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This paper presents a high-order discontinuous Galerkin (DG) scheme for the simulation 
of wave propagation through coupled elastic-acoustic media. We use a first-order stress-
velocity formulation, and derive a simple upwind-like numerical flux which weakly 
imposes continuity of the normal velocity and traction at elastic-acoustic interfaces. 
When combined with easily invertible weight-adjusted mass matrices [1–3], the resulting 
method is efficient, consistent, and energy stable on curvilinear meshes and for arbitrary 
heterogeneous media, including anisotropy and sub-cell (micro) heterogeneities. We 
numerically verify the high order accuracy and stability of the proposed method, and 
investigate its performance for applications in photoacoustic tomography.

 2020 Elsevier Inc. All rights reserved.

1. Introduction

Simulations of wave propagation through elastic-acoustic coupling media are applicable to a wide range of scientific and 
engineering areas. For example, coupled elastic-acoustic media arises when simulating wave propagation through the human 
bone and tissue. While wave propagation in tissue is modeled by the acoustic wave equation, wave propagation in bone 
is more accurately modeled using the elastic wave equation, and when considering wave propagation through both bone 
and tissue, careful attention is required for treatment of the elastic-acoustic interface. Wave propagation through coupled 
elastic-acoustic media also arises in seismology, where oceans are modeled as acoustic materials and the earth is modeled 
as an elastic medium.

Several high order finite element methods have been developed for coupled elastic-acoustic wave propagation based 
on both first and second order formulations of the underlying equations. In [4], Komatitsch et al. use a spectral element 
method (SEM) for the second order form of the equations, and enforce the coupling between acoustic and elastic media 
using with a predictor-multicorrector iteration at each time step. A more efficient time-stepping approach based on explicit 
coupling conditions is proposed in [5,6]. Discontinuous Galerkin (DG) methods have also been developed for coupled elastic-
acoustic media, with elastic-acoustic interface conditions typically incorporated through modifications of the numerical flux. 
For second order equations, Antonietti et al. [7] analyze the stability and convergence of a symmetric interior penalty 
DG formulation on polygonal and polyhedral meshes. Appelo and Wang [8] introduce an “energy-based” second order DG 
method which can be made to either conserve or dissipate energy based on the choice of numerical flux.
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DG methods, which were originally developed for first-order hyperbolic equations, are also widely used for first-order 
formulations. Wilcox et al. [9] derive an upwind numerical flux from the exact Riemann problem at acoustic-acoustic, 
elastic-elastic, and elastic-acoustic interfaces, and use this to construct a first-order velocity-strain DG-SEM scheme for cou-
pled isotropic elastic-acoustic media on meshes of curved hexahedral elements. The authors show stability of the continuous 
DG formulation; however, semi-discrete stability in the presence of inexact quadrature, curved meshes, and sub-cell hetero-
geneities is not discussed in detail. In [10], Zhan et al. extend this DG-SEM method to anisotropic elastic-acoustic media by 
solving a simplified Riemann problem on inter-element interfaces, though high order accuracy and energy stability are not 
addressed theoretically. Ye et al. [11] circumvent the Riemann problem altogether by using a DG formulation with a dissipa-
tive upwind-like “penalty” flux. The resulting DG method is high order accurate and provably energy stable for anisotropic 
elastic-acoustic media with piecewise constant heterogeneities.

In this paper, we develop a high order DG method for coupled elastic-acoustic media based on the first-order stress-
velocity form of the equations. The proposed method utilizes a simple dissipative upwind-like penalty flux and weight-

adjusted mass matrices (a generalization of mass lumping) [1–3]. The method applicable to unstructured and curved 
tetrahedral meshes, and is high order accurate and energy stable in the presence of arbitrary heterogeneous media in-
cluding anisotropy and micro (sub-cell) heterogeneities. Instead of an exact upwind flux, we add upwind-like dissipation 
through a penalty flux based on natural continuity conditions between acoustic-acoustic, elastic-elastic, and coupled elastic-
acoustic interfaces. Like the upwind flux, the penalty flux adds dissipation and achieves theoretically optimal high order 
convergence rates for all numerical experiments without impacting the maximum time-step size. However, expressions for 
the penalty flux are significantly simpler than the fluxes developed by Wilcox et al. and Zhan et al. [9,10]. Additionally, we 
prove that the penalty flux is consistent and that the semi-discrete DG formulation is energy stable for general “modal” 
DG formulations in the presence of both sub-cell heterogeneities and curved elements. Experiments with high order DG 
discretizations on curvilinear simplicial meshes verify these theoretical properties.

The outline of the paper is as follows: In Section 2, we review DG formulations for the acoustic and elastic wave 
equations. In Section 3, we introduce the numerical flux for elastic-acoustic interfaces and prove that the resulting DG 
formulation is energy stable and consistent. In Section 4, we verify the stability and accuracy of the proposed DG method, 
and conclude in Section 5 with an application in photoacoustic tomography (PAT).

2. Weight-adjusted DG methods for acoustic and elastic wave propagation

In this section, we briefly review high order DG discretizations for the acoustic and elastic wave equations. In the pres-
ence of micro (sub-cell) heterogeneities, inverse weighted mass matrices appear in the matrix forms of these discretizations. 
These inverses are approximated using easily invertible weight-adjusted mass matrices, resulting in a weight-adjusted DG 
method. The weight-adjusted approach will be extended to the DG formulation for coupled elastic-acoustic wave propaga-
tion and curvilinear meshes in Sections 3.1 and 3.3.

2.1. Mathematical notation

We assume a physical domain �, which is exactly represented by a triangulation �h consisting of K non-overlapping 
elements Dk . We assume that each element Dk is the image of the reference element D̂ under a mapping �k

x = �
k x̂, x ∈ Dk, x̂ ∈ D̂,

where x = (x, y, z) are physical coordinates on the kth element and ̂x = (̂x, ŷ, ẑ) are coordinates on the reference element. 
Over each element Dk , we define the polynomial approximation space Vh

(
Dk
)
as

Vh

(
Dk
)

= Vh

(
D̂
)
◦

(
�

k
)−1

= {̂vh ◦ (�k)−1, v̂h ∈ Vh(D̂), },

where Vh

(
D̂
)
is a polynomial approximation space of degree N on the reference element. In this work,1 the reference 

element is taken to be bi-unit right triangle,

D̂ = {(̂x, ŷ) ≥ −1, x̂+ ŷ ≤ 0},

and the reference approximation space Vh

(
D̂
)
is taken to be total degree N polynomials,

Vh

(
D̂
)
= P N

(
D̂
)
=
{
x̂i ŷ j, 0 ≤ i + j ≤ N

}
.

1 In three dimensions, the reference element and approximation space are the bi-unit right tetrahedron and total degree N polynomials

D̂ = {(̂x, ŷ, ẑ) ≥ −1, x̂+ ŷ + ẑ ≤ −1}, Vh

(
D̂
)
= P N

(
D̂
)
=
{
x̂i ŷ j ẑk, 0 ≤ i + j + k ≤ N

}
.
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2.2. Discontinuous Galerkin methods for first-order wave equations

On an element Dk , we define the jump of scalar and vector valued functions across element interfaces as

�p� = p+ − p, �u� = u+ − u,

where p+, u+ and p, u are the neighboring and local traces of the solution over the interface, respectively. Note that, for a 
shared interface between two elements Dk and Dk,+ , the sign of the jump is different depending on whether the jump is 
defined with respect to Dk or Dk,+ . The average across an interface is defined as

{{p}} =
1

2

(
p+ + p

)
, {{u}} =

1

2

(
u+ + u

)
.

In this work, we use a first-order pressure-velocity formulation for the acoustic wave equation (e.g. in fluid media)

1

ρc2
∂p

∂t
= ∇ · u,

ρ
∂u

∂t
= ∇p,

(1)

where p is the acoustic pressure, u ∈ Rd is the vector of velocities in each coordinate direction, and ρ and c are density and 
wavespeed, respectively. For simplicity, we assume unit density ρ = 1. We also assume that (1) is posed over time t ∈ [0, T )

on the physical domain � with boundary ∂�, with the wavespeed bounded from above and below by

0 < cmin ≤ c(x) ≤ cmax < ∞.

We adopt a DG variational formulation from [12], which is given over element Dk by
(

1

c2
∂p

∂t
,q

)

L2(Dk)

= (∇ · u,q)L2(Dk) +
∑

f ∈∂Dk

〈
1

2
nT �u� +

τp

2
�p�,q

〉

L2( f )

,

(
∂u

∂t
, w

)

L2(Dk)

= (∇p, w)L2(Dk) +
∑

f ∈∂Dk

〈
1

2
�p�n +

τu

2
�u�, w

〉

L2( f )

,

(2)

where n is the outward normal vector, and τp, τu are penalty parameters. Here, (u, v)L2
(
Dk
) and 〈u, v〉L2( f ) denote the L2

inner products over Dk and a face f of the surface ∂Dk , respectively.
For the elastic wave equation, we use a symmetrized first-order stress-velocity formulation from [3]. Let ρ be the density 

and C be the symmetric matrix form of constitutive tensor relating stress and strain. The first-order system in d dimensions 
is given by

ρ
∂v

∂t
=

d∑

i=1

AT
i

∂σ

∂xi
,

C−1 ∂σ

∂t
=

d∑

i=1

Ai

∂v

∂xi
,

(3)

where v is the vector of velocity and σ is a vector consisting of unique entries of the symmetric stress tensor. In two 
dimensions, the matrices A i are defined as

A1 =

⎛
⎝

1 0 0

0 0 0

0 0 1

⎞
⎠ , A2 =

⎛
⎝

0 0 0

0 1 0

1 0 0

⎞
⎠ ,

and the expression of Ai in three dimensions can be found in [3]. Note that, by factoring out C , the resulting matrices Ai

do not involve any material coefficients and all entries are either 0 or 1. The elastic wave equation is discretized using the 
following DG formulation:

(
ρ

∂v

∂t
, w

)

L2(Dk)

=

(
d∑

i=1

AT
i

∂σ

∂xi
, w

)

L2(Dk)

+
∑

f ∈∂Dk

〈
1

2
AT
n �σ � +

τv

2
AT
n An�v�, w

〉

L2( f )

,

(
C−1 ∂σ

∂t
,q

)

L2(Dk)

=

(
d∑

i=1

Ai

∂v

∂xi
,q

)

L2(Dk)

+
∑

f ∈∂Dk

〈
1

2
An�v� +

τσ

2
AnA

T
n �σ �,q

〉

L2( f )

,

(4)



4 K. Guo et al. / Journal of Computational Physics 418 (2020) 109632

where An is normal matrix defined as An =
∑d

i=1 ni Ai , and terms τv , τσ are penalty parameters introduced on element 
interfaces. The DG formulations (2) and (4) are provably consistent and energy stable for non-negative penalty parameters 
τp, τu, τv , τσ ≥ 0 [1,3].

2.3. The semi-discrete matrix system

The matrix form of the DG formulations in the previous section involve mass and differentiation matrices. We assume 
the reference and physical approximation spaces Vh

(
D̂
)
and Vh

(
Dk
)
are spanned by bases {φi}

Np

i=1 and {φk
i
}
Np

i=1 , respectively. 
The mass matrix Mk , weighted mass matrix Mk

w and face mass matrix Mk
f
for Dk are defined as

(
Mk
)
i j

=

∫

Dk

φk
jφ

k
i =

∫

D̂

φ jφi J
k,

(
Mk

w

)
i j

=

∫

Dk

wφk
jφ

k
i =

∫

D̂

wφ jφi J
k,

(
Mk

f

)
i j

=

∫

∂Dk
f

φk
jφ

k
i =

∫

∂ D̂ f

φ jφi J
k
f ,

where Jk and Jk
f
are the volume and face Jacobian of the affine mapping �k , and w(x) is a spatially varying positive and 

bounded weight. We also define weak differentiation matrices S i with entries

(S1)i j =

∫

D̂

∂φ j

∂x
φi J

k, (S2)i j =

∫

D̂

∂φ j

∂ y
φi J

k, (S3)i j =

∫

D̂

∂φ j

∂z
φi J

k.

Using the above notation, the DG formulation (2) can be written in matrix form as

Mk
1/c2

dp

dt
=

d∑

j=1

SkjU j +

Nfaces∑

f =1

Mk
f F p

(
p, p+,U ,U+

)
,

Mk dU i

dt
= Ski p +

Nfaces∑

f =1

niM
k
f Fu
(
p, p+,U ,U+

)
, i = 1, . . . ,d,

where U i and p are degrees of freedom for ui and p. The flux terms F p, Fu are defined such that
(
Mk

f F p

(
p, p+,U ,U+

))
j
=

∫

∂Dk
f

1

2

(
τp�p� + n · �u�

)
φk

j ,

(
niM

k
f Fu
(
p, p+,U ,U+

))
j
=

∫

∂Dk
f

1

2

(
τu�u� · n + �p�

)
φk

jni .

The DG scheme (4) for the elastic wave equations can similarly be written as

Mk
ρ I

dV

dt
=

d∑

i=1

(
AT
i ⊗ Ski

)
� +

Nfaces∑

f =1

(
I ⊗ Mk

f

)
F v ,

Mk

C−1

d�

dt
=

d∑

i=1

(
Ai ⊗ Ski

)
V +

Nfaces∑

f =1

(
I ⊗ Mk

f

)
Fσ ,

where F v , Fσ denote the elastic flux terms, ⊗ denotes the Kronecker product, and the matrix-valued weight mass matrix 
Mk

C−1 is defined as

Mk

C−1 =

⎡
⎢⎢⎢⎣

Mk

C−1
11

. . . Mk

C−1
1d

...
. . .

...

Mk

C−1
d1

. . . Mk

C−1
dd

⎤
⎥⎥⎥⎦ ,

where C−1
i j

denotes the i jth entry of C−1 and Mk

C−1
i j

denotes the scalar weighted mass matrix with weight C−1
i j

.
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2.4. Weight-adjusted discontinuous Galerkin method

In this work, we pair high order DG methods with explicit time-stepping schemes, which require the inversion of DG 
mass matrices at each time-step. Let U denote the vector of all DG degrees of freedom, and let Mk

1/c2
, Ak denote the local 

matrices representing the local DG mass matrix and spatial DG formulation, such that the semi-discrete DG scheme can be 
written over Dk as follows:

dU

dt
=

(
Mk

1/c2

)−1
AkU . (5)

When the wavespeed c2 is approximated by a constant over each element, it is possible to apply 
(
Mk

1/c2

)−1
using 

only the constant values of Jk, c2 over each element and a single reference mass matrix inverse M−1 over the entire 
mesh. However, inverses of weighted mass matrices are distinct from element to element when c2 possesses sub-element 
variations. Typical implementations precompute and store these weighted mass matrix inverses [13,14], which significantly 
increases the storage cost of high order DG schemes.

To address this issue, we use a weight-adjusted discontinuous Galerkin (WADG) proposed in [1,3], which is energy stable 
and high order accurate for sufficiently regular weighting functions. WADG approximates each weighted mass matrix by a 

weight-adjusted approximation M̃
k
w

Mk
w ≈ M̃

k
w = Mk

(
Mk

1/w

)−1
Mk.

The inverse of M̃
k
w is then

(
Mk

w

)−1
≈

(
M̃

k
w

)−1
=

(
Mk
)−1

Mk
1/w

(
Mk
)−1

. (6)

Since the weight only appears in Mk
1/w , 

(
M̃

k
w

)−1
can be applied using reference inverse mass matrices and a matrix-free 

quadrature-based evaluation of Mk
1/w . Analogously, the inverse of MC−1 can be approximated by the inverse of a matrix-

weighted weight-adjusted mass matrix

M−1

C−1 ≈
(
I ⊗ M−1

)
MC

(
I ⊗ M−1

)
.

In practice, weight-adjusted mass matrix inverses are applied in a matrix-free fashion using sufficiently accurate quadra-
ture rules. We follow [1] and use simplicial quadratures which are exact for polynomials of degree 2N + 1 [15]. Let ̂xi, ̂w i

denote the quadrature points and weights on the reference element D̂ . We define the interpolation matrix V q as

(
V q

)
i j

= φ j (̂xi) ,

whose columns consist of values of basis functions at quadrature points. On each element Dk , we have

Mk = JkM = JkV T
q diag (ŵ) V q, Mk

c2
= JkV T

q diag (d) V q, di =
ŵ i

c2
(
�k̂xi

)

where �k̂xi are quadrature points on Dk and c2
(
�

k̂x
)
denote the values of the wavespeed at quadrature points. Plugging 

the approximation (6) into the local DG formulation (5), we obtain

dU

dt
=

(
Mk
)−1

Mk
c2

(
Mk
)−1

AkU . (7)

Evaluating 
(
Mk
)−1

AkU is equivalent to the evaluation of the DG right hand side for a unit weight 1/c2 = 1. Evaluating the 
remainder of the right hand side of (7) requires applying the product of an unweighted mass matrix and weighted mass 
matrix. This can be done using quadrature-based matrices as follows:

(
Mk
)−1

Mk
c2

= Pqdiag

(
1

c2
(
�k̂x

)
)
V q, (8)

where Pq = M−1V T
q diag (ŵ) is a quadrature discretization of the polynomial L2 projection operator on the reference el-

ement. Moreover, since Pq, V q are reference operators, the implementation of (8) requires only O  
(
Nd
)
storage for values 

of the wavespeed c2
(
�

k̂x
)
at quadrature points for each element. In contrast, storing full weighted mass matrix inverses 

or factorizations requires O  
(
N2d
)
storage on each element. For example, in three dimensions, the number of quadrature 

points on one element scales with O (Np) = O (N3), while number of entries in each weighted mass matrix inverse is 
O (Np) × O (Np), implying an O (N6) storage requirement.
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3. Discontinuous Galerkin methods for coupled elastic-acoustic wave equations

For the first-order acoustic and elastic wave equations, the discontinuous Galerkin schemes (2) and (4) are consistent 
and discretely energy stable for a large class of quadrature rules. The goal of this work is to extend these existing schemes 
to solve wave problems in coupled elastic-acoustic media. The challenge is to derive an appropriate numerical flux for the 
interface between acoustic and elastic domains. In this section, we propose a new numerical flux across elastic-acoustic 
interfaces, and prove the consistency and discrete energy stability of the elastic-acoustic DG formulation under this new 
flux.

3.1. Upwind-like numerical flux

We begin with the continuity conditions on the interface between different media. For an acoustic-acoustic interface, the 
normal velocity and pressure are continuous, i.e.,

u+ · n = u · n, p+ = p.

For an elastic-elastic interface, the velocity and the traction are continuous, i.e.,

v+ = v, AT
nσ

+ = AT
nσ .

For an interface between elastic and acoustic media, the normal component of the velocity and the traction are continuous, 
i.e.,

u · n = v · n, AT
nσ = pn, (9)

where u and v denote velocity in acoustic and elastic media, respectively. Based on these continuity conditions, we derive 
an upwind-like numerical flux for the elastic-acoustic interface.

For clarity, we will distinguish between acoustic and elastic fluxes at a coupled elastic-acoustic interface. Let �e
h
, �a

h

denote the elastic and acoustic computational domains, respectively. Let Ŵea and Ŵae denote the respective boundaries of 
�e

h
and �e

h
which correspond to the elastic-acoustic interface. Let Ŵaa, Ŵee be the complement of Ŵae and Ŵea in collections 

of all acoustic element faces and elastic element faces, respectively. On Ŵae , the numerical fluxes are taken to be

1

2
nT (v − u) +

τp

2
nT
(
AT
nσ − pn

)
(pressure),

1

2
nnT

(
AT
nσ − pn

)
+

τu

2
nnT (v − u) (velocity),

while the numerical fluxes on Ŵea are given by

1

2
Annn

T (u − v) +
τσ

2
An(pn − AT

nσ ) (stress),

1

2

(
pn − AT

nσ − (I − nnT )AT
nσ

)
+

τv

2
nnT (u − v) (velocity).

We now formulate a DG scheme for the first-order elastic-acoustic coupled wave equations. In the acoustic domain �a
h
, the 

DG formulation is given by
(

1

c2
∂p

∂t
,q

)

L2(Dk)

= (∇ · u,q)L2(Dk) +
∑

f ∈∂Dk∩Ŵaa

〈
1

2
nT �u� +

τp

2
�p�,q

〉

L2( f )

+
∑

f ∈∂Dk∩Ŵae

〈
1

2
nT (v − u) +

τp

2
nT
(
AT
nσ − pn

)
,q

〉

L2( f )

(
∂u

∂t
, w

)

L2(Dk)

= (∇p, w)L2(Dk) +
∑

f ∈∂Dk∩Ŵaa

〈
1

2
�p�n +

τu

2
�u�, w

〉

L2( f )

+
∑

f ∈∂Dk∩Ŵae

〈
1

2
nnT

(
AT
nσ − pn

)
+

τu

2
nnT (v − u) , w

〉

L2( f )

.

(10)

In the elastic domain �e
h
, the DG formulation is given by
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(
ρ

∂v

∂t
, w

)

L2(Dk)

=

(
d∑

i=1

AT
i

∂σ

∂xi
, w

)

L2(Dk)

+
∑

f ∈∂Dk∩Ŵee

〈
1

2
AT
n �σ � +

τv

2
AT
n An�v�, w

〉

L2( f )

+
∑

f ∈∂Dk∩Ŵea

〈
1

2

(
pn − AT

nσ − (I − nnT )AT
nσ

)
+

τv

2
nnT (u − v), w

〉

L2( f )

,

(
C−1 ∂σ

∂t
,q

)

L2(Dk)

=

(
d∑

i=1

Ai

∂v

∂xi
,q

)

L2(Dk)

+
∑

f ∈∂Dk∩Ŵee

〈
1

2
An�v� +

τσ

2
AnA

T
n �σ �,q

〉

L2( f )

+
∑

f ∈∂Dk∩Ŵea

〈
1

2
Annn

T (u − v) +
τσ

2
An(pn − AT

nσ ),q

〉

L2( f )

.

(11)

We note that media heterogeneities are incorporated into the left hand side of the DG formulations (10) and (11), and 
that the numerical fluxes are independent of any variations in 1/c2, C−1 . In our numerical experiments, we approximate 
the weighted mass matrices induced by micro (sub-cell) heterogeneities in 1/c2, C−1 by easily invertible weight-adjusted 
mass matrices as described in Section 2.4.

3.2. Consistency and energy stability

In this section, we prove that the DG formulations (10) and (11) are consistent and energy stable in arbitrary heteroge-
neous media.

Theorem 3.1. The coupled discontinuous Galerkin scheme is consistent.

Proof. Assume that u, p, v, σ are exact solutions of coupled elastic-acoustic wave equations, and that boundary conditions 
are imposed through consistent modifications of the numerical flux.2 Then, plugging them into (10) and (11) causes the 
volume terms to vanish. Consistency follows if the numerical flux terms also vanish.

At acoustic-acoustic interfaces, the pressure and normal velocity are continuous. Thus, the numerical flux reduces to

1

2
nT �u� +

τp

2
�p� = 0,

1

2
�p�n +

τu

2
�u� = 0.

At elastic-elastic interfaces, the traction AT
nσ and the velocity are continuous, and the numerical flux reduces to

1

2
AT
n �σ � +

τv

2
AT
n An�v� = 0,

1

2
An�v� +

τσ

2
AnA

T
n �σ � = 0.

For an elastic-acoustic interface Ŵae , we have

1

2
nT (v − u) +

τp

2
nT
(
AT
nσ − pn

)
=

τp

2
nT (pn − pn) = 0,

1

2
nnT

(
AT
nσ − pn

)
+

τu

2
nnT (v − u) =

1

2
nnT (pn − pn) = 0.

Similarly, on Ŵea , we have

1

2

(
pn − AT

nσ − (I − nnT )AT
nσ

)
+

τv

2
nnT (u − v) =

1

2

(
I − nnT

)
pn = 0,

1

2
Annn

T (u − v) +
τσ

2
An(pn − AT

nσ ) = 0.

Thus, consistency holds for acoustic-acoustic, elastic-elastic and elastic-acoustic interfaces, which implies the coupled DG 
scheme is consistent. �

The formulations (10) and (11) can also be shown to be energy stable for any choice of τu = τv ≥ 0, τp = τσ ≥ 0. For 
simplicity, we assume zero homogeneous Dirichlet boundary conditions on ∂� in the proof of energy stability.

2 The stable and consistent imposition of boundary conditions is described in [1,3].
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Theorem 3.2. The coupled discontinuous Galerkin scheme is energy stable for τu = τv ≥ 0, τp = τσ ≥ 0, in the sense that

∑

Dk∈�a
h

∂

∂t

(( p

c2
, p
)
L2(Dk)

+ (u,u)L2(Dk)

)
+
∑

Dk∈�e
h

∂

∂t

(
(ρv, v)L2(Dk) +

(
C−1

σ ,σ
)
L2(Dk)

)

= −
∑

f ∈Ŵaa

∫

f

(τp

2
�p�2 +

τu

2

(
n · �u�

)2)
dx−

∑

f ∈Ŵee

∫

f

(τu

2
|An�v�|2 +

τp

2
|AT

n �σ �|2
)
dx

−
∑

f ∈Ŵea∪Ŵae

∫

f

(τu

2
|nT (u − v)|2 +

τp

2
|pn − AT

nσ |2
)
dx ≤ 0,

where �a
h
and �e

h
denote the acoustic and elastic computational domain, respectively.

Proof. For the acoustic part, taking q = p, w = u and integrating the divergence term of the pressure equation by parts 
gives

(
1

c2
∂p

∂t
, p

)

L2(Dk)

= − (∇p,u)L2(Dk) +
∑

f ∈∂Dk∩Ŵaa

〈
1

2
nT {{u}} +

τp

2
�p�, p

〉

L2( f )

+
∑

f ∈∂Dk∩Ŵae

〈
1

2
nT (v − u) +

τp

2
nT
(
AT
nσ − pn

)
, p

〉

L2( f )

(
∂u

∂t
,u

)

L2(Dk)

= (∇p,u)L2(Dk) +
∑

f ∈∂Dk∩Ŵaa

〈
1

2
�p�n +

τu

2
�u�,u

〉

L2( f )

+
∑

f ∈∂Dk∩Ŵae

〈
1

2
nnT

(
AT
nσ − pn

)
+

τu

2
nnT (v − u) ,u

〉

L2( f )

.

(12)

Adding the pressure and velocity equations together and summing over all element Dk gives

∑

Dk∈�a
h

∂

∂t

(( p

c2
, p
)
L2(Dk)

+ (u,u)L2(Dk)

)

= −
1

2

∑

f ∈Ŵaa

∫

f

(
τp�p�2 + τu

(
n · �u�

)2)
dx

+
1

2

∑

f ∈Ŵae

∫

f

(
uTnnT AT

nσ + pvTn + τvu
TnnT (v − u) + τppn

T
(
AT
nσ − pn

))
dx

For the elastic part, taking q = σ , w = v and Theorem 3.1 in [3] gives

∑

Dk∈�e
h

∂

∂t

(
(ρv, v)L2(Dk) +

(
C−1

σ ,σ
)
L2(Dk)

)

= −
1

2

∑

f ∈Ŵee

∫

f

(
τu|An�v�|2 + τp|A

T
n �σ �|2

)
dx

+
1

2

∑

f ∈Ŵea

∫

f

(
uTnnT AT

nσ + pvTn + τv v
TnnT (u − v) + τpσ

T An

(
pn − AT

nσ

))
dx .

We first consider the case τu = τp = 0, which corresponds to a non-dissipative central flux. Then, adding together con-
tributions from integrals on both Ŵae and Ŵea and consolidating terms involving normal vectors and normal matrices yields
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1

2

∑

f ∈Ŵae

∫

f

(
uTnnT AT

nσ + pvTn
)
dx+

1

2

∑

f ∈Ŵea

∫

f

(
uTnnT AT

nσ + pvTn
)
dx

=
1

2

∑

f ∈Ŵae

∫

f

(
uTnnT AT

nσ + pvTn
)
dx+

1

2

∑

f ∈Ŵae

∫

f

(
−uTnnT AT

nσ − pvTn
)
dx

=
1

2

∑

f ∈Ŵae

∫

f

(
uTnnT AT

nσ + pvTn − uTnnT AT
nσ − pvTn

)
dx = 0.

Thus, the contribution from the central portion of the flux sums to zero. Next, we can compute the contribution of penalty 
fluxes for τu, τp > 0

1

2

∑

f ∈Ŵae

∫

f

(
τuu

TnnT (v − u) + τppn
T
(
AT
nσ − pn

))
dx

+
1

2

∑

f ∈Ŵea

∫

f

(
τu v

TnnT (u − v) + τpσ
T An

(
pn − AT

nσ

))
dx

=
1

2

∑

f ∈Ŵae

∫

f

(
τuu

TnnT (v − u) + τppn
T
(
AT
nσ − pn

))
dx

+
1

2

∑

f ∈Ŵae

∫

f

(
τu v

TnnT (u − v) + τpσ
T An

(
pn − AT

nσ

))
dx

=
1

2

∑

f ∈Ŵae

∫

f

(
−τu (u − v)T nnT (u − v) + 2τppn

T AT
nσ − τp pn

Tnp − τpσ
T AnA

T
nσ

)
dx

= −
1

2

∑

f ∈Ŵae

∫

f

(
τu|n

T (u − v) |2 + τp|pn − AT
nσ |2

)
dx ≤ 0.

Summing all the contributions, we obtain the desired inequality

∂

∂t

∑

Dk∈�e
h

(
(ρv, v)L2(Dk) +

(
C−1

σ ,σ
)
L2(Dk)

)
+
∑

Dk∈�a
h

(( p

c2
, p
)
L2(Dk)

+ (u,u)L2(Dk)

)

= −
∑

f ∈Ŵaa

∫

f

(τp

2
�p�2 +

τu

2

(
n · �u�

)2)
dx−

∑

f ∈Ŵee

∫

f

(τu

2
|An�v�|2 +

τp

2
|AT

n �σ �|2
)
dx

−
∑

f ∈Ŵae

∫

f

(τu

2
|nT (u − v)|2 +

τp

2
|pn − AT

nσ |2
)
dx ≤ 0. �

3.3. Extension to curvilinear meshes

The stability of the DG formulations (10) and (11) in Theorem 3.2 requires the use of integration by parts. In order to 
ensure that this same stability holds at the semi-discrete level, integration by parts must hold when integrals are approxi-
mated using quadrature. For affinely mapped simplicial meshes, the geometric terms are constant over each element, such 
that all spatial integrands on the right-hand side of (10) and (11) are degree 2N − 1 polynomials. Thus, any quadrature 
which is exact for at least degree 2N − 1 polynomials is sufficient for stability.

However, numerous numerical studies demonstrate that, for curved domain boundaries, the use of affinely mapped 
simplicial meshes limits accuracy to second order [16–19]. In this section, we assume the triangulation �h consists of 
(possibly curved) elements Dk . Under this assumption, the mapping �k is no longer affine and the geometric terms are 
non-constant polynomials within each element. The resulting spatial integrands in (10) and (11) are now degree 4N − 3

polynomials, while the surface integrands are degree 4N − 2 polynomials. Thus, the strength of quadrature required to 
ensure semi-discrete energy stability of the formulations (10) and (11) is significantly higher for curved meshes than for 
affine meshes.

We sidestep these quadrature accuracy requirements on curvilinear meshes by using a “strong-weak” DG formulation, 
where we discretize the intermediate DG formulation (12) in Theorem 3.2. Similar formulations have been used to guarantee 
stability under non-standard basis functions [12,20,21]. Because the formulation (12) has already been integrated by parts, 
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the proof of energy stability does not require integrals to be exactly evaluated using quadrature. This quadrature-agnostic 
stability avoids instability and spurious solution growth for under-integrated DG discretizations on curved meshes [22]. 
However, it does require an explicit quadrature-based discretization, as opposed to a quadrature-free discretization [19,23].

We outline the matrices involved in a quadrature-based DG discretization in the following section. For simplicity, we 
now assume constant wavespeed c = 1, such that the strong-weak formulation for the acoustic wave equation is given by

∫

Dk

1

c2
∂p

∂t
q = −

∫

Dk

u · ∇q +

∫

∂Dk

1

2

(
{{u}} · n + τp�p�

)
q,

∫

Dk

∂u

∂t
· w =

∫

Dk

∇p · w +

∫

∂Dk

1

2

(
�p� + τu�u� · n

)
w · n.

(13)

The mass matrix Mk is replaced by a weighted mass matrix with weight Jk , which we approximate using a weight-adjusted 
approximation, i.e.

(
Mk
)−1

Ak
hU = M−1M1/ JkM

−1Ak
hU .

Now, we consider the volume contribution in the pressure equation, i.e.
∫

Dk

u · ∇q =

∫

D̂

(
u1

∂q

∂x
+ u2

∂q

∂ y
+ u3

∂q

∂z

)
Jk.

This contribution becomes more involved to evaluate due to the face that derivatives now lie on the pressure test function 
q. We follow [2,12] and evaluate this contribution as

(
V x̂

q

)T
U x̂

q +

(
V

ŷ
q

)T
U

ŷ
q +

(
V ẑ

q

)T
U ẑ

q,

where 
(
V x̂

q

)T
are quadrature-based differentiation matrices defined by

(
V x̂

q

)
i j

=
∂φ j

∂ x̂
(xi), i = 1, . . . ,Nq.

The terms U x̂i
q are defined at quadrature points as

U x̂
q = diag

(
J q
) (

diag(x̂x)V qU 1 + diag
(
y x̂
)
V qU 2 + diag (ẑx) V qU 3

)
,

U
ŷ
q = diag

(
J q
) (

diag(x ŷ)V qU 1 + diag
(
y ŷ

)
V qU 2 + diag

(
z ŷ
)
V qU 3

)
,

U ẑ
q = diag

(
J q
) (

diag(x̂z)V qU 1 + diag
(
y ẑ

)
V qU 2 + diag (ẑz) V qU 3

)
,

where x̂x, . . . are evaluations of geometric factors at quadrature points and U i denotes the vector of degrees of freedom for 
the ith velocity component ui . The surface contributions are treated similarly.

4. Numerical experiments

In this section, we demonstrate the high order convergence and geometric flexibility of the proposed method. In Sec-
tion 4.1, we verify that the semi-discrete scheme is energy stable by computing the spectra of the proposed DG schemes. In 
Section 4.2, we test our method on several classical interface problems with known analytical solutions. In Section 4.3, we 
implement the proposed scheme on curvilinear meshes and perform convergence analyses. In all numerical experiments, 
we always choose penalty parameters such that τu = τv and τp = τσ .

4.1. Spectra and choice of penalty parameter

We first verify the energy stability of the proposed method for arbitrary heterogeneous media. We follow the approach in 
[3] and construct a random stiffness matrix using similarity transforms, such that at every quadrature point, C (x) = U DU T , 
where D is diagonal matrix with random positive entries dmin ≤ D ii ≤ dmax and U is a random unitary matrix. For the 
wavespeed in the acoustic media, we generate positive random values cmin ≤ c(x) ≤ cmax at quadrature nodes.

Let L denote the matrix induced by the global semi-discrete DG formulation, such that the time evolution of the global 
solution is governed by

∂ Q

∂t
= L Q
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Fig. 1. Spectra for N = 3 on a non-curved uniform mesh with h = 1/4. For all cases, the largest real part of the spectra is O (10−14).

with Q denotes a vector of degrees of freedom for (u, p, v, σ ). Fig. 1 shows computed eigenvalues of L for different 
penalty parameters under discretization parameters N = 3 and h = 1/4. In both cases, the largest real part of any eigenvalue 
is O (10−14), verifying that the proposed methods are energy stable up to machine precision.

For practical simulations, taking τu, τp > 0 results in damping of under-resolved spurious components of the solution. 
However, a naive selection of these parameters can result in a more restrictive time-step restriction for stability. We wish to 
choose τu, τp as large as possible without increasing the spectra of L when using a central flux (i.e. τu = τp = 0). In Fig. 1, 
we observe that the spectra of L for a central flux is roughly half as large as the spectra of L when taking τu = τp = 1. We 
note that the growth in spectra is due to the large negative real part of the extremal eigenvalues of L, which consistent with 
the observation that a subset of eigenvalue of L approach −∞ as the penalty parameters increase [24]. Moreover, when we 
take τu = τp = 0.5, the largest real part and imaginary part are most have the same magnitude, which indicates that we 
can add a dissipative term without shortening the time-step size.

4.2. Classical interface problems

In the following section, we show that the proposed DG method exhibits high order convergence for two classical 
interface problems: Snell’s law and the Scholte wave.

4.2.1. Snell’s law for an elastic-acoustic interface
In this experiment, we study the convergence rate of the proposed method for the Snell’s law, which models a pressure 

plane wave incident to an elastic-acoustic interface. The incident wave is reflected as a pressure wave in the acoustic media 
and transmitted as longitudinal and transverse waves in the elastic media. We follow the problem setting given in [9]. For 
an incident displacement wave of the form,

w ip (x, t) = C ipdip cos
(
κp1

[
x1 sin

(
αip

)
+ x2 cos

(
αip

)]
− ωt

)
,

the reflected displacement wave is

wrp (x, t) = Crpdrp cos
(
κp1

[
x1 sin

(
αrp

)
− x2 cos

(
αrp

)]
− ωt

)
.

The transmitted longitudinal displacement wave is

wtp (x, t) = Ctpdtp cos
(
κp2

[
x1 sin

(
αtp

)
+ x2 cos

(
αtp

)]
− ωt

)
,

and the transmitted transverse displacement wave is

wts (x, t) = Ctsdts cos (κs2 [x1 sin (αts) + x2 cos (αts)]− ωt) .

Here, ω is the angular frequency; κp1 , κp2 , and κs2 are wavenumbers of the respective waves and αip , αrp , αtp and αts are 
the associated propagation angles. The displacement directions are

dip =

(
sin
(
αip

)

cos
(
αip

)
)

, drp =

(
sin
(
αrp

)

− cos
(
αrp

)
)

, dtp =

(
sin
(
αtp

)

cos
(
αtp

)
)

, dts =

(
− cos (αts)

sin (αts)

)
.

The overall displacement can be written as

u (x, t) =

{
w ip (x, t) + wrp (x, t) , if x2 < 0,

wtp (x, t) + wts (x, t) , otherwise.
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Fig. 2. Convergence of L2 errors for the Snell’s law solution.

The wave speeds in each layer are given by

cp1 =

√
λ1 + 2μ1

ρ1
, cp2 =

√
λ2 + 2μ2

ρ2
, cs2 =

√
μ2

ρ2
,

and the corresponding wavenumbers can be computed from the angular frequency

κp1 =
ω

cp1
, κp2 =

ω

cp2
, κs2 =

ω

cs2
.

Through Snell’s Law, the propagation angles are related to the incident angle αip

sin
(
αip

)

cp1
=

sin
(
αrp

)

cp1
=

sin
(
αtp

)

cp2
=

sin (αts)

cs2
.

The amplitudes of the reflected and transmitted waves are related to the incident wave amplitude

Crp = C ip

Z p2 (cos (2αts))
2 + Zs2 (sin (2αts))

2 − Z p1

Z p2 (cos (2αts))
2 + Zs2 (sin (2αts))

2 + Z p1

,

Ctp = C ip

cp1ρ1

cp2ρ2

2Z p2 cos (2αts)

Z p2 (cos (2αts))
2 + Zs2 (sin (2αts))

2 + Z p1

,

Cts = C ip

cp1ρ1

cs2ρ2

2Zs2 sin (2αts)

Z p2 (cos (2αts))
2 + Zs2 (sin (2αts))

2 + Z p1

,

where

Z p1 =
ρ1cp1

cos
(
αip

) , Z p2 =
ρ2cp2

cos
(
αtp

) , Zs2 =
ρ2cs2

cos (αts)
.

We compute the solution for the specific case of cp1 = 1, ρ1 = 1, cp2 = 3, cs2 = 2, ρ2 = 1, ω = 2π , αip = 0.2, and C ip = 1.0. 
The computational domain is [−1, 1]2 and the exact solution is prescribed by tractions on the boundary. Uniform tetrahedral 
meshes are used in the experiment. Fig. 2 shows the convergence of L2 errors under mesh refinement for both central fluxes 
and dissipative penalty fluxes. Optimal O (hN+1) rates of convergence are observed for the penalty flux, while an “odd-even” 
convergence pattern is observed for the central flux.

4.2.2. Scholte wave

Scholte waves are boundary waves that propagate along elastic-acoustic interfaces. This problem is designed to the test 
numerical flux between acoustic and elastic media. In our problem setting, we consider two half-spaces: the upper half, 
x2 > 0, is fluid with acoustic material parameters λ1 , μ1 = 0, and ρ1 . The lower half, x2 < 0, is solid with elastic material 
parameters λ2 , μ2 , and ρ2 . The displacement of a Scholte wave in the acoustic region is given by

u1 = Re
(
iκB1e

−κb1px2ei(κx1−ωt)
)

,

u2 = Re
(
−κb1pB1e

−κb1px2ei(κx1−ωt)
)

,

and in the elastic region by
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Fig. 3. Convergence of L2 errors for the Scholte wave solution.

u1 = Re
((

iκB2e
κb2px2 − κb2sB3e

κb2sx2
)
ei(κx1−ωt)

)
,

u2 = Re
((

κb2pB2e
κb2px2 + ikB3e

κb2sx3
)
ei(κx1−ωt)

)
.

The wavenumber is κ = ω
c
, with decay rates

b1p =

(
1−

c2

c21p

) 1
2

, b2p =

(
1−

c2

c22p

) 1
2

, b2s =

(
1−

c2

c22s

) 1
2

,

where c is the Scholte wavespeed. The longitudinal and transverse wavespeeds are

c1p =

√
λ1 + 2μ1

ρ1
, c2p =

√
λ2 + 2μ2

ρ2
, c2s =

√
μ2

ρ2
.

The wave amplitudes are related to each other through the interface condition (9)

2i

(
1−

c2

c22p

) 1
2

B2 −

(
2−

c2

c22s

)
B3 = 0,

c2

c22s
B1 +

ρ2

ρ1

(
2−

c2

c22s

)
B2 + 2i

ρ2

ρ1

(
1−

c2

c22s

) 1
2

B3 = 0,

(
1−

c2

c21p

) 1
2

B1 +

(
1−

c2

c22p

) 1
2

B2 + iB3 = 0.

(14)

The Scholte wavespeed c is chosen such that the determinant of (14) is zero, and c satisfies

(
ρ1

ρ2
b2p + b1p

)
r4 − 4b1pr

2 − 4b1p
(
b2pb2s − 1

)
= 0,

where r = c/c2s .

We choose the acoustic and elastic material parameters as λ1 = 1, ρ1 = 1, μ1 = 0, and λ2 = μ2 = 1, ρ2 = 1. For these 
material parameters, we obtain c = 0.7110017230197 and choose B1 = −i0.3594499773037, B2 = −i0.8194642725978, and 
B3 = 1. In our experiment, we choose a uniform mesh with different size h covering a square domain [−1,1]2 . As with 
Snell’s law, we investigate the convergence rates of the proposed method for a central flux (τu = τp = 0) and a penalty flux 
(τu = τp = 1).

Figs. 2 and 3 show L2 error for the Snell’s law and Scholte waves at time T = 5, respectively. For penalty fluxes, the 
computed convergence rate is close to the optimal rate of O (hN+1). For central fluxes, we observe again an odd-even 
pattern, though the rate of convergence is one order lower than observed for Snell’s law.

We also computed Scholte wave solutions using more realistic material coefficients from [11]. The fluid media is ho-
mogeneous isotropic with an acoustic wavespeed of 1.5 km/s and density 1.0 g/cm3 . The solid media is homogeneous and 
isotropic with a P-wave speed of 3.0 km/s and an S-wave speed of 1.5 km/s, with a density of 2.5 g/cm3. Errors for a Scholte 
wave solution at time T = 1 are shown in Fig. 4.
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Fig. 4. Convergence of L2 errors for the Scholte wave solution using material coefficients in [11].

Fig. 5. Spectra of the discontinuous Galerkin discretization matrix for central and penalty fluxes on a warped curvilinear mesh of degree N = 3.

4.3. Curvilinear meshes

We now present numerical experiments verifying the stability and accuracy of the DG scheme presented in Section 3.1 for 
curvilinear meshes. We use isoparametric mappings in the following experiments, where the mapping from the reference 
element to each physical element is a polynomial of degree N . We start from a uniform triangular mesh on the square 
domain � = [−1, 1]2 and place high-order Warp and Blend interpolation nodes on each element. The physical locations 
(xi, yi) of these nodes are then perturbed to produce new nodal positions (̃xi , ̃yi), where

x̃i = xi +
1

8
cos

(
3π

2
x

)
sin (π y) , ỹi = yi +

1

8
sin (πx) sin (π y) .

These new positions (̃xi, ̃yi) now define a coordinate mapping from the reference element to a curved physical element, 
producing the warped mesh in Fig. 5(d). This mesh warping is constructed such that x and y deformations of each element 
are of roughly the same magnitude, while leaving the positions of nodes on the boundary unchanged.

Fig. 5 shows computed eigenvalues of the DG discretization matrix for N = 3 and a warped curvilinear mesh. We use 
the strong-weak formulation introduced in Section 3.3 and consider both central and penalty fluxes. We observe that for 
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Fig. 6. Convergence for the Scholte wave problem on curvilinear meshes.

both central and penalty fluxes, the real part of all eigenvalues is non-positive (up to machine precision), verifying that the 
proposed DG scheme is energy stable. The introduction of the curvilinear warping appears to result in a magnification of 
the real and imaginary parts of larger magnitude eigenvalues, which also induces a smaller time-step size.

We compute L2 errors on a sequence of refined curvilinear meshes for N = 1, 2, 3, 4. From Fig. 6, we observe the rates 
of convergence of L2 errors are consistent with the rates observed for affine meshes in Section 4.2.

5. Application examples

In this section, we demonstrate the accuracy and flexibility of the proposed DG method for some application-based 
problems. In the first example, we simulate wave propagation through heterogeneous and anisotropic media. In the second 
example, we present an application of the new DG method to an inverse problem in photoacoustic tomography (PAT).

5.1. Heterogeneous anisotropic media

We examine a model wave propagation problem in heterogeneous and anisotropic media. In our experiments, we use 
two different experimental settings based on [25]. We divide the domain into three parts and set the left half (i.e. x < 0) to 
be anisotropic elastic media, the right-bottom part (i.e. x > 0, y < 0) to be isotropic elastic media, and the right-upper part 
(i.e. x > 0, y > 0) to be acoustic media. We assume that the density ρ = 7100 is constant over the whole domain.

In the first experiment, we simulate wave propagation through homogeneous media. The entries of the stiffness matrix 
C in the anisotropic media are taken to be

C11 = 0.165, C12 = 0.05, C22 = 0.062, C33 = 0.0396, x < 0,

C11 = 0.165, C12 = 0.0858, C22 = 0.165, C33 = 0.0396, x > 0, y < 0,

and the acoustic wavespeed is set to be

c =

√
C11

ρ
, x > 0, y > 0.

In the second experiment, we introduce sub-cell heterogeneities to the material parameters. For the isotropic elastic 
region x < 0, y > 0, we set

C11 = 0.165

(
1+

1

4
sin
( x

0.08
π
))

, C12 = 0.05,

C22 = 0.062

(
1+

1

4
sin
( x

0.08
π
))

, C33 = 0.0396

(
1+

1

4
sin
( x

0.08
π
))

,

and for the anisotropic elastic region x < 0, y < 0

C11 = 0.165

(
1+

1

4
sin
( x

0.08
π
))

, C12 = 0.0858,

C22 = 0.165

(
1+

1

4
sin
( x

0.08
π
))

, C33 = 0.0396

(
1+

1

4
sin
( x

0.08
π
))

.

In the acoustic domain x > 0, y > 0, we again set
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Fig. 7. An example of wave propagation in homogeneous anisotropic-isotropic elastic-acoustic media.

Fig. 8. An example of wave propagation in heterogeneous anisotropic-isotropic elastic-acoustic media.

c =

√
C11

ρ
.

In all experiments, we set the order of approximation N = 5. We use a uniform triangular mesh of 32768 elements on 
domain [−0.32, 0.32]2 . Forcing is applied to the y component of the velocity using a Ricker wavelet point source

f (x, t) =

(
1− 2 (π f0 (t − t0))

2
)
e−(π f0(t−t0))

2

δ (x− x0) ,

where x0 = −0.02, f0 = 0.17, and t0 = 1/ f0 .

In all implementations, we take the penalty parameters to be τu = τp = 1/2. For this value of τ and for the acoustic wave 
equation in homogeneous media, the penalty flux coincides with the upwind flux. Moreover, numerical results suggest that 
the maximum stable time-step size for τ = 1/2 is the same as the maximum stable time-step size for τ = 0 [3], which 
suggests that this level of dissipation does not require a more restrictive CFL condition. Figs. 7 and 8 show the y component 
of velocity at times T = 30 µs and T = 60 µs. In the elastic regions, the results agree with the reference results in [25]. 
In the elastic-acoustic regions, we observe the presence of a propagating pressure wave, while the stress wave ends in 
a Scholte-type wave propagating along the elastic-acoustic interface. Fig. 8 illustrates the effect of media heterogeneities, 
which manifest as a spatially-dependent warping of the solution.

5.2. Photoacoustic tomography

Photoacoustic tomography (PAT) is an imaging modality which takes advantage of high-contrast exhibited by optical 
absorption and the high resolution available for broadband acoustic waves in soft biological tissues. PAT relies on the so-
called “photoacoustic effect”: a short microwave or light pulse is sent through a patient’s body which slightly heats up tissue. 
The expansion due to heat generates weak acoustic waves, which are measured away from the patient’s body. The main step 
of PAT is the recovery of the initial acoustic profile, which in turn provides information about the rate of absorption and 
tissue properties at different points in the body.
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Given the initial state of the pressure field P , the forward mapping F propagates the wave field to the measurements 
M (Dirichlet data) on the boundary (0, T ) × ∂�. In practice, to produce synthetic measurements, an absorbing boundary 
condition is employed to allow the waves to radiate outwardly without spurious reflections. The goal of PAT is to invert the 
forward mapping F : P �→ M . Typically, a time-reversal method is utilized to approximately invert this forward mapping. 
The time-reversal mapping R consists of running the wave system backwards in time, from vanishing final condition at 
{t = T } × �, driven from the boundary (0, T ) × ∂� by the time-reversed boundary measurements M as Dirichlet data. The 
resulting pressure profile at {t = 0} × � is an approximation of the original profile P .

This approach can be inaccurate for short times and heterogeneous media. However, the quality of the reconstruction can 
be improved by approximating the exact inversion operator using a truncated Neumann series [26]. Similar reconstruction 
algorithms have been introduced for several variations of the wave equation [27–31]. We follow the approach proposed in 
[32], which is summarized in Algorithm 1. These approaches rely on the following error estimate,

‖Id −RF‖L2(�) ≤ κ < 1,

which is verifiable when the wave speed is non–trapping (see details in [27]). In other words, the time-reversal mapping R
inverts the forward operator F up to a contraction mapping. Algorithm 1 is then the application of a fixed point iteration 
or truncated Neumann series. The error associated with the nth iteration satisfies,

‖P − Pn‖L2(�) ≤ ‖P0‖L2(�)

κn+1

1− κ
,

where κ < 1.

Algorithm 1 Time-reversal algorithm for PAT.
1: procedure Initial time-reversal given boundary measurements

2: Solve the wave propagation problem backwards in time with boundary conditions driven by boundary measurements and zero final time condition.
3: Store the pressure field at time t = 0 in P0 .

4: procedure Forward and Backward Iteration
5: for n=1:Max iteration do

6: Apply the forward solver with initial condition Pn−1 and absorbing boundary conditions. Store the solution at time t = T in P f .

7: Apply the backward solver with initial condition P f and zero Dirichlet boundary condition. Store the solution at time t = 0 in Pb .

8: Update Pn = Pn−1 + Pb .

We test our PAT algorithm by reconstructing portions of the Shepp-Logan phantom (SLP), which is a standard test for 
image reconstruction algorithms. The SLP is defined as the sum of 10 ellipses inside the computational domain [−1, 1]2 . 
The specific setting of our experiment is presented in Table 1, and we arbitrarily set the penalty parameters to be τu = τp =

τσ = τv = 1. We simply use the even polynomial function in [33] to construct a smoothed Shepp-Logan phantom for our 
numerical simulations with smoothing parameters m = 2, n = 4.

We modify the typical SLP to emulate physical settings found for a human skull. We consider the domain inside domain 
of Ellipse a and outside of Ellipse b as skull modeled by elastic media. The rest of the domain is acoustic. The meshes (see in 
Fig. 9 and 12) for the SLP is generated by MESH2D [34], a MATLAB-based mesh-generator for two-dimensional geometries. 
We use two meshes to test our PAT solver and compare results. The fine mesh consists of 7626 nodes and 14994 elements. 
The thinnest portion of the elastic domain is resolved using three layers of elements. The coarse mesh consists of 4190 
nodes and 8122 elements, and the thinnest portion of the elastic strip is resolved using only one or two layers of elements.

We generate synthetic boundary data by running a forward problem and saving boundary measurements up to final 
time T = 2. We implement two versions of PAT: the first uses forward and backward solvers based on the discussed elastic-
acoustic DG formulation, while the second uses a purely acoustic solver for comparison. The wavespeed for the purely 
acoustic solver is set to be the pressure wavespeed for the elastic system. All experiments are run on an Nvidia TITAN 

Table 1

Setting of Shepp-Logan phantom.

Ellipse Center Major axis Minor axis Theta Value

a (0,0) 0.69 0.92 0 0

b (0,−0.0184) 0.6624 0.874 0 0

c (0.22,0) 0.11 0.31 −0.18◦ 0.02

d (−0.22,0) 0.16 0.41 0.18◦ 0.02

e (0,0.35) 0.21 0.25 0 0.01

f (0,0.1) 0.046 0.046 0 0.01

g (0,−0.1) 0.046 0.046 0 0.01

h (−0.08,−0.605) 0.046 0.023 0 0.01

i (0,−0.605) 0.023 0.023 0 0.01

j (0.06,−0.605) 0.023 0.046 0 0.01
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Table 2

Relative L2 errors at each iteration.

Iteration Fine Fine (acous) Coarse Coarse (acous)

1 0.140530 0.147435 0.140556 0.147103

2 0.094658 0.133881 0.094811 0.133508

3 0.075081 0.130397 0.075347 0.130010

4 0.065585 0.129331 0.065941 0.128939

5 0.060577 0.128973 0.060998 0.128577

Fig. 9. Fine mesh for the Shepp-Logan phantom.

Fig. 10. Reconstruction results using fine mesh.
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Fig. 11. Reconstruction errors using fine mesh.

Fig. 12. Coarse mesh for the Shepp-Logan phantom.

GPU, and the solvers are implemented in the Open Concurrent Compute Abstraction framework (OCCA) [35] for clarity and 
portability.

The relative L2 errors during each iteration are presented in Table 2. We observe that, independently of the mesh 
size, the relative errors of the reconstructed initial data are ≈ 0.06, while the relative errors of the reconstruction from 
purely acoustic time-reversal are roughly twice as large ≈ 0.12. We present reconstructed initial pressures for both meshes 
in Fig. 10 and 13. From these figures, we observe that using a purely acoustic solver results in larger background noise 
than using a coupled elastic-acoustic solver. We also observe that the error in the reconstruction is concentrated near the 
boundary of eclipses and at the elastic-acoustic interfaces (see Figs. 11 and 14). The former is due to high gradients in the 
solution, while the latter may be due to the retention of energy within the elastic region.

6. Conclusion and future work

In this paper, we present a high order discontinuous Galerkin method for wave propagation in coupled elastic-acoustic 
media. The method utilizes easily invertible weight-adjusted approximations of weighted mass matrices, as well as an 
upwind-like penalty numerical flux across the interface between elastic and acoustic media. The formulation is prov-
ably discretely energy stable and consistent on arbitrary heterogeneous media, including anisotropy and sub-cell micro-

heterogeneities. An extension of the method to curvilinear meshes achieves similar results. Numerical examples confirm 
the high order accuracy of this method for analytic solutions to classical interface problems, and results produced by the 
proposed method are consistent with existing results for isotropic and anisotropic heterogeneous media.

Future work includes the acceleration of the proposed method using tailored Bernstein-Bezier algorithms [36,37], which 
can reduce the computational complexity of the implementation from O (N2d) to O (Nd+1) in d dimensions, as well as 
extensions to wave propagation in acoustic-elastic-poroelastic media [38].
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Fig. 13. Reconstruction results using coarse mesh.

Fig. 14. Reconstruction errors using coarse mesh.
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