Taylor & Francis
EXPERIMENTAL Taylor & Francis Group

Experimental Mathematics

ISSN: 1058-6458 (Print) 1944-950X (Online) Journal homepage: https://www.tandfonline.com/loi/uexm20

Asymptotic Sign Coherence Conjecture

Michael Gekhtman & Tomoki Nakanishi

To cite this article: Michael Gekhtman & Tomoki Nakanishi (2019): Asymptotic Sign Coherence
Conjecture, Experimental Mathematics, DOI: 10.1080/10586458.2019.1650401

To link to this article: https://doi.org/10.1080/10586458.2019.1650401

ﬁ Published online: 21 Aug 2019.

N
CJ/ Submit your article to this journal &

||I| Article views: 31

A
h View related articles &'

PN

@ View Crossmark data (&

CrossMark

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=uexm20


https://www.tandfonline.com/action/journalInformation?journalCode=uexm20
https://www.tandfonline.com/loi/uexm20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10586458.2019.1650401
https://doi.org/10.1080/10586458.2019.1650401
https://www.tandfonline.com/action/authorSubmission?journalCode=uexm20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uexm20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/10586458.2019.1650401
https://www.tandfonline.com/doi/mlt/10.1080/10586458.2019.1650401
http://crossmark.crossref.org/dialog/?doi=10.1080/10586458.2019.1650401&domain=pdf&date_stamp=2019-08-21
http://crossmark.crossref.org/dialog/?doi=10.1080/10586458.2019.1650401&domain=pdf&date_stamp=2019-08-21

EXPERIMENTAL MATHEMATICS
https://doi.org/10.1080/10586458.2019.1650401

Taylor & Francis
Taylor &Francis Group

Asymptotic Sign Coherence Conjecture

Michael Gekhtman® and Tomoki Nakanishi®

‘ W) Check for updates‘

Department of Mathematics, University of Notre Dame, Notre Dame, IN, USA; PGraduate School of Mathematics, Nagoya University,

Nagoya, Japan

ABSTRACT

The sign coherence phenomenon is an important feature of c-vectors in cluster alge-
bras with principal coefficients. In this note, we consider a more general version of
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c-vectors defined for arbitrary cluster algebras of geometric type and formulate a con-
jecture describing their asymptotic behavior. This conjecture, which is called the asymp-
totic sign coherence conjecture, states that for any infinite sequence of matrix mutations
that satisfies certain natural conditions, the corresponding c-vectors eventually become
sign coherent. We prove this conjecture for rank 2 cluster algebras of infinite type
and for a particular sequence of mutations in a cluster algebra associated with the

Markov quiver.

1. Introduction

A study of c-vectors for cluster algebras with princi-
pal coefficients initiated in [Fomin and
Zelevinsky 07], the fourth in the series of founda-
tional papers that gave rise to the theory of cluster
algebras. There, c-vectors appeared, together with
related concepts such as g-vectors and F-polyno-
mials, as tools for understanding a deeper structure
of cluster variables. Also in [Fomin and Zelevinsky
07], a conjecture that later became known as the
sign coherence conjecture was first formulated. It
states that in any cluster mutation equivalent to the
initial one, each c-vector is nonzero and has either
all nonnegative or all nonpositive coefficients. It
was soon realized that this conjecture has important
implications in various aspects of the theory of clus-
ter algebras, notably, in establishing duality proper-
ties as was done in [Nakanishi and Zelevinsky 12].
The conjecture was proved in [Derksen et al. 10] for
the skew-symmetric cluster algebras and in [Gross
et al. 17] for the skew-symmetrizable ones.

It is natural to wonder if there is an analog of
sign coherence that remains valid if the condition
on coefficients being principal is relaxed, in particu-
lar, if a similar phenomenon occurs in cluster alge-
bras of geometric type in the sense of [Fomin and

was

Zelevinsky 07, Definition 2.12], where their coeffi-
cients take value in tropical semifields. Clearly, this
property cannot be satisfied as is-one can simply
start with the initial coefficients for which it is not
valid. This note proposes how sign coherence can
be treated in arbitrary cluster algebras of geometric
type: after a sufficiently generic sequence of muta-
tion, c-vectors, defined in a more general context,
become sign coherent.

In the next section, after providing a background
on matrix mutations and providing an example illus-
trating the phenomenon described above, we formu-
late a conjecture that describes this behavior. We
call it the asymptotic sign coherence conjecture. In
Section 3, we verify our conjecture in the rank 2 case.
The final section deals with a particular sequences of
mutations in a cluster algebra associated with the
Markov quiver—we show that the conjecture holds
true in this case as well.

2, Preliminaries and the main conjecture
2.1. Matrix mutations

We say that an N X N integer matrix B = (b,-j)z.:l is
skew-symmetrizable if there is a diagonal matrix
D = diag(d,, ...,dy) with positive integer diagonal
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entries dj,...,dy such that DB is skew-symmetric,
i.e., dibjj = —djb;. We call such D a skew-symmetr-
izer of B. B is called irreducible if there does not
exist a pair I, ] of nonempty subsets of [1,N]:=
{1,...,N} such that b;; = 0 for any i € I and j € J. If
B is skew-symmetric, it can be realized as an adja-
cency matrix of a quiver with N vertices. The irre-
ducibility property in this case is equivalent to
connectedness of the quiver.

The notion of a matrix mutation is one of the
key ingredients in the definition of a cluster algebra.
It is also the only ingredient of that definition that
we will need in this note. We will be interested in
matrix mutations of integer matrices with skew-
symmetrizable principal parts. Namely, let B be an
integer (N + M) x N matrix such that its principal
submatrix B := B[N] formed by the first N rows is
skew-symmetrizable. Columns of B determine the
rules of transformations of cluster variables xi, ..., xy
with the wvariables xni1,...,4n+m being frozen.
Alternatively, we may view the columns of the bot-
tom M x N submatrix of B as encoding expressions
for coefficients in a cluster algebra of geometric
type. See [Fomin and Zelevinsky 07, Section 2] for
the explanation.

For each k =1,...,N, the mutation of B at k is
another integer (N + M) x N matrix B = 1. (B),
which is obtained from B by the following formulas:

o —b;i i=korj=k
g bij + [—Sbik]+bkj + by [8bkj]+ i,j # k,
(2-1)

where for a € R, we denote [a], = max(a,0), and &
is a sign, + or —, which is naturally identified with
1 or -1, respectively. Then we have the follow-
ing properties:

1. The right hand side of (2-1) is independent of
the choice of sign .

2. If D is a skew-symmetrizer of B, then it is also a
skew-symmetrizer of B’ = BEN].

3. The mutation p is involutive, namely,

H 0 py = id.

More generally, if B is obtained from B by a
~/
sequence of mutations (2-1), then B is said to be
mutation equivalent to B.

If M =N and the block formed by the last N rows
of B is equal to the identity matrix 1y then the clus-
ter algebra associated with B is said to have princi-
pal coefficients. In this case, the bottom N xN
submatrix of any matrix B’ mutation equivalent to
B is called a C-matrix and its columns are called
c-vectors.

2.2. Main conjecture

The following key property of c-vectors that proved
to be of fundamental importance in the theory and
applications of cluster algebras was conjectured in
[Fomin and Zelevinsky 07, Conjecture 5.5 and
Proposition 5.6] and later proved in [Derksen et al.
10, Theorem 1.7] in the skew-symmetric case and
[Gross et al. 17, Corollary 5.5] in the skew-symme-
trizable case with both proofs using [Fomin and
Zelevinsky 07, Proposition 5.6].

Theorem 2.1 (Sign-coherence of c-vectors). Each
c-vector is a nonzero vector, and its components are
either all nonnegative or all nonpositive.

In this note, we are interested in a behavior of a
more general version of c-vectors: namely, we will
denote by C the bottom M x N submatrix of B and
refer to its columns as c-vectors. Whenever we will
need to invoke the original definition of c-vectors, we
will call them principal c-vectors.

We begin with the following example.

Example 2.2. Let B be the adjacency matrix for the
quiver below. This quiver is a rather randomly chosen
one with four vertices.

@—.

Consider a sequence, also rather randomly chosen,
of C-matrix mutations, together with the initial C-
matrix C[0], specified below:
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-2 1 —2 2 1 1 -6
Clo] = Ll = >
—1 1 —1 0 -1 2 -1 0
o -1 -1 =2 o -1 -1 =2
—1 0o -2 1 —1 3 -2 -1
2 -1 -6 -10 1 -7 6
cll = 23] = 2
-2 0 1 —1 —4 0 0 1
-1 -3 1 -3 -7 -3 -2 3
-1 -3 -2 8 -1 —-13 2 8
-10 -1 -7 9 —-10 —-36 7 9
Cl4] = 2 cls) = .
—4 0 0 1 —4 0 0 1
-22 3 -17 3 —-22 -—-82 17 3
1 —-23 2 8 105 —-23 114 -8
10 —-136 7 9 4 127 —136 133 -9 1
4 —40 1 17 —40 14 -1
22 =302 17 3 61 —-302 59 -3
—105 —-23 114 1357
—127 —136 133 1642
C[S] - —
—17 —40 14 220
—61 —302 59 790

Example above is just one of many we have consid-
ered and all of these examples exhibited the same phe-
nomenon: dafter sufficiently many random mutations,
C-vectors become sign-coherent.

To frame these observations as an explicit conjecture,
we will only need to consider cluster algebras with a sin-
gle frozen variable since mutations of rows of a C-
matrix are independent of each other by (2-1). We fix a
skew-symmetrizable N x N matrix B and an integer vec-
tor a = (ay,...,ay) and define an (N + 1) x N matrix
B by appending a to B as the (N + 1)th row.

Let p= ()=, (ki€ [1,N]) be a sequence of
matrix mutations applied to B. We denote g o---o
Iy, © M, by w1 (B) by 8" and the last row of
B" by al" = (ai"), ey a;';)). We use a convention
= B,a® =a. Note that if a=0, then a® =0
for any n by (2-1). Therefore, from now on we
assume that a is a nonzero vector.

Let Bp, denote an N x 2N matrix

Bo
B()

(in other
1n

words, Epr is the initial exchange matrix for the clus-
ter algebra with principal coefficients defined by B).

We define the distance dist(B,,, " (B,,)) < n as the

minimal number of matrix mutations needed to
obtain ,u<")(f3p,) from Bpr. This notion of distance
agrees with the distance in the exchange graph of
labeled seeds in the cluster algebra associated with B
(with any coefficients), see, e.g., [Nakanishi 19].

We say that the sequence of mutatons u is mono-
tone (with respect to B) if

dist (fspr, sy (BP,))
> dis’t(].'épr7 ) <Bpr>) (n=1,2,..).

We say that u is balanced if for every k € [1,N],

(2-2)

1
iminf —#4j 1 ki = .
hmlnfn {iel,n:k=k}>0

n—oo

For an integer g, we define

+ a>0
sign(a) =< 0 a=0.
— a<g0

We say that a sign vector o= (wy,...,0N) €
{4,0, =}V is strict if w; # 0 for any i. Define the sign
vector corresponding to ,u(”) as
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al(j‘) (a) = <sign <a<1")) -y SigN (a;';)) > .

The sign pattern corresponding to p is defined by

ou(@) = (e@) " .

(2-3)

(2-4)

Conjecture 2.3 (Asymptotic sign coherence). Let B =
BN] be irreducible and let u be a monotone and bal-
anced sequence of mutations applied to B. Then there
exists a sequence of strict sign vectors

(m) ™
O'reg = (O'reg)nzo, reg S {+}

such that for a 8/ nonzero a € ZN there is T € N such
that a = areg for n>T.

Remarks 2.4. 1. If the C-matrix part of B has multiple
rows (i.e, M > 2), Conjecture 2.3 means that for a
monotone and balanced sequence of mutations, for all
n greater than certain 7, the sign patterns of any two
nonzero rows of the C-matrix C") obtained on the
nth step coincide. But that means that the columns of
C™ are sign-coherent. This justifies the term asymp-
totic sign coherence.

2. The monotonicity assumption precludes the ini-
tial exchange matrix B from being an exchange matrix
of a cluster algebra of finite type.

3. Both conditions in Conjecture 2.3 are used to
ensure that the mutation sequence u is sufficiently
random. Both of these conditions could be relaxed or
modified in various ways. In particular, one could
require that a magnitude of every entry of the C-
matrix tends to infinity as n goes to infinity. One
could also weaken the condition of u being balanced
by replacing it with the requirement that every muta-
tion direction appears in p infinitely many times. In
this case, we call u weakly balanced (see Remark
4.2 below).

3. Rank 2 case

In this section, we will verify Conjecture 2.3 in the
infinite type rank 2 case. The matrix B in this case
has a form

0 —p
B=3"=|4q o | (3-1)
RONRC

where positive integer parameters p, q satisfy pg > 4
[Fomin and Zelevmsky 02, Section 6]. We assume

that at least one of a; ), ag()) is nonzero.

In the rank 2 case, the monotonicity assumption for
an infinite sequence of mutations amounts to a require-
ment that mutations u; and p, alternate. Instead of con-
sidering two possible monotone sequences of mutations,
we will unify them into a single double-infinite
sequence. Namely, we consider a sequence of mutations
Uiy oy Hys s, ... and denote the
obtained at the nth step of this sequence by B (r
Similarly, the exchange matrix obtained at the nth step

exchange matrix

of a sequence of mutations i, iy, b, Ly, ... will be
denoted by B' Then, for any n € Z,
0 (_)n—lp
B == 0 (3-2)
agn) agn)

Choosing ¢ =1 in (2-1), we obtain the following
recursion for aﬁ”), ag'”(n > 0):

a = —a, (3-3)
a2n1) _ glom _ [_a§2n):| »
2n+2 2n+1 2n+1
@ =a H_[_“g HL ’ (3-4)
(2n+2) (2n+1)
= —a, .
For n < 0,we choose ¢ = —1, and obtain
(~2n-1) _ (~2n) { (72n)]
a a + |4 W9 (3-5)
ag—Zn—l) _ _ag—Zn)7
aﬁfznfz) _ _agfznfl)’ 6o
e [ag—Zn—l):|+p'

We want to investigate a dependence of signs of
a\”.a" on initial values a\”,al”. As in (2-3), we

define a sign vector

o = (sign (ai")) , sign (agn)) ) .

If an expression is only known to be nonnegative
(resp. nonpositive), we will denote its sign by +/0
(resp. —/0). Following the definition (2.4), we call a
sequence

o(a®.d?) = (6),z (3-7)

the sign pattern with initial values ago), a§°>.

We define the sequence o of strict sign vectors as

s = (),

We are gomg to show that for any aﬁ(’) ,ag , the

sequence o'(ago)7 a, ) differs from o, for only finitely

many components.

(3-8)



To proceed, we need to recall some of the proper-
ties of the Chebyshev polynomials U,(t)(n € Z>_,) of
the second kind (see, e.g. [Doman 16, Chapter 6]).
They satisfy a three-term recursion of the form
2tU,(t) = Up1(t) + Upa () (n > 0); U-1 () = 0, Up(t) = 1,

(3-9)
and are orthogonal with respect to the positive weight
V1—t? on the interval [—1, 1]. As a result,

U,(t)>0(n>0,t>1). (3-10)
Furthermore,
Ur(t)=Up 1 ()Upia (1) = 1(n = 0,1,...),  (3-11)
and therefore
Un(t) Unia(t)
n>0). (3-12
Uoa(0 " O "0 )
There is an explicit formula for U,(¢),
(t+ r———-t2_1>n+1_(t_ tz_l)n+1
Un(t) = , (3-13)
PAVAZESD
which implies, in particular, that
Upyi(t
m Jren(8) t+VeE-1(|t > 1). (3-14)

”LOO U, (t)

The role played by Chebyshev polynomials in the
study of rank 2 cluster algebras was previously
observed by several authors, notably in [Lee and
Schiffler 13, Lee and Schiffler 15] where it was utilized
in initial steps of the proof of the Laurent positivity
conjecture, and, more recently, in [Reading 18] where
closely related polynomials were used in a description
of rank 2 infinite type cluster scattering diagrams.
Below, we use Chebgshev polynomials to investigate
the sign pattern a(a1 ,az )

Denote
=./pq,v = \/‘g

Proposition 3.1. Ifago) =a, ago) =a, > 0, then
(1) (1 _ (2) _ (2)

a,’ = —ay,a, =a,a” =—ay,a, = —ay,
forn>2

(2n) K -1

a;”’ = —a1Uy 5 —av Usys| =) <0,

K
2
K K
agzn) = a1vUsy 3 <E> + aUyyy (5) >0,

forn>1

EXPERIMENTAL MATHEMATICS 5

a§2n+1) = a U 2( > + av Uy 3(2> >0,
K K
aanJrl) = —a1vUp <E> —aUzp 2 <5> <0,

(3-16)

with the first inequality in (3-16) strict for n> 1, and,
forn>0

ai m-2) _ —a Uy [ = | —av ' Uz [ = | <O,
P 2
o K
ag 2n 2) — a]VU2n+1 < ) —|— a) U2n+2 <2> > 03

(3-17)

o K
ai Y — 4, Uy, + apv  Upppn >0,
2 2
o K K
ag ) - —a1vUs,—1 <E> —ay Uy, (E) <0,

(3-18)
with the second inequality in (3-18) strict for n> 0.
Therefore, ¢~V =(+,—/0),6)=(+/0,4/0), ¢V=
(_/07+/0)70<2>:(_/07_/0)70(3):(+/07_) and

o — <<_)n—1, (_)n)(n #-1,0,1,2,3).  (3-19)

Proof. By 5>1 and (3-10), the expressions in
(3-15)-(3-18) imply the inequalities therein, therefore
we obtain (3-19).

We will only verify equations in (3-16). The rest of
the formulas in Proposition 3.1 can be treated the
same way. Recursions (3-3), (3-4) combine into

a52n+3) _ _a52n+1) " [_agznﬂ)hq’
(3-20)
a§2n+3) _ _ag2n+1)_ [agzn+3)} »

For n =0, this gives

053) =dad; = (11U()< > +a2V U (g),

(3)

a,’ = —alp—az

K K
= —QIVUI <E) —dy U() <5> 5

which is consistent with (3-16). We can now proceed
by induction while taking into an account that the
induction hypothesis stating that (3-16) is valid for
n < m also ensures that a?”*” >0> agznﬂ for n <
m. (Here we use the inequality 5> 1 and (3-10).)

Then equations in (3-20) become

= —a|VK—ay
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K _ K
a52n+3) = —a1Uy2 <§> —av Uz (E)
K
+ <6l11/U2n 1( >+a2U2n 2<2)>q
K K
=a KUznfl 5 —U2n72 5
-1 K
+av | —Upus + kUzp—s )
3.9 K _ K
(—>alU2n <2> + a  Uspy <E)a
K
a§2n+3) =avUy— 1< ) + a, Uy 2<2)
—| a1 U r +av U i
1Uzn 5 2 2n—1 5 p

3. K
1) —a1vUsuqg <2>—

which proves (3-16). O

Proposition 3.1 shows that if a§°), ago)

(0)

negative then the sign pattern o(a; ,az)) does not

depend on precise values of ag ), a§°

fied in using a notatlon 0. for such sign pattern.

Furthermore, if “1 ,a§°> are both nonpositive, then
(0) (0)

implies that o(a;’,a, ) =

are both non-

and we are justi-

Proposition 3.1 also

(a(f:z)) ¢z also does not depend on precise values of

a(lo), ag and can be denoted by o__.

The case a§°) =a >0,ag V= —a,<0 is still cov-
ered by Proposition 3.1: if one switches the roles of
a(1">, ag") and also the roles of p and g, then the corre-

sponding matrix

0 ¢
BY=1|—-p o0
—d; a1
can be seen as B(l) for
0 —q
B(O) =|p 0
ap a;

and so

Oy = O'(a<10>7a20)> = (T(O-Sfljrq)))nez’

where 7 permutes the entries of a two-vector.

The situation is different and more complicated if
a = —a,<0,a)”) =a,>0. In view of (3-12) and
(3-13), we separate it into three cases:

(3-21)

Case 1.

h+ 4§%§%(K+m)'
Case 2. *(K+\/K2— )< &

a
Case 3. 2 < py \/KZ_
Let us start with Case 1.

Proposition 3.2. Let a(lo) =

IfZ—?G[K\/— Yk + VK2 — )} then for n > 1,

K
a§2”> = _alUZn( ) + av Uy 1(2> <0,
K K
agzm =avUy_1 (E) —a Uz (5> >0,

(3-22)

(0)

—a1<0,a,” =a;>0.

and for n > 0,

a(12n+1) = a1 Uy, <E> —ayv  Usp g (E) >0,
2 2
K

aanJrl) = —6111/U2n+1( > + ay Uy <2> <0,

(3-23)
(—2n-2) K
a =a1Uy, 3 —av WU | = | <0,

Cone K
“g 2n=2) _alVU2n+1< > + a, Uz (2>
(3-24)
<

o K K
a<1 2 — gy Uy, (E) + av  Uppin >

“g_zn_n = avUs, (Z) —ayUyy <2> 0.

(3-25)
Therefore,

(i(a(lo),ago)) = Oreg, (3-26)

where 0yeg is the one in (3-8).

Proof. Our assumption for  together with properties
(3-12) and (3-14) of the Chebyshev polynomials

ensure that
Un+1 (%)

o) o vl
o)

— < < — <V

Un+1 (%) 4
for any n>0. Then the expressions (3-22)-(3-25)
imply the inequalities therein, therefore we obtain
(3-26). As in the proof of Proposition 3.1, we verify
only one of the expressions (3-22)-(3-25), for
example, (3-23). The rest can be treated similarly.

that  al) = a; = &, Up(§)—a U1 (5),
—awUi(5) +a;Us(5) satisfy (3-23)

v (3-27)

First,

agl) =—ap+t+a =

note



for n=0 and that a(ll) >0> agl). Arguing by induction

and using (3-20), we obtain

a(12n+3) =—a1Uy, <E> +ayv Upyy <E>
2 2
K K
+ (alVU2n+l <§> —ay Uy, (E) > q
39 K _ K
(:)611 Uspgo | = | —av 1U2n+1 -] >0,
2 2
K K
a§2n+3) =a1vUpun <5) —ay Uy (E)
—( a1 U K —a U d
1U2n42 5 2 2n+1 > p

(3.9) K K
="—a1vUyq3 5 + aUzpys 5 <0,

and the claim follows. Note that here we used the
right inequality in (3-27). It plays the same role in
the proof of (3-22), while for (3-24), (3-25) the left
inequality in (3-27) is needed. O

Next we consider Case 2.
Proposition 3.3. If there exists N> 0 such that
Uni1(5) _a , Un(3)
Un(z) ~ @ Unaly)

then equations (3-24), (3-25) remain valid for n > 0,

(3-28)

and equations (3-22), (3-23) remain valid for
agk),agk)(k =0, 1...,N). Furthermore, agNH) and agNH)
are nonnegative and not both zero and
n—N—
(a&r+ 1>>nEZ for odd N

o(al?,a) =
(r (UT;NA)))%Z for even N,
(3-29)

where 1 is defined in (3-21).

Proof. In the proof of Proposition 3.2, our argument
relied on the inequalities (3-27). Under the current
assumptions, the left inequality remains valid for all n,
while the right inequality is valid for n <N. This
explains the claim about the validity of (3-22)-(3-25)
in this situation.

Next, if N is odd, N = 2m + 1, then (3-22), (3-23)

are valid for n=m with c152m)<0<agzm> and

a&zmﬂ) >0> a§2m+1). This means that the expressions

in (3-22) are also valid for n = m + 1, however, due

to (3-28), aizmﬁ) >0 and agzm”) > 0. This puts us in
the situation covered by Proposition 3.1 and the first
line in (3-29) follows. The case of N even is treated in

the same way. 0
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Finally, we consider Case 3.

Proposition 3.4. If there exists N> 0 such that

Un_1 (% Uy (¥
y N1’g2)§@<y N(Z?c ’
Un(3) ~ @ Un+1(5)
then equations (3-22), (3-23) remain valid for n > 0,
and equations (3-24), (3-25) remain valid for

agk), agk>(k =0,—1...,—N). Furthermore, a™ Y and
al™ are nonpositive and not both zero, and
(G(*H:NJrS))nez for odd N

J(ago), aé‘”) =
(’C (a(fiNH)) ) ez for even N,

where 1 is defined in (3-21).

Proof. The proof is completely analogous to that of a
previous proposition. O

Combining Propositions 3.1-3.4, we arrive at the
following conclusion.

Theorem 3.5. Conjecture 2.3 is valid in the rank
2 case.

Proof. One can see that each of the sign patterns
044,0-_,04_, as well as every sign pattern that
appears in Propositions 3.3, 3.4, differs from o in
(3-8) for exactly three consecutive components. O

4. Rank 3 example: The Markov quiver

To present additional evidence in support of
Conjecture 2.3, we consider the rank 3 case with B
being the adjacency matrix of the celebrated Markov
quiver. The corresponding cluster algebra served as
a test case for several important phenomena in the
theory of cluster algebras. In particular, the
principal c-vectors and g-vectors associated with
the Markov quiver were described in [Najera
Chavez 12].

We add an additional frozen vertex to the
Markov quiver and investigate possible sign pat-
terns, for example, for a monotone and balanced

sequence
w=(1,2,3,1,2,3,..).

The figure below illustrates the case when the ini-
tial vector al® = (ay,a,,a3) is component wise non-
negative. In this figure, we assume that there are a;
arrows pointing from the frozen vertex to the vertex i.
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Since the sequence p consists in a consecutive
mutations applied to the quiver in a clockwise order
starting with the vertex 1 and since, as is well-known,
the Markov quiver transforms into its opposite after a
mutation at any vertex, we can replace u with itera-
tions of the same transformation p that consists of a
quiver mutation at the vertex 1, followed by rotation
of the quiver counter clockwise by 120 degrees
(equivalently, applying a cyclic permutation 7 = (132)
to the mutable vertices) and then reversing all arrows.
Using (2-1), we compute the result of p acting on the
initial nonzero vector a® = (a\, 2l 2l € 77

pa®) = (pa @), p(a©@),, p(a®);)

- (o] - ol ] e,
(4-1)

For a (not necessarily strict) sign vector @ =
(1,2, m3) and a strict sign vector » = (wy, w1, ®3),
we write ® ~ o if (0;, ®;) # (+,—), (—, +) for any i.

Observe that if ©® = (—, 4, —) then o™ = @
and so ™ is stable. More generally, if ®(® ~
(—,+,—), ie, a® = (—a;,a,, —as), where a,,a,as
are nonnegative integers and not all zero, then
o™ ~(— +,—) as well and, moreover,
(—,+,—) for n > 5. This follows from a straightfor-
ward computation that gives

oM —

ps(a(o)) = (—4a1 — 46!2 — as, 9a1 + 46!2 + 46!3,

— 4(11 —dy — 2&3).

Thus, to establish Conjecture 23 for pu=
(1,2,3,1,2,3,...), it suffices to show that o =
o™ (a®) eventually stabilizes at (—,+,—) for
any a®).

Denote by o = »™(al®) the sign vector of
p"(a?) defined similarly to (2-3). For the rest of this
section, we fix a;,a;,a; to be nonnegative integers
and not all zero. In what follows, the choice of
0® ~ (€], €, €3) signifies that a®) = (ejay, ,a,, €3a3).

Let us first consider the case when o©® ~
(+, +, —), which leads to

p@®) = (=24, — ay,as,a1), oV ~ (=, +,+),

pz(a(o)) = (—613, 3(11 + 2612, —2(11 — az), CO(2> ~ (—, +7 —),

after which the desired sign stabilization occurs.
Similarly, starting with 0~ (—,—,—), we obtain
p@?) = (a5,2a) + a3, —a1), oV (+,+,-),

which reduces to the case we just considered, as does
the situation depicted in the figure above that corre-
sponds to w® a2 (+, +, +), which results in

(D(l) ~ (_a E) +)7
pz(a(())) = (a3, 3a; + 2a,, —2a; — a,), o? ~ (4,4, ).

p@®) = (=24, — a5, —as, 1),

For 0~ (—, +,+), we get p(a®)) = (—ay,2a; —
as,—a;) and so oMx(—,+,-) or (-, —, —),
depending on the sign of 24;—a;. Both of these cases
were already covered above.

We are left with three remaining choices for (© :
(+,—,—/0),(=/0,—,+) and (+,—,+). The first of
these, depending on the sign of —2a; + a;, results in
oV = (4+,+,+) or in V) = (—/0,+,+)—both sit-
uations have been already treated above.

The case w® = (—/0,—,4), depending on the
sign of 2a;—as, leads to ) = (+,+, —) or in V) =
(4, —/0,—), also covered by now.

The last case requires a more delicate analysis.
Indeed, if a® = (a;, —a,,as) and if a, > 2ay, then the
sign pattern for p(a®)) = (=24, + as, —as,a;) is also
(4, —,+). Persistence of such situation would contra-
dict our claim that o stabilizes at (—, 4, —).

Lemma 4.1. Suppose ay,ay,a; are positive numbers
such that for a%) = (a;, —ay,a3), 0™ = (+,—,+) for
all n. Then the first component of p"(al?) is
p"@®), = (=D"((fas3 — Dar — (furz — Daa
+ (far1 = Das),
(4-2)
where f,, denotes the nth Fibonacci’s number.
Proof. The claim (4-2) is checked directly for n=0, 1,
2, where
(a<0))1 = al,p(a(o))l = —2a1 + ay, p2<a(0>)1

=4a,—2a, + as

and fi=fH=1,=2,/1=3,fs =5.

Under the assumptions of the lemma, (4-1) implies
@), = —p"@), = —pm1(a®),

and then



anrz(a(o))1 _ _2pn+1(a(o))1 —|—p”71(a(0))1.

The claim follows by induction from a relation
2fut2—fn = fa+s which is an easy consequence of the
Fibonacci recursion. O

As a corollary of Lemma 4.1, we conclude that in
order for a sign pattern (+, —, +) to persists, the con-
stants aj, d,, a3 must satisfy inequalities

(anr1—D)ar—(fan—1)az + (fan—1—1)az > 0> (fanp2—1)ay
—(foans1—1)az + (fon—1)as
(4-3)

for all n> 0. Since lim,_, %

the golden ratio, (4-3) implies that a;p*—a,p + a; =
1((3ay — ay + 2a3) + (a1 — a2)V/5) = 0. This is where
the integrality of a;,a,,a; comes into play, since for
the last equation to hold, we must have a; =a, =
—asz, which contradicts our positivity assumption for

f”f:‘ = ¢, where ¢ =

is

ai,a,as. The conclusion is that if w© = (4, — +)
then there exists such n that »™ = (—/0, —, +). This
concludes the proof of Conjecture 2.3 for the Markov
quiver and pu = (1,2,3,1,2,3,...).

Remark 4.2. The condition of a sequence of muta-
tions p being at least weakly balanced is necessary for
Conjecture 2.3 to hold true in the case of the Markov
quiver. Indeed, let u=(1,2,1,2,...) and a® =
(1,—1,a), where a is any integer. Then it is easy to
check that a™ = ((=1)",(=1)""',a), ¢ = ((-1)",
(=1)""! sign(a)) and the claim in Conjecture 2.3
fails.
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