathogen inactivation. Data spanning several decades and examining a range of microbes have demonstrated that the disinfection efficacy of free chlorine increases as the pH decreases, 130,13 which implicates HOCl as a more potent disinfectant than ClO-.132,133 Nevertheless, the concentrations of Cl₂ and Cl₂O also increase with a decrease in pH (at near-neutral pH). As with HOCl, 131 Cl2 and Cl2O are uncharged and are therefore anticipated to more effectively penetrate cell walls compared to OCl⁻. These observations raise the possibility that disinfectant potency previously ascribed to HOCl might also encompass the effects of Cl₂ and Cl₂O. Whether differences in selectivity can alter the ability of Cl₂ and Cl₂O (relative to HOCl) to reach biomolecular targets (e.g., proteins and DNA) $^{134-138}$ in pathogens merits future investigation.

The potential influence of exotic free bromine species on disinfection processes is also poorly understood. Similar to free chlorine, in solutions of free bromine, decreases in pH (at near-neutral pH) will favor the formation of HOBr and, concurrently, additional uncharged bromine species [e.g., BrCl, Br₂, and Br₂O (Figure 1B)]. 11 Just as the inherent reactivity of HOBr toward some organic compounds has been overestimated by failure to consider the contributions of cooccurring free bromine species, 12,14 it is also possible that the germicidal activity of HOBr reported in the literature may include unrecognized contributions from species such as BrCl, Br₂, and Br₂O. When BrCl served as the free bromine source in industrial cooling water, greater biofouling control was observed relative to that observed with Cl_2 . 139 BrCl was also postulated to impart greater germicidal efficiency relative to other free bromine species; 131 however, such investigations are typically based on the identity of the added disinfectant rather than on the equilibrium speciation of the disinfected solutions (e.g., following rapid hydrolysis of BrCl into HOBr), which will

vary with conditions such as pH, [Cl⁻], and [Br⁻]. Consequently, the relative contributions of individual electrophiles to overall disinfection warrant additional research.

Investigations of the reactivity of exotic electrophiles have been largely limited to electrophilic substitution and addition. ^{9–13} Exotic electrophiles can also serve as oxidizing agents in which halogen species are transformed into halide ions (rather than into organohalides). ^{4,140} Additional research is needed to better understand how solution conditions influence branching ratios and redox cycles associated with these halogen fate pathways. Moreover, several questions remain regarding the role of radical species in aqueous halogenation processes, particularly for bromination and iodination and for organic nucleophiles other than phenols. Such studies could generate new insights into how electrophile speciation influences active halogen residuals, DBP formation, and redox-active metals in disinfected systems.

The occurrence of exotic electrophiles in disinfected water can complicate the design and execution of halogenation experiments. As such, we conclude this review with recommendations for how the precision and accuracy of halogenation experiments can be enhanced in light of the potential complications arising from the formation of exotic electrophiles. Additional recommendations are provided in Text S3.

- (1) Reagent purity is important. For example, Br[−] can be unintentionally introduced from lower-purity forms of NaCl and HCl.⁹ Dias et al.¹⁴¹ measured [Br[−]] at up to 37 mg/kg in reagent-grade NaCl (≥99.0% purity reported by the manufacturer) and at up to 50 mg/kg in HCl (certified ACS grade). Systematic errors associated with such Br[−] contamination will be more pronounced when Cl[−] is added in excess of Br[−], as is typical of bromination experiments seeking to mimic environmental chloride/bromide molar ratios.
- (2) Carefully control (and quantify) all sources of Cl⁻. To accurately determine free halogen speciation, all inputs of Cl⁻ must be quantified, including Cl⁻ from NaCl, NaOCl solutions (which are generally equimolar in Cl⁻), and (for bromination experiments) oxidation of Br⁻ by HOCl, for which Cl⁻ is a product (Table 1). Avoid using HCl to adjust solution pH; consider HNO₃ instead. Recognize that pH electrodes containing KCl/AgCl filling solutions can leach Cl⁻.
- (3) Quantify active halogen residuals. Consumption of active halogens due to disproportionation or the presence of interfering reductants can complicate halogenation experiments, particularly for iodination and as the duration of such experiments increases. Failure to quantify rates of active halogen consumption can result in erroneous electrophile-specific second-order rate constants. For details about methods of quantifying active halogens, see refs 141–144.
- (4) Beware of possible effects of buffers on reaction rates. Buffer catalysis has been reported for chlorination, ^{13,23,145–147} bromination, ^{11,148} and iodination. ^{16,103,149–153} Before a buffer is employed for halogenation experiments, the effects of buffer identity and concentration should be examined.
- (5) Determine whether your choice of quenching agent is affecting your results. Some quenchers can adversely affect the stability of DBPs. 143,154 Control experiments that vary the identity and/or concentration of the quencher are wise.

In the environmental literature, conventional kinetic models generally neglect exotic electrophiles, perhaps due to their low concentrations. Herein, we presented evidence challenging such conventional models. We also discussed how recent data are prompting a re-examination of the assumed mechanisms by which free halogens can alter the structures of organic compounds. It is now precarious to assume, for example, that reactions of free chlorine with phenols proceed exclusively via electrophilic aromatic substitutions involving HOCl. Other mechanisms (e.g., involving radical species and organic electrophiles) may be operative. Consequently, the future of aqueous halogenation research is ripe for continued exploration.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.estlett.0c00259.

Calculation of $Cl_{50}^-(Cl_2)$, $Cl_{50}^-(BrCl)$, and $HOCl_{50}(Cl_2O)$ values and additional figures and recommendations for halogenation experiments (PDF)

AUTHOR INFORMATION

Corresponding Author

John D. Sivey — Department of Chemistry and Urban Environmental Biogeochemistry Laboratory, Towson University, Towson, Maryland 21252, United States; ocid.org/0000-0002-0472-7747; Phone: (410) 704-6087; Email: jsivey@ towson.edu

Authors

Michael R. Rose — Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States;
ocid.org/0000-0001-9637-6608

Stephanie S. Lau — Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States; ⊚ orcid.org/0000-0001-9082-7324

Carsten Prasse – Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States; orcid.org/0000-0002-1470-141X

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.estlett.0c00259

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Funding from the U.S. National Science Foundation to J.D.S. (CBET-1651536 and CBET-1703796), M.R.R. (Graduate Research Fellowship), and S.S.L. (Graduate Research Fellowship) is acknowledged. Additional funding to J.D.S. from the ACS Petroleum Research Fund (54560-UNI4) is acknowledged. C.P. acknowledges funding from Johns Hopkins University. The authors appreciate thought-provoking conversations with Drs. Urs von Gunten, Lynn Roberts, and Kimberly Parker.

■ REFERENCES

- (1) Richardson, S. D.; Postigo, C. Formation of DBPs: State of the Science. In *Recent Advances in Disinfection By-Products*; American Chemical Society: Washington, DC, 2015; Vol. 1190, pp 189–214.
- (2) Bichsel, Y.; von Gunten, U. Oxidation of iodide and hypoiodous acid in the disinfection of natural waters. *Environ. Sci. Technol.* **1999**, 33, 4040–4045.
- (3) Heeb, M. B.; Criquet, J.; Zimmermann-Steffens, S. G.; von Gunten, U. Oxidative treatment of bromide-containing waters:

Formation of bromine and its reactions with inorganic and organic compounds—a critical review. *Water Res.* **2014**, *48*, 15–42.

- (4) Criquet, J.; Rodriguez, E. M.; Allard, S.; Wellauer, S.; Salhi, E.; Joll, C. A.; von Gunten, U. Reaction of bromine and chlorine with phenolic compounds and natural organic matter extracts Electrophilic aromatic substitution and oxidation. *Water Res.* **2015**, 85, 476–486.
- (5) Zhu, X.; Zhang, X. Modeling the formation of TOCl, TOBr and TOI during chlor(am)ination of drinking water. *Water Res.* **2016**, *96*, 166–176
- (6) Prasse, C.; von Gunten, U.; Sedlak, D. L. Chlorination of phenols revisited: Unexpected formation of α,β -unsaturated C4-dicarbonyl ring cleavage products. *Environ. Sci. Technol.* **2020**, *54*, 826–834.
- (7) Voudrias, E. A.; Reinhard, M. Reactivities of hypochlorous and hypobromous acid, chlorine monoxide, hypobromous acidium ion, chlorine, bromine, and bromine chloride in electrophilic aromatic substitution reactions with p-xylene in water. *Environ. Sci. Technol.* 1988, 22, 1049–1056.
- (8) Voudrias, E. A.; Reinhard, M. A kinetic model for the halogenation of p-xylene in aqueous hypochlorous acid solutions containing chloride and bromide. *Environ. Sci. Technol.* **1988**, 22, 1056–1062.
- (9) Sivey, J. D.; McCullough, C. E.; Roberts, A. L. Chlorine monoxide (Cl₂O) and molecular chlorine (Cl₂) as active chlorinating agents in reaction of dimethenamid with aqueous free chlorine. *Environ. Sci. Technol.* **2010**, *44*, 3357–3362.
- (10) Sivey, J. D.; Roberts, A. L. Assessing the reactivity of free chlorine constituents Cl₂, Cl₂O, and HOCl toward aromatic ethers. *Environ. Sci. Technol.* **2012**, *46*, 2141–2147.
- (11) Sivey, J. D.; Arey, J. S.; Tentscher, P. R.; Roberts, A. L. Reactivity of BrCl, Br₂, BrOCl, Br₂O, and HOBr toward dimethenamid in solutions of bromide + aqueous free chlorine. *Environ. Sci. Technol.* **2013**, 47, 1330–1338.
- (12) Sivey, J. D.; Bickley, M. A.; Victor, D. A. Contributions of BrCl, Br₂, BrOCl, Br₂O, and HOBr to regiospecific bromination rates of anisole and bromoanisoles in aqueous solution. *Environ. Sci. Technol.* **2015**, *49*, 4937–4945.
- (13) Lau, S. S.; Abraham, S. M.; Roberts, A. L. Chlorination revisited: Does Cl⁻ serve as a catalyst in the chlorination of phenols? *Environ. Sci. Technol.* **2016**, *50*, 13291–13298.
- (14) Broadwater, M. A.; Swanson, T. L.; Sivey, J. D. Emerging investigators series: Comparing the inherent reactivity of oftenoverlooked aqueous chlorinating and brominating agents toward salicylic acid. *Environ. Sci.: Water Res. Technol.* **2018**, *4*, 369–384.
- (15) Lau, S. S.; Reber, K. P.; Roberts, A. L. Aqueous chlorination kinetics of cyclic alkenes—Is HOCl the only chlorinating agent that matters? *Environ. Sci. Technol.* **2019**, *53*, 11133–11141.
- (16) Rose, M. R.; Roberts, A. L. Iodination of dimethenamid in chloraminated water: Active iodinating agents and distinctions between chlorination, bromination, and iodination. *Environ. Sci. Technol.* **2019**, 53, 11764–11773.
- (17) Rodriguez, E. M.; von Gunten, U. Generation of hydroxyl radical during chlorination of hydroxyphenols and natural organic matter extracts. *Water Res.* **2020**, *177*, 115691.
- (18) Cherney, D. P.; Duirk, S. E.; Tarr, J. C.; Collette, T. W. Monitoring the speciation of aqueous free chlorine from pH 1 to 12 with raman spectroscopy to determine the identity of the potent low-pH oxidant. *Appl. Spectrosc.* **2006**, *60*, 764–772.
- (19) Bichsel, Y.; Von Gunten, U. Formation of iodo-trihalomethanes during disinfection and oxidation of iodide-containing waters. *Environ. Sci. Technol.* **2000**, *34*, 2784–2791.
- (20) Gallard, H.; von Gunten, U. Chlorination of natural organic matter: kinetics of chlorination and of THM formation. *Water Res.* **2002**, *36*, 65–74.
- (21) Morris, J. C. The acid ionization constant of HOCl from 5 to 35°. *J. Phys. Chem.* **1966**, *70*, 3798–3805.

- (22) Deborde, M.; von Gunten, U. Reactions of chlorine with inorganic and organic compounds during water treatment-Kinetics and mechanisms: a critical review. *Water Res.* **2008**, *42*, 13–51.
- (23) Israel, G. C.; Martin, J. K.; Soper, F. G. The kinetics of chlorohydrin formation. Part I. The reaction between hypochlorous acid and allyl alcohol in aqueous solution. *J. Chem. Soc.* **1950**, 1282–1285.
- (24) Craw, D. A.; Israel, G. C. The kinetics of chlorohydrin formation. Part III. The reaction between hypochlorous acid and crotonic acid at constant pH. *J. Chem. Soc.* **1952**, 550–553.
- (25) Swain, C. G.; Crist, D. R. Mechanisms of chlorination by hypochlorous acid. The last of chlorinium ion, Cl⁺. *J. Am. Chem. Soc.* 1972, 94, 3195–3200.
- (26) Snider, E. H.; Alley, F. C. Kinetics of the chlorination of biphenyl under conditions of waste treatment processes. *Environ. Sci. Technol.* **1979**, 13, 1244–1248.
- (27) Georgi, A.; Reichl, A.; Trommler, U.; Kopinke, F.-D. Influence of sorption to dissolved humic substances on transformation reactions of hydrophobic organic compounds in water. I. Chlorination of PAHs. *Environ. Sci. Technol.* **2007**, *41*, 7003–7009.
- (28) Lee, G. F.; Morris, J. C. Kinetics of chlorination of phenol Chlorophenolic tastes and odors. *Air Water Pollut.* **1962**, *6*, 419–431.
- (29) Grimley, E.; Gordon, G. Kinetics and mechanism of the reaction between chlorine and phenol in acidic aqueous solution. *J. Phys. Chem.* **1973**, *77*, 973–978.
- (30) Rao, T. S.; Jukar, R. N.; Dangat, V. T. A catalytic effect of the chloride ion on the kinetics of chlorination of aromatic substrates by chlorine in aqueous solution. *Curr. Sci.* **1986**, *55*, 483–487.
- (31) Rule, K. L.; Ebbett, V. R.; Vikesland, P. J. Formation of chloroform and chlorinated organics by free-chlorine-mediated oxidation of triclosan. *Environ. Sci. Technol.* **2005**, *39*, 3176–3185.
- (32) Dodd, M. C.; Huang, C.-H. Aqueous chlorination of the antibacterial agent trimethoprim: Reaction kinetics and pathways. *Water Res.* **2007**, *41*, 647–655.
- (33) Blatchley, E. R.; Cheng, M. Reaction mechanism for chlorination of urea. *Environ. Sci. Technol.* **2010**, 44, 8529–8534.
- (34) Beach, M. W.; Margerum, D. W. Kinetics of oxidation of tetracyanonickelate(II) by chlorine monoxide, chlorine, and hypochlorous acid and kinetics of chlorine monoxide formation. *Inorg. Chem.* **1990**, 29, 1225–1232.
- (35) Roth, W. A. Zur thermochemie des chlors und der unterchlorigen säure. Z. Phys. Chem. 1929, 145A, 289–297.
- (36) Wang, T. X.; Margerum, D. W. Kinetics of reversible chlorine hydrolysis: Temperature dependence and general-acid/base-assisted mechanisms. *Inorg. Chem.* **1994**, *33*, 1050–1055.
- (37) Liu, Q.; Margerum, D. W. Equilibrium and kinetics of bromine chloride hydrolysis. *Environ. Sci. Technol.* **2001**, 35, 1127–1133.
- (38) Farkas, L.; Lewin, M.; Bloch, R. The reaction between hypochlorite and bromides. J. Am. Chem. Soc. 1949, 71, 1988–1991.
- (39) Bousher, A.; Brimblecombe, P.; Midgley, D. Rate of hypobromite formation in chlorinated seawater. *Water Res.* **1986**, 20, 865–870.
- (40) Kumar, K.; Margerum, D. W. Kinetics and mechanism of general-acid-assisted oxidation of bromide by hypochlorite and hypochlorous acid. *Inorg. Chem.* **1987**, *26*, 2706–2711.
- (41) Beckwith, R. C.; Wang, T. X.; Margerum, D. W. Equilibrium and kinetics of bromine hydrolysis. *Inorg. Chem.* **1996**, *35*, 995–1000.
- (42) Schmitz, G. Inorganic reactions of iodine(+1) in acidic solutions. *Int. J. Chem. Kinet.* **2004**, *36*, 480–493.
- (43) Wang, Y. L.; Nagy, J. C.; Margerum, D. W. Kinetics of hydrolysis of iodine monochloride measured by the pulsed-accelerated-flow method. *J. Am. Chem. Soc.* **1989**, *111*, 7838–44.
- (44) Cai, M.-Q.; Feng, L.; Jiang, J.; Qi, F.; Zhang, L.-Q. Reaction kinetics and transformation of antipyrine chlorination with free chlorine. *Water Res.* **2013**, *47*, 2830–2842.
- (45) Soufan, M.; Deborde, M.; Delmont, A.; Legube, B. Aqueous chlorination of carbamazepine: Kinetic study and transformation product identification. *Water Res.* **2013**, *47*, 5076–5087.

- (46) Cheng, H.; Song, D.; Chang, Y.; Liu, H.; Qu, J. Chlorination of tramadol: reaction kinetics, mechanism and genotoxicity evaluation. *Chemosphere* **2015**, *141*, 282–289.
- (47) Tchobanoglous, G.; Burton, F. L.; Stensel, H. D. Wastewater Engineering: Treatment and Reuse; McGraw-Hill: Boston, 2003; p 1819
- (48) Davis, S. N.; DeWiest, R. J. M. Hydrogeology; Wiley: New York, 1966; p 463.
- (49) de la Mare, P. B. D.; Ketley, A. D.; Vernon, C. A. The kinetics and mechanisms of aromatic halogen substitution. Part I. Acid-catalysed chlorination by aqueous by aqueous solutions of hypochlorous acid. *J. Chem. Soc.* 1954, 1290–1297.
- (50) Rebenne, L. M.; Gonzalez, A. C.; Olson, T. M. Aqueous chlorination kinetics and mechanism of substituted dihydroxybenzenes. *Environ. Sci. Technol.* **1996**, *30*, 2235–2242.
- (51) Gallard, H.; von Gunten, U. Chlorination of phenols: Kinetics and formation of chloroform. *Environ. Sci. Technol.* **2002**, *36*, 884–890.
- (52) Deborde, M.; Rabouan, S.; Gallard, H.; Legube, B. Aqueous chlorination kinetics of some endocrine disruptors. *Environ. Sci. Technol.* **2004**, 38, 5577–5583.
- (53) Pinkston, K. E.; Sedlak, D. L. Transformation of aromatic etherand amine-containing pharmaceuticals during chlorine disinfection. *Environ. Sci. Technol.* **2004**, 38, 4019–4025.
- (54) Lundstrom, U.; Olin, A. Bromide concentration in Swedish precipitation, surface and ground waters. *Water Res.* **1986**, *20*, 751–756
- (55) Stumm, W.; Morgan, J. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd ed.; John Wiley & Sons, Inc.: New York, 1996; p 1022.
- (56) Westerhoff, P.; Siddiqui, M.; Debroux, J.; Zhai, W.; Ozekin, K.; Amy, G. Nation-wide bromide occurrence and bromate formation potential in drinking water supplies. In *Critical Issues in Water and Wastewater Treatment: Proceedings of the 1994 National Conference on Environmental Engineering*; Ryan, J. N., Edwards, M., Eds.; American Society of Civil Engineers: New York, 1994; pp 670–677.
- (57) Heller-Grossman, L.; Idin, A.; Limoni-Relis, B.; Rebhun, M. Formation of cyanogen bromide and other volatile DBPs in the disinfection of bromide-rich lake water. *Environ. Sci. Technol.* **1999**, 33, 932–937
- (58) Magazinovic, R. S.; Nicholson, B. C.; Mulcahy, D. E.; Davey, D. E. Bromide levels in natural waters: its relationship to levels of both chloride and total dissolved solids and the implications for water treatment. *Chemosphere* **2004**, *57*, 329–335.
- (59) Harkness, J. S.; Dwyer, G. S.; Warner, N. R.; Parker, K. M.; Mitch, W. A.; Vengosh, A. Iodide, bromide, and ammonium in hydraulic fracturing and oil and gas wastewaters: Environmental implications. *Environ. Sci. Technol.* **2015**, *49*, 1955–1963.
- (60) Soltermann, F.; Abegglen, C.; Götz, C.; von Gunten, U. Bromide sources and loads in Swiss surface waters and their relevance for bromate formation during wastewater ozonation. *Environ. Sci. Technol.* **2016**, *50*, 9825–9834.
- (61) Troy, R. C.; Margerum, D. W. Non-metal redox kinetics: hypobromite and hypobromous acid reactions with iodide and with sulfite and the hydrolysis of bromosulfate. *Inorg. Chem.* **1991**, *30*, 3538–43.
- (62) Tee, O.; Paventi, M.; Bennett, J. Kinetics and mechanism of the bromination of phenols and phenoxide ions in aqueous solution. Diffusion-controlled rates. *J. Am. Chem. Soc.* **1989**, *111*, 2233–2240.
- (63) Henderson, J. P.; Heinecke, J. W. Myeloperoxidase and eosinophil peroxidase: phagocyte enzymes for halogenation in humans. In *Natural Production of Organohalogen Compounds*; Springer: New York, 2003; pp 201–214.
- (64) Allard, S.; Fouche, L.; Dick, J.; Heitz, A.; von Gunten, U. Oxidation of manganese(II) during chlorination: Role of bromide. *Environ. Sci. Technol.* **2013**, 47, 8716–8723.
- (65) Reinhard, M.; Redden, G. D.; Voudrias, E. A. The hydrolysis constant of chlorine monoxide and bromine chloride in water. In

- Water Chlorination: Environmental Impact and Health Effects; Jolley, R. L., et al. Eds.; Ann Arbor Science: Ann Arbor, MI, 1990; pp 859–870.
- (66) Wu, Z.; Guo, K.; Fang, J.; Yang, X.; Xiao, H.; Hou, S.; Kong, X.; Shang, C.; Yang, X.; Meng, F.; Chen, L. Factors affecting the roles of reactive species in the degradation of micropollutants by the UV/chlorine process. *Water Res.* **2017**, *126*, 351–360.
- (67) Huling, E. E.; Hollocher, T. C. Groundwater contamination by road salt: Steady-state concentrations in east central Massachusetts. *Science* **1972**, *176*, 288–290.
- (68) Kaushal, S. S.; Groffman, P. M.; Likens, G. E.; Belt, K. T.; Stack, W. P.; Kelly, V. R.; Band, L. E.; Fisher, G. T. Increased salinization of fresh water in the northeastern United States. *Proc. Natl. Acad. Sci. U. S. A.* 2005, 102, 13517–13520.
- (69) Kelly, V. R.; Lovett, G. M.; Weathers, K. C.; Findlay, S. E. G.; Strayer, D. L.; Burns, D. J.; Likens, G. E. Long-term sodium chloride retention in a rural watershed: Legacy effects of road salt on streamwater concentration. *Environ. Sci. Technol.* **2008**, 42, 410–415.
- (70) Corsi, S. R.; Graczyk, D. J.; Geis, S. W.; Booth, N. L.; Richards, K. D. A fresh look at road salt: Aquatic toxicity and water-quality impacts on local, regional, and national scales. *Environ. Sci. Technol.* **2010**, 44, 7376–7382.
- (71) Moore, J.; Fanelli, R. M.; Sekellick, A. J. High-frequency data reveal deicing salts drive elevated specific conductance and chloride along with pervasive and frequent exceedances of the U.S. Environmental Protection Agency aquatic life criteria for chloride in urban streams. *Environ. Sci. Technol.* **2020**, *54*, 778–789.
- (72) Oki, T.; Kanae, S. Global hydrological cycles and world water resources. *Science* **2006**, *313*, 1068–1072.
- (73) Werner, A. D.; Bakker, M.; Post, V. E. A.; Vandenbohede, A.; Lu, C.; Ataie-Ashtiani, B.; Simmons, C. T.; Barry, D. A. Seawater intrusion processes, investigation and management: Recent advances and future challenges. *Adv. Water Resour.* **2013**, *51*, 3–26.
- (74) Wilson, J. M.; VanBriesen, J. M. Oil and gas produced water management and surface drinking water sources in Pennsylvania. *Environ. Pract.* **2012**, *14*, 288–300.
- (75) Hladik, M. L.; Focazio, M.; Engle, M. Discharges of produced waters from oil and gas extraction via wastewater treatment plants are sources of disinfection by-products to receiving streams. *Sci. Total Environ.* **2014**, 466–467, 1085–1093.
- (76) Parker, K. M.; Zeng, T.; Harkness, J.; Vengosh, A.; Mitch, W. A. Enhanced formation of disinfection byproducts in shale gas wastewater-impacted drinking water supplies. *Environ. Sci. Technol.* **2014**, *48*, 11161–11169.
- (77) Ding, G.; Zhang, X.; Yang, M.; Pan, Y. Formation of new brominated disinfection byproducts during chlorination of saline sewage effluents. *Water Res.* **2013**, 47, 2710–2718.
- (78) Parinet, J.; Tabaries, S.; Coulomb, B.; Vassalo, L.; Boudenne, J.-L. Exposure levels to brominated compounds in seawater swimming pools treated with chlorine. *Water Res.* **2012**, *46*, 828–836.
- (79) Manasfi, T.; De Méo, M.; Coulomb, B.; Di Giorgio, C.; Boudenne, J.-L. Identification of disinfection by-products in freshwater and seawater swimming pools and evaluation of genotoxicity. *Environ. Int.* **2016**, *88*, 94–102.
- (80) Werschkun, B.; Banerji, S.; Basurko, O. C.; David, M.; Fuhr, F.; Gollasch, S.; Grummt, T.; Haarich, M.; Jha, A. N.; Kacan, S.; et al. Emerging risks from ballast water treatment: The run-up to the International Ballast Water Management Convention. *Chemosphere* **2014**, *112*, 256–266.
- (81) Shah, A. D.; Liu, Z.-Q.; Salhi, E.; Höfer, T.; Werschkun, B.; von Gunten, U. Formation of disinfection by-products during ballast water treatment with ozone, chlorine, and peracetic acid: influence of water quality parameters. *Environ. Sci. Water Res. Technol.* **2015**, *1*, 465–480.
- (82) Agus, E.; Voutchkov, N.; Sedlak, D. L. Disinfection by-products and their potential impact on the quality of water produced by desalination systems: A literature review. *Desalination* **2009**, 237, 214–237.
- (83) Padhi, R.; Sowmya, M.; Mohanty, A.; Bramha, S.; Satpathy, K. Formation and speciation characteristics of brominated trihalo-

- methanes in seawater chlorination. Water Environ. Res. 2012, 84, 2003-2009.
- (84) Le Roux, J.; Nada, N.; Khan, M. T.; Croué, J.-P. Tracing disinfection byproducts in full-scale desalination plants. *Desalination* **2015**, 359, 141–148.
- (85) Kim, D.; Amy, G. L.; Karanfil, T. Disinfection by-product formation during seawater desalination: A review. *Water Res.* **2015**, *81*, 343–355.
- (86) Ged, E. C.; Boyer, T. H. Effect of seawater intrusion on formation of bromine-containing trihalomethanes and haloacetic acids during chlorination. *Desalination* **2014**, 345, 85–93.
- (87) Liu, Z.-Q.; Shah, A. D.; Salhi, E.; Bolotin, J.; von Gunten, U. Formation of brominated trihalomethanes during chlorination or ozonation of natural organic matter extracts and model compounds in saline water. *Water Res.* **2018**, *143*, 492–502.
- (88) De la Mare, P. B. D. Electrophilic Halogenation: Reaction Pathways Involving Attack by Electrophilic Halogens on Unsaturated Compounds; Cambridge University Press: Cambridge, U.K., 1976.
- (89) Margerum, D. W.; Huff Hartz, K. E. Role of halogen(I) cation-transfer mechanisms in water chlorination in the presence of bromide ion. *J. Environ. Monit.* **2002**, *4*, 20–26.
- (90) Amy, G. L.; Chadik, P. A.; King, P. H.; Cooper, W. J. Chlorine utilization during trihalomethane formation in the presence of ammonia and bromide. *Environ. Sci. Technol.* **1984**, *18*, 781–786.
- (91) Allard, S.; Tan, J.; Joll, C. A.; von Gunten, U. Mechanistic study on the formation of Cl-/Br-/I-trihalomethanes during chlorination/chloramination combined with a theoretical cytotoxicity evaluation. *Environ. Sci. Technol.* **2015**, *49*, 11105–11114.
- (92) Larson, R. A.; Weber, E. J. Reaction Mechanisms in Environmental Organic Chemistry, 1st ed.; CRC Press: Boca Raton, FL, 1994; p 448.
- (93) Shah, A. D.; Liu, Z.-Q.; Salhi, E.; Hofer, T.; von Gunten, U. Peracetic acid oxidation of saline waters in the absence and presence of H₂O₂: Secondary oxidant and disinfection byproduct formation. *Environ. Sci. Technol.* **2015**, 49, 1698–1705.
- (94) Sivey, J. D.; Bickley, M. A.; Victor, D. A. Catalysis of DBP-precursor bromination by halides and hypochlorous acid. In *Recent Advances in Disinfection By-Products*; American Chemical Society: Washington, DC, 2015; Vol. 1190, pp 251–269.
- (95) Gilow, H. M.; Ridd, J. H. Mechanism of aromatic bromination by hypobromous acid in aqueous perchloric acid. Kinetic evidence against the prior formation of 'positive bromine'. *J. Chem. Soc., Perkin Trans.* 2 1973, 1321–1327.
- (96) Rao, T.; Mali, S.; Dangat, V. The halogenating agent in hypohalous acid solutions containing H^{+}_{aq} , in aromatic substitutions. *Tetrahedron* 1978, 34, 205–208.
- (97) Fuge, R.; Johnson, C. C. The geochemistry of iodine a review. *Environ. Geochem. Health* **1986**, *8*, 31–54.
- (98) Moran, J. E.; Oktay, S. D.; Santschi, P. H. Sources of iodine and iodine 129 in rivers. *Water Resour. Res.* **2002**, 38, 24-1–24-10.
- (99) Richardson, S. D.; Fasano, F.; Ellington, J. J.; Crumley, F. G.; Buettner, K. M.; Evans, J. J.; Blount, B. C.; Silva, L. K.; Waite, T. J.; Luther, G. W.; McKague, A. B.; Miltner, R. J.; Wagner, E. D.; Plewa, M. J. Occurrence and mammalian cell toxicity of iodinated disinfection byproducts in drinking water. *Environ. Sci. Technol.* **2008**, *42*, 8330–8338.
- (100) Sharma, N.; Karanfil, T.; Westerhoff, P. Historical and future needs for geospatial iodide occurrence in surface and groundwaters of the United States of America. *Environ. Sci. Technol. Lett.* **2019**, *6*, 379–388.
- (101) Collins, A. G.; Egleson, G. C. Iodide abundance in oilfield brines in Oklahoma. *Science* **1967**, *156*, 934–5.
- (102) Bichsel, Y.; von Gunten, U. Hypoiodous acid: kinetics of the buffer-catalyzed disproportionation. *Water Res.* **2000**, *34*, 3197–3203.
- (103) Zhao, X.; Ma, J.; von Gunten, U. Reactions of hypoiodous acid with model compounds and the formation of iodoform in absence/presence of permanganate. *Water Res.* **2017**, *119*, 126–135.
- (104) Berliner, E. Kinetics of the iodination of aniline. *J. Am. Chem. Soc.* **1950**, 72, 4003–4009.

- (105) Berliner, E. The iodination of 2,4,6-trideuterioanisole by iodine monochloride. J. Am. Chem. Soc. 1960, 82, 5435–5438.
- (106) Vaughan, J. D.; Jewett, G. L.; Vaughan, V. L. Kinetics of iodination of 1-alkylpyrazoles. Relative electrophilic reactivities of 1-substituted and 1-unsubstituted pyrazoles. *J. Am. Chem. Soc.* **1967**, *89*, 6218–6221.
- (107) Grovenstein, E.; Aprahamian, N. S.; Bryan, C. J.; Gnanapragasam, N. S.; Kilby, D. C.; McKelvey, J. M.; Sullivan, R. J. Aromatic halogenation. IV. Kinetics and mechanism of iodination of phenol and 2,6-dibromophenol. *J. Am. Chem. Soc.* **1973**, *95*, 4261–4270
- (108) Vikesland, P. J.; Fiss, E. M.; Wigginton, K. R.; McNeill, K.; Arnold, W. A. Halogenation of bisphenol-A, triclosan, and phenols in chlorinated waters containing iodide. *Environ. Sci. Technol.* **2013**, 47, 6764–6772.
- (109) Burttschell, R. H.; Rosen, A. A.; Middleton, F. M.; Ettinger, M. B. Chlorine derivatives of phenol causing taste and odor. *J. Am. Water Works Assoc.* **1959**, *51*, 205–214.
- (110) Rook, J. J. Haloforms in drinking water. J. Am. Water Works Assoc. 1976, 68, 168–172.
- (111) Rook, J. J. Chlorination reactions of fulvic acids in natural waters. *Environ. Sci. Technol.* **1977**, *11*, 478–482.
- (112) Chang, E. E.; Chiang, P. C.; Chao, S. H.; Lin, Y. L. Relationship between chlorine consumption and chlorination by-products formation for model compounds. *Chemosphere* **2006**, *64*, 1196–1203.
- (113) Huang, Y.; Li, H.; Zhou, Q.; Li, A.; Shuang, C.; Xian, Q.; Xu, B.; Pan, Y. New phenolic halogenated disinfection byproducts in simulated chlorinated drinking water: Identification, decomposition, and control by ozone-activated carbon treatment. *Water Res.* **2018**, 146, 298–306.
- (114) Smith, J. G.; Lee, S. F.; Netzer, A. Chlorination in dilute aqueous systems; 2,4,6-trichlorophenol. *Environ. Lett.* **1975**, *10*, 47–52
- (115) Smith, J. G.; Lee, S.-F.; Netzer, A. Model studies in aqueous chlorination: The chlorination of phenols in dilute aqueous solutions. *Water Res.* **1976**, *10*, 985–990.
- (116) Svec, P. Chlorination of 2,4,6-trichlorophenol in acidic aqueous medium. *Collect. Czech. Chem. Commun.* **1985**, 50, 1842–1851.
- (117) Kosaka, K.; Nakai, T.; Hishida, Y.; Asami, M.; Ohkubo, K.; Akiba, M. Formation of 2,6-dichloro-1,4-benzoquinone from aromatic compounds after chlorination. *Water Res.* **2017**, *110*, 48–55.
- (118) Gan, W.; Ge, Y.; Zhu, H.; Huang, H.; Yang, X. ClO₂ pre-oxidation changes the yields and formation pathways of chloroform and chloral hydrate from phenolic precursors during chlorination. *Water Res.* **2019**, *148*, 250–260.
- (119) Onodera, S.; Yamada, K.; Yamaji, Y.; Ishikura, S. Chemical changes of organic compounds in chlorinated water: IX. Formation of polychlorinated phenoxyphenols during the reaction of phenol with hypochlorite in dilute aqueous solution. *J. Chromatogr. A* **1984**, 288, 91–100.
- (120) Onodera, S.; Yamada, K.; Jamaji, Y.; Ishikura, S.; Suzuki, S. Chemical changes of organic compounds in chlorinated water: X. Formation of polychlorinated methylphenoxymethylphenols (predioxins) during chlorination of methylphenols in dilute aqueous solution. *J. Chromatogr. A* **1986**, 354, 293–303.
- (121) Onodera, S.; Ógawa, M.; Yamawaki, C.; Yamagishi, K.; Suzuki, S. Production of polychlorinated phenoxyphenols (predioxins) by aqueous chlorination of organic compounds. *Chemosphere* **1989**, *19*, 675–680.
- (122) Onodera, S.; Takahashi, M.; Suzuki, S. Chemical changes of organic compounds in chlorinated water. XIX. Production of alkylpolychlorinated phenoxyphenols (predioxins) by aqueous chlorination of alkylphenols. *Eisei Kagaku* 1993, 39, 20–28.
- (123) Altwicker, E. R. The chemistry of stable phenoxy radicals. Chem. Rev. 1967, 67, 475-531.
- (124) Mvula, E.; Schuchmann, M. N.; von Sonntag, C. Reactions of phenol-OH-adduct radicals. Phenoxyl radical formation by water

- elimination vs. oxidation by dioxygen. J. Chem. Soc., Perkin Trans. 2 2001, 264–268.
- (125) Prasse, C.; Ford, B.; Nomura, D. K.; Sedlak, D. L. Unexpected transformation of dissolved phenols to toxic dicarbonyls by hydroxyl radicals and UV light. *Proc. Natl. Acad. Sci. U. S. A.* **2018**, *115*, 2311–2316.
- (126) Renard, J. J.; Bolker, H. I. The chemistry of chlorine monoxide (dichlorine monoxide). *Chem. Rev.* **1976**, *76*, 487–508.
- (127) Busch, M.; Simic, N.; Ahlberg, E. Exploring the mechanism of hypochlorous acid decomposition in aqueous solutions. *Phys. Chem. Chem. Phys.* **2019**, *21*, 19342–19348.
- (128) Song, Y.; Buettner, G. R.; Parkin, S.; Wagner, B. A.; Robertson, L. W.; Lehmler, H.-J. Chlorination increases the persistence of semiquinone free radicals derived from polychlorinated biphenyl hydroquinones and quinones. *J. Org. Chem.* **2008**, *73*, 8296–8304.
- (129) Guin, P. S.; Das, S.; Mandal, P. C. Electrochemical reduction of quinones in different media: A review. *Int. J. Electrochem.* **2011**, 2011, 1–22.
- (130) Benjamin, M. M.; Lawler, D. F. Water Quality Engineering: Physical/Chemical Treatment Processes; John Wiley & Sons: Hoboken, NJ, 2013; p 878.
- (131) Black & Veatch Corp. White's Handbook of Chlorination and Alternative Disinfectants, 5th ed.; Wiley: Hoboken, NJ, 2010; p 1062.
- (132) Das, T. K. Disinfection. In Kirk-Othmer Encyclopedia of Chemical Technology; Wiley: New York, 2002.
- (133) Kim, B.; Anderson, J.; Mueller, S.; Gaines, W.; Kendall, A. Literature review—efficacy of various disinfectants against Legionella in water systems. *Water Res.* **2002**, *36*, 4433–4444.
- (134) Pattison, D. I.; Davies, M. J. Absolute rate constants for the reaction of hypochlorous acid with protein side chains and peptide bonds. *Chem. Res. Toxicol.* **2001**, *14*, 1453–1464.
- (135) Stanley, N. R.; Pattison, D. I.; Hawkins, C. L. Ability of hypochlorous acid and N-chloramines to chlorinate DNA and its constituents. *Chem. Res. Toxicol.* **2010**, 23, 1293–1302.
- (136) Sivey, J. D.; Howell, S. C.; Bean, D. J.; McCurry, D. L.; Mitch, W. A.; Wilson, C. J. Role of lysine during protein modification by HOCl and HOBr: Halogen-transfer agent or sacrificial antioxidant? *Biochemistry* **2013**, *52*, 1260–1271.
- (137) He, H.; Zhou, P.; Shimabuku, K. K.; Fang, X.; Li, S.; Lee, Y.; Dodd, M. C. Degradation and deactivation of bacterial antibiotic resistance genes during exposure to free chlorine, monochloramine, chlorine dioxide, ozone, ultraviolet light, and hydroxyl radical. *Environ. Sci. Technol.* **2019**, *53*, 2013–2026.
- (138) Curtis, M. P.; Hicks, A. J.; Neidigh, J. W. Kinetics of 3-chlorotyrosine formation and loss due to hypochlorous acid and chloramines. *Chem. Res. Toxicol.* **2011**, *24*, 418–428.
- (139) Bongers, L.; O'Connor, T.; Burton, D. Bromine Chloride An Alternative to Chlorine for Fouling Control in Condesner Cooling Systems. EPA Report 600/7-77053; National Technical Information Service: Springfield, VA, 1977.
- (140) Langsa, M.; Heitz, A.; Joll, C. A.; von Gunten, U.; Allard, S. Mechanistic aspects of the formation of adsorbable organic bromine during chlorination of bromide-containing synthetic waters. *Environ. Sci. Technol.* **2017**, *51*, 5146–5155.
- (141) Dias, R. P.; Schammel, M. H.; Reber, K. P.; Sivey, J. D. Applications of 1,3,5-trimethoxybenzene as a derivatizing agent for quantifying free chlorine, free bromine, bromamines, and bromide in aqueous systems. *Anal. Methods* **2019**, *11*, 5521–5532.
- (142) Rice, E. W.; Baird, R. B.; Clesceri, L. S.; Eaton, A. D. Standard Methods for the Examination of Water and Wastewater, 22nd ed.; American Public Health Association, American Water Works Association, Water Environment Federation: Washington, DC, 2012. (143) Lau, S. S.; Dias, R. P.; Martin-Culet, K. R.; Race, N. A.; Schammel, M. H.; Reber, K. P.; Roberts, A. L.; Sivey, J. D. 1,3,5-Trimethoxybenzene (TMB) as a new quencher for preserving redoxlabile disinfection byproducts and for quantifying free chlorine and free bromine. Environ. Sci. Water Res. Technol. 2018, 4, 926–941.

- (144) Wilson, R. E.; Stoianov, I.; O'Hare, D. Continuous chlorine detection in drinking water and a review of new detection methods. *Johnson Matthey Technol. Rev.* **2019**, 63, 103–118.
- (145) Chung, A.; Israel, G. C. The kinetics of chlorohydrin formation. Part VIII. The reaction between hypochlorous acid and allyl acetate in the presence of sodium acetate-acetic acid buffers of constant pH. *J. Chem. Soc.* 1955, 0, 2667–2673.
- (146) De la Mare, P. B. D.; Hilton, I. C.; Varma, S. Kinetics and mechanisms of aromatic halogen substitution. IX. Mixtures of acetic acid and aqueous hypochlorous acid. *J. Chem. Soc.* **1960**, 4044–4054.
- (147) Jia, Z.; Margerum, D. W.; Francisco, J. S. General-acid-catalyzed reactions of hypochlorous acid and acetyl hypochlorite with chlorite ion. *Inorg. Chem.* **2000**, *39*, 2614–2620.
- (148) Müller, E.; von Gunten, U.; Bouchet, S.; Droz, B.; Winkel, L. H. E. Hypobromous acid as an unaccounted sink for marine dimethyl sulfide? *Environ. Sci. Technol.* **2019**, *53*, 13146–13157.
- (149) Li, C. H. Catalytic effect of acetate and phosphate buffers on the iodination of tyrosine. J. Am. Chem. Soc. 1944, 66, 228–230.
- (150) Painter, B. S.; Soper, F. G. Acid catalysis in the iodination of phenol. Iodination by acyl hypoiodites. *J. Chem. Soc.* **1947**, 342–346.
- (151) Berliner, E. Kinetics of the iodination of phenol. *J. Am. Chem. Soc.* **1951**, 73, 4307–4311.
- (152) Mayberry, W. E.; Bertoli, D. A. Kinetics of iodination. II. General base catalysis in the iodination of N-acetyl-L-tyrosine and N-acetyl-3-iodo-L-tyrosine. *J. Org. Chem.* **1965**, *30*, 2029–2034.
- (153) Schutte, L.; Havinga, E. Base catalysis in aromatic iodination. Kinetics and mechanism of the iodination of *p*-cresol, 2,6-dimethylphenol, imidazole and dimethylaminobenzenesulfonic acid. *Tetrahedron* 1970, 26, 2297–2304.
- (154) Kristiana, I.; Lethorn, A.; Joll, C.; Heitz, A. To add or not to add: The use of quenching agents for the analysis of disinfection byproducts in water samples. *Water Res.* **2014**, *59*, 90–98.