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Multiple Change Points Detection in Low Rank and

Sparse High Dimensional Vector

Autoregressive Models
Peiliang Bai, Abolfazl Safikhani, and George Michailidis , Member, IEEE

Abstract—Identifying change/break points in multivariate time
series represents a canonical problem in signal processing, due
to numerous applications related to anomaly detection problems.
The underlying detection methodology heavily depends on the
nature of the mechanism determining the temporal dynamics of
the data. Vector auto-regressive models (VAR) constitute a widely
used model in diverse areas, including surveillance applications,
economics/finance and neuroscience. In this work, we consider
piece-wise stationary VAR models exhibiting break points between
the corresponding stationary segments, wherein the transition ma-
trices that govern the model’s temporal evolution are decomposed
into a common low-rank component and time evolving sparse ones.
Further, we assume that the number of available time points are
smaller than the number of model parameters and hence we are
operating in a high-dimensional regime. We develop a three-step
strategy that accurately detects the number of change points to-
gether with their location and subsequently estimates the model
parameters in each stationary segment. The effectiveness of the
proposed procedure is illustrated on both synthetic and real data
sets.

Index Terms—Blocked fused lasso, vector auto-regression,
detection, consistency.

I. INTRODUCTION

D
ETECTING multiple changes in time series data con-

stitutes a canonical problem with numerous applications

in signal detection [6], economics and finance [20], quality

control [41], risk analysis [33], surveillance and environmental

monitoring [38], and neuroscience [29]. A change point rep-

resents a discontinuity in the parameters of the data generating
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process. The problem can be considered either in an (1) offline [7]

setting, or (2) an online [17] one. In the first case, one is given

a sequence of observations and questions of interest include:

(i) whether there exist change (break) points and (ii) if there

exist change points, identify their locations, as well as estimate

the parameters of the data generating process (see the review

paper [3]). In the online case, one sequentially obtains new

observations and the main interest is in quickest detection of

the change point (see e.g. [46], [21] and references therein).

The focus of this paper is on offline break point detection

based on a vector autorgressive (VAR) data generation mecha-

nism. The literature to date has focused on a number of univariate

and multivariate statistical models, including constant signal

plus noise ones [23], linear regression [31], Gaussian graphical

models [30], [43], vector autoregressive models (VAR) [44],

panel-type time series models [15], [16], and factor models [4],

[5]. VAR models represent a canonical model with wide range of

applications in economics [22], [25], functional genomics [35],

[40], speech signal analysis [26], [45], smart cities [36] and

neuroscience [2], [27], [28], [39]. There has been a lot of

interest recently in their high dimensional counterparts assuming

a (structured) sparse [9] and also low rank transition matrix [8]

for stationary data.

However, in numerous application areas the assumption of

stationarity does not hold for the entire data set, but only for rel-

atively short segments of the available data (see e.g. discussion

in [32] for a specific example of log-returns of stocks exhibiting

structural breaks due to economic shocks, as well as [44] for

occurrence of seizures and its effect on brain signal data). Due to

the existence of several discontinuity points in the distribution of

the data, on many occasions a good working model is to assume

a piece-wise stationary model and then the problem becomes

to identify the number of unknown break (change) points of the

segments, locate them and finally estimate the model parameters

within each segment.

This paper aims to develop a fast/scalable strategy for iden-

tifying change points in low-rank plus sparse high dimensional

time series models and also provide probabilistic guarantees

for the accuracy of their identification. Specifically, the focus

is on VAR models whose transition matrices that capture their

dynamic evolution can be decomposed into a constant low-

rank component, plus a sparse time evolving one at selected

(unknown) time points, thus inducing structural breaks in the

system’s evolution. This data generating process occurs in many
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real world applications, including surveillance video data, where

the background theme remains stationary over time, but some

small portion of the frames changes at certain time points due

to adding/removing objects (more details on this application are

given in Section V-A). Other applications include environmental

monitoring from sensor measurements, where the background

can be described by a low rank stationary process, and monitor-

ing of financial markets, as discussed in Section V-B.

Note that the presence of a fixed low-rank component com-

bined with piece-wise constant sparse ones, makes the detection

problem significantly more challenging than that of employing

a sparse VAR model. Note that there are two types of signal

in the data, -one coming from the fixed low-rank component

and the other from the changing sparse one- thus requiring

significant enhancements in the detection algorithm and even

more importantly in the technical analysis for providing rig-

orous probabilistic guarantees on the detection accuracy and

estimation of the model parameters, all successfully resolved

in Section III. Specifically, we rigorously address the following

issues: (1) estimate accurately the total number of break points

in the data; (2) locate all break points consistently; (3) estimate

accurately all model parameters including the low rank and

sparse auto-regressive components. To do so, we propose a

three-step procedure. In Step 1, the detection problem is refor-

mulated as a variable selection one based on a regularized high

dimensional linear regression framework, with a blocked fused

lasso penalty. This step over-selects an initial set of candidate

break points. In Step 2, based on a carefully defined information

criterion that accounts for the low rank plus sparse structure

of the transition matrices, we screen out redundant candidate

break points obtained in Step 1 and establish that the remaining

selected points are consistent estimates of the true break points

(see Theorem 3). Finally, in Step 3, two different methods are

developed to estimate all model parameters within all the identi-

fied stationary segments. Hence, key technical contributions of

this work include:
� The introduction of suitable conditions to ensure identifia-

bility of the low-rank and sparse components in piece-wise

stationary VAR models that are also of independent inter-

est.
� The development of an efficient three-step algorithm to

estimate and locate the break points, as well as to estimate

the model parameters within each segment.
� The introduction of a novel information criterion to select a

consistent subset of break points obtained initially through

a penalized high-dimensional regression model.
� The development of a blocked fused lasso regression esti-

mator to accelerate the detection of break points, which is

also of independent interest in the field of variable selection

in high dimensional linear regression models.
� Recommending cross-validation type methods to select the

key tuning parameters involved in our algorithm.

The remainder of the paper is organized as follows. The

modeling framework together with identifiability issues are pre-

sented in Section II. Section III introduces the proposed 3-step

detection strategy and establishes its asymptotic properties. An

extensive evaluation analysis based on synthetic data is provided

in Section IV. Finally, two real data sets (one on surveillance

video data and another one on financial data) are analyzed using

the developed algorithm and discussed in Section V. Finally,

additional simulation scenarios, and proofs of the main results

are given in the Appendix.

Notation: Throughout the paper, we denote with a superscript

“�” the true value of the corresponding model parameters.

Further, for any p× p matrix we use ‖ · ‖2, ‖ · ‖F and ‖ · ‖∗ to

denote the spectral, Frobenius and nuclear norm of the matrix,

respectively. For any matrixB, we useB′ to denote its transpose,

and finally we denote the �1, �0 and �∞ norms of its vectorized

form as follows: ‖B‖1 for ‖vec(B)‖1, ‖B‖0 for Card(vec(B))
and ‖B‖∞ for ‖vec(B)‖∞.

II. MODEL FORMULATION

We start by considering a piece-wise structured stationary

VAR(1) model; the extension to a VAR(d) model with d lags

is briefly discussed in the Conclusions section. Specifically,

suppose we have n+ 1 time points and there exist m0 change

points 0 = t0 < t1 < · · · < tm0
< tm0+1 = n, such that for

tj−1 ≤ t < tj , j = 1, . . . ,m0 + 1, the structured VAR(1) pro-

cess is given by

Xt = B′
jXt−1 + εt and Bj = L� + S�

j (1)

where Xt is the p dimensional vector of observed time series

at time t, Bj is the p× p transition matrix for the j−th seg-

ment that captures the lead-lag relationships among the time

series under consideration; further, each transition matrix is

assumed to be a superposition of a stableL� low rank component

and a time varying S�
j sparse component. Finally, we assume

that the p−dimensional noise process is normally distributed;

i.e. εt
iid∼ Np(0,Σε). Note that in principle, Σε can vary over

segments, but is considered fixed in our setting for ease of

presentation. We further assume that the j-th sparse component

S�
j has sparsity density ‖S�

j ‖0 = d�j with d�j � p2 and that the

low rank component L� has rank r� with r� � p, respectively.

Based on the decomposition of the transition materices Bj , it

can be seen that the low rank component L� captures invariant

cross-autocorrelation structure across all p time series for the

entire time period, while S�
j reflects time evolving additional

cross-sectional autocorrelations.

The objective is to detect the change points tj , and obtain es-

timates of the transition matrices Bj’s under a high-dimensional

regime, wherein the number of parameters within each stationary

segment exceeds the corresponding number of time points.

Therefore, according to the formulation of the structured VAR(1)

model above, it can be seen that the presence of change points

is driven by changes in the sparse components S�
j .

However, there is a natural identifiability issue being masked

by the posited low rank plus sparse structure of the transition

matrices. Suppose the low rank component L� provides most

of the signal, while the sparse components S�
j contribute only a

small portion of the signal. In such a setting, detection of change

points becomes impossible. Therefore, in order to identify the

changes in the sparse components, the signal “originating” from

the low rank component can not be dominant.
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Further, this identifiability issue will also influence the prob-

abilistic guarantees for accurately estimating the low rank and

sparse components. Suppose the low rank component itself is d�j
sparse, while the sparse components are of rank r�. Then, we can

not expect to estimate L� and S�
j ’s separately, without imposing

any further restrictions. In this case, a minimal condition for

accurate recovery of the low rank and sparse components is that

the former should not be too sparse and the latter should not be

low rank.

In a recent paper [14], this issue has been rigorously addressed

for independent and identically distributed data and resolved by

imposing an incoherence condition, such a condition is sufficient

for exact recovery of the low rank and the sparse component

by solving a convex program. In [1], the authors considered

a noisy setting and also to where a model parameter (e.g. a

regression coefficient matrix) admits such a decomposition,

wherein exact recovery of the two components is impossible.

They proceeded to formulate a general measure for the radius

of non-identifiability of the problem under consideration and es-

tablished a non-asymptotic upper bound on the estimation error

‖L̂− L�‖2F + ‖Ŝj − S�
j ‖2F , which depends on this radius. In

our work, we introduce the information ratio (see Section III-A,

Assumption H2), which reflects similar constraints imposed on

the radius of non-identifiability in [1], to constrain the signal

strength originating from the low-rank component that will

render changes in sparse components detectable.

III. THE CHANGE POINT DETECTION PROCEDURE

AND ITS PROPERTIES

Our proposed strategy comprises of the following steps: (A)

Solving a regularized regression problem, with a Block Fused

Lasso (BFL) penalty to identify candidate change points; (B)

Screening the obtained candidates by computing a novel infor-

mation criterion; and (C) Estimating consistently the parameters

of each transition matrix Bj .
1

A. Step 1: Block Fused Lasso (BFL) Based Estimation

In our first step, we leverage a regularized regression problem

with a BFL penalty to identify an initial set of candidate change

points. Specifically, we partition the observed time points into

blocks of size bn and fix the model parameters within each

block. In other words, each end point of a block corresponds

to a candidate break point in this step. Therefore, BFL has

(	 n
bn

+ 1)p2 parameters, compared to2p2 when no break points

are present. Note that in order to identify the change points

consistently, we can not set bn to be too large as explained below.

Define a sequence of time points 1 = r0 < r1 < · · · <
rkn+1 = n corresponding to the end points of the blocks

(i.e. ri+1 − ri = bn and kn = 	 n
bn

). Subsequently, by us-

ing the same notation as in the model (1), we define

the following block variables: Xrj = [Xrj−1
, . . . , Xrj−1],

Yrj = [Xrj−1+1, . . . , Xrj ] and εrj = [εrj−1+1, . . . , εrj ], for

1Code implementing the strategy is available at https://github.com/
abolfazlsafikhani/LS-VAR-ChangePoint-Detection.

the j-th block respectively, translated in matrix form no-

tation as follows: let X = [Xr1 , . . . ,Xrkn+1
]′ ∈ R

n×p, Y =
[Yr1 , . . . ,Yrkn+1

]′ ∈ R
n×p, E = [εr1 , . . . , εrkn

]′ ∈ R
n×p and

Z =

⎡
⎢⎢⎢⎢⎣

X
′
r1

0 · · · 0

X
′
r2

X
′
r2

· · · 0

...
...

. . .
...

X
′
rkn+1

X
′
rkn+1

· · · X
′
rkn+1

⎤
⎥⎥⎥⎥⎦
∈ R

n×pkn .

We then formulate the model (1) into the following linear

regression problem

Y = XL� + ZΘ+ E , (2)

wherein Θ = [θ′1, . . . , θ
′
kn
]′ ∈ R

pkn×p. We set θ1 = S�
1 ; for i =

2, 3, . . . , kn, and for the subsequent ones we set

θi =

{
S�
j+1 − S�

j , when i = tj for some j,
0, otherwise.

(3)

It should be noted that in this parameterization, θi �= 0 wherein

0 corresponds to the p× p zero matrix, indicates a change in the

VAR transition matrix Bj . Therefore, for j = 1, 2, . . . ,m0, the

structural change points tj can be detected as time points i ≥ 2,

whenever θi �= 0.

The linear regression representation in (2) implies that the

model coefficients Θ and L can be estimated through the fol-

lowing restricted penalized least squares problem

(Θ̂, L̂) = argmin
Θ,L∈Ω

1

n
‖Y − XL−ZΘ‖22 + λ1,n‖L‖∗

+ λ2,n‖Θ‖1 + λ3,n

kn∑

l=1

∥∥∥∥∥∥

l∑

j=1

θj

∥∥∥∥∥∥
1

. (4)

In the objective function above, Ω
def
= {L ∈ R

p×p : ‖L‖∞ ≤ α
p }

corresponds to the set of p× p matrices whose elements do

not exceed a threshold, thus limiting their “spikeness” and

consequently limiting the radius of non-identifiability; λ1,n,

λ2,n and λ3,n are non-negative tuning parameters controlling

the two regularization terms. The parameter α constrains the

strength of the signal originating from the low rank component;

in other words, it controls the degree of non-identifiability of

the coefficients allowed in the model. Due to the assumption H2

presented below, we can derive a relationship between α and

the information ratio γ, since γ ∝ α−1. Hence, we obtain that

Ω
def
= {L ∈ R

p×p : ‖L‖∞ ≤ C0

pγ } for some constantC0 > 0, and

in all subsequent developments we work with γ instead of α.

The basic idea of adding a block fused lasso penalty in the

objective function is to expand the space of feasible solutions to

make the estimation step flexible enough, so as not to miss any

true break points, when the tuning parameters are appropriately

tuned; the latter need to be selected in such a manner, so as not

to lead to too many false positives (wrongly estimated break

points). Finding the appropriate/optimal tuning parameter rate

is a crucial step in verifying the probabilistic guarantees in

fused lasso based procedures [42]. Notice that the space of

feasible solutions for problem (4) consists of all pairs (C,D)

Authorized licensed use limited to: University of Florida. Downloaded on June 09,2020 at 17:19:59 UTC from IEEE Xplore.  Restrictions apply. 



BAI et al.: MULTIPLE CHANGE POINTS DETECTION IN LOW RANK AND SPARSE HIGH DIMENSIONAL VECTOR AUTOREGRESSIVE MODELS 3077

such that the square p-dim matrix C is low-rank and belongs to

the space Ω, while the matrix D ∈ R
pkn×p is sparse. Based on

Assumption H3, the number of blocks kn is much larger than

m0. This expansion on the space of model parameters is a crucial

development in Step 1.

Remark 1: The computational complexity of estimating the

sparse components in (4) is of order O(knp
2) [10]. If the size

of the blocks is set to 1 (i.e. bn = 1) the method would revert

to a standard fused lasso penalty [42]. However, to speed up

computations, we allow bn to increase as a function of the

sample size. On the other hand, larger values of bn may lead

to detection loss, in the presence of closely spaced true break

points. Therefore, there is a trade-off between achieving faster

computations vs detection accuracy, controlled by the block

sizes and properly quantified in Assumption H3.

The estimator defined in (4) may not be a consistent estimator

of the model parameters, since the design matrix Z does not

satisfy the restricted eigenvalue assumption which is needed

for verifying consistency [9]. Instead, this estimator exhibits

the following two properties: (a) Prediction consistency; (b)

Over-estimation of the number of break points. These two

properties make this step suitable for obtaining an initial set

of good candidate break points. To consistently identify the true

ones, a screening step (presented below) is required.

Before stating our main results, we introduce the following

assumptions:

H1 For all j = 1, 2, . . . ,m0 + 1 we have d�j � p2, i.e. the

S�
j are sparse. Further, there exists a positive constant

MS > 0 such that

max
1≤j≤m0+1

∥∥S�
j

∥∥
∞ ≤ MS .

H2 Define the information ratio

γ =

∥∥S�
j

∥∥
∞

‖L�‖∞
, for j = 1, 2, . . . ,m0 + 1.

Then, with fixed γ, we obtain that ‖L�‖∞ ≤ γ−1MS by

H1. In this model, we recommend choosing γ in the range

γ ≥ 1.

H3 There exists a positive constant v such that

min
1≤j≤m0

‖S�
j+1 − S�

j ‖2 ≥ v > 0.

Moreover, letting ∆n = min1≤j≤m0
|tj+1 − tj | and

d�n =
∑m0+1

j=1 d�j , there exists a vanishing positive se-

quence γn such that, as n → +∞,

∆n

nγn
→ +∞, lim sup

bn
nγn

≤ C <
1

12
,

d�n log p

nγn
→ 0 and

r�p

nγn
→ 0.

Assumption H1 is standard in the high-dimensional liner re-

gression literature, while Assumption H2 ensures identifiablity

of the model parameters, as discussed in Section II. Assumption

H3 links the detection rate to the tuning parameters selected in

the estimation step and the block sizes. This assumption also

provides a minimum distance-type requirement on the elements

of Bj across different segments, which can be regarded as the

counterpart of Assumption A3 in [44], Assumptions A2 and A3

in [24], and Assumptions H2 and H3 in [13].

Theorem 1: Assume that H1 and H2 hold. Select λ1,n =

2C1

√
p
n , λ2,n = 2C2

√
logn+2 log p

n for some C1, C2 > 0 and

λ3,n = o((nd�n)
−1), and further assume m0 ≤ mn with mn =

o(λ−1
2,n). Then, by also imposing the restricted space Ω con-

straint, the optimal solution to (4) satisfies the following result

with high probability, werein the positive constant C0 is defined

in (4)

1

n

∥∥∥X (L̂− L�) + Z(Θ̂−Θ�)
∥∥∥
2

2
≤ 4C1

C0

γ

√
r�

n

+ 2MSλ2,nmn max
1≤j≤m0+1

{
d�j + d�j−1

}
+ o(1). (5)

Theorem 1 establishes prediction consistency for the first

step in the proposed strategy, assuming that the total number

of break points allowed is upper bounded properly. The fused

lasso tuning parameter in equation (4) isλ2,n and its optimal rate

to establish prediction consistency is λ2,n = 2C2

√
logn+2 log p

n

for some C2 > 0, as stated in Theorem 1. Higher rates for this

tuning parameter will miss true break point and thus compromise

prediction consistency, while lower rates may lead to having too

many false positives which is going to be detrimental for change

point detection and it will also increase the computation time for

other steps in the proposed procedure.

The next theorem shows that under a suitable choice of the

tuning parameters, the selected break points in this first step are

an overestimate of the true number of break points in the model.

Further, it asserts that no true break point is isolated, in the sense

that there exists a candidate change point close by.

Before stating the next theorem, we need some additional

definitions. Let An = {t1, . . . , tm0
} be the set of true change

points, and Ân = {t̂1, . . . , t̂m̂} be the set of estimated candidate

change points. Following [11] and [13], we define the Hausdorff

distance between two countable sets on the real line as

dH(A,B) = max
b∈B

min
a∈A

|b− a|.

Note that this definition is not symmetric and therefore not a

real distance. Nevertheless, this version of function dH(A,B)
is adequate for the result established in the next theorem.

Theorem 2: Suppose H1–H3 hold. Choose the tuning pa-

rameters as λ1,n = C1
bn
n

√
p

nγn
, λ2,n = 2C2

√
logn+2 log p

n and

λ3,n = C3
bn
n

√
log p
nγn

for some large constants C1, C2, C3 > 0.

Then, as n → +∞,

P(|Ân| ≥ m0) → 1,

and

P(dH(Ân,An) ≤ nγn) → 1.

Remark 2: In Theorem 2, We express the tuning param-

eters λ1,n and λ3,n in different forms. Note that under the

setting in Theorem 2, the quantities bn
n

√
p

nγn
and nd�nλ3,n

equal to bn
nγn

√
γn
√

p
n and C3bn

√
d�n

√
d�
n log p
nγn

, respectively.
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Further, we have a positive vanishing sequence {γn} satisfy-

ing lim sup bn
nγn

≤ C < 1
12 and

d�
n log p
nγn

→ 0 in assumption H3,

which yields to λ1,n ∝ C1

√
p
n and λ3,n = o((nd�n)

−1). These

calculations confirm that the tuning parameters are of the same

order in both Theorems 1 and 2.

B. Step 2: Screening

Since the set of estimated break points Ân is a superset ofAn,

we require another step to screen out redundant points in this set.

For the screening step, we need to reformulate our model and

further note that the parameters defined are different from those

in the first step. Specifically, suppose that we have already se-

lectedm candidate change points based on the previous step:1 =
s0 < s1 < · · · < sm < sm+1 = n. Define the following matri-

ces: Xsj = [Xsj−1
, . . . , Xsj−1], Ysj = [Xsj−1+1, . . . , Xsj ] for

j = 1, 2, . . . ,m+ 1, respectively. Then, the combined matrices

across all segments become X = [Xs1 , . . . ,Xsm ]′ and Y =
[Ys1 , . . . ,Ysm ]′. Further, the block diagonal design matrix is

defined by Zs1,...,sm = diag(Xs1 , . . . ,Xsm+1
) ∈ R

n×(m+1)p,

and the corresponding coefficient matrix is given byΘs1,...,sm =
[θ′(1,s1), θ

′
(s1,s2)

, . . . , θ′(sm,n)]
′ ∈ R

(m+1)p×p. Specifically, by

using the notations we defined, we form the following linear

regression

Y = Zs1,...,smΘs1,...,sm + XL+ Ξ, (6)

where Ξ
def
= [ξ1, ξ2, . . . , ξn]

′ ∈ R
n×p is the error term.

Therefore, we estimate Θs1,...,sm and L as the optimal so-

lution of the following regularized optimization problem for all

selected segments with different tuning parameters η(si−1,si), for

i = 1, 2, . . . ,m+ 1.

(L̂, Θ̂s1,...,sm)

= argmin
L,Θs1,...,sm

m+1∑

i=1

1

si − si−1

∥∥Ysi −Xsi(θ(si−1,si) + L)
∥∥2
2

+ η(si−1,si)‖θ(si−1,si)‖1 + ηL‖L‖∗. (7)

Next, we define the following objective function with tuning

parameter vector ηn
def
= (η(s0,s1), η(s1,s2), . . . , η(sm,sm+1)):

Ln(s; ηn) =
∥∥∥Y − Zs1,...,smΘ̂s1,...,sm −X L̂

∥∥∥
2

F

+

m+1∑

i=1

η(si−1,si)‖θ̂(si−1,si)‖1 + ηL‖L̂‖∗, (8)

where s = (s1, . . . , sm). Then, for a penalty sequence ωn

(which can be selected in accordance to assumption H4 below),

we consider the following information criterion

IC(s; ηn) = Ln(s; ηn) +mωn. (9)

The second step of our strategy selects a subset of initial m̂
change points derived from (4) by solving

(m̃, t̃j ; j = 1, 2, . . . , m̃) = argmin
0≤m≤m̂,s∈Ân

IC(s; ηn). (10)

To establish consistency properties of the screening procedure,

we need the following two additional assumptions.

H4 Assume that

m0nγn(d
�
n
2 + r�2)

ωn
→ 0 and

∆n

m0ωn
→ +∞.

H5 There exists a large positive constant c > 0 such that

(a) if |si − si−1| ≤ nγn, then η(si−1,si) = c
√
nγn log p

and ηL = c
√
nγnp; (b) if there exists tj and tj+1

such that |si−1 − tj | ≤ nγn and |si − tj+1| ≤ nγn, then,

η(si−1,si) = 2(c
√

log p
si−si−1

+MSd
�
n

nγn

si−si−1
) and ηL =

2c
√

p
nγn

; (c) otherwise, η(si−1,si) = 2(c
√

log p
si−si−1

+

MSd
�
n) and ηL = 2c

√
p

nγn
.

Assumption H4 connects the penalty term ωn defined in the

information criterion to the minimum spacing allowed between

break points. Assumption H5 specifies the magnitude (rate) of

the tuning parameters used in the least squares problem given in

(7). Note that assumptions on the rate of the tuning parameter

of the penalty are needed even in lasso regression problems

for independent and identically distributed data and without

break points for (see e.g. [47]). In the presence of break points,

one works with misspecified models and hence a more careful

and complex selection of the various tuning parameters are

required [12], [13], [44].

Theorem 3: Suppose assumptions H1–H5 hold. Then, as

n → +∞, the minimizer (m̃, t̃j ; j = 1, 2, . . . , m̃) of (10) sat-

isfies

P(m̃ = m0) → 1.

Moreover, there exists a positive constant B > 0 such that

P

(
max

1≤j≤m0

|t̃j − tj | ≤ Bm0nγn(d
�
n
2 + r�2)

)
→ 1.

Remark 3: For the case of finite m0, the sequence γn can

be chosen as γn = (rp+d�
n log p)1+v/2

n for some small v > 0. As-

suming that the low-rank component and total degree of sparsity

satisfyd�n
2 + r�2 = o((rp+ d�n log p)

v/2), then the consistency

rate for identifying the relative location of true break points

-tj/n- is of the order (rp+ d�n log p)
1+v/n in Theorem 3.

Finally, in this setting, ωn can be chosen as (rp+ d�n log p)
1+2v

and the minimum spacing allowed between consecutive break

points - ∆n- must be at least of order (rp+ d�n log p)
1+3v .

Comparing the consistency rates with those in Theorem 3 in [44],

we observe that the additional term rp captures the complexity

introduced in the model due to the need to estimate the unknown

low-rank component.

Remark 4: If r = 0 (no low-rank component present in the

model), the consistency results are similar to those in [44].

Specifically, Theorem 3 could be seen as an extension of

Theorem 3 in [44]. Further, whenever r = 0, the total number

of time series components could be of order o(en), while for

r ≥ 1, we must have p = o(n) since the low-rank component in

each transition matrix is potentially dense. This is similar to the

stationary (no break points) case discussed in [8].
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C. Step 3: Consistent Parameter Estimation

The main idea to consistently estimate the model parameters

is that Theorem 2 and Theorem 3 indicate that removing the

estimated change points together with an adequate Rn-radius

neighborhood around them will also remove the true change

points. Hence, the remainder time segments would be stationary.

Theorem 2 points out that the radius Rn can be as small as nγn,

while Theorem 3 establishes that this radius should be at least

Bm0nγn(d
�
n
2 + r�2) for some large constant B > 0, in order

to drop out redundant change points.

Given the results in Theorem 3, suppose that we have selected

m0 change points using the screening procedure. Denote these

estimated change points by t̃1, t̃2, . . . , t̃m0
. Then, by Theorem 3,

we have

P

(
max

1≤j≤m0

|t̃j − tj | ≤ Rn

)
→ 1,

as n → +∞. Denote the neighborhood of t̃j as Ij+1 =
[rj2, r(j+1)1] for j = 0, 1, . . . ,m0, where rj1 = t̃j −Rn − 1

and rj2 = t̃j +Rn + 1 for j = 1, 2, . . . ,m0 and let r02 = 1
and r(m0+1)1 = n. Then, we formulate a regularized linear

regression on
⋃m0

j=0 Ij+1 and estimate the sparse and low rank

components of VAR parameters.

Similar to Theorem 1, we consider estimating the transition

matrices in each obtained segment separately through a regu-

larized linear regression method. Specifically, for interval Ij+1,

we can write the following linear regression

Yj = Xj(Sj + L) + εj , (11)

where we analogously define the matrix variables Yj =
[Xrj2 , . . . , Xr(j+1)1

]′, Xj = [Xrj2−1, . . . , Xr(j+1)1−1]
′ and εj is

the corresponding error term. LetNj be the length of the interval

Ij+1 for j = 0, 1, . . . ,m0 and N =
∑m0

j=1 Nj . Then, Xj and

Yj ∈ R
Nj×p, Sj and L ∈ R

p×p. We simultaneously estimate

the low rank and sparse components of the VAR transition

matrices in each stationary interval Ij+1 by solving the following

restricted regularized optimization problem

(L̂, Ŝj) = argmin
L∈Ω,Sj

1

Nj
‖Yj −Xj(Sj + L)‖2F

+ ρj‖Sj‖1 + ρL‖L‖∗. (12)

Then, the error bound for each estimated segment is:

Theorem 4: Suppose assumptions H1–H5 hold, m0 is un-

known and Rn = Bm0nγn(d
�
n
2 + r�2). Assuming that ρj =

C1

√
logNj+2 log p

Nj
+ C2

τ
pγ and ρL = C ′

1 maxj
√

p
Nj

for some

large enough constants C1, C
′
1, C2 > 0 and curvature parameter

τ > 0 in the restricted strong convexity assumption [37] . Then,

as n → +∞, the optima (L̂, Ŝj) of (12) satisfies

‖Ŝj − S�
j ‖2F + ‖L̂− L�‖2F = O

(
r�p+ d�j log p

Nj
+

d�j
p2γ2

)
.

In order to consider all segments simultaneously, the length

of estimated segments must be similar to each other, otherwise

the error rate may not be optimal. In the next Theorem, we

assume ∆n > δn for some positive constant δ in order to ensure

that all Nj’s are of the same order n. Then, when considering

all estimated segments simultaneously, (11) can be written into

another matrix form as follows

Yr = Xr(S+ 1m0+1 ⊗ L) + Er,

where the coefficient matrix is S = [S ′
1, S

′
2, . . . , S

′
m0+1]

′ and

1m0+1 = [1, 1, . . . , 1]′ ∈ R
(m0+1)×1; the design matrix is given

by Xr = diag(X1, . . . ,Xm0+1), the response matrix is Yr =
[Y ′

1, . . . ,Y ′
m0+1]

′ and the corresponding error matrix is de-

fined asEr = [ε′1, . . . , ε
′
m0+1]

′. LetN =
∑m0

j=0 Nj . Then,Xr ∈
R

N×(m0+1)p, Yr ∈ R
N×p, and Er ∈ R

N×p; S ∈ R
(m0+1)p×p.

Then, solving the following restricted regularized optimization

problem

(L̂, Ŝ) = argmin
L∈Ω,S

1

N
‖Yr −Xr(S+ 1m0+1 ⊗ L)‖2F

+ ρn‖S‖1 + ρL‖L‖∗.

yields the desired estimates, for which we establish the following

error bound.

Theorem 5: Suppose assumptions H1–H5 hold, m0 is un-

known and define Rn = Bm0nγn(d
�
n
2 + r�2). Assume that

∆n > δn for some large positive constant δ, and ρn =

C1

√
logN+2 log p

N + C2
τ
pγ ,ρL = C ′

1

√
p
N for some large enough

constants C1, C2, C
′
1 > 0 and curvature parameter τ > 0 in the

restricted strong convexity assumption [37] . Then, asn → +∞,

the optimal (L̂, Ŝ) satisfies

‖Ŝ− S
�‖2F + (m0 + 1)‖L̂− L�‖2F

= O
(
r�pm0 + d�n log p

N
+

d�n
p2γ2

)
.

Remark 5: The above Theorems provide a simultaneous er-

ror bound for the low-rank and sparse components. Note that

a separate error bound for each component can not be derived,

which is also the case for i.i.d. data and in the absence of a

change point, as discussed in [1], or for stationary data in [8].

Therefore, as seen in the statement of Theorems 4 and 5, the

error bound provided comprises of two key terms. The first term

corresponds to the estimation error. For a given model, this term

converges to zero as the sample size increases. The second term

reflects the lack of exact identifiability of the model parameters,

and only depends on the model size p, the total sparsity d�n, and

the information ratio γ and does not vanish even in the presence

of infinite samples.

Remark 6: All optimization problems introduced in our

methodology including (4), (7) and (12) are convex and can be

solved by proximal gradient methods by combining algorithms

developed in [8] and [44]. To speed up the detection procedure,

new and fast algorithms are defined which approximate the

minimizers in the three steps numerically (see details in the

Supplement). These algorithms are implemented and used in

our numerical experiments and the results in Section IV show

their good performance.
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Fig. 1. Left: True structure of transition matrices for scenarios A-D and F.
Right: True structure of transition matrices for scenario E.

IV. PERFORMANCE EVALUATION

Next, we present results from several numerical experiments

that evaluate the performance of the proposed strategy for de-

tecting change points and also estimating the VAR parameters

of the posited model. The time series data {Xt} with m0 change

points are generated from the model Xt = B′
jXt−1 + εt, where

Bj = L� + S�
j and t ∈ (t�j−1, t

�
j ) for j = 1, 2, . . . ,m0. We set

the true rank r� = �p/15�+ 1 and the block size bn =
√
n for

the BFL step unless otherwise specified. We also set the con-

vergence tolerance to 10−1 for the BFL step to select candidate

break points and 10−3 for the estimation (3 rd) step. We set the

information ratio γ = 4 (defined in H2) for most settings (i.e.

we set α = p/4 in the constrained space Ω previously defined).

We investigate smaller values for γ in scenario D and higher

dimension p in scenario F as well.

There are a number of factors potentially influencing the

performance of the strategy; in particular, the number of time

series p, the sample size n, the location of change points, the

rank ofL� and the information ratio γ. In this section, we mainly

consider the following scenarios.

The transition matrices have the same structure, but differ-

ent magnitudes. Fig. 1 illustrates the 1-off diagonal structure

for transition matrices with values −γ‖L�‖∞, γ‖L�‖∞ and

−γ‖L�‖∞, respectively. We set γ = 4 and the locations of two

change points at t�1 = �n/3� and t�2 = �2n/3�.

A. Scenarios Examined

A. In the first scenario, the principle factor investigated is

sample size and we examine three different sample sizes.

B. In this scenario, we investigate how different choices for

rank influence performance. We consider both small and

larger ranks.

C. In this scenario, we consider settings involving different

number of change points. Specifically, we examine the

following two cases: (a) t�1 = �n/6�, t�2 = �n/3� and

t�3 = �2n/3�; (b) T = 600 with t�1 = �n/6�, t�2 = �n/4�,

t�3 = �n/3�, t�4 = �2n/3� and t�5 = �5n/6�. It should be

noted that we adopt smaller block sizes bn =
√
n/2 or

bn =
√
n/5 for the BFL step in order to obtain a better

result in this experiment.

D. In this scenario, we investigate a lower information ratio

γ = 2. As mentioned in the theory section, γ is a crucial

factor for identifying and estimating the low rank and

sparse components and hence detecting change points.

E. In this scenario, we consider a random sparse compo-

nent, instead of 1-off diagonal sparse component. We also

examine a combination of diagonal and random sparse

TABLE I
MODEL PARAMETERS UNDER DIFFERENT SCENARIO SETTINGS

structures and evaluate the performance under levels of

sparsity for the latter components. The right panel in Fig. 1

depicts the random structure employed.

F. In this scenario, we examine the effect of the dimension

p (number of time series). We consider three different

dimension settings with two change points at locations

t�1 = �n/3� and t�2 = �2n/3�.

Table I summarizes all the model parameters in the various

scenarios discussed above.

B. Tuning Parameter Selection

There are a number of tuning parameters in the developed

three-step strategy: λ1,n, λ2,n, λ3,n, ηn, ηL, ωn, Rn, ρL and

ρj for j = 1, 2, . . . ,m0. Although the theoretical rates for these

tuning parameters are provided in the theory section, their se-

lection in finite sample applications should be further discussed.

Next, we provide guidelines for selecting them.

λ1,n: We use fixed λ1,n in accordance to the nature of the

application. In most cases, we manually choose λ1,n in

the range [
√

p
n , 10

√
p
n ].

λ2,n: We can select λ2,n through cross-validation. In the sim-

ulation study, we randomly select 20% of the blocks

equally spaced with a random initial point. Denote the last

time point in these selected blocks by T . Data without

observations in T can then be used in the first step of

our procedure to estimate Θ for a range of values for

λ2,n. The parameters estimated in the first step are used

to predict the time series at time points in T . The value of

λ2,n which minimizes the mean squared prediction error

over T is the cross-validated choice of λ2,n.

λ3,n: As previously discussed, the rate for λ3,n vanishes fast

as n increases. Thus for simplicity, we suggest setting

λ3,n to zero. This choice was used in all of the numerical

experiments in this paper and it gives satisfactory results.

ηL: This parameter is set to be the same as λ1,n.

ρL: This parameter is suggested to be kept fixed; in practice,

it was set in the range [
√

p
n , 10

√
p
n ].

ρj : Finally, we need to select the tuning parameters ρj for

sparse estimation in each selected segment. We select ρj
as the minimizer of the Bayesian Information Criterion

(BIC) for the j-th segments. For j = 0, 1, . . . , m̃, We
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Fig. 2. Left panel: Box-plot for estimated change points for all 50 simulation
replicates under scenario C.1. Right panel: Mean results for estimated change
points (black lines) and true change points (red lines).

TABLE II
RESULTS FOR CHANGE POINT SELECTION UNDER PARAMETERS

SETTINGS IN TABLE I

define the BIC on the interval Ij+1 = [rj2, r(j+1)1] as

follows:

BIC(ρj) = log det Σ̂ε,j +
log(r(j+1)1 − rj2)

(r(j+1)1 − rj2)
‖Ŝj+1‖0,

where Σ̂ε,j is the residual sample covariance matrix with

L̂ and Ŝj estimated in (12), and ‖Ŝj+1‖0 is the number

of non-zero elements in Ŝj+1.

The remaining tuning parameters can be selected based on the

choices mentioned in [44].

C. Simulation Results

We evaluate the empirical performance of our algorithm by

considering the mean and standard deviation of the estimated

TABLE III
PERFORMANCE EVALUATION OF LOW-RANK COMPONENT UNDER

DIFFERENT MODEL SETTINGS

TABLE IV
PERFORMANCE EVALUATION OF SPARSE COMPONENTS UNDER

DIFFERENT MODEL SETTINGS
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Fig. 3. The detected change points corresponding to the following times and events: t̂1 = 115 first man walks out of lobby; t̂2 = 173 two men walk in to lobby;

t̂3 = 231 two men keep walking in to lobby; t̂4 = 289 two men stand together; t̂5 = 347 two men stand closer; t̂6 = 405 two men walk together; t̂7 = 463 two

men walk out of lobby; t̂8 = 521 two men walk to the door; t̂9 = 579 two men walk through the door; t̂10 = 637 two men already exit; and t̂11 = 695 empty
lobby.

Fig. 4. Selected segments and the corresponding sparse component of the time varying transition matrices. From left to right, we illustrate the 1st, 4th, 6th, and
11th estimated segments.

change point locations relative to the sample size, i.e. t̃j/n,

and the percentage of simulation runs where change points

are correctly detected. A detected change point is counted as

a success for the j-th true change point, if it falls in the selection

interval: [tj−1 +
tj−tj−1

5 , tj +
tj+1−tj

5 ]. Moreover, we use the

estimated rank, sensitivity (SEN), specificity (SPC) and relative

error in Frobenius norm (RE) (all defined next) as additional

criteria to evaluate the performance of the estimates of low rank

and sparse components of transition matrices.

SEN =
TP

TP + FN
, SPC =

TN

FN + TN
,

RE =
‖Est. − Truth‖F

‖Truth‖F
.

As an illustration of the variability of the estimates, Fig. 2

depicts the estimated change points (left-panel boxplot of the

estimates and right panel mean of the estimates) based on 50

replicates in scenario C.1. It shows that the proposed strategy

estimates the change points with high accuracy.

The results in Table II illustrate the performance of change

point detection for each of the settings considered in Table I.

For most of the cases in scenarios A and B, the implemented

algorithm provides a near perfect performance. In scenario C,

we considered multiple changes. As expected, for those change

points close to the boundary of the observation interval (or other

change points), the selection rate exhibits a slight deterioration.

In scenarios D, E and F, we still obtain a perfect selection rate

even under the weaker sparse signal (scenario D) and the high
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dimensional settings (scenario F). Overall, the results in Table II

are highly satisfactory and clearly show that the proposed strat-

egy is highly accurate in detecting both the number of change

points and also their locations.

Tables III and IV present the performance of the estimation

step. It is worth mentioning that for most of the simulation

results, less than 20 iterations were needed to obtain the minimiz-

ers of the corresponding regularized optimization problems. The

regularization parameters are selected based on the guidelines

previously provided. The results strongly support the effective-

ness of the strategy and the algorithms used in each step. One can

easily see that all parameters are estimated with a high degree

of accuracy. As expected, when the rank increases, a greater

portion of the signal strength is absorbed into the low rank

component and thus the estimation of the sparse components

becomes less accurate. This is illustrated in the B.1, B.2 and B.3

settings of Table IV. Another interesting experiment is setting

D.1, in which sparse components do not provide a strong signal;

therefore, the estimation results for the sparse components under

D.1 exhibit less accuracy compared to scenario A.2. The result

for scenario E.1 demonstrates that our strategy and algorithm

have high sensitivity and specificity for the sparse estimates

and accurate estimation of the rank for the low rank component

on the random sparse pattern as well. The last three results for

scenario F illustrate the performance for larger size models; the

results indicate that the proposed strategy is robust under higher

dimensional settings.

V. REAL DATA APPLICATIONS

A. Surveillance Video Data Set

The proposed detection algorithm is applied to a surveillance

video data set obtained from the CAVIAR project.2 A number

of video clips record different actions by people in diverse

settings, including walking alone, meeting with others, entering

and exiting a room, etc. The resolution of each image is based on

the half-resolution PAL standard (384× 288 pixels, 25 frames

per second). We analyzed the Two other people meet and walk

together data set, comprising of 827 images.

We first re-sized the original images from 384× 288 pixels

to 32× 24 pixels and used a gray-scaled scheme instead of the

original colored image to accelerate computations. Therefore,

the resulting data matrix has n = 837 time points and p = 32×
24 = 768 features.

The proposed model is perfectly suited for this task, since

there is a non-changing low-rank component corresponding to

the stationary background of the space surveyed, while the

changing sparse component corresponds to movement of people

in and out of the space in the evolving foreground.

Fig. 3 depicts the selected change points by the algorithm and

the nature of the change is illustrated by a representative frame

from the original video. Given the complexity of the background,

a rank 18 component was selected to capture it. In Fig. 4, we

also show the most significantly changing pixels captured in

the sparse component of transition matrix for the 1st, 4th, 6th,

2http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/

TABLE V
DETECTED CPS BY THE L+S VAR AND A FACTOR MODEL

Fig. 5. Detected change points in the log-returns data during the 2001-2016 pe-
riod. Red dashed lines are change points selected by Factor Analysis Model [5];
blue solid lines indicate the change points selected by our model.

Fig. 6. Connectivity for each estimated sparse components in different se-
lected time periods. 1/2/01-2/12/02 period: 4.3%; 2/12/02 - 9/3/02 period: 3.0%;
9/3/02 - 3/18/03 period: 5.1%; 3/18/03 - 7/17/07 period: 4.5%; 7/17/07 - 2/12/08
period: 6.6%; 2/12/08 - 8/26/08 period: 7.6%; 8/26/08 - 3/10/09 period: 10.7%;
3/10/09 - 10/19/10 period: 6.4%; 10/19/10 - 1/28/14 period: 7.8%; 1/28/14 -
9/8/15 period: 6.3%; 9/8/15 - 12/27/16 period: 6.6%.

11th estimated segments, respectively. Specifically, for the j-th

estimated interval, the (k, l) elements in Ŝj reflect the partial

autocorrelation between pixels k and l in the original image.

Therefore, we selected the largest 20 elements in Ŝj and mapped

the pixels to the original image.

B. Stock Data

Next, we employ the proposed detection strategy to identify

change points in weekly financial stock price data, covering
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Fig. 7. Estimated connectivity based on selected time periods. Left: Structure of the connections in the pre-crisis period and has 62 edges; Middle: Structure of
the connections among selected companies during the crisis period and has 228 edges; and Right: Structure of the connections in the post-crisis period and has 114
edges.

the 2001–2016 period. Extensive work in asset price theory

indicates that stock log-returns can be accounted for by a

few stable factors (either extracted through a statistical factor

(low-rank) model [34], or constructed from a large scale di-

verse portfolio [18], [19]). The stocks in our analysis corre-

spond to 52 stocks of banks, insurance companies and stock

brokers that have complete data in the aforementioned time

period.

We compared our model with factor analysis model proposed

in [5]. Table V illustrates the ten change points selected by

our strategy, along with seven change points identified by a

competing procedure based on a factor analysis model [5].

Fig. 5 provides an overall picture of the selected change points

based on the simplified version of the change point detection

algorithm to select candidates in the first step (blue lines)

compared with those detected by the factor analysis model

(dashed red lines).

The overall (normalized) density of the time varying sparse

component based on a 3-factor model is plotted in Fig. 6. The

decision to use 3-factors was based on an examination of the

singular values; for a 3-factor model they were 1.60, 0.094

and 0.054, while for a 5-factor model they were 2.29, 0.30,

0.11, 0.05, 0.04. It can be seen that the even for the 5-factor

model, the first three singular values capture 95% of the total

variance, while the last two contribute very little. We also

conducted a residual analysis for model selection. Specifically,

after obtaining the estimated L̂ and Ŝj for m̂+ 1 segments,

we derive the residuals for the j-th segment: et = Xt − X̂t, for

t ∈ [t̂j , t̂j+1 − 1]. Then, the sum of squared residuals is given

by
∑m̂+1

j=1
1

t̂j+1−t̂j

∑t̂j+1−1

t=t̂j
‖et‖22. Naturally, a model is more

suitable if this quantity is smaller. For the rank 3 and rank

5 component models the corresponding values are 1.569 and

1.582, respectively. This result indicates that a rank 3 component

is preferable.

Our model identifies ten change points corresponding to ma-

jor economic/financial shocks that occurred during the period

under consideration and impacted in particular the performance

of financial stocks. Specifically, the two 2002 change points

cover the period when the telecommunications bubble popped

following that of the dot-com crash and drove the NASDAQ

index significantly lower, thus markedly affecting market sen-

timent. The first change point in 2008 precedes the collapse of

Bear Sterns (early March 2008), while the second one that of

Lehman Brothers (mid-September 2008), while the first one in

2009 marks the end of the sharp market downturn following the

Great Recession. The next three change points capture shocks

(affecting in particular financial stocks) related to the European

sovereign debt crisis that involved significant downgrades of

the debt of several European Union countries, bailouts and

recapitalization of banks and in general a lot of market distress.

Finally, the September 2015 change point captures the severe

market downturn spanning most of late 2014 and beginning

of 2015 time period. In contrast, the factor analysis based

model, detects only seven change points (in fact, the third and

fourth are too close to be identified as two independent change

points), and does not identify any change points after 2010.

Further, the location of the 2008 change point is two months

before the collapse of Lehman Brothers, whereas our strategy

identifies one three weeks before that event. Further, our model

and strategy identify the turn of the market in early March

of 2009, which coincides with the bottom that various stocks

indices hit, while the factor model locates it in early September

of 2009.

Fig. 7 provides the significant connectivity for the following

three different time periods: March 2003–July 2007, August

2008–March 2009, October 2010 – January 2014 which cor-

respond to instances before the financial crisis of 2008 (pre-

crisis period), the apex of the crisis and the post-crisis period,

respectively.

VI. CONCLSION

In this paper, we developed a three-step strategy to detect the

(unknown) break points and estimate the transition matrices in

a high-dimensional VAR model in which the latter are assumed

to be a superposition of a low-rank and a sparse component. The

fixed, but unknown low-rank component introduces algorithmic

challenges, since it needs to be estimated together with the other

dynamically evolving parameters. From a technical perspective,

the estimation of the low-rank part impacts the sum of squared

error terms (SSEs), which is quantified in the consistency rates

developed in Section III. Note that the developed methodology

can be extended to VAR(d) with d > 1 in a similar way as

discussed in [8]. Extension of the current framework to cases

where the low-rank part could also change over time in a

piece-wise manner constitutes an interesting future research

direction which not only complicates the detection problem, but

also requires a thorough investigation of associated identifiablity

issues.
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APPENDIX

Proof of Theorem 1: By the definition of Θ̂ and L̂, we obtain

that

1

n
‖Y − X L̂−ZΘ̂‖22 + λ1,n‖L̂‖∗ + λ2,n‖Θ̂‖1

+ λ3,n

kn∑

l=1

∥∥∥∥∥

l∑

j=1

θ̂j

∥∥∥∥∥
1

≤ 1

n
‖Y − XL� −ZΘ�‖22

+ λ1,n‖L�‖∗ + λ2,n‖Θ�‖1 + λ3,n

kn∑

l=1

∥∥∥∥∥

l∑

j=1

θ�j

∥∥∥∥∥
1

. (13)

Denote by A = {t0, t1, . . . , tm0
} the set of true change points

and also define ∆̂L = L̂− L�, ∆̂Θ = Θ̂−Θ�. Using the con-

ditions on λ1,n, λ2,n and λ3,n to obtain:

1

n

∥∥∥X ∆̂L + Z∆̂Θ

∥∥∥
2

2
≤ 2

n
∆̂′

LX ′E +
2

n
∆̂′

ΘZ ′E

+ λ1,n(‖L�‖∗ − ‖L� + ∆̂L‖∗) + λ2,n(‖Θ�‖1

− ‖Θ� + ∆̂Θ‖1) + λ3,n

kn∑

l=1

⎛
⎝
∥∥∥∥∥∥

l∑

j=1

θ�j

∥∥∥∥∥∥
1

−

∥∥∥∥∥∥

l∑

j=1

θ̂j

∥∥∥∥∥∥
1

⎞
⎠

≤ 2

∥∥∥∥
X ′E
n

∥∥∥∥
op

‖∆̂L‖∗ + 2

∥∥∥∥
Z ′E
n

∥∥∥∥
∞
‖∆̂Θ‖1

+ λ1,n(‖L�‖∗ − ‖L� + ∆̂L‖∗)− λ2,n

∑

i∈Ac

‖θ̂i‖1

+ λ2,n

∑

i∈A

(
‖θ�i ‖1 − ‖θ̂i‖1

)
+ λ3,n

kn∑

l=1

bn‖S�
j ‖1

≤ λ1,n‖∆̂L‖∗ + λ1,n(‖L�‖∗ − ‖L� + ∆̂L‖∗)

+ 2λ2,n

∑

i∈A
‖θ�i ‖1 + λ3,n(nd

�
n)

≤ 2λ1,n‖L�‖∗ + 2λ2,n

∑

i∈A
‖θ�i ‖1 + o(1)

≤ 4C1

√
r�pC0(pγ)

−1

√
p

n

+ 4C2mn max
1≤j≤m0+1

{
d�j + d�j−1

}
×

MS

√
log n+ 2 log p

n
+ o(1) (14)

According to the definition of the information ratio γ and

recalling the selection of λ2,n, we can obtain the posited

result. �

Before we prove Theorem 2, we introduce the following two

sets of sub-spaces {I, Ic} and {LA,LB} corresponding to some

generic sparse matrix S ∈ R
p1×p2 and some generic low-rank

matrix L ∈ R
p1×p2 , in which the �1 norm and nuclear norm are

decomposable [37]. First, let J be the set of indices in which

the sparse matrix S is non-zero. We then define the following

sub-spaces

I := {P ∈ R
p×p | Pij = 0 for (i, j) �∈ J },

Ic := {P ∈ R
p×p | Pij �= 0 for (i, j) ∈ J }.

Then, for an arbitrary matrix M , M |I ∈ I is obtained by as-

signing the entries of M whose indices are not in J to 0, and

M |Ic ∈ Ic is obtained by assigning the entries of M whose

indices are in J to 0. Then, the following decomposition for the

�1 norm holds

‖M‖1 = ‖(M |I +M |Ic)‖1 = ‖M‖1,I + ‖M‖1,Ic ,

where ‖A‖1,I =
∑

(j,k)∈J |ajk|. Let the singular value decom-

position of L be L = UΣV ′ with U and V being orthogonal

matrices. Analogously, we define the following subspaces

LA := {∆ ∈ R
p1×p2 | row(∆) ⊂ V r and col(∆) ⊂ Ur},

LB := {∆ ∈ R
p1×p2 | row(∆) ⊥ V r and col(∆) ⊥ Ur},

where r = rank(L), and Ur and V r denote the first r columns

of U and V corresponding to the first r singular values of L.

Therefore, we consider the restricted sub-matrices on the sub-

spaces {LA,LB} given by

LA = U

[
L̃11 L̃12

L̃21 O

]
V ′ and LB = U

[
O O

O L̃22

]
V ′,

where L̃11 ∈ R
r×r. Then, we have LA + LB = L and the fol-

lowing decomposition for the nuclear norm holds

‖L‖∗ = ‖(LA + LB)‖∗ = ‖LA‖∗ + ‖LB‖∗.
Proof of Theorem 2: First, we focus on the second part. Sup-

pose for some j = 1, 2, . . . ,m0, |t̂j − tj | ≥ nγn. Then, there

exists a true break point tj0 which is isolated from all the

estimated points, i.e., min1≤j≤m0
|t̂j − tj0 | > nγn. The idea

is to show the estimated AR parameter Ŝj in the interval

[tj0−1 ∨ t̂j , tj0+1 ∧ t̂j+1] converges in �2 to both S�
j and S�

j+1

which contradicts assumption H3.

Due to the definition of (L̂, Θ̂) in (4), the value of the func-

tion defined in (4) is minimized exactly at (L̂, Θ̂). Denote the

closest ri to the right side of tj0−1 by sj0−1 and the closest

ri to the left side of tj0 by sj0 similarly. First, we consider

the interval [sj0−1 ∨ t̂j , sj0 ]. Define a new parameter sequence

ψk’s, k = 1, 2, . . . , n with ψk = θ̂k except for two time points

k = t̂j and k = sj0 . For these two points we assign ψt̂j
=

S�
j0
− Ŝj and ψsj0

= Ŝj+1 − S�
j0

where Ŝj =
∑sj0−1∨t̂j−1

k=1 θ̂k

and Ŝj+1 =
∑sj0−1∨t̂j

k=1 θ̂k, thus, θ̂sj0∨t̂j
= Ŝj+1 − Ŝj . Denoting

Ψ = [ψ′
1, ψ

′
2, . . . , ψ

′
kn
]′ ∈ R

pkn×p, we obtain

1

n
‖Y − X L̂−ZΘ̂‖22 + λ1,n‖L̂‖∗ + λ2,n‖Θ̂‖1

+ λ3,n

kn∑

l=1

∥∥∥∥
l∑

j=1

θ̂j

∥∥∥∥
1

≤ 1

n
‖Y − XL� −ZΨ‖22 + λ1,n‖L�‖∗ + λ2,n‖Ψ‖1

+ λ3,n

kn∑

l=1

∥∥∥∥
l∑

j=1

ψj

∥∥∥∥
1

. (15)

According to the definition of ψk, we can define the differ-

ences between estimated coefficients and their true values ∆̂L =
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L̂− L� and ∆̂S = Ŝj+1 − S�
j0

. For the specific interval, since

we only consider the observations within this interval, and due

to the fact that the length of the interval is large enough, we can

verify the restricted eigenvalue and deviation bound inequalities

(see [8]). We use X̃ = [Xsj0−1∨t̂j , Xsj0−1∨t̂j+1, . . . , Xsj0−1]
′ ∈

R
(sj0−sj0−1∨t̂j)×p to denote the observations under considera-

tion, while Ẽ is the corresponding noise term. Then, a rearrange-

ment of inequality (15) leads to

1

sj0 − sj0−1 ∨ t̂j
‖X̃ (∆̂L + ∆̂S)‖22

≤ 2〈∆̂L + ∆̂S , X̃ ′Ẽ〉
sj0 − sj0−1 ∨ t̂j

+
nλ1,n

(
‖L�‖∗ − ‖L̂‖∗

)

sj0 − sj0−1 ∨ t̂j

+
nλ2,n

sj0 − sj0−1 ∨ t̂j

(
‖S�

j0
− Ŝj+1‖1 + ‖S�

j0
− Ŝj‖1

− ‖Ŝj+1 − Ŝj‖1
)
+

nλ3,n

bn

(
‖S�

j0
‖1 − ‖Ŝj+1‖1

)

≤ 2

sj0 − sj0−1 ∨ t̂j
〈∆̂L + ∆̂S , X̃ ′Ẽ〉

+
nλ1,n

sj0 − sj0−1 ∨ t̂j

(
‖∆̂A

L‖∗ − ‖∆̂B
L‖∗

)

+
2nλ2,n

sj0 − sj0−1 ∨ t̂j
‖∆̂S‖1 +

nλ3,n

bn

(
‖∆̂S‖1,I

− ‖∆̂S‖1,Ic

)
+

2nλ1,n

sj0 − sj0−1 ∨ t̂j

p∑

j=r+1

σj(L
�), (16)

where the matrix pair (A,B) are from the sub-spaces {LA,LB},

respectively. The second inequality holds due to the decompo-

sition of the �1-norm, the nuclear norm in [1] and an application

of the triangle inequality.

According to Hölder’s inequality, the first term of the right

hand side of the second inequality in (16) implies the following

inequality

〈∆̂L + ∆̂S , X̃ ′Ẽ〉 ≤ ‖X̃ ′Ẽ‖op‖∆̂L‖∗ + ‖X̃ ′Ẽ‖∞‖∆̂S‖1

= ‖X̃ ′Ẽ‖op

(
‖∆̂A

L‖∗ + ‖∆̂B
L‖∗

)

+ ‖X̃ ′Ẽ‖∞
(
‖∆̂S‖1,I + ‖∆̂S‖1,Ic

)
(17)

Substituting (17) into (16) and considering the conditions for

λ1,n, λ2,n and λ3,n, we have

1

sj0 − sj0−1 ∨ t̂j
‖X̃ (∆̂L + ∆̂S)‖22

≤ 3nλ1,n

2bn
‖∆̂A

L‖∗ +
3nλ3,n

2bn
‖∆̂S‖1,I +

2nλ3,n

bn
‖S�

j0
‖1,Ic

+

(
2nλ2,n

sj0 − sj0−1 ∨ t̂j
+ C

√
log p

nγn

)
‖∆̂S‖1

+
2nλ1,n

sj0 − sj0−1 ∨ t̂j

p∑

j=r+1

σj(L
�)

≤ 3nλ1,n

2bn
‖∆̂A

L‖∗ +
3nλ3,n

2bn
‖∆̂S‖1,I +

2nλ3,n

bn
‖S�

j0
‖1,Ic

+
nλ3,n

2bn
‖∆̂S‖1 +

2nλ1,n

sj0 − sj0−1 ∨ t̂j

p∑

j=r+1

σj(L
�)

=
3nλ1,n

2bn
‖∆̂A

L‖∗ +
3nλ3,n

2bn
‖∆̂S‖1,I +

nλ3,n

2bn
‖∆̂S‖1. (18)

The first inequality holds with high probability converging to 1

due to part (a) in Lemma 2 and the fact that sj0 − sj0−1 ∨ t̂j ≥
1
2nγn and bn ≤ 1

4nγn by assumption H3. The second inequality

is based on triangle inequality and the selection for λ2,n and

λ3,n. The last equality holds by the definition of decomposition

properties of the �1 and nuclear norm, respectively.

On the other hand, by the restricted strong convexity condi-

tion [8], there exists a constant τ > 0 such that

1

sj0 − sj0−1 ∨ t̂j
‖X̃ (∆̂L + ∆̂S)‖22 ≥ τ

2
‖∆̂L + ∆̂S‖22

≥ τ

2

(
‖∆̂L‖22 + ‖∆̂S‖22 − 2|〈∆̂L, ∆̂S〉|

)

≥ τ

2

(
‖∆̂L‖22 + ‖∆̂S‖22 − 2‖∆̂L‖∞‖∆̂S‖1

)

≥ τ

2

(
‖∆̂L‖22 + ‖∆̂S‖22

)
− nλ3,n

2bn
‖∆̂S‖1 (19)

Inserting the inequality (19) into (18), we have

τ

2

(
‖∆̂L‖22 + ‖∆̂S‖22

)
≤ 3nλ1,n

2bn
‖∆̂A

L‖∗ +
5nλ3,n

2bn
‖∆̂S‖1

≤
(
3nλ1,n

2bn

√
2r�
)
‖∆̂L‖2 +

(
5nλ3,n

2bn

√
d�n

)
‖∆̂S‖2

≤
√(

3nλ1,n

2bn

√
2r�
)2

+

(
5nλ3,n

2bn

√
d�n

)2√
‖∆̂L‖22+‖∆̂S‖22

Further, combining with our tuning parameters assumption, we

obtain

‖∆̂L‖22 + ‖∆̂S‖22 ≤ 4

τ2

(
9n2λ2

1,n

2b2n
r� +

25n2λ2
3,n

4b2n
d�n

)

=
4

τ2

(
9C2

1

2

r�p

nγn
+

25C2
3

4

d�n log p

nγn

)
(20)

This result shows that

‖L̂− L�‖22 + ‖S�
j0
− Ŝj+1‖22 = op

(
r�p+ d�n log p

nγn

)
, (21)

which indicates that ‖L̂− L�‖22 + ‖S�
j0
− Ŝj+1‖22 converges to

zero in probability based on assumption H3. Similarly, we can

perform the same procedure to the interval [sj0 , sj0+1 ∧ t̂j+1]

to get that ‖L̂− L�‖22 + ‖S�
j0+1 − Ŝj+1‖22 converges to zeros

as well, which leads to that ‖S�
j0
− Ŝj+1‖22 − ‖S�

j0
− Ŝj‖22 con-

verges to zero as well, and this implies to a contradiction to the
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first part of assumption H3. Therefore, we proved the second

part of the theorem.

The first part can be proved as follows. We assume that

|Ân| < m0, which implies that there exists an isolated true

change point, denoted by sj0 . Then, we can separately apply

the same procedure as in establishing the second part to the

intervals [sj0 , sj0+1 ∧ t̂j+1] and [sj0−1 ∨ t̂j , sj0 ] which can lead

to ‖S�
j+1 − S�

j ‖2 converges to zero and therefore contradicts

with assumption H3. �

Proof of Theorem 3: To prove the first part, we need to con-

sider the equivalent two parts (a) P(m̃ < m0) → 0 and (b)

P(m̃ > m0) → 0 respectively.

For case (a), we can directly obtain from Theorem 2 that there

exist points t̂j ∈ Ân satisfying that max1≤j≤m0
|t̂j − tj | ≤

nγn. According to the arguments in Lemma 3, we get that there

exists a constant K > 0 such that

Ln(t̂1, . . . , t̂m0
; ηn) ≤

n∑

t=1

‖εt‖22 +Km0nγn(d
�
n
2 + r�2).

(22)

To prove (22), we only need to consider one of the estimated

segments. Suppose si−1 < tj < si with |tj − si−1| ≤ nγn. We

use θ̂ to denote the estimated sparse component in the segment

(si−1, si) and we use L̂ to denote the estimated low-rank compo-

nent. Moreover, let ∆̂L = L̂− L� and ∆̂θ = θ̂ − S�
j+1. Then,

similar to the proof of Lemma 3 case (b), we have

si−1∑

t=tj

‖Xt − (θ̂ + L̂)′Xt−1‖22

≤
si−1∑

t=tj

‖εt‖22 + c3|si − tj |‖∆̂θ + ∆̂L‖22

+ c′
(√

|si − tj | log p‖∆̂θ‖1 +
√

|si − tj |p‖∆̂L‖∗
)

≡
si−1∑

t=tj

‖εt‖22 + J1 + J2. (23)

Now, according to the convergence rate of the error in Lemma 3

case (b), we obtain

J1 ≤ c3|si − tj |
(
‖∆̂θ‖22 + ‖∆̂L‖22

)

≤ c3|si − tj |
256

τ2
(d�nη(si−1,si) + 2rη2L)

= Op

(
nγn(d

�
n
2 + r�2)

)
, (24)

and

J2 = c′|si − tj |
(√

log p

si − tj
‖∆̂θ‖1 +

√
p

si − tj
‖∆̂L‖∗

)

≤ c′|si − tj |
(
η(si−1,si)‖∆̂θ‖1 + ηL‖∆̂L‖∗

)

≤ 4c′|si − tj |
(
η2(si−1,si)

d�n + η2Lr
�
)

= Op

(
nγn(d

�
n
2 + r�2)

)
. (25)

Using a similar procedure to the smaller sub-segment (si−1, tj),
we obtain

tj−1∑

t=si−1

‖Xt − (θ̂ + L̂)′Xt−1‖22

≤
tj−1∑

t=si−1

‖εt‖22 + c3|tj − si−1|‖(θ̂ − S�
j ) + ∆̂L‖22

+ c′
(√

|tj − si−1| log p‖θ̂ − S�
j ‖1

+
√

|tj − si−1|p‖∆̂L‖∗
)

≤
tj−1∑

t=si−1

‖εt‖22 + 2c3|tj − si−1|
(
‖∆̂θ + ∆̂L‖22

+ ‖(S�
j+1 − S�

j ) + ∆̂L‖22
)

+ c′
(√

|tj − si−1| log p
(
‖∆̂θ‖1 + ‖S�

j+1 − S�
j ‖1
)

+
√
|tj − si−1|p‖∆̂L‖∗

)

≤
tj−1∑

t=si−1

‖εt‖22 +Op

(
nγn(d

�
n
2 + r�2)

)
. (26)

Since we have

η(si−1,si)‖θ̂‖1 +
si − si−1

n
ηL‖L̂‖∗

≤ η(si−1,si)

(
‖∆̂θ‖1 + ‖S�

j+1‖1
)

+
si − si−1

n
ηL

(
‖∆̂L‖∗ + ‖L�‖∗

)

= Op(d
�
n + r). (27)

Therefore, combining (23) to (27) yields

si−1∑

t=si−1

‖Xt − (θ̂ + L̂)′Xt−1‖22 + η(si−1,si)‖θ̂‖1

+
si − si−1

n
ηL‖L̂‖∗

=

si−1∑

t=si−1

‖εt‖22 +Op

(
nγn(d

�
n
2 + r�2)

)
. (28)

Taking the union of all m0 + 1 estimated intervals leads to the

result (22).

Applying Lemma 3 and noting that under the conditions

specified in assumption H4, we obtain

IC(t̃1, . . . , t̃m̃) = Ln(t̃1, . . . , t̃m̃; ηn) + m̃ωn

>

n∑

t=1

‖εt‖22 + c1∆n − c2m̃nγn(d
�
n
2 + r�2) + m̃ωn

≥ Ln(t̂1, . . . , t̂m0
; ηn) +m0ωn + c1∆n
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− c2m0nγn(d
�
n
2 + r�2)− (m0 − m̃)ωn

≥ Ln(t̂1, . . . , t̂m0
; ηn) +m0ωn, (29)

which leads to the proof of case (a).

For case (b), by using a similar procedure as above, we get

Ln(t̃1, . . . , t̃m̃; ηn) ≥
n∑

t=1

‖εt‖22 − c2m̃nγn(d
�
n
2 + r�2).

(30)

Then, we compare IC(t̃1, . . . , t̃m̃) and IC(t̂1, . . . , t̂m0
)

n∑

t=1

‖εt‖22 − c2m̃nγn(d
�
n
2 + r�2) + m̃ωn

≤ IC(t̃1, . . . , t̃m̃) ≤ IC(t̂1, . . . , t̂m0
)

≤
n∑

t=1

‖εt‖22 +Km0nγn(d
�
n
2 + r�2) +m0ωn, (31)

which implies that

(m̃−m0)ωn ≤ (Km0 + c2m̃)nγn(d
�
n
2 + r�2),

which contradicts assumption H4. Now we proved the first part

of Theorem 3.

For the second part, we let B = 2K/c, if there exists a point

tj such that min1≤j≤m0
|t̃j − tj | ≥ Bm0nγn(d

�
n
2 + r�2), then

by similar arguments as in Lemma 3, we have

n∑

t=1

‖εt‖22 + cBm0nγn(d
�
n
2 + r�2)

< Ln(t̃1, . . . , t̃m̃) ≤ Ln(t̂1, . . . , t̂m0
)

≤
n∑

t=1

‖εt‖22 +Km0nγn(d
�
n
2 + r�2), (32)

which contradicts to B = 2K/c. Therefore, we complete the

proof. �

Proof of Theorem 4: It follows along the lines of the proof

of Proposition 4 in [8]. We need to firstly verify two important

conditions. (1) the restricted eigenvalue (RE) condition for Γ̂j =
X ′

jXj/Nj ; (2) the deviation bound condition for ‖X ′
jEj/Nj‖∞.

These two conditions can be verified by Lemma 6 directly.

Therefore, we can derive the following result

1

Nj
‖Yj −Xj(L̂+ Ŝj)‖2F + ρj‖Ŝj‖1 + ρL‖L̂‖∗

≤ 1

Nj
‖Yj −Xj(L

� + S�
j )‖2F + ρj‖S�

j ‖1 + ρL‖L�‖∗,

we define the same weighted regularizer as in Lemma 3 and

the same norm decomposition as in the previous proof. Define

∆̂L = L̂− L� and ∆̂Sj
= Ŝj − S�

j to obtain

1

Nj
‖Xj(∆̂L + ∆̂Sj

)‖2F

≤ 3

2
ρLQ(∆̂Sj

|Ij , ∆̂A
L)−

1

2
ρLQ(∆̂Sj

|Ic
j
, ∆̂B

L ). (33)

By the RE condition and Lemma 6 and substituting interval

[tj , si] with Ij+1, there exists a positive constant τ > 0 such

that

1

Nj
‖Xj(∆̂L + ∆̂Sj

)‖2F

≥ τ

2
(‖∆̂L‖2F + ‖∆̂Sj

‖2F )−
1

2
ρLQ(∆̂Sj

, ∆̂L);

substituting the inequality above in (33) and according to

Lemma 4, we have

τ

2
(‖∆̂L‖2F + ‖∆̂Sj

‖2F ) ≤ 2ρLQ(∆̂Sj
, ∆̂L)

≤ 2(ρL‖∆̂L‖∗ + ρj‖∆̂Sj
‖1)

≤ 2
√

2r�ρ2L + d�jρ
2
j

√
‖∆̂L‖2F + ‖∆̂Sj

‖2F .

Therefore, we get

‖∆̂L‖2F + ‖∆̂Sj
‖2F ≤ 16

τ2
(2r�ρ2L + d�jρ

2
j ). (34)

Combining the choices for the tuning parameters specified in

Theorem 4 and (34), we can obtain the posited result. �
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