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Multiple Change Points Detection in Low Rank and
Sparse High Dimensional Vector
Autoregressive Models

Peiliang Bai, Abolfazl Safikhani, and George Michailidis

Abstract—Identifying change/break points in multivariate time
series represents a canonical problem in signal processing, due
to numerous applications related to anomaly detection problems.
The underlying detection methodology heavily depends on the
nature of the mechanism determining the temporal dynamics of
the data. Vector auto-regressive models (VAR) constitute a widely
used model in diverse areas, including surveillance applications,
economics/finance and neuroscience. In this work, we consider
piece-wise stationary VAR models exhibiting break points between
the corresponding stationary segments, wherein the transition ma-
trices that govern the model’s temporal evolution are decomposed
into a common low-rank component and time evolving sparse ones.
Further, we assume that the number of available time points are
smaller than the number of model parameters and hence we are
operating in a high-dimensional regime. We develop a three-step
strategy that accurately detects the number of change points to-
gether with their location and subsequently estimates the model
parameters in each stationary segment. The effectiveness of the
proposed procedure is illustrated on both synthetic and real data
sets.

Index Terms—Blocked fused lasso, vector auto-regression,
detection, consistency.

I. INTRODUCTION

ETECTING multiple changes in time series data con-
D stitutes a canonical problem with numerous applications
in signal detection [6], economics and finance [20], quality
control [41], risk analysis [33], surveillance and environmental
monitoring [38], and neuroscience [29]. A change point rep-
resents a discontinuity in the parameters of the data generating
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process. The problem can be considered either in an (1) offline [7]
setting, or (2) an online [17] one. In the first case, one is given
a sequence of observations and questions of interest include:
(i) whether there exist change (break) points and (ii) if there
exist change points, identify their locations, as well as estimate
the parameters of the data generating process (see the review
paper [3]). In the online case, one sequentially obtains new
observations and the main interest is in quickest detection of
the change point (see e.g. [46], [21] and references therein).

The focus of this paper is on offline break point detection
based on a vector autorgressive (VAR) data generation mecha-
nism. The literature to date has focused on a number of univariate
and multivariate statistical models, including constant signal
plus noise ones [23], linear regression [31], Gaussian graphical
models [30], [43], vector autoregressive models (VAR) [44],
panel-type time series models [15], [16], and factor models [4],
[5]. VAR models represent a canonical model with wide range of
applications in economics [22], [25], functional genomics [35],
[40], speech signal analysis [26], [45], smart cities [36] and
neuroscience [2], [27], [28], [39]. There has been a lot of
interest recently in their high dimensional counterparts assuming
a (structured) sparse [9] and also low rank transition matrix [8]
for stationary data.

However, in numerous application areas the assumption of
stationarity does not hold for the entire data set, but only for rel-
atively short segments of the available data (see e.g. discussion
in [32] for a specific example of log-returns of stocks exhibiting
structural breaks due to economic shocks, as well as [44] for
occurrence of seizures and its effect on brain signal data). Due to
the existence of several discontinuity points in the distribution of
the data, on many occasions a good working model is to assume
a piece-wise stationary model and then the problem becomes
to identify the number of unknown break (change) points of the
segments, locate them and finally estimate the model parameters
within each segment.

This paper aims to develop a fast/scalable strategy for iden-
tifying change points in low-rank plus sparse high dimensional
time series models and also provide probabilistic guarantees
for the accuracy of their identification. Specifically, the focus
is on VAR models whose transition matrices that capture their
dynamic evolution can be decomposed into a constant low-
rank component, plus a sparse time evolving one at selected
(unknown) time points, thus inducing structural breaks in the
system’s evolution. This data generating process occurs in many
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real world applications, including surveillance video data, where
the background theme remains stationary over time, but some
small portion of the frames changes at certain time points due
to adding/removing objects (more details on this application are
givenin Section V-A). Other applications include environmental
monitoring from sensor measurements, where the background
can be described by a low rank stationary process, and monitor-
ing of financial markets, as discussed in Section V-B.

Note that the presence of a fixed low-rank component com-
bined with piece-wise constant sparse ones, makes the detection
problem significantly more challenging than that of employing
a sparse VAR model. Note that there are two types of signal
in the data, -one coming from the fixed low-rank component
and the other from the changing sparse one- thus requiring
significant enhancements in the detection algorithm and even
more importantly in the technical analysis for providing rig-
orous probabilistic guarantees on the detection accuracy and
estimation of the model parameters, all successfully resolved
in Section III. Specifically, we rigorously address the following
issues: (1) estimate accurately the total number of break points
in the data; (2) locate all break points consistently; (3) estimate
accurately all model parameters including the low rank and
sparse auto-regressive components. To do so, we propose a
three-step procedure. In Step 1, the detection problem is refor-
mulated as a variable selection one based on a regularized high
dimensional linear regression framework, with a blocked fused
lasso penalty. This step over-selects an initial set of candidate
break points. In Step 2, based on a carefully defined information
criterion that accounts for the low rank plus sparse structure
of the transition matrices, we screen out redundant candidate
break points obtained in Step 1 and establish that the remaining
selected points are consistent estimates of the true break points
(see Theorem 3). Finally, in Step 3, two different methods are
developed to estimate all model parameters within all the identi-
fied stationary segments. Hence, key technical contributions of
this work include:

e The introduction of suitable conditions to ensure identifia-
bility of the low-rank and sparse components in piece-wise
stationary VAR models that are also of independent inter-
est.

e The development of an efficient three-step algorithm to
estimate and locate the break points, as well as to estimate
the model parameters within each segment.

¢ The introduction of a novel information criterion to select a
consistent subset of break points obtained initially through
a penalized high-dimensional regression model.

e The development of a blocked fused lasso regression esti-
mator to accelerate the detection of break points, which is
also of independent interest in the field of variable selection
in high dimensional linear regression models.

e Recommending cross-validation type methods to select the
key tuning parameters involved in our algorithm.

The remainder of the paper is organized as follows. The
modeling framework together with identifiability issues are pre-
sented in Section II. Section III introduces the proposed 3-step
detection strategy and establishes its asymptotic properties. An
extensive evaluation analysis based on synthetic data is provided
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in Section IV. Finally, two real data sets (one on surveillance
video data and another one on financial data) are analyzed using
the developed algorithm and discussed in Section V. Finally,
additional simulation scenarios, and proofs of the main results
are given in the Appendix.

Notation: Throughout the paper, we denote with a superscript
“x” the true value of the corresponding model parameters.
Further, for any p x p matrix we use || - ||2, || - [|7 and || - ||« to
denote the spectral, Frobenius and nuclear norm of the matrix,
respectively. For any matrix B, we use B’ to denote its transpose,
and finally we denote the /1, ¢y and /., norms of its vectorized
form as follows: || B||; for ||vec(B)||1, || B|lo for Card(vec(B))
and || B||« for ||vec(B)]|o-

II. MODEL FORMULATION

We start by considering a piece-wise structured stationary
VAR(1) model; the extension to a VAR(d) model with d lags
is briefly discussed in the Conclusions section. Specifically,
suppose we have n 4 1 time points and there exist m( change
points 0 =ty <11 <+ <ty < tmy+1 =N, such that for
i1 <t<tj,j=1,...,mgo+ 1, the structured VAR(1) pro-
cess is given by

X;=BjX; 1 +¢and B; = L* + 57 (1)

where X, is the p dimensional vector of observed time series
at time ¢, Bj is the p X p transition matrix for the j—th seg-
ment that captures the lead-lag relationships among the time
series under consideration; further, each transition matrix is
assumed to be a superposition of a stable L* low rank component
and a time varying S7 sparse component. Finally, we assume
that the p—dimensional noise process is normally distributed;
ie. e S N,(0,X,). Note that in principle, ¥, can vary over
segments, but is considered fixed in our setting for ease of
presentation. We further assume that the j-th sparse component
S* has sparsity density [|S7|lo = d} with dj < p? and that the
low rank component L* has rank r* with r* < p, respectively.
Based on the decomposition of the transition materices B, it
can be seen that the low rank component L* captures invariant
cross-autocorrelation structure across all p time series for the
entire time period, while S]* reflects time evolving additional
cross-sectional autocorrelations.

The objective is to detect the change points ¢;, and obtain es-
timates of the transition matrices B;’s under a high-dimensional
regime, wherein the number of parameters within each stationary
segment exceeds the corresponding number of time points.
Therefore, according to the formulation of the structured VAR(1)
model above, it can be seen that the presence of change points
is driven by changes in the sparse components .S7.

However, there is a natural identifiability issue being masked
by the posited low rank plus sparse structure of the transition
matrices. Suppose the low rank component L* provides most
of the signal, while the sparse components S7 contribute only a
small portion of the signal. In such a setting, detection of change
points becomes impossible. Therefore, in order to identify the
changes in the sparse components, the signal “originating” from
the low rank component can not be dominant.
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Further, this identifiability issue will also influence the prob-
abilistic guarantees for accurately estimating the low rank and
sparse components. Suppose the low rank componentitself is d
sparse, while the sparse components are of rank r*. Then, we can
not expect to estimate L* and S7’s separately, without imposing
any further restrictions. In this case, a minimal condition for
accurate recovery of the low rank and sparse components is that
the former should not be too sparse and the latter should not be
low rank.

In arecent paper [ 14], this issue has been rigorously addressed
for independent and identically distributed data and resolved by
imposing an incoherence condition, such a condition is sufficient
for exact recovery of the low rank and the sparse component
by solving a convex program. In [1], the authors considered
a noisy setting and also to where a model parameter (e.g. a
regression coefficient matrix) admits such a decomposition,
wherein exact recovery of the two components is impossible.
They proceeded to formulate a general measure for the radius
of non-identifiability of the problem under consideration and es-
tablished a non-asymptotic upper bound on the estimation error
|L — L*||% + ||S; — S}[I%, which depends on this radius. In
our work, we introduce the information ratio (see Section III-A,
Assumption H2), which reflects similar constraints imposed on
the radius of non-identifiability in [1], to constrain the signal
strength originating from the low-rank component that will
render changes in sparse components detectable.

III. THE CHANGE POINT DETECTION PROCEDURE
AND ITS PROPERTIES

Our proposed strategy comprises of the following steps: (A)
Solving a regularized regression problem, with a Block Fused
Lasso (BFL) penalty to identify candidate change points; (B)
Screening the obtained candidates by computing a novel infor-
mation criterion; and (C) Estimating consistently the parameters
of each transition matrix B;."

A. Step 1: Block Fused Lasso (BFL) Based Estimation

In our first step, we leverage a regularized regression problem
with a BFL penalty to identify an initial set of candidate change
points. Specifically, we partition the observed time points into
blocks of size b, and fix the model parameters within each
block. In other words, each end point of a block corresponds
to a candidate break point in this step. Therefore, BFL has
([+] + 1)p* parameters, compared to 2p® when no break points
are present. Note that in order to identify the change points
consistently, we can not set b,, to be too large as explained below.

Define a sequence of time points 1 =179 <7; < -+ <
Tk, +1 = 1 corresponding to the end points of the blocks
(ie. 7501 —1; =b, and k, = (ﬁ]). Subsequently, by us-
ing the same notation as in the model (1), we define
the following block variables: X, = [X, o X1l

: i
Y, =[Xs, 1415, Xp;] and €., = e, 41,...,6,], for

!Code implementing the strategy is available at https:/github.com/
abolfazlsafikhani/LS- VAR-ChangePoint-Detection.
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the j-th block respectively, translated in matrix form no-
tation as follows: let X = [X,,...,X e R™P, Y =

P T ey 1

[le’ T ’Yrkn+1]/ eR™P E = [€r17 ey eTkn]l € R™ P and
X;"l 0 e 0
)(/T2 X;“z e 0 .
2= . ) c RW<Pkn
/ ’ ,
XT’knJrl XTkn+1 o ernﬂ

We then formulate the model (1) into the following linear
regression problem

YV=XL*"+Z0+E€, (2)
wherein © = [0, ...,0;, |' € RPF»*P. We set 0, = S} fori =
2,3,..., ky, and for the subsequent ones we set

0 — 5741 — 57, when i.: t; for some 7, 3)
’ 0, otherwise.

It should be noted that in this parameterization, 6; # 0 wherein
0 corresponds to the p X p zero matrix, indicates a change in the
VAR transition matrix ;. Therefore, for j = 1,2,...,myg, the
structural change points ¢; can be detected as time points 7 > 2,
whenever 6; # 0.

The linear regression representation in (2) implies that the
model coefficients © and L can be estimated through the fol-
lowing restricted penalized least squares problem

P 1
(6,L) = argmin ||y — XYL — 203 + ArnllL]

O,LeQ
kn l

+ A2nllOfl + Az Y |1 05 - )
1=1 ||j=1

1

In the objective function above, Q & {LeRPP:||Lllo < 5}
corresponds to the set of p X p matrices whose elements do
not exceed a threshold, thus limiting their “spikeness” and
consequently limiting the radius of non-identifiability; Aq ,,
A2, and Ag ,, are non-negative tuning parameters controlling
the two regularization terms. The parameter o constrains the
strength of the signal originating from the low rank component;
in other words, it controls the degree of non-identifiability of
the coefficients allowed in the model. Due to the assumption H2
presented below, we can derive a relationship between « and

the information ratio -, since y a1, Hence, we obtain that

oL {L e RP*P: || Lo < %}forsome constant Cyp > 0, and

in all subsequent developments we work with ~ instead of «.
The basic idea of adding a block fused lasso penalty in the
objective function is to expand the space of feasible solutions to
make the estimation step flexible enough, so as not to miss any
true break points, when the tuning parameters are appropriately
tuned; the latter need to be selected in such a manner, so as not
to lead to too many false positives (wrongly estimated break
points). Finding the appropriate/optimal tuning parameter rate
is a crucial step in verifying the probabilistic guarantees in
fused lasso based procedures [42]. Notice that the space of
feasible solutions for problem (4) consists of all pairs (C, D)
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such that the square p-dim matrix C'is low-rank and belongs to
the space €2, while the matrix D € RP*»*P is sparse. Based on
Assumption H3, the number of blocks k,, is much larger than
myg. This expansion on the space of model parameters is a crucial
development in Step 1.

Remark 1: The computational complexity of estimating the
sparse components in (4) is of order O(k,p?) [10]. If the size
of the blocks is set to 1 (i.e. b,, = 1) the method would revert
to a standard fused lasso penalty [42]. However, to speed up
computations, we allow b,, to increase as a function of the
sample size. On the other hand, larger values of b,, may lead
to detection loss, in the presence of closely spaced true break
points. Therefore, there is a trade-off between achieving faster
computations vs detection accuracy, controlled by the block
sizes and properly quantified in Assumption H3.

The estimator defined in (4) may not be a consistent estimator
of the model parameters, since the design matrix Z does not
satisfy the restricted eigenvalue assumption which is needed
for verifying consistency [9]. Instead, this estimator exhibits
the following two properties: (a) Prediction consistency; (b)
Over-estimation of the number of break points. These two
properties make this step suitable for obtaining an initial set
of good candidate break points. To consistently identify the true
ones, a screening step (presented below) is required.

Before stating our main results, we introduce the following
assumptions:

HI Forall j =1,2,...,mo + 1 we have d} < p?, i.e. the

S7 are sparse. Further, there exists a positive constant
Mg > 0 such that

1<]<m0+1 HS*H < MS
H2 Define the information ratio
—HS;HOO forj =1,2 mo + 1
_||L*||oo’ .7_ gyt 0 .

Then, with fixed 7, we obtain that || L* ||, <y~ 1 Mg by
H1. In this model, we recommend choosing ~ in the range
> 1

H3 There exists a positive constant v such that

mm || 1= Sill2 2 v>0.

1<5<
Moreover, letting A, = ming<j<m, [tj+1 — ;] and
dy = Z;“Uf ! dj, there exists a vanishing positive se-
quence 7y, such that, asn — 400,

ﬁ — 400, 1imsupb—" <Cd< i,
NYn nyn 12
* *
dylogp ~0and —2 0.
nyn nyn
Assumption H1 is standard in the high-dimensional liner re-
gression literature, while Assumption H2 ensures identifiablity
of the model parameters, as discussed in Section II. Assumption
H3 links the detection rate to the tuning parameters selected in
the estimation step and the block sizes. This assumption also
provides a minimum distance-type requirement on the elements

of Bj across different segments, which can be regarded as the
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counterpart of Assumption A3 in [44], Assumptions A2 and A3
in [24], and Assumptions H2 and H3 in [13].
Theorem 1: Assume that H1 and H2 hold. Select \; , =

204 \/g, Ao = 202\/@ for some C1,C5 > 0 and

A3 = o((nd%)~1), and further assume mg < m,, with m,, =
0()\5’;). Then, by also imposing the restricted space €2 con-
straint, the optimal solution to (4) satisfies the following result
with high probability, werein the positive constant Cj is defined

in (4)
< 401@\/ —
Y n

@@+@4}+4U. 5)

% HX(Z ~L)+Z20-0Y)|

m ax

=+ 2Ms)\2)nmn
1<j<mo+1

Theorem 1 establishes prediction consistency for the first
step in the proposed strategy, assuming that the total number
of break points allowed is upper bounded properly. The fused
lasso tuning parameter in equation (4) is A2 ,, and its optimal rate

to establish prediction consistency is Az , = 2C5 W

for some C5 > 0, as stated in Theorem 1. Higher rates for this
tuning parameter will miss true break point and thus compromise
prediction consistency, while lower rates may lead to having too
many false positives which is going to be detrimental for change
point detection and it will also increase the computation time for
other steps in the proposed procedure.

The next theorem shows that under a suitable choice of the
tuning parameters, the selected break points in this first step are
an overestimate of the true number of break points in the model.
Further, it asserts that no true break point is isolated, in the sense
that there exists a candidate change point close by.

Before stating the next theorem, we need some additional
definitions. Let A,, = {tl, .«.ytmgy } be the set of true change
points, and A, = {f;,... } be the set of estimated candidate
change points. Following [1 1] and [13], we define the Hausdorff
distance between two countable sets on the real line as

dr(A,B) = in |b— al.

#(4, B) = maxmin |b — al

Note that this definition is not symmetric and therefore not a

real distance. Nevertheless, this version of function dg (A, B)

is adequate for the result established in the next theorem.
Theorem 2: Suppose H1-H3 hold. Choose the tuning pa-

logn+21
rameters as A1 , = Cl%\/f, A2y = 2C w and
n

— (', bn [logp
)\37'” - 03 n nYn

Then, as n — +o0,

for some large constants C1, Cs, C3 > 0.

P(| A, | > mo) — 1,
and
P(dp (Ap, An) < nyn) — 1.

Remark 2: In Theorem 2, We express the tuning param-
eters Aj, and A3, in different forms. Note that under the

bn [_P * -
VAT and nd; A3,

1 .
nb%\/% V2 and Csby, d;;\/%, respectively.

setting in Theorem 2, the quantities
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Further, we have a positive vanishing sequence {~,} satisfy-
ing lim sup m <C< 4 and i logp — 0 in assumption H3,
which yields to Ay ,, o Cl\/: and )\g’n = o((nd%)~1). These
calculations confirm that the tuning parameters are of the same
order in both Theorems 1 and 2.

B. Step 2: Screening

Since the set of estimated break points .Zn is a superset of A,,,
we require another step to screen out redundant points in this set.
For the screening step, we need to reformulate our model and
further note that the parameters defined are different from those
in the first step. Specifically, suppose that we have already se-
lected m candidate change points based on the previous step: 1 =

S0 < 81 < -+ < Sy < Sm+1 = n. Define the following matri-
ces: Xy, = [Xo, 1y, X, 1], Yy, = [ X, 41,00, X, ] for
7 =1,2,...,m+ 1, respectively. Then, the combined matrices
across all segments become X = [X,,,..., X, | and Y =

[Ys,,---5 Ys, | Further, the block diagonal design matrix is
defined by Z,, ., =diag(X,,,..., X, ,,) € R (m+1)p,
and the corresponding coefficient matrix is givenby O, . s,
[9’1 ) 9’(51@), cabl, ) € Rm+DPxp_ Specifically, by
using the notations we defined, we form the following linear

regresswn

Y= 2817---,&,”981,--~,sm +XL+E, (6)

where £ & [€1,&2,...,&]) € R™P is the error term.
Therefore, we estimate ©,,, ., and L as the optimal so-

lution of the following regularized optimization problem for all

selected segments with different tuning parameters 75, , s,), for

1=1,2,....m+ 1.
(E’ 6511 ~>7S7n,)
m—+1 )
- arg min Z Si B Xsi (0(5171751) + L)HQ
L,Os, ..., bmllsz_szl
+ n(si—lysi)He(squl,sqz)Hl + 77L||L||* (7)

Next, we define the following objective function with tuning

C
parameter Vector 1, = (1(so,s1)s M(s1,82)s - - - 777(sm,sm+1))5

~ —~12
Ln(s;nn) - Hy - Zsl,...,sm@sl,...,sm - XLHF

m—+1
+ Zn(si—hsi) 0(81‘71781‘) 1+7ILHLH*7 (8)
i=1
where s = (s1,...,5,). Then, for a penalty sequence w,

(which can be selected in accordance to assumption H4 below),
we consider the following information criterion

IC(S; nn) = Ln(s; nn) + mwy, . 9)

The second step of our strategy selects a subset of initial m
change points derived from (4) by solving

(M, t55 =1,2,...,m) = IC(s;m,).  (10)

arg min
0<m<m,seA,

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

To establish consistency properties of the screening procedure,
we need the following two additional assumptions.
H4 Assume that

d* 2 *2
monn(dy” + 1) — 0 and
Wn mown

— +00.

HS5 There exists a large positive constant ¢ > 0 such that
(a) if |s; — 51| <y, then g, | 5,y = cv/nyp logp
and 7 = c\/ny,p; (b) if there exists ¢; and ;4
suchthat [s;_1 — t;| < ny,and|s; — tj41] < nvy,, then,

Nsi1,s5) = 2(Cy /s.lfi-p, + Msdjlisiﬁzll) and 7 =
2c n’y ; (o) otherwise, 7, , s, :2(6\/5_13% +

Mgd¥) and nz, = 2¢, /m

Assumption H4 connects the penalty term w,, defined in the
information criterion to the minimum spacing allowed between
break points. Assumption HS specifies the magnitude (rate) of
the tuning parameters used in the least squares problem given in
(7). Note that assumptions on the rate of the tuning parameter
of the penalty are needed even in lasso regression problems
for independent and identically distributed data and without
break points for (see e.g. [47]). In the presence of break points,
one works with misspecified models and hence a more careful
and complex selection of the various tuning parameters are
required [12], [13], [44].

Theorem 3: Suppose assumptions HI-HS hold. Then, as
n — 400, the minimizer (ﬁl,?j;j =1,2,...,m) of (10) sat-
isfies

Moreover, there exists a positive constant B > 0 such that

))%1.

Remark 3: For the case of finite mg, the sequence ~,, can
(rp+d; logp)'+v/2
n

— <
P(lgjlzgﬁ |t; —t;] < Bmony, (d5? +r*

be chosen as ,, = for some small v > 0. As-
suming that the low-rank component and total degree of sparsity
satisfy d* 2 + r*% = o((rp + d;, log p)*/?), then the consistency
rate for identifying the relative location of true break points
-tj/n- is of the order (rp+ d¥logp)'™/n in Theorem 3.
Finally, in this setting, w,, can be chosen as (rp + d} log p)' T2
and the minimum spacing allowed between consecutive break
points - A,,- must be at least of order (rp + d logp)'+3?.
Comparing the consistency rates with those in Theorem 3 in [44],
we observe that the additional term rp captures the complexity
introduced in the model due to the need to estimate the unknown
low-rank component.

Remark 4: If r = 0 (no low-rank component present in the
model), the consistency results are similar to those in [44].
Specifically, Theorem 3 could be seen as an extension of
Theorem 3 in [44]. Further, whenever r» = 0, the total number
of time series components could be of order o(e™), while for
r > 1, we must have p = o(n) since the low-rank component in
each transition matrix is potentially dense. This is similar to the
stationary (no break points) case discussed in [8].
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C. Step 3: Consistent Parameter Estimation

The main idea to consistently estimate the model parameters
is that Theorem 2 and Theorem 3 indicate that removing the
estimated change points together with an adequate R,,-radius
neighborhood around them will also remove the true change
points. Hence, the remainder time segments would be stationary.
Theorem 2 points out that the radius R,, can be as small as n~y,,,
while Theorem 3 establishes that this radius should be at least
Bmon'yn(d;2 + 7’*2) for some large constant B > 0, in order
to drop out redundant change points.

Given the results in Theorem 3, suppose that we have selected
mg change points using the screening procedure. Denote these
estimated change points by ¢1, Z2, . . . , tNmo . Then, by Theorem 3,
we have

P t; —t;| <R, 1
(1%135;0#] t]_R,L)—> ,

as n — +oo. Denote the neighborhood of thNas Iy =
(152, 7(j+1)1] for 7 =0,1,...,mg, where rj; =t; — R, — 1
and 1o :%}+Rn+1 for j =1,2,...,mp and let rgo =1
and 7(p,41)1 = n. Then, we formulate a regularized linear
regression on U;":(’O I; 1 and estimate the sparse and low rank
components of VAR parameters.

Similar to Theorem 1, we consider estimating the transition
matrices in each obtained segment separately through a regu-
larized linear regression method. Specifically, for interval I 1,
we can write the following linear regression

y]- :Xj(Sj+L)+€j, (11)

where we analogously define the matrix variables ); =
[Xris- - ’XT(HUJ/’ X=X 1, ’XT@-H)rl], and ¢; is
the corresponding error term. Let N; be the length of the interval
i for j =0,1,...,mg and N = > "% Nj. Then, X; and
Y € RNixp, S; and L € RP*P. We simultaneously estimate
the low rank and sparse components of the VAR transition
matrices in each stationary interval ;1 by solving the following

restricted regularized optimization problem

PN 1
(L, S;) = argmin ﬁﬂyj — X;(S; + L)%
req,s; IVj

+ 05l S5l + pLIL]- (12)

Then, the error bound for each estimated segment is:
Theorem 4: Suppose assumptions HI-H5 hold, m is un-
known and R,, = Bmony, (d:? +r*?). Assuming that pj =

log N;j+2logp T — . b
Ch4/ - + Cy et and p; = O max; N for some

large enough constants Cy, C, Cy > 0 and curvature parameter
7 > 0 in the restricted strong convexity assumption [37] . Then,
as n — +o0, the optima (L, S;) of (12) satisfies
r*p+d;logp N dj
N; P22 )
In order to consider all segments simultaneously, the length
of estimated segments must be similar to each other, otherwise

the error rate may not be optimal. In the next Theorem, we
assume A,, > dn for some positive constant § in order to ensure

15, — SH% 4 I~ L= 0 (
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that all N;’s are of the same order n. Then, when considering
all estimated segments simultaneously, (11) can be written into
another matrix form as follows

yr - XT(S + 1m0+1 &® L) + E’I“7

where the coefficient matrix is S = [S},55,...,S,,, 1] and
Tgs1 = [1,1,...,1) € ROM0+1x1: the design matrix is given
by X, = diag(Xy,...,Xm,+1), the response matrix is Y, =
Vi, Vi,+1) and the corresponding error matrix is de-
finedas . = [€}, ..., €, 1] Let N = 3779 N;. Then, X, €
RNx(motp ), € RV, and E, € RV*P; S € RmoFTlpxp,
Then, solving the following restricted regularized optimization
problem

PN 1
(L,S) = atg min TV = XS+ g ® D)7

+ pnllIS[l1 + oLl L

yields the desired estimates, for which we establish the following
error bound.

Theorem 5: Suppose assumptions HI-H5 hold, mg is un-
known and define R,, = Bmony,(d5? +r*?). Assume that
A, > on for some large positive constant ¢, and p, =

Ciy/ % + Cgﬁ,pL = (/4 forsomelarge enough

constants C, Co, C] > 0 and curvature parameter 7 > 0 in the
restricted strong convexity assumption [37] . Then, as n — +o0,
the optimal (L, S) satisfies

IS —8*||% + (mo + 1)||IL — L7

r*pmo +dylogp  dy
=0 .
N p2y?

Remark 5: The above Theorems provide a simultaneous er-
ror bound for the low-rank and sparse components. Note that
a separate error bound for each component can not be derived,
which is also the case for i.i.d. data and in the absence of a
change point, as discussed in [1], or for stationary data in [8].
Therefore, as seen in the statement of Theorems 4 and 5, the
error bound provided comprises of two key terms. The first term
corresponds to the estimation error. For a given model, this term
converges to zero as the sample size increases. The second term
reflects the lack of exact identifiability of the model parameters,
and only depends on the model size p, the total sparsity d;, and
the information ratio v and does not vanish even in the presence
of infinite samples.

Remark 6: All optimization problems introduced in our
methodology including (4), (7) and (12) are convex and can be
solved by proximal gradient methods by combining algorithms
developed in [8] and [44]. To speed up the detection procedure,
new and fast algorithms are defined which approximate the
minimizers in the three steps numerically (see details in the
Supplement). These algorithms are implemented and used in
our numerical experiments and the results in Section IV show
their good performance.
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Fig. 1. Left: True structure of transition matrices for scenarios A-D and F.

Right: True structure of transition matrices for scenario E.

IV. PERFORMANCE EVALUATION

Next, we present results from several numerical experiments
that evaluate the performance of the proposed strategy for de-
tecting change points and also estimating the VAR parameters
of the posited model. The time series data { X; } with m, change
points are generated from the model X; = B; Xi_1 + €, where
Bj=L*+Sjandt € (t5_,t5) for j = 1,2,...,mo. We set
the true rank 7* = |p/15] + 1 and the block size b,, = \/n for
the BFL step unless otherwise specified. We also set the con-
vergence tolerance to 10~ for the BFL step to select candidate
break points and 10~ for the estimation (3 rd) step. We set the
information ratio v = 4 (defined in H2) for most settings (i.e.
we set v = p/4 in the constrained space € previously defined).
We investigate smaller values for v in scenario D and higher
dimension p in scenario F as well.

There are a number of factors potentially influencing the
performance of the strategy; in particular, the number of time
series p, the sample size n, the location of change points, the
rank of L* and the information ratio ~y. In this section, we mainly
consider the following scenarios.

The transition matrices have the same structure, but differ-
ent magnitudes. Fig. 1 illustrates the 1-off diagonal structure
for transition matrices with values —v||L*||s, v||L*||~ and
—|| L* || respectively. We set v = 4 and the locations of two
change points at t7 = |n/3| and t5 = [2n/3].

A. Scenarios Examined

A. In the first scenario, the principle factor investigated is
sample size and we examine three different sample sizes.

B. In this scenario, we investigate how different choices for
rank influence performance. We consider both small and
larger ranks.

C. In this scenario, we consider settings involving different
number of change points. Specifically, we examine the
following two cases: (a) t7 = |n/6], t5 = |n/3] and
5 =12n/3];(b) T = 600 with t] = |n/6],t5 = |n/4],
5= 1|n/3],t5 = |2n/3] and tf = |5n/6]. It should be
noted that we adopt smaller block sizes b, = y/n/2 or
b, = +/n/5 for the BFL step in order to obtain a better
result in this experiment.

D. In this scenario, we investigate a lower information ratio
~v = 2. As mentioned in the theory section, -y is a crucial
factor for identifying and estimating the low rank and
sparse components and hence detecting change points.

E. In this scenario, we consider a random sparse compo-
nent, instead of 1-off diagonal sparse component. We also
examine a combination of diagonal and random sparse
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TABLE I
MODEL PARAMETERS UNDER DIFFERENT SCENARIO SETTINGS

<
*

tr/n
(0.3333,0.6667)
(0.3333, 0.6667)
(0.3333,0.6667)
(0.3333,0.6667)
(0.3333, 0.6667)
(0.3333, 0.6667)
(0.1667,0.3333,0.6667)
(0.1667,0.2500, 0.3333,
0.6667,0.8333)
(0.3333,0.6667)
(0.3333,0.6667)
(0.3333,0.6607)
(0.3333, 0.6667)
(0.3333, 0.6667)

Al 20 150

A3 | 20 | 600
B1 [ 20 | 300

B3 | 20 | 300
C1 [ 20 | 300

C2 20 600

D.1 20 300
E.l 20 300
F1l 50 600
F2 | 100 | 1000
E3 | 200 | 1000

B S IS S Sy =V E SR SRS
N N S LS S S N N N N N N S

—_
=

structures and evaluate the performance under levels of
sparsity for the latter components. The right panel in Fig. 1
depicts the random structure employed.

F. In this scenario, we examine the effect of the dimension
p (number of time series). We consider three different
dimension settings with two change points at locations

T =[n/3]and t5 = |2n/3].
Table I summarizes all the model parameters in the various
scenarios discussed above.

B. Tuning Parameter Selection

There are a number of tuning parameters in the developed
three-step strategy: A1 n, A2 ns A3, Mns ML, Wny [y, pr, and
pjforj =1,2,... mg. Although the theoretical rates for these
tuning parameters are provided in the theory section, their se-
lection in finite sample applications should be further discussed.
Next, we provide guidelines for selecting them.

A1n: We use fixed Aq,, in accordance to the nature of the
application. In most cases, we manually choose A; ,, in
the range [/Z,10,/Z].
We can select Az, through cross-validation. In the sim-
ulation study, we randomly select 20% of the blocks
equally spaced with arandom initial point. Denote the last
time point in these selected blocks by 7. Data without
observations in 7 can then be used in the first step of
our procedure to estimate © for a range of values for
A2, The parameters estimated in the first step are used
to predict the time series at time points in 7. The value of
A2, which minimizes the mean squared prediction error
over T is the cross-validated choice of A ,,.
As previously discussed, the rate for A3, vanishes fast
as n increases. Thus for simplicity, we suggest setting
A3, to zero. This choice was used in all of the numerical
experiments in this paper and it gives satisfactory results.
nr: This parameter is set to be the same as Aq ;,.
pr: This parameter is suggested to be kept fixed; in practice,
it was set in the range [/Z,10,/Z].
pj: Finally, we need to select the tuning parameters p; for
sparse estimation in each selected segment. We select p;
as the minimizer of the Bayesian Information Criterion
(BIC) for the j-th segments. For j =0,1,...,m, We

AQ n-

)

/\3,713
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Fig. 2. Left panel: Box-plot for estimated change points for all 50 simulation
replicates under scenario C.1. Right panel: Mean results for estimated change
points (black lines) and true change points (red lines).

TABLE II
RESULTS FOR CHANGE POINT SELECTION UNDER PARAMETERS
SETTINGS IN TABLE I

points truth mean sd selection rate

Al 1 0.3333 | 0.3272 | 0.0138 1
) 2 0.6667 | 0.6527 | 0.0270 1
A2 1 0.3333 | 0.3332 | 0.0087 1
) 2 0.6667 | 0.6583 | 0.0181 1
A3 I 0.3333 | 0.3324 | 0.0098 I
) 2 0.6667 | 0.6712 | 0.0100 1

B.1 1 0.3333 | 0.3413 | 0.0234 0.98
) 2 0.6667 | 0.6665 | 0.0089 1
B2 1 0.3333 | 0.3357 | 0.0128 1
) 2 0.6667 | 0.6585 | 0.0139 1

B3 I 0.3333 | 0.3291 | 0.0154 0.98
) 2 0.6667 | 0.6629 | 0.0103 1

1 0.1667 | 0.1699 | 0.0221 0.90
C.1 2 0.3333 | 0.3328 | 0.0097 1
3 0.6667 | 0.6643 | 0.0096 1

I 0.1667 | 0.1651 | 0.0055 0.98
2 0.2500 | 0.2502 | 0.0050 1
C2 3 0.3333 | 0.3349 | 0.0051 1
4 0.6667 | 0.6653 | 0.0049 1

5 0.8333 | 0.8049 | 0.0199 0.98
D1 1 0.3333 | 0.3329 | 0.0117 I
) 2 0.6667 | 0.6574 | 0.0141 1
El 1 0.3333 | 0.3340 | 0.0190 1
’ 2 0.6667 | 0.6610 | 0.0214 1
F1 1 0.3333 | 0.3252 | 0.0089 1
) 2 0.6667 | 0.6728 | 0.0097 1
F2 1 0.3333 | 0.3372 | 0.0087 1
) 2 0.6667 | 0.6660 | 0.0074 1
E3 I 0.3333 | 0.3218 | 0.0587 I
) 2 0.6667 | 0.6660 | 0.0090 1

define the BIC on the interval [ 1 = [rj2,7(j4+1)1] as
follows:

log(7(j+1y1 — 752)
(rGi+n1 — 7j2)

BIC(p;) = logdet Ec j + 15j+1lo-
where f)a ; 1s the residual sample covariance matrix with
L and §j estimated in (12), and H§j+1||0 is the number
of non-zero elements in S 1

The remaining tuning parameters can be selected based on the

choices mentioned in [44].

C. Simulation Results

We evaluate the empirical performance of our algorithm by
considering the mean and standard deviation of the estimated

PERFORMANCE EVALUATION OF LOW-RANK COMPONENT UNDER
DIFFERENT MODEL SETTINGS

PERFORMANCE EVALUATION OF SPARSE COMPONENTS UNDER
DIFFERENT MODEL SETTINGS

TABLE III

r* 7] Error
Al | 2 | 20855 | 0.71(0.038)
A2 [ 2 | 20.723) [ 0.62(0.042)
A3 | 2 | 20.141) [ 0.60(0.035)
B1 ] 5 5(0.913) | 0.67(0.034)
B.2 | 10 | 10¢0.974) | 0.58(0.040)
B3 | 15 | 53175 | 0.76(0.177)
Cl | 2 | 20.967) | 0-8700.041)
C2 | 2 | 2¢.888) | 0-81(0.041)
D1 | 2 | 20.519) | 0.73(0.036)
E1 | 2 | 20707 | 1.090.111)
E1 | 4 4(0.012) | 0.66(0.022)
E2 | 7 T0.70my | 0-61(0.013)
E3 | 14 | 15¢0.627) | 0.98(0.050)
TABLE IV

SEG SEN SPC Error
1 0.990.016) | 0-94(0.031) | 0-31(0.072)
Al 2 0.990.024) | 0.92(0.036) | 0-34(0.072)
3 0.990.024) | 0.92(0.040) | 0-34(0.101)
1 1.00¢0.000) | 0.95(0.023) | 0.24(0.043)
A2 2 1.00¢0.000) | 0-95(0.024) | 0-24(0.066)
3 1.00¢0.000) | 0.95(0.024) | 0-23(0.076)
1 1.00¢0.000) | 0-96(0.015) | 0-18(0.030)
A3 2 I-OO(OAOOO) 0.95(()‘017) 0-23(0070)
3 1.00¢0.000) | 0.96(0.015) | 0-16(0.020)
1 0.990.023) | 0.91(0.063) | 0-32(0.138)
B.1 2 1.00¢0.010) | 0.93(0.026) | 0-23(0.047)
3 1.000.013) | 0-94(0.020) | 0-23(0.041)
1 0.990.018) | 0-98(0.011) | 0-37(0.072)
B.2 2 1.00¢0.000) | 0.96(0.020) | 0-20(0.048)
3 1.00¢0.000) | 0-98(0.012) | 0-35(0.080)
I 0.94(0.065) | 0-99(0.012) | 0-50(0.146)
B3 2 1.00¢0.000) | 0.95(0.021) | 0-15(0.051)
3 0.96(0.043) | 0-99(0.009) | 0-48(0.135)
1 0.95(0.054) | 0-97(0.030) | 0.50(0.124)
c1 2 0.940.044) | 0.99(0.024) | 0-53(0.105)
3 1.00¢0.000) | 0.93(0.023) | 0-24(0.041)
4 0.96(0.023) | 1.00¢g.001) | 0-40(0.057)
1 0.94(0.050) | 1.00(0.000) | 0-58(0.138)
2 0.92(0.142) | 0.98(0.027) | 0.59(0.122)
co 3 0.96(0.063) | 0-98(0.012) | 0-53(0.088)
4 1.00(0.000) | 1.00(0.001) | 0-32(0.047)
5 0.96(0.026) | 1.00(0.002) | 0-39(0.085)
6 0.96(0.026) | 1-00¢g.006) | 0-49(0.150)
1 0.990.018) | 0-98(0.011) | 0.40(0.052)
D.1 2 1.00¢0.013) | 0.98(0.009) | 0-39(0.043)
3 0.990.016) | 0-97(0.018) | 0-38(0.055)
1 0.94(0.042) | 0.92(0.021) | 0-57(0.050)
E.l 2 0.93(0.068) | 0-96(0.015) | 0.55(0.066)
3 0.93(0'057) 0-91(0.038) 0~62(0.084)
1 1.00¢0.000) | 0.98(0.006) | 0-20(0.030)
El 2 1.00¢0.000) | 0-98(0.007) | 0-27(0.062)
3 1.00¢0.000) | 0-98(0.005) | 0-19¢0.017)
1 1.00(0.000) | 0.95(0.015) | 0-17(0.042)
F2 2 1.00¢0.000) | 0.98(0.003) | 0-19(0.036)
3 1.00¢0.000) | 0.96(0.008) | 0-14(0.013)
1 1.00(0.016) | 0-93(0.019) | 0-29(0.093)
E3 2 0.99(0.056) | 0.91(0.038) | 0-30(0.168)
3 1.00¢0.000) | 0-93(0.015) | 0-25(0.034)
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T=347 (Two men
i stand together) | stand together)

| T=463 (Two men L T=521 (Two men

T=405 (Two men
walk together)

Fig. 3.

i T=579 (Two men !

' : walk through
i walk out of lobby) | walk to the door) | the door)

| T=637 (Two men | T=695 (Empty
exit) Lobby)

The detected change points corresponding to the following times and events: ;5\1 = 115 first man walks out of lobby; ?2 = 173 two men walk in to lobby;

?3 = 231 two men keep walking in to lobby; ?4 = 289 two men stand together; ?5 = 347 two men stand closer; ?6 = 405 two men walk together; 7&\7 = 463 two
men walk out of lobby; tg = 521 two men walk to the door; tg = 579 two men walk through the door; t19 = 637 two men already exit; and t1; = 695 empty

lobby.

K "

Sais
"

Fig. 4.
11th estimated segments.

change point locations relative to the sample size, i.e. tNJ /n,
and the percentage of simulation runs where change points
are correctly detected. A detected change point is counted as
a success for the j-th true change point, if it falls in the selection
interval: [t;_; + =21 t; + “+=] Moreover, we use the
estimated rank, sensitivity (SEN), specificity (SPC) and relative
error in Frobenius norm (RE) (all defined next) as additional
criteria to evaluate the performance of the estimates of low rank
and sparse components of transition matrices.

TP TN
SEN= —— SPC= ———
TP + FN’ EN + TN’
RE — ||[Est. — Truth||p
| Truth||

Selected segments and the corresponding sparse component of the time varying transition matrices. From left to right, we illustrate the 1st, 4th, 6th, and

As an illustration of the variability of the estimates, Fig. 2
depicts the estimated change points (left-panel boxplot of the
estimates and right panel mean of the estimates) based on 50
replicates in scenario C.1. It shows that the proposed strategy
estimates the change points with high accuracy.

The results in Table II illustrate the performance of change
point detection for each of the settings considered in Table I.
For most of the cases in scenarios A and B, the implemented
algorithm provides a near perfect performance. In scenario C,
we considered multiple changes. As expected, for those change
points close to the boundary of the observation interval (or other
change points), the selection rate exhibits a slight deterioration.
In scenarios D, E and F, we still obtain a perfect selection rate
even under the weaker sparse signal (scenario D) and the high
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dimensional settings (scenario F). Overall, the results in Table II
are highly satisfactory and clearly show that the proposed strat-
egy is highly accurate in detecting both the number of change
points and also their locations.

Tables III and IV present the performance of the estimation
step. It is worth mentioning that for most of the simulation
results, less than 20 iterations were needed to obtain the minimiz-
ers of the corresponding regularized optimization problems. The
regularization parameters are selected based on the guidelines
previously provided. The results strongly support the effective-
ness of the strategy and the algorithms used in each step. One can
easily see that all parameters are estimated with a high degree
of accuracy. As expected, when the rank increases, a greater
portion of the signal strength is absorbed into the low rank
component and thus the estimation of the sparse components
becomes less accurate. This is illustrated in the B.1, B.2 and B.3
settings of Table IV. Another interesting experiment is setting
D.1, in which sparse components do not provide a strong signal;
therefore, the estimation results for the sparse components under
D.1 exhibit less accuracy compared to scenario A.2. The result
for scenario E.1 demonstrates that our strategy and algorithm
have high sensitivity and specificity for the sparse estimates
and accurate estimation of the rank for the low rank component
on the random sparse pattern as well. The last three results for
scenario F illustrate the performance for larger size models; the
results indicate that the proposed strategy is robust under higher
dimensional settings.

V. REAL DATA APPLICATIONS
A. Surveillance Video Data Set

The proposed detection algorithm is applied to a surveillance
video data set obtained from the CAVIAR project.> A number
of video clips record different actions by people in diverse
settings, including walking alone, meeting with others, entering
and exiting a room, etc. The resolution of each image is based on
the half-resolution PAL standard (384 x 288 pixels, 25 frames
per second). We analyzed the Two other people meet and walk
together data set, comprising of 827 images.

We first re-sized the original images from 384 x 288 pixels
to 32 x 24 pixels and used a gray-scaled scheme instead of the
original colored image to accelerate computations. Therefore,
the resulting data matrix has n = 837 time points and p = 32 X
24 = 768 features.

The proposed model is perfectly suited for this task, since
there is a non-changing low-rank component corresponding to
the stationary background of the space surveyed, while the
changing sparse component corresponds to movement of people
in and out of the space in the evolving foreground.

Fig. 3 depicts the selected change points by the algorithm and
the nature of the change is illustrated by a representative frame
from the original video. Given the complexity of the background,
a rank 18 component was selected to capture it. In Fig. 4, we
also show the most significantly changing pixels captured in
the sparse component of transition matrix for the 1%, 4th gt

Zhttp://homepages.inf.ed.ac.uk/rbf/ CAVIARDATA 1/
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TABLE V
DETECTED CPs BY THE L+S VAR AND A FACTOR MODEL

No. of CPs | L+S model | Factor model
1 2/12/02 12/17/02
2 9/3/02 4/8/03
3 3/18/03 7/24/07
4 7/17/07 8/7/07
5 2/12/08 7/15/08
6 8/26/08 9/8/09
7 3/10/09 8/17/10
8 10/19/10 -
9 1/28/14 -
10 9/8/15 -
e |
0 | :
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Fig.5. Detected change points in the log-returns data during the 2001-2016 pe-

riod. Red dashed lines are change points selected by Factor Analysis Model [5];
blue solid lines indicate the change points selected by our model.
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Fig. 6. Connectivity for each estimated sparse components in different se-
lected time periods. 1/2/01-2/12/02 period: 4.3%; 2/12/02 - 9/3/02 period: 3.0%;
9/3/02 - 3/18/03 period: 5.1%; 3/18/03 - 7/17/07 period: 4.5%; 7/17/07 - 2/12/08
period: 6.6%; 2/12/08 - 8/26/08 period: 7.6%; 8/26/08 - 3/10/09 period: 10.7%;
3/10/09 - 10/19/10 period: 6.4%; 10/19/10 - 1/28/14 period: 7.8%; 1/28/14 -
9/8/15 period: 6.3%; 9/8/15 - 12/27/16 period: 6.6%.

11" estimated segments, respectively. Specifically, for the j-th
estimated interval, the (k,l) elements in S reflect the partial
autocorrelation between pixels k£ and [ in the original image.
Therefore, we selected the largest 20 elements in S; and mapped
the pixels to the original image.

B. Stock Data

Next, we employ the proposed detection strategy to identify
change points in weekly financial stock price data, covering
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Fig. 7.

Estimated connectivity based on selected time periods. Left: Structure of the connections in the pre-crisis period and has 62 edges; Middle: Structure of

the connections among selected companies during the crisis period and has 228 edges; and Right: Structure of the connections in the post-crisis period and has 114

edges.

the 2001-2016 period. Extensive work in asset price theory
indicates that stock log-returns can be accounted for by a
few stable factors (either extracted through a statistical factor
(low-rank) model [34], or constructed from a large scale di-
verse portfolio [18], [19]). The stocks in our analysis corre-
spond to 52 stocks of banks, insurance companies and stock
brokers that have complete data in the aforementioned time
period.

We compared our model with factor analysis model proposed
in [5]. Table V illustrates the ten change points selected by
our strategy, along with seven change points identified by a
competing procedure based on a factor analysis model [5].
Fig. 5 provides an overall picture of the selected change points
based on the simplified version of the change point detection
algorithm to select candidates in the first step (blue lines)
compared with those detected by the factor analysis model
(dashed red lines).

The overall (normalized) density of the time varying sparse
component based on a 3-factor model is plotted in Fig. 6. The
decision to use 3-factors was based on an examination of the
singular values; for a 3-factor model they were 1.60, 0.094
and 0.054, while for a 5-factor model they were 2.29, 0.30,
0.11, 0.05, 0.04. It can be seen that the even for the 5-factor
model, the first three singular values capture 95% of the total
variance, while the last two contribute very little. We also
conducted a residual analysis for model selection. Specifically,
after obtaining the estimated L and S; for m + 1 segments,

we derive the residuals for the j-th segment: e, = X; — X, for
t € [tj,t;+1 — 1]. Then, the sum of squared residuals is given

by Zfﬂl ?Hllf?j Z:;}Tl lle¢||2. Naturally, a model is more
suitable if this quantity is smaller. For the rank 3 and rank
5 component models the corresponding values are 1.569 and
1.582, respectively. This result indicates that a rank 3 component
is preferable.

Our model identifies ten change points corresponding to ma-
jor economic/financial shocks that occurred during the period
under consideration and impacted in particular the performance
of financial stocks. Specifically, the two 2002 change points
cover the period when the telecommunications bubble popped
following that of the dot-com crash and drove the NASDAQ
index significantly lower, thus markedly affecting market sen-
timent. The first change point in 2008 precedes the collapse of
Bear Sterns (early March 2008), while the second one that of
Lehman Brothers (mid-September 2008), while the first one in

2009 marks the end of the sharp market downturn following the
Great Recession. The next three change points capture shocks
(affecting in particular financial stocks) related to the European
sovereign debt crisis that involved significant downgrades of
the debt of several European Union countries, bailouts and
recapitalization of banks and in general a lot of market distress.
Finally, the September 2015 change point captures the severe
market downturn spanning most of late 2014 and beginning
of 2015 time period. In contrast, the factor analysis based
model, detects only seven change points (in fact, the third and
fourth are too close to be identified as two independent change
points), and does not identify any change points after 2010.
Further, the location of the 2008 change point is two months
before the collapse of Lehman Brothers, whereas our strategy
identifies one three weeks before that event. Further, our model
and strategy identify the turn of the market in early March
of 2009, which coincides with the bottom that various stocks
indices hit, while the factor model locates it in early September
of 2009.

Fig. 7 provides the significant connectivity for the following
three different time periods: March 2003—July 2007, August
2008-March 2009, October 2010 — January 2014 which cor-
respond to instances before the financial crisis of 2008 (pre-
crisis period), the apex of the crisis and the post-crisis period,
respectively.

VI. CONCLSION

In this paper, we developed a three-step strategy to detect the
(unknown) break points and estimate the transition matrices in
a high-dimensional VAR model in which the latter are assumed
to be a superposition of a low-rank and a sparse component. The
fixed, but unknown low-rank component introduces algorithmic
challenges, since it needs to be estimated together with the other
dynamically evolving parameters. From a technical perspective,
the estimation of the low-rank part impacts the sum of squared
error terms (SSEs), which is quantified in the consistency rates
developed in Section III. Note that the developed methodology
can be extended to VAR(d) with d > 1 in a similar way as
discussed in [8]. Extension of the current framework to cases
where the low-rank part could also change over time in a
piece-wise manner constitutes an interesting future research
direction which not only complicates the detection problem, but
alsorequires a thorough investigation of associated identifiablity
issues.
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APPENDIX

Proof of Theorem 1: By the definition of © and L, we obtain
that

1 ~ ~ ~ ~
E||y — XL — 20|53+ MallLll« + A2.nl O

+ /\37”2 29

=1

1 * *
<[y - XL - 2673

l

>0

Jj=1

kn

Al 4 Azl O+ A S
=1

13)

1

Denote by A = {to, t1, . mo} the set of true change points
and also define AL =7 L* A@ -6 -0~ Using the con-
ditions on Ay ;,, A2, and A3 ,, to obtain:

1 ~ —~ 2 2 2 <
~||XBL + 286 | < ZALAE+ ZRpzE
n 2 n n

IZ* + All) + Aen (1071

kn l l
*
DA I I
j=1 j=1

+ A (L7l =

— 0% + Aoll1) + Asm >

=1

~ z'E
1ALl +2H ]
n

1

<2

Aellx

o0

HX’5

op

+ AallLrfls = [[127 + ALl

)= dem 3 10l

i€ A°

kn
Do > (1671 = 180k ) + s > balS5
=1

icA
S Al ALl + Aen (L7l = 127 + ALll)

+ 2000 Y6711 + Asn(ndy)
ieA
< 2| L¥ [l + 2020 Y 116711 + 0(1)
icA

<40y MCo(m)_l\/g

+ 4Coym,, . max {d; + d;_l} X

mo+1

I 21
Me /M“(”

According to the definition of the information ratio v and
recalling the selection of A, ,, we can obtain the posited
result. |

Before we prove Theorem 2, we introduce the following two
sets of sub-spaces {Z,Z¢} and { L 4, L g } corresponding to some
generic sparse matrix S € RP**P2 and some generic low-rank
matrix L € RP1*P2_in which the /1 norm and nuclear norm are
decomposable [37]. First, let 7 be the set of indices in which
the sparse matrix S is non-zero. We then define the following
sub-spaces

T:={P R | P, = 0for (i,
PARE {PERpo|Pij7é0f0r(’L',

(14)

Jj) & T},
j) €T}
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Then, for an arbitrary matrix M, M|z € T is obtained by as-
signing the entries of M whose indices are not in J to 0, and
M]|ze € Z¢ is obtained by assigning the entries of M whose
indices are in 7 to 0. Then, the following decomposition for the
¢4 norm holds

M|l = [[(Mlz + Mze)l[y = [|M][1z + [[M]]1.z¢,

where [[Al[1,z = >7(; j)es |ajk|. Let the singular value decom-
position of L be L = UXV’ with U and V being orthogonal
matrices. Analogously, we define the following subspaces

L4 :={A € RPP? | row(A) C V" and col(A) C U},
Lp:={A e R | row(A) L V" and col(A) L U"},
where r = rank(L), and U" and V" denote the first 7 columns
of U and V corresponding to the first » singular values of L.

Therefore, we consider the restricted sub-matrices on the sub-
spaces {L 4, Lp} given by

Ly Lis
Loy

O O

V' and LB =U ~
O L22

LA=U v,

where ZH € R"*". Then, we have L* + L® = L and the fol-
lowing decomposition for the nuclear norm holds

Ll = I + L) = L4 + (L7

Proof of Theorem 2: First, we focus on the second part. Sup-
pose for some j =1,2,...,mq, |tAj — tj| > nyy. Then, there
exists a true break pomt t which is isolated from all the
estimated points, i.e., mml<J<m0 It; — j0| > n7y,. The idea
is to show the estimated AR parameter Sj in the interval
[tjo—1 V ;. tjo+1 Atj41] converges in £ to both S* and S,
which contradicts assumption H3.

Due to the definition of (L, ©) in (4), the value of the func-
tion defined in (4) is minimized exactly at (E, (:)) Denote the
closest r; to the right side of ¢;,_1 by s;,_1 and the closest
7; to the left side of ¢;, by s, similarly. First, we consider
the interval [sj, 1 V %}, s;,]. Define a new parameter sequence
Yr’s, k=1,2,...,n with ¢, = 9;6 except for two time points
k= tAJ and k = sjo. For these two points we assign ¢y =

g g a Sjo_1VE—1 =
S5 —S; and ¢, j+1 — S, where S; = Lo Gy,
a s Vit ~ ~ .
and Sj41 = kmll 7 Oy, thus, 95 Vi = it — S;.Denoting
U= [Wp 1p/27 s awkn] Rpk"Xp we obtain

1 ~ ~ ~ ~
Eny — XL — 20|13 + AnllL|l« + X2.n]|©O]11

+ )\37n

1
< -]y —-XL*
n

+ )\3,71 Z

=1

= 205+ Al L]l + A2n [l

Z%

According to the definition of v, we can define the cliffer—
ences between estimated coefficients and their true values Ay, =

(15)
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L — L* and 35 = §j+1 - SJ*O. For the specific interval, since
we only consider the observations within this interval, and due
to the fact that the length of the interval is large enough, we can
verify the restricted eigenvalue and deviation bound inequalities
(see [8]). Weuse X = [X ijo,l]’ €

R (550 ’Siwlff)x” to denote the observations under considera-
tion, while £ is the corresponding noise term. Then, a rearrange-
ment of inequality (15) leads to

SjU—l\/?j ’ XSJ'O,I\/?]’+17 trt

1
—AXA +A
7 IR Bl

o5y | e (- 1)

T S5, — Sjo-1 Vi Sjo = Sjo-1 V1
n)\2 n a -~
+ —22 ()85, = Sl + 118}, - 8
Sh_%rﬂﬁjHJU il + 1S5, = Sjlh
~ ~ n)\3 —~
1851 = Sl ) + =5 (155, I~ 185411

—~ ~ o~

9 N
AL+ A XE
Sjo = Sjo—1 V tj

IN

M (1A - 1A ||)

8jo — Sjo—1 V j

277,)\2,71

2N\ P
_ “PAlne Z o (L),

Sjo — Sjo— 1\/75]] i

~ 1R85 ]z ) + (16)

where the matrix pair (A, B) are from the sub-spaces { L4, L},
respectively. The second inequality holds due to the decompo-
sition of the ¢1-norm, the nuclear norm in [1] and an application
of the triangle inequality.

According to Holder’s inequality, the first term of the right
hand side of the second inequality in (16) implies the following
inequality

(Bp +Bs, XE) < | XEopll Bl + 1V E | B
= | % Elep (IA21 + 1AZ1.)

+ [ ¥E) (18502 + 1 Bsll1z:) a7

Substituting (17) into (16) and considering the conditions for
Alns A2 and Az, we have

1
| X(AL + Ag)|2
Sjo — Sjo—1 V tj
3’17)\1 n 3’[1/\3 n 2%)\3 n
L 187, Iz
2nA lo
+ 2,n 4 C gp ||AS||1
Sjo — Sjo—1 V 1 Y
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20y 2 *
< W”nA I+ Rt Bl + 2,
+ ”A3’"||Es|\1+% > o)
2b,, Sjo — Sjo-1 Vi ;554
_ 3n)\1 nIAAY, + 3n /\3n n)\s ”HASHl (18)

The first inequality holds with high probability converging to 1
due to part (a) in Lemma 2 and the fact that s, — s5;,-1 V tA >
n’yn and b,, < 1 7M¥n by assumption H3. The second 1nequa11ty
is based on trlangle inequality and the selection for A, ,, and
A3 . The last equality holds by the definition of decomposition
properties of the ¢; and nuclear norm, respectively.
On the other hand, by the restricted strong convexity condi-
tion [8], there exists a constant 7 > 0 such that

1
————— | ¥(AL + As)|l5 2
Sjo — Sjo—1 V t;

(NBLI3 + 185013 - 21(A., Bs)1)

-
§HAL+ASH2
>

T
2
T
> L
-2

(1AL + 18513 — 2B Ll Bsy)

77)‘3 n

T ~ ~
> 2 (1AL + 1R513) - “2"1Aslly (19)

Inserting the inequality (19) into (18), we have
3n)\1 n 577/)\3 n

IAZ L+

T ~ ~
= (1IR3 +18s]3) < 1851k

3N ~ 513, —~
< (%5evar ) 1Bl + (%&\/dz) IRsl

3nA 2 /5n)s 2= =~
<o (Batzvar ) + (Bmie var) IRcl+IAsI3

Further, combining with our tuning parameters assumption, we
obtain

N N 4 9”2)\ n 25n2)\2n
||AL||§+||As§gTz( ey D00

202 a2

4 (90 rp 2503 dy 1ogp) 0)

72\ 2 nvy, 4 vy,

This result shows that

~ r*p+d} logp
S;O—Sj+1||§=op( , @D

Yn

1L — L5 + 1

which indicates that || L — L*||2 + 157, §j+1 [|% converges to
zero in probability based on assumption H3. Similarly, we can
perform the same procedure to the interval [s;,, Sjo+1 A tj4+1]
to get that ||[L — L*[|3 4 [|S}, 4, — Sj+1|3 converges to zeros
as well, which leads to that ||Sj0 . SjH”% - IS, - S]||§ con-
verges to zero as well, and this implies to a contradiction to the
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first part of assumption H3. Therefore, we proved the second
part of the theorem.

_The first part can be proved as follows. We assume that
|A,| < mp, which implies that there exists an isolated true
change point, denoted by s;,. Then, we can separately apply
the same procedure as in establishing the second part to the
intervals [s;,, sj,+1 A tj+1] and [s;, 1 V #;, sj,] which can lead
to [|S7,, — S7||2 converges to zero and therefore contradicts
with assumption H3. |

Proof of Theorem 3: To prove the first part, we need to con-
sider the equivalent two parts (a) P(m < mg) — 0 and (b)
P(m > mg) — 0 respectively.

For case (a), we can directly obtain from Theorem 2 that there
exist points t; € A, satisfying that max<j<p, [t; —t;| <
n7Yn. According to the arguments in Lemma 3, we get that there
exists a constant X > 0 such that

n
Ln(%\la s a%\mo;nn) S Z ||€tH§ + Kmonfyn(djlz —+ T*Q).
t=1
(22)

To prove (22), we only need to consider one of the estimated
segments. Suppose s,_1 < t; < s; with |[t; — s,_1] < ny,. We
use 0 to denote the estimated sparse component in the segment
(si—1,s;) and we use I to denote the estimated low-rank compo-
nent. Moreover, let AL — L - L* and 39 -0 S;+1' Then,
similar to the proof of Lemma 3 case (b), we have

s;—1

SIIX — 0+ L) Xolf3
t=t;

87‘,71

<D lleells + eslsi = t51180 + A3

t=t;

+c'< 15—, log pl|Roll + |sz-tj|p||3L||*)

s;—1

=" 3+ i + e

t=t;

(23)

Now, according to the convergence rate of the error in Lemma 3
case (b), we obtain

1 < eslss = 5] (18all3 + 1A2]13)

256 ,
< C3|Si - tjl?(dnn(si—lysi) + 2T77%)

= 0y (nn(d;” +77)), 24)

logp | ~ 2
A Arll«
sﬁth e||1+,/sl_7tj|\ cll

Rolly +nellAs )

and

Jg = CI|Si — tj| (

< CWSi-—tj|(U(&,hsn
< 4 Ne. t 2 d* 2, %
S ac ‘Sl J‘ n(si—lysi) n + nr

-0, (mn(d;2 + r*2)> . 25)
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Using a similar procedure to the smaller sub-segment (s;_1, t;),
we obtain

ti—1

Z 1X: — (0 + L) X113

t=si-1
tj—1

< 3 el +eslty — siall (@ S) + A2
t=s;-1

n ( 6 — s logpll7 — 52

/i - sz-1|p|AL||*)

;-1

< D lleal3 + 2esft; = sioal (1B + Aol

t=s;-1

+1(S}1 — S7) + Bell3)
+ ¢ (/i = sicaltog (1Bl + 1512 - 711)

/i - sz-1|p|£L||*)

t;—1

< > el + 0y (nnld;? +17%)

t=s;-1

(26)

Since we have

~ Si — Si—1 ~
N(si-1,5:) 0”1 + - n - 77L||L||*
< Nor vy (1Bolls + 155411 )
Si — Si—1 N *
+ 2= (WR e+ 1271
= Op(dy + ).
Therefore, combining (23) to (27) yields

27)

87;71

> IXe = 0+ L) Xeall3 + s,

t=si-1

0l

Si—Si1 .-
+ =Ll
n

s;—1

= > Nl + 0y (naldy® +1°)) -

t=s;-1

(28)

Taking the union of all mg + 1 estimated intervals leads to the
result (22).
Applying Lemma 3 and noting that under the conditions
specified in assumption H4, we obtain
IC(t1,...,t5) = Ln(ty,. ..

atﬁl; nn) + ﬁwn

n
> Z HetH% +cald, — C2mn7n(d22 + 7’*2) + mwy,
t=1

> Ln(?la cee 7%\m0;7]n) + mown, + a1,
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- C2m0nfyn(d;2 + 7‘*2) — (mop — m)wy,

> Loty s timg; ) + Mown, (29)

which leads to the proof of case (a).
For case (b), by using a similar procedure as above, we get

n
i) =Y 3 — commnyn (dy? +1*2).
t=1

Ln(ty, ...
(30)

,fm) andIC(tAl,...,fmo)

Then, we compare IC(%1,. ..
Z lle]|2 — commny, (d5? 4 %) + fw,
t=1

<IC(ty,. ..

~

) <IC(E1, .ty

< lledls + Emonan(dy® +r*2) + mown, (31
t=1

which implies that
(M — mo)wn < (Kmo + com)ny, (d5? + r*?),

which contradicts assumption H4. Now we proved the first part
of Theorem 3.

For the second part, we let B = 2K/c, if there exists a point
t; such that miny < j<,, [t; — t;| > Bmony,(di? + r*?), then
by similar arguments as in Lemma 3, we have

n
Y lleel3 + eBmonya(dy? +72)
t=1

< Ly(ty,...

o~

,?ﬁ) < Ln(a,...,tmo)

< Sl + Kmonya(d;2 +1%%), (32
t=1
which contradicts to B = 2K/c. Therefore, we complete the
proof. |
Proof of Theorem 4: Tt follows along the lines of the proof
of Proposition 4 in [8]. We need to firstly verify two important
conditions. (1) the restricted eigenvalue (RE) condition for I'; =
X} X;/Nj; (2) the deviation bound condition for || X;&;/Nj| -
These two conditions can be verified by Lemma 6 directly.
Therefore, we can derive the following result

1 -~ ~ ~
N i = 4L+ SpllE + pillSilln + prlI LIl
J

1
< 5195 = X (L + SHIE + pilISF I + oI L7,
J

we define the same weighted regularizer as in Lemma 3 and
the same norm decomposition as in the previous proof. Define

o~

Ap=L—L*and Ag, = 5; — Sj* to obtain
1 ~ ~
EHXJ'(AL + As)|F

3 1
< §pLQ(ASj |Ij7Aé) - §pLQ(ASj

AL, 33
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By the RE condition and Lemma 6 and substituting interval
[t;,s;) with I, there exists a positive constant 7 > 0 such
that

1 . N
EHXJ(AL +As) |

T~ ~ 1 ~ ~
2 SUALIE+ 18s,117) = 5 Q(As, Ar);

substituting the inequality above in (33) and according to
Lemma 4, we have

T o~ ~ —~ ~
SIALIE + 1As,17) < 20.Q(As,, Ar)

< 2prl|ALlls + pjllAs;[l1)

<2\/2r02 + 52\ IBLIE + |Bs, I3

Therefore, we get

~ ~ 16, .
IALIE + 128,17 < = (2r*pL +djpj). (34

Combining the choices for the tuning parameters specified in
Theorem 4 and (34), we can obtain the posited result. | |
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