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Asymptotic Sign Coherence Conjecture

Michael Gekhtmana and Tomoki Nakanishib

aDepartment of Mathematics, University of Notre Dame, Notre Dame, IN, USA; bGraduate School of Mathematics, Nagoya University,
Nagoya, Japan

ABSTRACT
The sign coherence phenomenon is an important feature of c-vectors in cluster alge-
bras with principal coefficients. In this note, we consider a more general version of
c-vectors defined for arbitrary cluster algebras of geometric type and formulate a con-
jecture describing their asymptotic behavior. This conjecture, which is called the asymp-
totic sign coherence conjecture, states that for any infinite sequence of matrix mutations
that satisfies certain natural conditions, the corresponding c-vectors eventually become
sign coherent. We prove this conjecture for rank 2 cluster algebras of infinite type
and for a particular sequence of mutations in a cluster algebra associated with the
Markov quiver.

KEYWORDS
cluster mutations; c-vectors;
sign coherence

1. Introduction

A study of c-vectors for cluster algebras with princi-
pal coefficients was initiated in [Fomin and
Zelevinsky 07], the fourth in the series of founda-
tional papers that gave rise to the theory of cluster
algebras. There, c-vectors appeared, together with
related concepts such as g-vectors and F-polyno-
mials, as tools for understanding a deeper structure
of cluster variables. Also in [Fomin and Zelevinsky
07], a conjecture that later became known as the
sign coherence conjecture was first formulated. It
states that in any cluster mutation equivalent to the
initial one, each c-vector is nonzero and has either
all nonnegative or all nonpositive coefficients. It
was soon realized that this conjecture has important
implications in various aspects of the theory of clus-
ter algebras, notably, in establishing duality proper-
ties as was done in [Nakanishi and Zelevinsky 12].
The conjecture was proved in [Derksen et al. 10] for
the skew-symmetric cluster algebras and in [Gross
et al. 17] for the skew-symmetrizable ones.

It is natural to wonder if there is an analog of
sign coherence that remains valid if the condition
on coefficients being principal is relaxed, in particu-
lar, if a similar phenomenon occurs in cluster alge-
bras of geometric type in the sense of [Fomin and

Zelevinsky 07, Definition 2.12], where their coeffi-
cients take value in tropical semifields. Clearly, this
property cannot be satisfied as is-one can simply
start with the initial coefficients for which it is not
valid. This note proposes how sign coherence can
be treated in arbitrary cluster algebras of geometric
type: after a sufficiently generic sequence of muta-
tion, c-vectors, defined in a more general context,
become sign coherent.

In the next section, after providing a background
on matrix mutations and providing an example illus-
trating the phenomenon described above, we formu-
late a conjecture that describes this behavior. We
call it the asymptotic sign coherence conjecture. In
Section 3, we verify our conjecture in the rank 2 case.
The final section deals with a particular sequences of
mutations in a cluster algebra associated with the
Markov quiver—we show that the conjecture holds
true in this case as well.

2. Preliminaries and the main conjecture

2.1. Matrix mutations

We say that an N�N integer matrix B ¼ ðbijÞNi;j¼1 is
skew-symmetrizable if there is a diagonal matrix
D ¼ diagðd1; :::; dNÞ with positive integer diagonal
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entries d1; :::; dN such that DB is skew-symmetric,
i.e., dibij ¼ �djbji: We call such D a skew-symmetr-
izer of B. B is called irreducible if there does not
exist a pair I, J of nonempty subsets of ½1;N� :¼
f1; :::;Ng such that bij ¼ 0 for any i 2 I and j 2 J: If
B is skew-symmetric, it can be realized as an adja-
cency matrix of a quiver with N vertices. The irre-
ducibility property in this case is equivalent to
connectedness of the quiver.

The notion of a matrix mutation is one of the
key ingredients in the definition of a cluster algebra.
It is also the only ingredient of that definition that
we will need in this note. We will be interested in
matrix mutations of integer matrices with skew-
symmetrizable principal parts. Namely, let B̂ be an
integer ðN þMÞ � N matrix such that its principal
submatrix B :¼ B̂½N� formed by the first N rows is
skew-symmetrizable. Columns of B̂ determine the
rules of transformations of cluster variables x1; :::; xN
with the variables xNþ1; :::; xNþM being frozen.
Alternatively, we may view the columns of the bot-
tom M�N submatrix of B̂ as encoding expressions
for coefficients in a cluster algebra of geometric
type. See [Fomin and Zelevinsky 07, Section 2] for
the explanation.

For each k ¼ 1; :::;N; the mutation of B̂ at k is
another integer ðN þMÞ � N matrix B̂

0 ¼ lkðB̂Þ;
which is obtained from B̂ by the following formulas:

b0ij ¼ �bij i ¼ k or j ¼ k
bij þ �ebik½ �þbkj þ bik ebkj

� �
þ i; j 6¼ k;

(

(2–1)

where for a 2 R; we denote ½a�þ ¼ maxða; 0Þ; and e
is a sign, þ or –, which is naturally identified with
1 or –1, respectively. Then we have the follow-
ing properties:

1. The right hand side of (2–1) is independent of
the choice of sign e.

2. If D is a skew-symmetrizer of B, then it is also a
skew-symmetrizer of B0 ¼ B̂0

½N�:
3. The mutation lk is involutive, namely,

lk � lk ¼ id:

More generally, if B̂
0
is obtained from B̂ by a

sequence of mutations (2–1), then B̂
0
is said to be

mutation equivalent to B̂:

If M¼N and the block formed by the last N rows
of B̂ is equal to the identity matrix 1N then the clus-
ter algebra associated with B̂ is said to have princi-
pal coefficients. In this case, the bottom N�N
submatrix of any matrix B̂

0
mutation equivalent to

B̂ is called a C-matrix and its columns are called
c-vectors.

2.2. Main conjecture

The following key property of c-vectors that proved
to be of fundamental importance in the theory and
applications of cluster algebras was conjectured in
[Fomin and Zelevinsky 07, Conjecture 5.5 and
Proposition 5.6] and later proved in [Derksen et al.
10, Theorem 1.7] in the skew-symmetric case and
[Gross et al. 17, Corollary 5.5] in the skew-symme-
trizable case with both proofs using [Fomin and
Zelevinsky 07, Proposition 5.6].

Theorem 2.1 (Sign-coherence of c-vectors). Each
c-vector is a nonzero vector, and its components are
either all nonnegative or all nonpositive.

In this note, we are interested in a behavior of a
more general version of c-vectors: namely, we will
denote by C the bottom M�N submatrix of B̂ and
refer to its columns as c-vectors. Whenever we will
need to invoke the original definition of c-vectors, we
will call them principal c-vectors.

We begin with the following example.

Example 2.2. Let B be the adjacency matrix for the
quiver below. This quiver is a rather randomly chosen
one with four vertices.

Consider a sequence, also rather randomly chosen,
of C-matrix mutations, together with the initial C-
matrix C½0�; specified below:
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Example above is just one of many we have consid-
ered and all of these examples exhibited the same phe-
nomenon: after sufficiently many random mutations,
C-vectors become sign-coherent.

To frame these observations as an explicit conjecture,
we will only need to consider cluster algebras with a sin-
gle frozen variable since mutations of rows of a C-
matrix are independent of each other by (2–1). We fix a
skew-symmetrizable N�N matrix B and an integer vec-
tor a ¼ ða1; :::; aNÞ and define an ðN þ 1Þ � N matrix
B̂ by appending a to B as the ðN þ 1Þth row.

Let l ¼ ðlkjÞ1j¼1 (kj 2 ½1;N�) be a sequence of
matrix mutations applied to B̂: We denote lkn � � � � �
lk2 � lk1 by lðnÞ; lðnÞðB̂Þ by B̂

ðnÞ
and the last row of

B̂
ðnÞ

by aðnÞ ¼ ðaðnÞ1 ; :::; aðnÞN Þ: We use a convention
B̂
ð0Þ ¼ B̂; að0Þ ¼ a: Note that if a ¼ 0; then aðnÞ ¼ 0

for any n by (2–1). Therefore, from now on we
assume that a is a nonzero vector.

Let B̂pr denote an N � 2N matrix
B
1N

� �
(in other

words, B̂pr is the initial exchange matrix for the clus-
ter algebra with principal coefficients defined by B).

We define the distance distðB̂pr; lðnÞðB̂prÞÞ � n as the

minimal number of matrix mutations needed to

obtain lðnÞðB̂prÞ from B̂pr: This notion of distance
agrees with the distance in the exchange graph of
labeled seeds in the cluster algebra associated with B
(with any coefficients), see, e.g., [Nakanishi 19].

We say that the sequence of mutatons l is mono-
tone (with respect to B) if

dist B̂pr;l
nþ1ð Þ B̂pr

� �� �
> dist B̂pr; l

nð Þ B̂pr

� �� �
n ¼ 1; 2; :::ð Þ:

(2–2)

We say that l is balanced if for every k 2 ½1;N�;

lim inf
n!1

1
n
# j 2 1; n½ � : kj ¼ k
� 	

> 0:

For an integer a, we define

sign að Þ ¼
þ a> 0
0 a ¼ 0
� a< 0

:

8<
:

We say that a sign vector x ¼ ðx1; :::;xNÞ 2
fþ; 0;�gN is strict if xi 6¼ 0 for any i. Define the sign
vector corresponding to lðnÞ as

C 0½ � ¼

1 �1 2 1

�2 1 3 �2

�1 1 �1 0

0 �1 �1 �2

0
BBBB@

1
CCCCA !1 C 1½ � ¼

�1 0 2 1

2 1 1 �6

�1 2 �1 0

0 �1 �1 �2

0
BBBB@

1
CCCCA !3

C 2½ � ¼

�1 0 �2 1

2 1 �1 �6

�2 0 1 �1

�1 �3 1 �3

0
BBBB@

1
CCCCA !4 C 3½ � ¼

�1 3 �2 �1

�10 1 �7 6

�4 0 0 1

�7 �3 �2 3

0
BBBB@

1
CCCCA!2

C 4½ � ¼

�1 �3 �2 8

�10 �1 �7 9

�4 0 0 1

�22 3 �17 3

0
BBBB@

1
CCCCA !3 C 5½ � ¼

�1 �13 2 8

�10 �36 7 9

�4 0 0 1

�22 �82 17 3

0
BBBB@

1
CCCCA !1

C 6½ � ¼

1 �23 2 8

10 �136 7 9

4 �40 0 1

22 �302 17 3

0
BBBB@

1
CCCCA !4 C 7½ � ¼

105 �23 114 �8

127 �136 133 �9

17 �40 14 �1

61 �302 59 �3

0
BBBB@

1
CCCCA !1

C 8½ � ¼

�105 �23 114 1357

�127 �136 133 1642

�17 �40 14 220

�61 �302 59 790

0
BBBB@

1
CCCCA !���
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r nð Þ
l að Þ ¼ sign a nð Þ

1

� �
; :::; sign a nð Þ

N

� �
 �
: (2–3)

The sign pattern corresponding to l is defined by

rl að Þ ¼ r nð Þ
l að Þ

� �1

n¼0
: (2–4)

Conjecture 2.3 (Asymptotic sign coherence). Let B ¼
B̂½N� be irreducible and let l be a monotone and bal-
anced sequence of mutations applied to B̂. Then there
exists a sequence of strict sign vectors

rreg ¼ r nð Þ
reg

� �1

n¼0
; r nð Þ

reg 2 6f gN

such that for any nonzero a 2 Z
N there is T 2 N such

that rðnÞl ðaÞ ¼ rðnÞreg for n>T.

Remarks 2.4. 1. If the C-matrix part of B̂ has multiple
rows (i.e., M � 2), Conjecture 2.3 means that for a
monotone and balanced sequence of mutations, for all
n greater than certain T, the sign patterns of any two
nonzero rows of the C-matrix CðnÞ obtained on the
nth step coincide. But that means that the columns of
CðnÞ are sign-coherent. This justifies the term asymp-
totic sign coherence.

2. The monotonicity assumption precludes the ini-
tial exchange matrix B from being an exchange matrix
of a cluster algebra of finite type.

3. Both conditions in Conjecture 2.3 are used to
ensure that the mutation sequence l is sufficiently
random. Both of these conditions could be relaxed or
modified in various ways. In particular, one could
require that a magnitude of every entry of the C-
matrix tends to infinity as n goes to infinity. One
could also weaken the condition of l being balanced
by replacing it with the requirement that every muta-
tion direction appears in l infinitely many times. In
this case, we call l weakly balanced (see Remark
4.2 below).

3. Rank 2 case

In this section, we will verify Conjecture 2.3 in the
infinite type rank 2 case. The matrix B̂ in this case
has a form

B̂ ¼ B̂
0ð Þ ¼

0 �p
q 0

a 0ð Þ
1 a 0ð Þ

2

2
64

3
75; (3–1)

where positive integer parameters p, q satisfy pq � 4
[Fomin and Zelevinsky 02, Section 6]. We assume
that at least one of að0Þ1 ; að0Þ2 is nonzero.

In the rank 2 case, the monotonicity assumption for
an infinite sequence of mutations amounts to a require-
ment that mutations l1 and l2 alternate. Instead of con-
sidering two possible monotone sequences of mutations,
we will unify them into a single double-infinite
sequence. Namely, we consider a sequence of mutations
l1; l2; l1; l2; ::: and denote the exchange matrix
obtained at the nth step of this sequence by B̂

ðnÞ
:

Similarly, the exchange matrix obtained at the nth step
of a sequence of mutations l2; l1; l2; l1; ::: will be
denoted by B̂

ð�nÞ
: Then, for any n 2 Z;

B̂
nð Þ ¼

0 �ð Þn�1p

�ð Þnq 0

a nð Þ
1 a nð Þ

2

2
664

3
775: (3–2)

Choosing e ¼ 1 in (2–1), we obtain the following
recursion for aðnÞ1 ; aðnÞ2 ðn � 0Þ:

a 2nþ1ð Þ
1 ¼ �a 2nð Þ

1 ;

a 2nþ1ð Þ
2 ¼ a 2nð Þ

2 � �a 2nð Þ
1

h i
þp;

(3–3)

a 2nþ2ð Þ
1 ¼ a 2nþ1ð Þ

1 � �a 2nþ1ð Þ
2

h i
þq;

a 2nþ2ð Þ
2 ¼ �a 2nþ1ð Þ

2 :
(3–4)

For n � 0;we choose e ¼ �1, and obtain

a �2n�1ð Þ
1 ¼ a �2nð Þ

1 þ a �2nð Þ
2

h i
þq;

a �2n�1ð Þ
2 ¼ �a �2nð Þ

2 ;
(3–5)

a �2n�2ð Þ
1 ¼ �a �2n�1ð Þ

1 ;

a �2n�2ð Þ
2 ¼ a �2n�1ð Þ

2 þ a �2n�1ð Þ
1

h i
þp:

(3–6)

We want to investigate a dependence of signs of
aðnÞ1 ; aðnÞ2 on initial values að0Þ1 ; að0Þ2 : As in (2–3), we
define a sign vector

r nð Þ ¼ sign a nð Þ
1

� �
; sign a nð Þ

2

� �� �
:

If an expression is only known to be nonnegative
(resp. nonpositive), we will denote its sign by þ=0
(resp. �=0). Following the definition (2.4), we call a
sequence

r a 0ð Þ
1 ; a 0ð Þ

2

� �
¼ r nð Þð Þn2Z (3–7)

the sign pattern with initial values að0Þ1 ; að0Þ2 :

We define the sequence rreg of strict sign vectors as

rreg ¼ �ð Þn�1; �ð Þn
� �� �

n2Z
: (3–8)

We are going to show that for any að0Þ1 ; að0Þ2 ; the
sequence rðað0Þ1 ; að0Þ2 Þ differs from rreg for only finitely
many components.
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To proceed, we need to recall some of the proper-
ties of the Chebyshev polynomials UnðtÞðn 2 Z��1Þ of
the second kind (see, e.g. [Doman 16, Chapter 6]).
They satisfy a three-term recursion of the form

2tUn tð Þ ¼ Un�1 tð Þ þ Unþ1 tð Þ n � 0ð Þ;U�1 tð Þ ¼ 0;U0 tð Þ ¼ 1;

(3–9)

and are orthogonal with respect to the positive weightffiffiffiffiffiffiffiffiffiffi
1�t2

p
on the interval ½�1; 1�: As a result,

Un tð Þ> 0 n � 0; t> 1ð Þ: (3–10)

Furthermore,

U2
n tð Þ�Un�1 tð ÞUnþ1 tð Þ ¼ 1 n ¼ 0; 1; :::ð Þ; (3–11)

and therefore

Un tð Þ
Un�1 tð Þ >

Unþ1 tð Þ
Un tð Þ n> 0ð Þ: (3–12)

There is an explicit formula for UnðtÞ;

Un tð Þ ¼ t þ ffiffiffiffiffiffiffiffiffiffi
t2�1

p
 �nþ1� t � ffiffiffiffiffiffiffiffiffiffi
t2�1

p
 �nþ1

2
ffiffiffiffiffiffiffiffiffiffi
t2�1

p ; (3–13)

which implies, in particular, that

lim
n!1

Unþ1 tð Þ
Un tð Þ ¼ t þ

ffiffiffiffiffiffiffiffiffiffi
t2�1

p
jtj � 1ð Þ: (3–14)

The role played by Chebyshev polynomials in the
study of rank 2 cluster algebras was previously
observed by several authors, notably in [Lee and
Schiffler 13, Lee and Schiffler 15] where it was utilized
in initial steps of the proof of the Laurent positivity
conjecture, and, more recently, in [Reading 18] where
closely related polynomials were used in a description
of rank 2 infinite type cluster scattering diagrams.
Below, we use Chebyshev polynomials to investigate
the sign pattern rðað0Þ1 ; að0Þ2 Þ:

Denote

j ¼ ffiffiffiffiffi
pq

p
; � ¼

ffiffiffi
p
q

r
:

Proposition 3.1. If að0Þ1 ¼ a1; a
ð0Þ
2 ¼ a2 � 0, then

a 1ð Þ
1 ¼ �a1; a

1ð Þ
2 ¼ a2; a

2ð Þ
1 ¼ �a1; a

2ð Þ
2 ¼ �a2;

for n � 2

a 2nð Þ
1 ¼ �a1U2n�2

j
2


 �
�a2��1U2n�3

j
2


 �
< 0;

a 2nð Þ
2 ¼ a1�U2n�3

j
2


 �
þ a2U2n�4

j
2


 �
> 0;

(3–15)

for n � 1

a 2nþ1ð Þ
1 ¼ a1U2n�2

j
2


 �
þ a2��1U2n�3

j
2


 �
� 0;

a 2nþ1ð Þ
2 ¼ �a1�U2n�1

j
2


 �
�a2U2n�2

j
2


 �
< 0;

(3–16)

with the first inequality in (3–16) strict for n> 1, and,
for n � 0

a �2n�2ð Þ
1 ¼ �a1U2n

j
2


 �
�a2��1U2nþ1

j
2


 �
< 0;

a �2n�2ð Þ
2 ¼ a1�U2nþ1

j
2


 �
þ a2U2nþ2

j
2


 �
> 0;

(3–17)

a �2n�1ð Þ
1 ¼ a1U2n

j
2


 �
þ a2��1U2nþ1

j
2


 �
> 0;

a �2n�1ð Þ
2 ¼ �a1�U2n�1

j
2


 �
�a2U2n

j
2


 �
� 0;

(3–18)

with the second inequality in (3–18) strict for n> 0.
Therefore, rð�1Þ¼ðþ;�=0Þ;rð0Þ¼ðþ=0;þ=0Þ; rð1Þ¼

ð�=0;þ=0Þ;rð2Þ¼ð�=0;�=0Þ;rð3Þ¼ðþ=0;�Þ and

r nð Þ ¼ �ð Þn�1; �ð Þn
� �

n 6¼ �1; 0; 1; 2; 3ð Þ: (3–19)

Proof. By j
2 � 1 and (3–10), the expressions in

(3–15)–(3–18) imply the inequalities therein, therefore
we obtain (3–19).

We will only verify equations in (3–16). The rest of
the formulas in Proposition 3.1 can be treated the
same way. Recursions (3–3), (3–4) combine into

a 2nþ3ð Þ
1 ¼ �a 2nþ1ð Þ

1 þ �a 2nþ1ð Þ
2

h i
þq;

a 2nþ3ð Þ
2 ¼ �a 2nþ1ð Þ

2 � a 2nþ3ð Þ
1

h i
þp:

(3–20)

For n¼ 0, this gives

a 3ð Þ
1 ¼ a1 ¼ a1U0

j
2


 �
þ a2�

�1U�1
j
2


 �
;

a 3ð Þ
2 ¼ �a1p�a2 ¼ �a1�j�a2

¼ �a1�U1
j
2


 �
�a2U0

j
2


 �
;

which is consistent with (3–16). We can now proceed
by induction while taking into an account that the
induction hypothesis stating that (3–16) is valid for
n � m also ensures that að2nþ1Þ

1 � 0 � að2nþ1Þ
2 for n �

m: (Here we use the inequality j
2 � 1 and (3–10).)

Then equations in (3–20) become
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a 2nþ3ð Þ
1 ¼ �a1U2n�2

j
2


 �
�a2�

�1U2n�3
j
2


 �

þ a1�U2n�1
j
2


 �
þ a2U2n�2

j
2


 �
 �
q

¼ a1 jU2n�1
j
2


 �
� U2n�2

j
2


 �
 �

þ a2�
�1 �U2n�3

j
2


 �
þ jU2n�2

j
2


 �
 �

¼3:9ð Þ
a1U2n

j
2


 �
þ a2�

�1U2n�1
j
2


 �
;

a 2nþ3ð Þ
2 ¼ a1�U2n�1

j
2


 �
þ a2U2n�2

j
2


 �

� a1U2n
j
2


 �
þ a2�

�1U2n�1
j
2


 �
 �
p

¼ a1 U2n�1
j
2


 �
� jU2n

j
2


 �
 �
�

þ a2 U2n�2
j
2


 �
� jU2n�1

j
2


 �
 �

¼3:9ð Þ �a1�U2nþ1
j
2


 �
�a2U2n

j
2


 �
;

which proves (3–16). w

Proposition 3.1 shows that if að0Þ1 ; að0Þ2 are both non-

negative then the sign pattern rðað0Þ1 ; að0Þ2 Þ does not

depend on precise values of að0Þ1 ; að0Þ2 and we are justi-
fied in using a notation rþþ for such sign pattern.

Furthermore, if að0Þ1 ; að0Þ2 are both nonpositive, then

Proposition 3.1 also implies that rðað0Þ1 ; að0Þ2 Þ ¼
ðrðnþ2Þ

þþ Þn2Z also does not depend on precise values of

að0Þ1 ; að0Þ2 and can be denoted by r��:
The case að0Þ1 ¼ a1 > 0; að0Þ2 ¼ �a2 < 0 is still cov-

ered by Proposition 3.1: if one switches the roles of
aðnÞ1 ; aðnÞ2 and also the roles of p and q, then the corre-
sponding matrix

B 0ð Þ ¼
0 q
�p 0
�a2 a1

2
4

3
5

can be seen as ~B
ð1Þ

for

~B
0ð Þ ¼

0 �q
p 0
a2 a1

2
4

3
5

and so

rþ� :¼ r a 0ð Þ
1 ; a 0ð Þ

2

� �
¼ s r nþ1ð Þ

þþ
� �� �

n2Z; (3–21)

where s permutes the entries of a two-vector.
The situation is different and more complicated if

að0Þ1 ¼ �a1 < 0; að0Þ2 ¼ a2 > 0: In view of (3–12) and
(3–13), we separate it into three cases:

Case 1. 2�
jþ

ffiffiffiffiffiffiffiffi
j2�4

p � a2
a1
� �

2 ðjþ ffiffiffiffiffiffiffiffiffiffiffi
j2�4

p Þ:
Case 2. �2 ðjþ ffiffiffiffiffiffiffiffiffiffiffi

j2�4
p Þ< a2

a1
:

Case 3. a2a1 <
2�

jþ
ffiffiffiffiffiffiffiffi
j2�4

p :

Let us start with Case 1.

Proposition 3.2. Let að0Þ1 ¼ �a1 < 0; að0Þ2 ¼ a2 > 0:

If a2
a1
2 2�

jþ
ffiffiffiffiffiffiffiffi
j2�4

p ; �2 ðjþ ffiffiffiffiffiffiffiffiffiffiffi
j2�4

p Þ
h i

, then for n � 1;

a 2nð Þ
1 ¼ �a1U2n

j
2


 �
þ a2��1U2n�1

j
2


 �
< 0;

a 2nð Þ
2 ¼ a1�U2n�1

j
2


 �
�a2U2n�2

j
2


 �
> 0;

(3–22)

and for n � 0;

a 2nþ1ð Þ
1 ¼ a1U2n

j
2


 �
�a2��1U2n�1

j
2


 �
> 0;

a 2nþ1ð Þ
2 ¼ �a1�U2nþ1

j
2


 �
þ a2U2n

j
2


 �
< 0;

(3–23)

a �2n�2ð Þ
1 ¼ a1U2n

j
2


 �
�a2��1U2nþ1

j
2


 �
< 0;

a �2n�2ð Þ
2 ¼ �a1�U2nþ1

j
2


 �
þ a2U2nþ2

j
2


 �
> 0;

(3–24)

a �2n�1ð Þ
1 ¼ �a1U2n

j
2


 �
þ a2��1U2nþ1

j
2


 �
> 0;

a �2n�1ð Þ
2 ¼ a1�U2n�1

j
2


 �
�a2U2n

j
2


 �
< 0:

(3–25)

Therefore,

r a 0ð Þ
1 ; a 0ð Þ

2

� �
¼ rreg; (3–26)

where rreg is the one in (3–8).

Proof. Our assumption for a2
a1

together with properties
(3–12) and (3–14) of the Chebyshev polynomials
ensure that

�
Un

k
2

� �
Unþ1

k
2

� � <
a2
a1

<�
Unþ1

k
2

� �
Un

k
2

� � (3–27)

for any n> 0. Then the expressions (3–22)–(3–25)
imply the inequalities therein, therefore we obtain
(3–26). As in the proof of Proposition 3.1, we verify
only one of the expressions (3–22)–(3–25), for
example, (3–23). The rest can be treated similarly.

First, note that að1Þ1 ¼ a1 ¼ a1U0ðj2Þ�a2��1U�1ðj2Þ;
að1Þ2 ¼ �a1pþ a2 ¼�a1�U1ðj2Þ þ a2U0ðj2Þ satisfy (3–23)
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for n¼0 and that að1Þ1 >0>að1Þ2 : Arguing by induction
and using (3–20), we obtain

a 2nþ3ð Þ
1 ¼�a1U2n

j
2


 �
þ a2�

�1U2n�1
j
2


 �

þ a1�U2nþ1
j
2


 �
� a2U2n

j
2


 �
 �
q

¼3:9ð Þ
a1U2nþ2

j
2


 �
�a2�

�1U2nþ1
j
2


 �
>0;

a 2nþ3ð Þ
2 ¼ a1�U2nþ1

j
2


 �
�a2U2n

j
2


 �

� a1U2nþ2
j
2


 �
� a2�

�1U2nþ1
j
2


 �
 �
p

¼3:9ð Þ�a1�U2nþ3
j
2


 �
þ a2U2nþ2

j
2


 �
<0;

and the claim follows. Note that here we used the
right inequality in (3–27). It plays the same role in
the proof of (3–22), while for (3–24), (3–25) the left
inequality in (3–27) is needed. w

Next we consider Case 2.

Proposition 3.3. If there exists N> 0 such that

�
UNþ1

j
2


 �
UN

j
2


 � � a2
a1

<�
UN

j
2


 �
UN�1

j
2


 � ; (3–28)

then equations (3–24), (3–25) remain valid for n � 0,
and equations (3–22), (3–23) remain valid for

aðkÞ1 ; aðkÞ2 ðk ¼ 0; 1:::;NÞ. Furthermore, aðNþ1Þ
1 and aðNþ1Þ

2

are nonnegative and not both zero and

r a 0ð Þ
1 ; a 0ð Þ

2

� �
¼

r n�N�1ð Þ
þþ

� �
n2Z for odd N

s r n�N�1ð Þ
þþ

� �� �
n2Z for even N;

8><
>:

(3–29)

where s is defined in (3–21).

Proof. In the proof of Proposition 3.2, our argument
relied on the inequalities (3–27). Under the current
assumptions, the left inequality remains valid for all n,
while the right inequality is valid for n<N. This
explains the claim about the validity of (3–22)–(3–25)
in this situation.

Next, if N is odd, N ¼ 2mþ 1; then (3–22), (3–23)

are valid for n¼m with að2mÞ
1 < 0< að2mÞ

2 and

að2mþ1Þ
1 > 0> að2mþ1Þ

2 : This means that the expressions
in (3–22) are also valid for n ¼ mþ 1; however, due

to (3–28), að2mþ2Þ
1 � 0 and að2mþ2Þ

2 > 0: This puts us in
the situation covered by Proposition 3.1 and the first
line in (3–29) follows. The case of N even is treated in
the same way. w

Finally, we consider Case 3.

Proposition 3.4. If there exists N> 0 such that

�
UN�1

j
2


 �
UN

j
2


 � � a2
a1

<�
UN

j
2


 �
UNþ1

j
2


 � ;
then equations (3–22), (3–23) remain valid for n � 0,
and equations (3–24), (3–25) remain valid for

aðkÞ1 ; aðkÞ2 ðk ¼ 0;�1:::;�NÞ. Furthermore, að�N�1Þ
1 and

að�N�1Þ
2 are nonpositive and not both zero, and

r a 0ð Þ
1 ; a 0ð Þ

2

� �
¼

r nþNþ3ð Þ
þþ

� �
n2Z for odd N

s r nþNþ3ð Þ
þþ

� �� �
n2Z for even N;

8><
>:

where s is defined in (3–21).

Proof. The proof is completely analogous to that of a
previous proposition. w

Combining Propositions 3.1–3.4, we arrive at the
following conclusion.

Theorem 3.5. Conjecture 2.3 is valid in the rank
2 case.

Proof. One can see that each of the sign patterns
rþþ;r��; rþ�; as well as every sign pattern that
appears in Propositions 3.3, 3.4, differs from rreg in
(3–8) for exactly three consecutive components. w

4. Rank 3 example: The Markov quiver

To present additional evidence in support of
Conjecture 2.3, we consider the rank 3 case with B
being the adjacency matrix of the celebrated Markov
quiver. The corresponding cluster algebra served as
a test case for several important phenomena in the
theory of cluster algebras. In particular, the
principal c-vectors and g-vectors associated with
the Markov quiver were described in [Najera
Chavez 12].

We add an additional frozen vertex to the
Markov quiver and investigate possible sign pat-
terns, for example, for a monotone and balanced
sequence

l ¼ 1; 2; 3; 1; 2; 3; :::ð Þ:

The figure below illustrates the case when the ini-
tial vector að0Þ ¼ ða1; a2; a3Þ is component wise non-
negative. In this figure, we assume that there are ai
arrows pointing from the frozen vertex to the vertex i.
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Since the sequence l consists in a consecutive
mutations applied to the quiver in a clockwise order
starting with the vertex 1 and since, as is well-known,
the Markov quiver transforms into its opposite after a
mutation at any vertex, we can replace l with itera-
tions of the same transformation q that consists of a
quiver mutation at the vertex 1, followed by rotation
of the quiver counter clockwise by 120 degrees
(equivalently, applying a cyclic permutation s ¼ ð132Þ
to the mutable vertices) and then reversing all arrows.
Using (2–1), we compute the result of q acting on the
initial nonzero vector að0Þ ¼ ðað0Þ1 ; að0Þ2 ; að0Þ3 Þ 2 Z

3:

q a 0ð Þð Þ ¼ q a 0ð Þð Þ1; q a 0ð Þð Þ2; q a 0ð Þð Þ3

 �

¼ �2 a 0ð Þ
1

h i
þ � a 0ð Þ

2 ; 2 �a 0ð Þ
1

h i
þ � a 0ð Þ

3 ; a 0ð Þ
1


 �
:

(4–1)

For a (not necessarily strict) sign vector ~x ¼
ð~x1; ~x2; ~x3Þ and a strict sign vector x ¼ ðx1;x1;x3Þ;
we write ~x	x if ð~xi;xiÞ 6¼ ðþ;�Þ; ð�;þÞ for any i:

Observe that if xð0Þ ¼ ð�;þ;�Þ then xðnÞ ¼ xð0Þ

and so xðnÞ is stable. More generally, if xð0Þ 	
ð�;þ;�Þ; i.e., að0Þ ¼ ð�a1; a2;�a3Þ; where a1; a2; a3
are nonnegative integers and not all zero, then
xðnÞ 	 ð�;þ;�Þ as well and, moreover, xðnÞ ¼
ð�;þ;�Þ for n � 5: This follows from a straightfor-
ward computation that gives

q5 a 0ð Þð Þ ¼ ð�4a1 � 4a2 � a3; 9a1 þ 4a2 þ 4a3;

� 4a1 � a2 � 2a3Þ:
Thus, to establish Conjecture 2.3 for l ¼

ð1; 2; 3; 1; 2; 3; :::Þ; it suffices to show that xðnÞ ¼
xðnÞðað0ÞÞ eventually stabilizes at ð�;þ;�Þ for
any að0Þ:

Denote by xðnÞ ¼ xðnÞðað0ÞÞ the sign vector of
qnðað0ÞÞ defined similarly to (2–3). For the rest of this
section, we fix a1; a2; a3 to be nonnegative integers
and not all zero. In what follows, the choice of
xð0Þ 	 ð�1; �2; �3Þ signifies that að0Þ ¼ ð�1a1; �2a2; �3a3Þ:

Let us first consider the case when xð0Þ 	
ðþ;þ;�Þ; which leads to

q a 0ð Þð Þ ¼ �2a1 � a2; a3; a1ð Þ; x 1ð Þ 	 �;þ;þð Þ;
q2 a 0ð Þð Þ ¼ �a3; 3a1 þ 2a2;�2a1 � a2ð Þ; x 2ð Þ 	 �;þ;�ð Þ;

after which the desired sign stabilization occurs.
Similarly, starting with xð0Þ 	 ð�;�;�Þ; we obtain

q a 0ð Þð Þ ¼ a2; 2a1 þ a3;�a1ð Þ; x 1ð Þ 	 þ;þ;�ð Þ;
which reduces to the case we just considered, as does
the situation depicted in the figure above that corre-
sponds to xð0Þ 	 ðþ;þ;þÞ; which results in

q a 0ð Þð Þ ¼ �2a1 � a2;�a3; a1ð Þ; x 1ð Þ 	 �;�;þð Þ;
q2 a 0ð Þð Þ ¼ a3; 3a1 þ 2a2;�2a1 � a2ð Þ; x 2ð Þ 	 þ;þ;�ð Þ:

For xð0Þ 	 ð�;þ;þÞ; we get qðað0ÞÞ ¼ ð�a2; 2a1 �
a3;�a1Þ and so xð1Þ 	 ð�;þ;�Þ or ð�;�;�Þ;
depending on the sign of 2a1�a3: Both of these cases
were already covered above.

We are left with three remaining choices for xð0Þ :
ðþ;�;�=0Þ; ð�=0;�;þÞ and ðþ;�;þÞ: The first of
these, depending on the sign of �2a1 þ a2; results in
xð1Þ ¼ ðþ;þ;þÞ or in xð1Þ ¼ ð�=0;þ;þÞ—both sit-
uations have been already treated above.

The case xð0Þ ¼ ð�=0;�;þÞ; depending on the
sign of 2a1�a3; leads to xð1Þ ¼ ðþ;þ;�Þ or in xð1Þ ¼
ðþ;�=0;�Þ; also covered by now.

The last case requires a more delicate analysis.
Indeed, if að0Þ ¼ ða1;�a2; a3Þ and if a2 > 2a1; then the
sign pattern for qðað0ÞÞ ¼ ð�2a1 þ a2;�a3; a1Þ is also
ðþ;�;þÞ: Persistence of such situation would contra-
dict our claim that xðnÞ stabilizes at ð�;þ;�Þ:

Lemma 4.1. Suppose a1; a2; a3 are positive numbers
such that for að0Þ ¼ ða1;�a2; a3Þ;xðnÞ ¼ ðþ;�;þÞ for
all n. Then the first component of qnðað0ÞÞ is

qn a 0ð Þð Þ1 ¼ �1ð Þnð fnþ3 � 1ð Þa1 � fnþ2 � 1ð Þa2
þ fnþ1 � 1ð Þa3Þ;

(4–2)

where fn denotes the nth Fibonacci’s number.

Proof. The claim (4–2) is checked directly for n¼ 0, 1,
2, where

a 0ð Þð Þ1 ¼ a1;q a 0ð Þð Þ1 ¼ �2a1 þ a2; q
2 a 0ð Þð Þ1

¼ 4a1�2a2 þ a3

and f1 ¼ f2 ¼ 1; f3 ¼ 2; f4 ¼ 3; f5 ¼ 5:
Under the assumptions of the lemma, (4–1) implies

qnþ1 a 0ð Þð Þ2 ¼ �qn a 0ð Þð Þ3 ¼ �qn�1 a 0ð Þð Þ1
and then
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qnþ2 a 0ð Þð Þ1 ¼ �2qnþ1 a 0ð Þð Þ1 þ qn�1 a 0ð Þð Þ1:
The claim follows by induction from a relation

2fnþ2�fn ¼ fnþ3 which is an easy consequence of the
Fibonacci recursion. w

As a corollary of Lemma 4.1, we conclude that in
order for a sign pattern ðþ;�;þÞ to persists, the con-
stants a1; a2; a3 must satisfy inequalities

f2nþ1�1ð Þa1� f2n�1ð Þa2 þ f2n�1�1ð Þa3 > 0> f2nþ2�1ð Þa1
� f2nþ1�1ð Þa2 þ f2n�1ð Þa3

(4–3)

for all n> 0. Since limn!1
fnþ1

fn
¼ u; where u ¼ 1þ ffiffi

5
p
2 is

the golden ratio, (4–3) implies that a1u2�a2uþ a3 ¼
1
2 ðð3a1 � a2 þ 2a3Þ þ ða1 � a2Þ

ffiffiffi
5

p Þ ¼ 0: This is where
the integrality of a1; a2; a3 comes into play, since for
the last equation to hold, we must have a1 ¼ a2 ¼
�a3; which contradicts our positivity assumption for
a1; a2; a3: The conclusion is that if xð0Þ ¼ ðþ;�;þÞ
then there exists such n that xðnÞ ¼ ð�=0;�;þÞ: This
concludes the proof of Conjecture 2.3 for the Markov
quiver and l ¼ ð1; 2; 3; 1; 2; 3; :::Þ:

Remark 4.2. The condition of a sequence of muta-
tions l being at least weakly balanced is necessary for
Conjecture 2.3 to hold true in the case of the Markov
quiver. Indeed, let l ¼ ð1; 2; 1; 2; ::::Þ and að0Þ ¼
ð1;�1; aÞ; where a is any integer. Then it is easy to
check that aðnÞ ¼ ðð�1Þn; ð�1Þnþ1; aÞ; rðnÞ ¼ ðð�1Þn;
ð�1Þnþ1; signðaÞÞ and the claim in Conjecture 2.3
fails.
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