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Abstract—Traditionally, many text-mining tasks treat individ-
ual word-tokens as the finest meaningful semantic granularity.
However, in many languages and specialized corpora, words are
composed by concatenating semantically meaningful subword
structures. Word-level analysis cannot leverage the semantic
information present in such subword structures. With regard
to word embedding techniques, this leads to not only poor
embeddings for infrequent words in long-tailed text corpora
but also weak capabilities for handling out-of-vocabulary words.
In this paper we propose MorphMine for unsupervised mor-
pheme segmentation. MorphMine applies a parsimony criterion
to hierarchically segment words into the fewest number of
morphemes at each level of the hierarchy. This leads to longer
shared morphemes at each level of segmentation. Experiments
show that MorphMine segments words in a variety of languages
into human-verified morphemes. Additionally, we experimentally
demonstrate that utilizing MorphMine morphemes to enrich
word embeddings consistently improves embedding quality on a
variety of of embedding evaluations and a downstream language
modeling task.

I. INTRODUCTION

Decomposing individual words into finer-granularity mor-
phemes is a necessary step for automatically preprocessing
concatenative vocabularies where the number of unique word
forms is very large. While linguistic approaches can be used
to tackle such segmentation, such rule-based approaches are
often tailored to specific languages or domains. As such, data-
driven, unsupervised methods that forgo linguistic knowledge
have been studied [7], [18]. Typically, these methods focus
on segmenting words by applying a probabilistic model or
compression algorithms to a full text corpus. The resultant
morphemes from these methods have been primarily shown to
improve neural machine translation [26], [40].

One natural application to utilize these semantically mean-
ingful morphemes is distributed word representation. There
are many advantages to using distributed continuous word
representations as an alternative to one-hot bag of words [12],
[34] since this leads to a dimensionality much smaller than the
vocabulary size of a corpus. It has been shown that working
with low-dimensional representations not only demonstrates
computational efficiency, but also captures syntactic and se-
mantic regularities while boosting the performance in text
classification, sequential classification, sentiment analysis, and
machine translation [21], [22], [31], [43], [45]. As such,
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Fig. 1: Hierarchical segmentation of words.

many methods have been developed to learn these word
representations from large, unlabeled text corpora [5], [29],
[30].

Despite many advances, unsupervised learning of distributed
representations can struggle in learning adequate vectors for
infrequent words. This problem is ubiquitous because most
text corpora demonstrate long-tail distributions in relation to
word frequency, with often 40% — 60% of words in a vocab-
ulary appearing just once in a corpus [25]. Naturally, many
methods fail to produce meaningful embeddings for unseen
(out-of-vocabulary) words. Using morphemes for parameter
sharing not only bolster training data for infrequent words but
also allow for constructing meaningful word embeddings for
unseen words.

What differentiates our method from others is extracting
morphemes at multiple granularity. As seen in Figure 1,
morphologically-rich words share semantically-meaningful
morphemes. Larger morphemes carry more semantic meaning,
but are often infrequent within the vocabulary and discarded
in favor of more frequent finer-grained morphemes in other
methods. Yet, including both fine and coarse-grained mor-
phemes, can better semantically tie the meanings of words
that share them. With this motivation, we propose MorphMine,
a continuation on preliminary work [11]. We formalize the
novel methodology by framing the morpheme segmentation as
entropy-boundary identification and segmentation with a parsi-
mony criterion. We introduce a global resegmentation to refine
and improve the segmentation after the initial segmentation.
Finally, we evaluate our method on a variety of datasets and
tasks in multiple language and demonstrate how multi-granular
morphemes can be used for enriching word embeddings for
robustness to data-sparsity.



II. PRELIMINARIES

The input is a corpus W, consisting of |W| words: W =
w1, . . ., ww|. From this corpus, we construct a vocabulary of
unique words, V, of size |V| such that Yw € W,w € V.
In addition, the v*"* word is a sequence of |v| characters:

Cv,i,t = 1,...,|v|. For convenience we index all the unique
characters that compose the input vocabulary with C' charac-
ters and ¢, ; = z,where x € {1,...,C} means that the i*"

th th

character in v*" word is the z*" character in the character
vocabulary.

Given an input corpus consisting of a word sequence and
a vocabulary list of unique words, our goal is to segment the
vocabulary list to identify human-interpretable and semanti-
cally meaningful morphemes, then utilize these morphemes
for parameter sharing when learning distributed word repre-
sentations from the corpus.

Definition 1 (Morpheme Formalization):

e A morpheme is a sequence of characters: m =
{Cvis-e,Cvitn} where n >0

e A partition over vocabulary word v is a sequence of
morphemes: G, = (My1,...,Myq,) where G, > 1
s.t. the concatenation of the morphemes is the original
word.

In Definition 1 we formalize a morpheme and the resultant
partition from segmenting a word into morphemes. In addition
we outline the desired properties of the framework as follows:

1) extracts semantically meaningful, human-interpretable at
multiple granularity

2) the method is general and applies to words on a variety
of languages

3) enriching word morphemes improves word embeddings

4) the overall method is computationally efficient

A. The MorphMine Framework

At a high-level, our proposed framework can be summarized
into two sequential steps: (1) mining candidate morpheme
patterns and character co-occurence statistics, and (2) per-
forming word segmentation into finer-grained morphemes. In
step one, by applying an information-theoretic metric to detect
candidate morpheme boundaries, we identify candidate mor-
phemes within each vocabulary word. These morphemes are
propagated to other words and pruned to ensure high-quality.
For step two, from this candidate pool, we then apply an
unsupervised dynamic programming segmentation algorithm
to select a subset of these morphemes that best segment
each word. Segmentation and partition induction further prune
away low-quality morpheme candidates leaving a high-quality
morpheme vocabulary. After inducing a partition on each
word, we can recursively segment each morpheme to finer
granularity. Applying this two-step process maps each word
in the input vocabulary to a set of high-quality morphemes.
The resultant morphemes from the hierarchical segmentation
can then be used for downstream NLP and text analysis tasks.

The main objective in morpheme pattern mining is to collect
aggregate statistics on morpheme patterns that can be used to

score and reason about the quality of candidate morphemes.
These statistics are then used in the word segmentation algo-
rithm. For each character n-gram that appears more than once
in the vocabulary, there is a potential for parameter sharing via
the candidate morpheme as it appears in multiple vocabulary
words. Additionally the frequency counts of these morphemes
will be used for entropy-boundary computation to identify
and score potential morpheme candidates. These candidates
are input to the word-segmentation algorithm that attempts
to apply Occam’s Razor by positing that using the fewest
morphemes in the segmentation best segments each word [16].
This process is then applied recursively to each morpheme to
obtain finer-grained morphemes.

By inducing a partition over each vocabulary word, we
effectively transform each word into a bag-of-morphemes.
These morphemes can be shared among other words within
the vocabulary and model the belief that words that share mor-
phemes, share semantic meaning. This is done by individually
embedding each morpheme; these morpheme embeddings are
then combined to form the final word embedding. Because
a word embedding is constructed from the embeddings of
constituent morphemes, words that share constituent mor-
phemes will be partially constructed from similar morpheme
embeddings.

We expound upon our morpheme-mining algorithm and its
evaluation in a popular embedding framework in Section III.

III. METHODOLOGY

Given an input vocabulary list V', MorphMine segments
each word into non-overlapping character n-grams (mor-
phemes). Our method is non-parametric, hierarchical and data-
driven, allowing for good cross-domain performance without
incorporating domain-specific knowledge or linguistic rulesets.
The entire morpheme segmentation can be performed as an
easy preprocessing step to the vocabulary for downstream text-
related tasks. To learn a morpheme vocabulary and segment
an input vocabulary, MorphMine performs the following steps:
(1) mine morpheme pattern counts and compute entropy
statistics, (2) apply parsimonious segmentation to identify
the best locally-consistent segmentation, (3) recompute mor-
pheme counts after segmentation to ensure global-consistency
and maximize parameter sharing of morphemes, and (4) re-
segment using refined morpheme vocabulary counts.

We apply an entropy-based scoring function to identify
morpheme boundaries: generating candidate morpheme vocab-
ulary. Given this collection of morphemes and their counts,
the next step is to apply a dynamic-programming algorithm
to segment each word into high-quality morphemes. For each
word, the parsimonious segmentation identifies the most-likely
segmentation using the fewest number of morphemes. This
step discards a large number of lower quality candidates mor-
phemes from our vocabulary and allows for a more-accurate
estimate of morpheme counts. Using the refined vocabulary,
we can then re-segment and improve the overall quality of
segmentation. The re-segmentation biases towards selecting
locally-consistent segmentations that globally-optimize for



morpheme parameter sharing. That is, the resegmentation
favors morphemes used in the segmentation of other words in
the vocabulary. Finally, the resultant collection of morphemes
for each word can be utilized to enrich word embeddings.

A. Morpheme Vocabulary Generation

Our segmentation of words into morphemes relies on the
idea of morpheme compositionality. That is, the input vo-
cabulary can be constructed by composing morphemes drawn
from a smaller morpheme vocabulary. As such we introduce an
approach for creating the initial morpheme vocabulary: prefix,
suffix, and root-word candidates.

1) Prefix & Suffix Generation.: We posit that prefixes and
suffixes can be identified through the concept of transition
predictability.

Definition 2 (Transition Predictability): Transition pre-
dictability is a quantification of being able to predict the next
character in a word given a prefix.

Previous works have attempted to quantify Definition 2,
by using number of character choices following a prefix in
a vocabulary [9], [17], [19], [35]. For example, many words
begin with the prefix, “pre” such as, prepaid, preview, presoak,
etc. Given the large number of words with the prefix “pre”,
the transition from “pr” to “pre” predictable, but “pre” to a
longer prefix is not as predictable as many words have “pre”
followed by a variety of root words.

Unfortunately, using raw counts to identify high-
unpredictability boundaries for prefixes does not generalize
to large vocabularies and different languages as the character
count is arbitrary. As such we propose a metric on the
normalized distribution of character choices: information
entropy [41]. Let v be a word consisting of |v| characters
and m; be a prefix of v ending at the 45, character of v. For
each candidate prefix boundary ¢ for ¢ € [1...|v|], the prefix
transition unpredictability can be quantified with information
entropy. As the transition between a prefix and longer prefixes
can be modeled as a multinomial of support size C, the
character vocabulary, we use the multinomial distribution
entropy:

C
H(X) = —log(n!) — anj log(p;)+
C n
>0 (f )pr<1 — py)" " log(a;!)

C
- ij log(p;), when n=1
7j=1

This is the entropy of a multinomial over support C' for
n independent trials each of which leads to a success for
exactly one of the C' characters. Because we consider a single
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Fig. 2: Prefix and suffix transition entropy.

trial, n = 1, we simplify it into entropy of the categorical
distribution. For the prefix m;:

H(mg) ==Y P(m; @ c;|m;) x logyP(m; @ cj|my),
j=1

where @ denotes the binary string concatenation of two strings
and the transitional prefix probability is estimated as:

f(mi & ¢))
f(m;)

and f(m;) denotes the frequency of a prefix m; in the input
vocabulary list. The entropy of suffixes can, without loss of
generality, be similarly computed by reversing each word in
the vocabulary and treating each suffix as a prefix.

P(mi @ ¢y |ml) =

The information entropy of each possible prefix and suffix
in the vocabulary is computed in linear time with relation
to unique vocabulary size using a prefix tree data structure
to store counts over prefixes. Given entropy scores for each
prefix and suffix, scores are computed for each candidate split
point in each word. Under the entropy scoring of prefixes and
suffixes, we identify local maxima in entropy as candidate
boundaries for prefixes and suffixes. That is entropy of a
prefix one-character shorter and one-character longer should
be lower than a candidate prefix boundary. This is intuitive as
under our principle of compositionality assumption, complex
words are formed by concatenating morpheme structures.
As such, given an incomplete morpheme, the next character
can easily be predicted, but given a complete morpheme,
any number of new morphemes can be concatenated to the
completed morpheme increasing the unpredictability and thus
entropy. These high-entropy positions thus serve as a strong
indicator of morpheme boundaries. As seen in Figure 2, for
the word “spatiotemporal”, candidate prefixes and suffixes
are found at boundaries exhibit a local maxima in entropy.
For “spatiotemporal”, candidate prefixes are “spa” and “spati”
while candidate suffixes include “al” and “temporal”.
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Fig. 3: Segmentation of the word “spatiotemporal” using disjoint interval
covering.

2) Root Word Generation: Utilizing entropy-scoring, it is
possible to detect morpheme structures that occur at the
beginning or end of a word. However, many words often
contain morpheme structure between prefixes and suffixes. For
each prefix and suffix candidate identified in a word, it is
possible to generate many candidate root words by stemming
the word and removing prefixes and suffixes. This creates a
high-quality pool of root words to be used in conjunction with
prefixes and suffixes for segmenting the vocabulary.

Example 1 (Root Extraction): Removing prefixes and suf-
fixes yields candidate roots.

[pre] + authenticat + [ion]
[pre] + authentication
The characters grouped together by [] are prefixes and suffixes.
When removed, the remaining underlined character-sequence
represent candidate root words.

As seen in Example 1, when stripping the combinations
of prefixes and suffixes of a word, the remaining character
sequence is considered a candidate root word. We apply some
filtering conditions for each candidate root to test the viability
as a shareable root. These include: (1) a minimum support of
two within the vocabulary, and (2) the minimum root length
of four. Additionally, for each word in the vocabulary, after
stripping prefixes and suffixes, the candidate root words that
meet the constraints are added to the morpheme vocabulary.

B. Parsimonious Morpheme Segmentation

After generating a morpheme vocabulary using entropy-
based predictability metric for boundary detection, we segment
words into morphemes, utilizing this morpheme vocabulary.
The algorithm first identifies candidate morphemes from the
morpheme vocabulary within a word, then selects a subset
of these candidate morphemes that best segment the word.
The main insight is a per-word implementation of Occam’s
Razor. That is, according to the preference for parsimonious
hypotheses, we posit that each word is composed of the fewest
number of morphemes that maximally cover the word.

As seen in Figure 3, morphemes present in the target
word are identified and recursive segmentation is performed to
segment the word into morphemes. Example 2 demonstrates
how the candidates are used to segment the target word under
the parsimony criterion.

Example 2 (Parsimonious Segmentation): Segmentations are
scored based on word coverage and the number of morphemes.

Segmentation # Morphs Coverage
[spa] + tio+ [temporal] 2 11
[spati] + o + [temporal] 2 13
[spati] + o + [tempor] + [al] 3 13
[spa] + tio [tempor] + [al] 3 11

The highlighted row displays the maximally parsimonious
morpheme segmentation.

Subsets of non-overlapping candidate morphemes are used
in segmentation, and the most parsimonious segmentation is
selected. Because the possible subsets of candidate morphemes
form a power set, direct enumeration of each segmentation
quickly proves computationally slow for even a modest num-
ber of candidate morphemes. To identify the most parsimo-
nious segmentation, we abstract our parsimonious morpheme
segmentation task into a general problem we dub Disjoint
Interval Covering and demonstrate that this problem can be
solved via dynamic programming in linear time. We formalize
the disjoint interval covering problem as follows:

Definition 3 (Disjoint Interval Covering): Given an input
N € N and a set A of pairs (a,b) : a,b € {1...N} x
{1...N} and a < b, find the smallest subset B C A such
that || Jz| is maximized, |B| is minimized, and Vz,y € B :
T # yTif TNy =9.

As seen in Definition 3, the input is a set of pairs A and
a positive integer N. Within the segmentation perspective,
these refer to position index boundary pairs for candidate
morphemes and the word length. Given these inputs, the
objective is to select a minimum subset of disjoint morphemes
that maximally cover the word. That is, select a set of disjoint
morpheme whose combined length is as close as possible to
the word length.

1
1
1

[¢5)

We define a recurrence to the disjoint interval covering prob-
lem in Equation 1. This recurrence posits that the segmentation
that maximally covers the word is either the solution for the
current word minus the ending character, or the max-covering,
min-morpheme solution utilizing all morphemes that have a
right boundary index equal to the index of the end of the
word. With proper memoization, it is evident that for a word
of size |v|, there are |v| subproblems to solve. In addition,
because each interval’s right boundary corresponds to the
word size, each interval is iterated over a constant number of
times. As such, for word v, the total, memoized complexity
of this segmentation is O(v + |A,|) where A, indicates the
pre-segmentation morphemes that are substrings of word v,
making our overall framework of linear complexity — O(V).
Algorithm 1 presents the morpheme segmentation algo-
rithm. The algorithm takes as input a word and a collection
of intervals corresponding to index boundaries of candidate

(0,0), J

F(j-1), J

max min{F(i—1)o + (j—i+1), F(i—1)1+1}, J
0 7 (iea
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Algorithm 1: DP Parsimonious Segmentation (DP)

Input: Word v, morpheme Intervals A,
Output: Optimal segmentation S

1 n[0] « 0; c[0] < 0; p[0] + null;

2 for j:=1to N, do

3 num <— n[j-1]; cov<—c[j-1]; pair < p[j-1];
4 for (i,7) € A, do

5 cov’ « c[i-1]+(-i+1)

6 num’ < nfi—1]+1

7 if cov’ > cov then

8 cov < cov’; num < num’;

9 pair <+ (2,7);

10 end

1 if cov’=cov A num’<num then

12 | num < num’; pair < (i, j)

13 end

14 end

15 n[j] < num; c[j] < cov; plj] + pair;
16 end

17 return p

morphemes within the word. It then proceeds to select a set
of intervals that maximally cover the word while utilizing
the fewest number of intervals. Solutions to subproblems
are memoized as to avoid repeated computation. While the
algorithm returns a memoization list of best segmentations that
terminate at each index, proper backstracking can construct all
possible parsimonious segmentations. In the next subsection
we demonstrate how to select among equally-parsimonious
segmentations.

1) Maximum Likelihood Scoring: While Algorithm 1 iden-
tifies the most parsimonious segmentation, the algorithm often
returns many segmentations with equal parsimony. As such,
after applying Algorithm 1, maximum likelihood is used to
select the most likely segmentation among these candidate
segmentations.

Given the previous counts of candidate morphemes ob-
tained, it is simple to compute the most likely segmentation
among the candidate set of parsimonious segmentations given
an independence assumption. Given a segmentation (partition
of morphemes) over word v, G,,, one can calculate the likeli-
hood over the partition:

LG, = ] Pm) o ] f(m)

meG, megG,

The independence assumption yields and discarding the nor-
malization yields a simple product over each morpheme count
f(m) in the partition. This follows as all parsimonious par-
titions have the same number of morphemes and as such,
the normalization constants for the probabilities should be the
same for all parsimonious segments. One additional important
constraint we place on our most-likely partition is that, during
training and learning of the morpheme vocabulary, the most-
likely partition cannot have any morphemes that occur only
once in the vocabulary. That is: Vm € G, : f(m) > 1. This
ensures that each learned morpheme is shared at least with
another word. As seen in Example 3, the largest product of

counts is selected as the best segmentation. By applying the
restriction that all morphemes must be shared at least once,
MorphMine filters poor segmentations such as “incompletenes
+ 57 where the morpheme “incompletenes” only appears once
in the vocabulary.

Example 3 (Most-likely Segmentation): Most likely segmen-
tation from candidates.

Segmentation f(my)  f(ma) Likelihood Score
[incompletenes] + [s] 1 2072 2072
[incomplete] + [ness] 4 115 660

[in] + [completeness] 659 4 2636

[incomp] + [leteness] 4 2 8

The highlighted row displays the most likely segmentation.

The mostly likely segmentation “in + completeness” is se-
lected and in further steps, “completness” will be recursively
decomposed into smaller morphemes “complet" and “ness"
parsimoniously.

C. Local Segmentation.

Subsection III-A introduced the concept of utilizing high-
entropy boundaries to create a morpheme vocabulary, and
Subsection III-B introduced an algorithm for segmenting
words into morphemes based on the principle of parsimonious
disjoint interval covering and tie-breaking with maximum
likelihood. In this subsection we demonstrate a high-level
overview on how to apply these two methods to hierarchically
segment words into multi-granular morphemes.

Algorithm 2: Segmentation Algorithm (SEGMENT)

Input: Word v, morpheme Vocabulary SW
Output: Set of morphemes of v

output < {v}
Ay {(3,7) for v; ..
if A, = @ then

| return output
end
segmented < DP(w, A,)
for morpheme € segmented do

| output U SEGMENT(morpheme, SW)
end
return output

.v; € SW and j-i # |v|}

NN N R W N

—
=

Following the steps from Subsection III-A, an initial mor-
pheme vocabulary is created. Within the vocabulary, we differ-
entiate between prefixes, suffixes, and root words. As seen in
Algorithm 2, Line 2, each morpheme found in the input word
is mapped to an interval indicating its boundary indices within
the word with the condition that prefix intervals must start at
the beginning of the word, suffix intervals must terminate at
the end of the word, and root word intervals can be located
at any position within the word. In addition, the complete
word is not included (to ensure the word segments to smaller
morphemes). The algorithm terminates if the word cannot be
further segmented. Otherwise, the word is segmented with the
dynamic programming parsimonious segmentation algorithm.



Each morpheme is then treated as a word and recursively
segmented; the collection of all morphemes from segmentation
are output.

D. Global Resegmentation

The parsimonious segmentation selects the most-likely
locally-consistent segmentation of a word. Yet because each
word is segmented independently, a morpheme that is present
in two different words may not be selected because parsimo-
nious segmentation is performed on both words independently.
To address this, after performing one segmentation we utilize
the resultant segmentation to refine the morpheme counts and
prune infrequent morphemes from the morpheme vocabulary.
Using this refined morpheme vocabulary and a more accurate
morpheme count estimation, each word is re-segmented. The
resultant segmentation is not only performed with a smaller
morpheme vocabulary, but also favors the morphemes that
other words have selected in their own parsimonious segmen-
tations, creating a global consistency for the overall vocabulary
segmentation.

Example 4 (Re-segmentation with refined counts.): After one
pass through the vocabulary and segmenting with parsimo-
nious segmentation. Morpheme counts are re-computed using
the resultant segmentations.

Segmentation Counts; ML, Counts, ML,
[bit] + [emporal] 5,6 30 3,1 3
[bi] + [temporal] 4,6 24 3,5 15

While initial counts and scores (Counts;, ML) determine
the locally optimal segmentation. After recomputing the mor-
phemes post initial segmentation, refined counts and scores
are computed (Countsa, MLs). The white row displays the
initial best segmentation, while the grey row shows the best
segmentation after refining morpheme counts.

As seen in Example 4, in the first segmentation, the locally-
consistent parsimonious segmentation favors the incorrectly
segmented “bit + emporal’ with likelihood 30 over “bi +
temporal” with likelihood 24 as the likelihood is higher for
the former. After one round of segmentation, it is apparent
that the morpheme “emporal” was only selected once out of
the possible six occurrences, while “temporal” was selected
five out of six word segmentations. Resegmentation with these
refined counts helps choose the correct segmentation “bi +
temporal” with likelihood score 15 over 3. With this refined
segmentation, these morphemes can be used in the morpheme-
enriched word embedding learning.

E. Morpheme-Enriched Word Embedding

To efficiently utilize our mined morphemes to improve upon
word embeddings, we modify the FastText model for word
embeddings to use our extracted morphemes [3] to enrich
infrequent or out-of-vocabulary words. As explained in the
FastText paper, it is often the longest subword that captures
the most semantic meaning. As such, we take each and every
node in our word segmentation representing morphemes at

every granularity and directly input the morphemes extracted
from this layer to enrich each word in the vocabulary.

We begin with a brief review of FastText, and then demon-
strate integrating morphemes in place of the standard FastText
enumerated subwords. First, we note that FastText utilizes
the skip-gram objective with negative sampling yielding the
following objective (for simplicity, £(x) = log(1+exp(—x))):

w

[ZE(S(wz,wC)H > l(=s(wa, 1)),

=1 c€C, teENL e

where w,, is the z!" word in the corpus, C, denotes the set of

context words within a window of word w,,, and Nx,c denotes
the set of negative examples sampled from the vocabulary.
The scoring function is then adapted to incorporate morpheme
information as s(wz,we) = >_,.c,. ZH, Ve Where each zy,
denotes a morpheme embedding vector and the scoring func-
tion is a summation over morpheme embedding vectors in
a dot-product with the context word vector. While FastText
incorporates all contiguous substrings of lengths three to seven
as morphemes in the scoring function, we posit that many
of these morphemes are semantically not meaningful and, as
such, degrade the overall quality of the learned embeddings.
We claim that directly incorporating meaningful morphemes
extracted by MorphMine for each word and summing over
each morpheme’s embedding results in higher quality dis-
tributed representations.

I'V. RELATED WORK

In morphological analysis, predictability has been suggested
for detecting morpheme structure. An early quantitative metric
proposed was the number of different variations of morphemes
following a morpheme sequence whereby a high number
of variations indicates a morpheme boundary [19]. While
this work provided influential insight into useful metrics for
morpheme-detection, the main objective was developing a
scoring function for identifying candidate morphemes, not
segmentation. Following this line of work, were methods to
identify frequent morphemes and affixes [9], [17], [35]. These
methods identify a high-precision but low-recall subset of
morphemes. Similarity measures have been proposed for de-
tecting affixes by comparing words and identifying similar and
dissimilar parts. These methods utilize a variety of techniques
including edge-alignment, adding words and their reverse to
tries [32], [38]. Unfortunately, these methods can only iden-
tify prefix and suffix morphemes, ignoring morphemes. One
model segments words by applying the minimum description
length principle to minimize the vocabulary while maintaining
the likelihood of the corpus data [7], [37]. Other fixed-
vocabulary methods apply a unigram language model approach
to identifying morphemes (also called wordpieces) and has
been successfully applied to a variety of NLP tasks [39],
[44]. Similarly, the byte-pair compression algorithm has been
used to identify morphemes for neural machine translation
tasks [40].



To address data-sparsity when learning word embeddings,
some methods apply a factored neural language model where
words are represented as a set of features including morpheme
information [1]. Other methods add morphological similarity
features into a neural network along with the context fea-
tures [8], [33]. Other methods take morphologically annotated
data and train log-bilinear models to jointly predict context
words and morphological tags [6]. The method we utilize
for our embeddings is FastText [3]. While FastText utilizes
all the possible character n-grams up to certain length for
enrichment, we only utilize high-quality morphemes in Mor-
phMine. Finally, many methods have utilized characters as the
base unit for embedding. Some approaches treat each word as
a sequence of characters and apply RNNs or convolutional
networks [4], [23], [42].

V. EXPERIMENTAL RESULTS

We introduce the datasets used and methods for comparison.
We then evaluate our method on a morpheme segmentation
task, a variety of embedding tasks, and a downstream language
modeling task.

Datasets

« English, German, and Turkish Vocabularies and Seg-
mentations. This dataset consists of three vocabulary
lists in English, German, and Turkish with 156K, 290K
and 90K unique vocabulary words, respectively. Each
list is accompanied by approximately 1500 ground-truth
segmentations consisting of a vocabulary word and its
segmentation into constituent morphemes. These ground-
truth segmentations were annotated as part of the Mor-
phoChallenge [27].

o English, German, and Turkish Wikipedia Corpora.
This dataset consists of three subsets of Wikipedia for
English, German, and Turkish Wikipedia and consisting
of 116M, 162M, and 52M tokens. These corpora are
used for training unsupervised word embeddings and for
training a language model.

« English, German, and Turkish Word Similarity Pairs.
This dataset consists of collections of annotated word-
similarity pairs in three languages. For English, we eval-
uate on the WS-353 data, a collection of 353 pairs of
English words that have been assigned similarity ratings
by human annotators, SimLex, a collection of 999 word
pairs annotated via Amazon Mechanical Turk, and finally
the Stanford Rare Words similarity set (RW) consisting
of 2034 rare word pairs. [15], [20], [28]. For German,
we operate on canonical translations of the the WS-353
and SimLex datasets [2]. For Turkish we evaluate on the
AnlamVer word similarity dataset consisting of 500 word-
pairs annotated by 12 human annotators [13].

« English, German, and Turkish Word Analogies. Col-
lections of annotated word analogies in three languages.
For English, we evaluate on the Google analogy dataset
consisting of 19544 analogy question pairs where 8, 869
are semantic and 10,675 syntactic (i.e. morphological)
questions. [29]. For German, we operate on the German

translation of the English Google analogy dataset [24].
For Turkish, counterparts of the Google analogy question
set was created and contains over 2K analogy tasks.

The vocabulary lists and gold-standard segmentations are
used to evaluate each method’s ability to extract human-
verified morphemes in an unsupervised manner. The human-
curated word analogies and word similarity pairs help verify
the effect of incorporating various morphemes in the un-
supervised word embedding process. Finally, the Wikipedia
corpora subsets are used to train the morpheme-enriched word
embeddings and evaluate the benefit of morpheme enrichment
on a downstream language modeling task.

Baselines

As a baseline for segmentation, we utilize a unigram language
model segmentation of “word-pieces" and byte-pair encoding
segmentation as described in the related work [39], [44].
We also compare against a state-of-the-art unsupervised mor-
pheme segmentation tool Morfessor [7]. Finally, we compare
against a variant of MorphMine that forgoes global consis-
tency whereby each word is re-segmented after recomputing
morpheme counts after the initial segmentation.

For baseline embedding methods, we utilize FastText, a
proposed variation of the Skip-Gram objective that utilize
subword-level information, and modify FastText to incorporate
each method’s segmentations to enrich word embedding. We
enrich FastText with each of the morpheme segmentation base-
lines to compare against MorphMine enriched emebeddings.
With no morpheme enrichment, FastText formulation means
that it reduces to Word2Vec which we also compare against.

A. Subword Extraction Accuracy

We evaluate each morpheme segmentation algorithm at
identifying human-annotated segmentations in three lan-
guages: English, Turkish, and German. We report precision,
recall and F1 scores for each method. When evaluating, true-
positives are indicated with a valid exact match between the
extracted morpheme and the gold-standard.

In Table I, we report the performance of each segmentor
at successfully extracting human-annotated morphemes. As
both BytePair Encoding and Unigram-LM require a morpheme
vocabulary size parameter, for these methods, we perform a
parameter sweep and report results from the highest perform-
ing run. Across all three languages, variants of MorphMine
outperform with respect to F1 score. Further analysis shows
this is primarily due to a higher recall. In comparison to Mor-
phMine without global refinement, we see that implementing
global refinement generally improves performance as seen in
English and German and in the case of Turkish, performance
between the MorphMine variants were overall comparable.

B. Word Similarity Task

We evaluate the embeddings on a word similarity task.
The ground truth data consists of pairs of words and a
human-annotated similarity score averaged across all human
evaluations. The scores are computed via the cosine similarity
between each word’s vector representation and results are



Dataset i English [ German Il Turkish |
Method  » R Fl_ || P R Fl || P R Fl_|
BPE 0.5527  0.3989 0.4634 0.5637 0.4131 0.4768 0.7626 0.2808  0.4104
ULM 0.7473  0.5992  0.6651 0.5827  0.5040  0.5405 0.8731 0.3216  0.4701
Morfessor 0.7537 0.6513  0.6987 0.6803 0.5616 0.6153 0.69104 0.3710  0.4828
MorphMine-NoRefine 0.8255 0.6503  0.7275 0.5717  0.7520  0.6399 0.5894 0.5024  0.5424
MorphMine 0.8345 0.6977 0.7600 0.6014  0.7373  0.6624 0.5341 0.5497 0.5417

TABLE I: Morpheme Segmentation Performance.

quantified through Spearman’s rank correlation coefficient
between the gold standard and the cosine similarity score. To
evaluate performance of the morpheme-based embeddings to
infer OOV words, we evaluate similarity on an English rare-
words similarity dataset.

As seen in Table II, subword-based methods that utilize
morpheme and subword level information outperform Skip-
Gram that forgoes any. Additionally, methods that discrim-
inately generate these morphemes outperform FastText that
indiscriminately generate all subwords. Finally, while most
subword enriched embeddings perform well on word simi-
larity, MorphMine shines particularly in the similarity task
on rare words where it outperforms all baselines. This is
likely because MorphMine generates morphemes at multiple
granularity which is more likely semantically link a rare word
to a frequent word via a semantically-meaningful morpheme.
This performance gap is even higher for out-of-vocabulary
words were MorphMine significantly outperforms all other
baselines at the word similarity task.

C. Word Analogy Task

We next evaluate on a word analogy task of the form “A
is to B” as “C' is to D”, where D is predicted from the
vocabulary based on its embedding vector. We use analogy
datasets used in previous literature for English, German, and
Turkish embedding evaluation [24], [29], [36].

[ Dataset [| English ][ German [[ Turkish |
Method Sem  Syn Sem  Syn Sem+Syn

SkipGram 68 65 63 46 41
BPE 65 68 61 50 43
ULM 67 70 62 51 43
FastText 52 75 59 53 43
Morfessor 64 75 61 52 44
MorphMine 67 78 61 53 47

TABLE III: Word analogies.

As seen in Table III, embeddings that utilize subword infor-
mation perform better at syntactic analogies than SkipGram
word embeddings without subword information. This does
not extend to semantic analogies whereby utilizing subword-
information seems to cause a deterioration in performance.
This is intuitive as words without valid morphemes learn noisy
embeddings when false morphemes are identified and used to
enrich their representation. This is seen in the performance
gap between FastText and SkipGram on semantic analogies
whereby FastText’s large number indiscriminate subwords
degrades the quality of the final embedding. This degradation

is mitigated by utilizing more-refined morpheme methods
such as BytePair Encoding, Unigram-LM, Morfessor, and
MorphMine. Overall, embeddings enriched with MorphMine
morphemes demonstrate superior syntactic performance to all
baselines while demonstrating comparable semantic perfor-
mance to SkipGram. This supports our intuition that utilizing
more subwords is useful, but only when they are of high qual-
ity; indiscriminately generating all enumerations of subword
degrades quality.

D. Language Modeling Perplexity

As recent embedding evaluations have stressed the impor-
tance of evaluating embeddings not only on artificial tasks such
as word similarities but also on downstream tasks, we evaluate
on a downstream language modeling task [14]. We generate a
language model with embedding vectors from the Wikipedia
corpora and then evaluate by computing the perplexity on a
held-out portion of the corpus unseen in both the embedding
phase and modeling phase. We use an LSTM with two hidden
layers, 600 hidden units per layer regularized with dropout
with 0.2 probability, unrolled for 35 steps, and 20 batch size.
Parameters are learned using Adagrad with a gradient clipping
of 1 for 10 epochs. Each instance is trained on 80% of the
data with a 10% test and 10% validation set.

[ Dataset [[ English [[ German [[ Turkish |

Method Perplexity Perplexity Perplexity
SkipGram 159 381 996
BPE 157 375 955
ULM 157 372 952
FastText 158 376 972
Morfessor 155 370 948
MorphMine 154 367 940

TABLE IV: Language modeling task

The results are summarized in Table IV. Because experi-
ments have minimal data cleaning do not drop infrequent or
OOV words, the resulting perplexity is relatively higher than
cleaned-datasets but directly comparable among the differing
methods [3]. We observe that across all segmentation-based
morpheme-enriched embeddings perform better in language
modeling over traditional skip-gram. In contrast, FastText’s
indiscriminate enumeration of all possible morphemes appears
to perform much poorer in this task. Finally, MorphMine
outperforms the other morpheme enriched baselines. This
may be due to MorphMine utilizing morphemes of mutliple
granularity which closely capture semantic meaning of rare
and OOV words at the largest granularity.



Method [ [ English [ [ German [ [ Turkish
Dataset WS-353 SimLex RW-Frequent RW-O0OV WS-353  SimLex AnlamVer
SkipGram 0.72 0.28 0.36 - 0.58 0.26 0.45
BPE 0.72 0.28 0.41 0.33 0.59 0.28 0.47
ULM 0.74 0.28 0.41 0.35 0.60 0.28 0.47
FastText 0.70 0.26 0.34 0.32 0.58 0.26 0.46
Morfessor 0.74 0.28 0.44 0.35 0.60 0.28 0.48
MorphMine 0.74 0.28 0.46 0.42 0.62 0.28 0.49
TABLE II: Multilingual word similarity.

Word [ [ BPE [ [ ULM [ [ Morfessor [ [ MorphMine
vandalism van + dal + ism van + dal + ism van + dal + ism vandal + ism
truncate trun + cate trun + cate truncate truncat + e
truncated trun + cat + ed trun + cat + ed truncat + ed truncat + ed
truncating trun + cat + ing trun + cat + ing truncat + ing truncat + ing
troubleshooting trouble + shoot + ing trouble + shoot + ing trouble + shoot + ing troubleshoot + mng +

trouble + shoot

TABLE V: Select segmentations from different subword segmentation algorithms.

E. Segmentation Case Study

In Table V, we present hand-selected segmentations. Un-
like other methods, MorphMine identifies large morphemes
shared among words in the vocabulary in addition to the
more frequent smaller morphemes. For example, the words
“truncate", “truncated", “truncating” all share a common
root, but all methods except for MorphMine are reluctant to
identify “truncat” as a valid morpheme by removing ‘e’ from
truncate. As such, all other methods fail semantically link
these three words. Additionally, for ‘vandalism’, most methods
attempt to recognize “van” as a morpheme as it is a valid
word, while MorphMine’s parsimony criterion merges this into
“vandal”, which although not present in the vocabulary, is a
valid word. Finally, given words such as “troubleshooting”,
MorphMine’s segmentation at multiple granularities captures
“troubleshoot”, which all other methods further decompose,
losing much semantic meaning.

F. Scalability

From a high-level perspective, MorphMine consists of two
separate steps: (1) mining and learning a high-quality candi-
date morpheme set from an input vocabulary and (2) utilizing
the learned model to segment each word into morphemes. We
can empirically estimate the expected runtime of each step of
MorphMine by analyzing runtime as a function of input size.

As seen in Figure 4, mining the morpheme vocabulary
appears to grow linearly with vocabulary size. We verify this
by computing the coefficient of determination, R? to show
how well a linear function fits the data. Morpheme mining and
segmentation regressions yielded an R? of 0.989 and 0.991
respectively. This strongly suggests a linear relationship be-
tween input vocabulary size and runtime. As empirically Heap-
Herdan’s law has shown that vocabulary grows sublinearly in
relation to corpus size, these results indicate that performing
MorphMine segmentation on an input vocabulary as a prepro-
cessing step adds negligible computational overhead [10].

100

—— morpheme mining
=== morpheme segmentation

80

60

40

Runtime (s)

20

20000 40000 60000
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Fig. 4: Decomposition of morpheme segmentation algorithm into unsuper-
vised morpheme mining then vocabulary segmentation.

VI. CONCLUSIONS

In this study, we propose a pattern-mining method of seg-
menting vocabulary into smaller morphemes and demonstrate
experimentally on three languages that the method recovers
ground-truth morphemes beyond state-of-the-art. By integrat-
ing the morphemes in a popular subword-enriched embedding
algorithm, we verify that semantically-meaningful morphemes
at multiple granularity can benefit word embeddings as evi-
denced through superior performance on a word analogy and
word similarity task. This is especially true for inferring em-
beddings for infrequent or out-of-vocabulary words. Finally,
we demonstrate that enriching embeddings with high-quality
morphemes improves language modeling as evidenced through
better held-out perplexity on a language modeling task.
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