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Abstract: Researchers of team behavior have long been interested in the essential components of
effective teamwork. Much existing research focuses on examining correlations between team member
traits, team processes, and team outcomes, such as collective intelligence or team performance.
However, these approaches are insufficient for providing insight into the dynamic, causal mechanisms
through which the components of teamwork interact with one another and impact the emergence
of team outcomes. Advances in the field of animal behavior have enabled a precise understanding
of the behavioral mechanisms that enable groups to perform feats that surpass the capabilities of
the individuals that comprise them. In this manuscript, we highlight how studies of animal swarm
intelligence can inform research on collective intelligence in human teams. By improving the ability
to obtain precise, time-varying measurements of team behaviors and outcomes and building upon
approaches used in studies of swarm intelligence to analyze and model individual and group-level
behaviors, researchers can gain insight into the mechanisms underlying the emergence of collective
intelligence. Such understanding could inspire targeted interventions to improve team effectiveness
and support the development of a comparative framework of group-level intelligence in animal and
human groups.
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1. Introduction

It is often said that two heads are better than one. Indeed, much of the workplace has moved
towards individuals working together in teams (Ilgen 1999). Researchers within Industrial and
Organizational (I/O) Psychology have long studied the properties of effective teams so that organizations
can take full advantage of the cognitive and performance advantages teams can provide—a concept
often encompassed by the term “collective intelligence” (Kurvers et al. 2015). Team outcomes, such as
collective intelligence (and team performance more broadly), are thought to depend on a combination of
team member traits and the presence and degree of team processes. For example, studies have examined
how individual traits, such as intelligence, emotional intelligence, and personality, and team processes,
such as communication and coordination, impact collective intelligence and team performance (Marlow
et al. 2018; Marks et al. 2001; Driskell et al. 2006; Woolley et al. 2010). Team processes can be highly
dynamic and can interact with team member traits, task characteristics, and team outcomes in complex
and nonlinear ways over time (Kozlowski and Chao 2018). Nevertheless, in many studies, individual
traits, team processes and team outcomes are measured as static representations of the team and
its interactions (Kozlowski and Chao 2018). That is, these variables are often measured through
methods such as self-report (i.e., retrospective surveys) and observations that capture summaries or
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snapshots of teamwork (Brannick et al. 1993). Thus, researchers generally have a poor mechanistic
understanding (Nicholson 2012) of how individual traits and team processes produce team outcomes.
In other words, while correlations between these variables have been investigated, causal explanations
are largely unknown. Accordingly, developments in theory, measurement, and analysis are needed in
order to clarify how individual traits and team processes promote collective intelligence, and how
they are related to performance more broadly. Studies of swarm intelligence in non-human animal
(hereafter “animal”) groups may provide insight due to the strong research focus on measuring and
analyzing the behavioral mechanisms underlying intelligent group-level behaviors. Although animals
are typically considered less intelligent than humans, they are capable of performing impressive
collective feats, such as finding the most efficient route to a food source (Goss et al. 1989), choosing the
highest quality nest site from a set of options (Seeley and Buhrman 1999), navigating as a cohesive
group (Herbert-Read et al. 2011) and organizing a colony with division of labor (Beshers and Fewell
2000). Through studies of these impressive behaviors, evolutionary biologists have gained a detailed
understanding of the mechanisms underlying successful group-level outcomes while also advancing
the tools and techniques of the field.

The goal of this manuscript is to identify areas where studies of swarm intelligence in animals
can promote new insights into the study of collective intelligence in human teams. As have others
(Kozlowski and Bell 2013), we define teams as groups that comprise two or more members that exist
for the purpose of achieving an organizationally-relevant task. Members of teams share one or more
common goals, exhibit task interdependencies and interact regularly (either face-to-face or virtually).
In this paper, we start by differentiating between the concepts of collective intelligence and swarm
intelligence and by adopting a definition of collective intelligence that best aligns with research in
animal behavior. We move forward by providing an overview of how collective intelligence and
team performance have traditionally been studied in human teams and identify limitations of these
approaches. Next, we provide background on how animal swarm intelligence is studied and present
two specific examples that demonstrate both the power of swarm intelligence and the associated
research methods. We end with recommendations for future research approaches that can promote
a more mechanistic understanding of how team member traits and interactions impact the emergence
of collective intelligence in teams.

2. Defining Group-Level Forms of Intelligence

Although the terms swarm intelligence and collective intelligence are sometimes used
interchangeably (Krause et al. 2010), more often they are used to refer to specific forms of group-level
intelligence. The term swarm intelligence tends to be used when the organisms or units under study are
relatively simple, such as social insects (e.g., honey bees, ants) (Garnier et al. 2007). By contrast, the term
collective intelligence is often restricted to groups of individuals with high cognitive capabilities,
such as humans (Salminen 2012). However, within humans, intelligent feats generated by relatively
large groups, such as online communities or crowds, tend to be referred to as “wisdom of the crowd”
(Galton 1907; Becker et al. 2017) while those generated by small groups or teams tend to fall under the
category “collective intelligence” (Weschsler 1971). Rather than strictly differentiating the types of
groups under study, these differences in terminology (i.e., swarm intelligence, wisdom of the crowd,
collective intelligence) tend to reflect differences in how these group-wide forms of intelligence are
thought to emerge (Table 1).
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Table 1. Differentiating Forms of Group-Level Intelligence.

Swarm Intelligence Wisdom of the Crowd Collective Intelligence
Representative Groups Slmple. an‘lmals (e.g., Humags (.n(?n-mteractmg Human small groups
social insects) individuals) and teams

Personal information, Individual traits (e.g.,

I . Individual esti . .
nputs behaviors ndividual estimates intelligence, knowledge)
.. Interactions between Combination by
Combining Inputs N . . Team processes
individuals centralized entity

Summary of the groups, inputs, and methods of combining inputs that commonly differentiate
terms used to describe group-level intelligence.

2.1. Swarm Intelligence and Wisdom of the Crowd

Krause et al. (Krause et al. 2010) define swarm intelligence as situations where “group living
[facilitates] solving cognitive problems that go beyond the capacity of single animals” (p. 28). Krause
et al. further elaborate that swarm intelligence emerges in a self-organized manner when social
interactions combine individuals’ personal information or behaviors in a manner that solves a problem
better than could be done by isolated individuals (Krause et al. 2010). For example, if a school of
fish is navigating towards a target and each individual moves towards an imprecise estimate of the
target’s location, while also trying to remain cohesive with other group members, the group will
move in the mean direction of the group members’ orientations and will thus be more likely to end
up closer to the target than any individual would have on its own (Simons 2004). This example of
swarm intelligence takes advantage of the ‘many wrongs principle,” which describes group navigation
contexts where the aggregate of many imprecise orientation estimates is more accurate than any given
estimate (Simons 2004).

Examples of swarm intelligence that depend on the many wrongs principle are analogous to the
concept of the wisdom of the crowd in human groups, which relies on the central limit theorem—a
statistical property that describes how many independent samples form a normal distribution around
the mean (Couzin 2009). The wisdom of the crowd has been defined as instances where “the aggregate
of many people’s estimates [is] closer to the true value than all of the separate individual or even
expert guesses” (Lorenz et al. 2011) (p. 1). Rather than combining individual contributions through
social interactions, however, the term wisdom of the crowd refers to contexts where many independent
estimates are gathered and combined by a centralized entity (Krause et al. 2010). For example, Galton
(Galton 1907) famously recruited crowd members at a fair to report their best guesses for the weight of
an ox and demonstrated that the median of their guesses was much closer to the actual weight than
any one individual’s guess.

Although averaging all group members’ behavioral contributions is a relatively simple and
common means of generating group solutions in animal groups (Sumpter 2005), natural selection has
also led to the evolution of more complex ways of combining individual behaviors. For example,
many feats of swarm intelligence involve individuals that display nonlinear responses to the behavior
of others, such as when the likelihood that an individual will perform a particular behavior is positively
and non-linearly related to the number of group members already performing that behavior, resulting
in a positive feedback loop (Ward et al. 2008; Sumpter 2005; Garnier et al. 2007). Such positive
feedback is often counterbalanced by negative feedback, which can aid in the stabilization of collective
behaviors (Garnier et al. 2007). These processes can enable a group to become “more than the sum of
its parts” (Sumpter 2005) (p. 11) and they are especially important when there are distinct differences
in information possession or preferences between group members (Couzin et al. 2011; Ward et al.
2008). In sum, swarm intelligence is thought to depend on the means through which social interactions
combine the behaviors of many individuals, rather than on the ability of any given individual. Thus,
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research on swarm intelligence centers on how group members” behaviors and interactions promote
the emergence of this intelligence, with emphasis on understanding precise causal mechanisms.

2.2. Collective Intelligence

Wescheler (Weschsler 1971) defines collective intelligence as intelligence which “involves, or is
in some way the result of, group rather than individual mental effort” (p. 904). Wescheler further
specifies that interactions between group members facilitate the emergence of insights that would not
have been generated by working alone, which enable groups to produce better, or at least unique,
outputs compared to individuals (Weschsler 1971). By contrast, Woolley et al. (Woolley et al. 2010) have
recently reinvented the term collective intelligence by defining it in a manner analogous to individual
intelligence. Specifically, they define collective intelligence as a group’s consistent performance on
tasks that is correlated with (i.e., predicts) the group’s performance on other tasks. While we will
discuss some studies using Woolley et al.’s (Woolley et al. 2010) definition to exemplify approaches
to studying team behavior, our definition of collective intelligence better corresponds with that of
Wescheler (Weschsler 1971) due to its closer alignment with the concepts of swarm intelligence and the
wisdom of the crowd. That is, we define collective intelligence as the enhanced performance of groups
over individuals that comes about when interactions between group members lead to the emergence of
improved insights or abilities. We specifically emphasize contexts where groups enhance (rather than
reduce or simply alter) individual performance to further align with definitions of swarm intelligence
and the wisdom of the crowd.

Collective intelligence in small human groups or teams is thought to emerge differently than
both swarm intelligence and the wisdom of the crowd for a few key reasons. Collective intelligence is
considered to emerge through the cognitive abilities of individual group members when new insights
are generated from the combination of one another’s knowledge, information, ideas, skills and/or
perspectives (Weschsler 1971). Thus, collective intelligence is often considered to be promoted by group
members with high levels of intelligence or cognitive diversity, since these traits can result in more
cognitive resources (Laughlin et al. 1969; Krause et al. 2011). Indeed, Bates and Gupta (Bates and Gupta
2017) (p. 52) argue that “smart groups are simply groups of smart people.” However, since group
members must coordinate and combine their individual contributions in order to take advantage of
their group’s cognitive resources, the processes by which they do so can have important implications
for the outcome of teamwork (Hackman and Morris 1975). Rather than interacting in a self-organized
manner—where each individual is behaving without attention to a global pattern (Camazine et al.
2003)—members of human groups are typically consciously working towards a group solution and
often have global (i.e., group-wide) information about the state of the group. Such access to global
information can result in important differences in information transfer and decision-making processes
compared to those observed in self-organized animal groups (Conradt and List 2009). For example,
each group member can share their knowledge, information, ideas and perspectives with all other
group members through conversation or other forms of communication. Thus, studies of collective
intelligence tend to focus on how individual cognitive abilities and team processes (i.e., communication,
coordination) promote the emergence of collective intelligence. However, in contrast to studies of
swarm intelligence, researchers tend to have only a coarse understanding of the relationship between
these variables. In the following section, we provide a brief summary of traditional approaches to the
study of human teams and point to key areas that could be improved by techniques used in studies of
swarm intelligence.

3. Traditional Approaches to Studies of Human Teams

Studies of teamwork tend to focus on how the traits of the individuals comprising a team and
team processes relate to team outcomes, such as collective intelligence and team performance (Driskell
et al. 2006; Woolley et al. 2010; Marlow et al. 2018). Although these studies have provided many
insights into the components that are important for successfully functioning teams, research tends
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to focus on correlations between broad constructs. For example, the Input-Process-Output (IPO)
model is a popular model of teamwork that conceptualizes how team processes (e.g., communication,
coordination) mediate the effect that individual inputs (e.g., intelligence, emotional intelligence,
personality) have on team outputs (e.g., performance, collective intelligence) (McGrath 1984; Hackman
and Morris 1975). Accordingly, many studies have explored the relationships between IPO components
(Hackman and Morris 1975).

Some studies examine the correlation between inputs, like team member intelligence levels,
and team outputs. For example, studies have found that a team’s collective intelligence (conceptualized
in a manner similar to individual intelligence (Woolley et al. 2010)) positively correlates with team
member intelligence levels (Devine and Philips 2001; Bates and Gupta 2017). In addition, researchers
have investigated inputs that are thought to affect team outputs through their impact on the effectiveness
of team processes (Hackman and Morris 1975). For example, studies have reported positive correlations
between collective intelligence (conceptualized in a manner similar to individual intelligence (Woolley
et al. 2010)) and team members’ social sensitivities (i.e., team members” abilities to accurately read
others” mental states) (Curseu et al. 2015; Engel et al. 2014; Rapisarda 2002; Meslec et al. 2016; Woolley
et al. 2010). Team member personality is another input that is considered to impact team outcomes
through its effect on team processes (Barry and Stewart 1997; Driskell et al. 2006). For example,
the proportion of highly extroverted individuals in a team has been found to negatively correlate with
the level of task focus of the team (Barry and Stewart 1997), and variation in team members” levels of
extraversion positively correlates with feelings of attraction towards the group (i.e., team cohesion)
(Kristof-Brown et al. 2005).

In addition to examining individual traits that serve as input to team processes, studies have
investigated how team processes relate to team outputs. Team processes have been defined as “acts
that convert inputs to outcomes through cognitive, verbal, and behavioral activities directed toward
organizing taskwork to achieve collective goals” (Marks et al. 2001) (p. 357). Communication is one
team process that has been studied extensively. Studies have found that, although communication
can be positively related to team performance, the benefits of communication are contingent on
both task characteristics and the type of communication involved (Hirokawa 1990; Marlow et al.
2018). For example, communication can be more important for performance on tasks that are more
complex, interdependent, and that have multiple and less obvious potential solutions (Hirokawa 1990).
Furthermore, communication that elaborates upon information is more important for performance
than other forms of communication such as knowledge or information sharing (Marlow et al. 2018).
In summary, studies of relationships between IPO components have provided insight into traits and
behaviors that are important for effective teamwork. However, due to the focus on correlations between
IPO components, why or how certain relationships exist is not well understood (Woolley et al. 2015).

In many studies of team behavior, input variables, such as intelligence level and social sensitivity,
and process variables, such as communication, are measured in a manner that reflects their presence,
type, or degree. For example, an individual’s social sensitivity has been represented by their score on
the “Reading the Mind in the Eyes” test (Woolley et al. 2010) and communication is often measured
based on team members’ responses to surveys of their team’s behavior (Sherf et al. 2018; Bakker
et al. 2006). Furthermore, output variables, such as collective intelligence and team performance,
are typically measured at the end of a team’s interaction or at discrete points throughout the interaction
period. However, these approaches are insufficient for capturing the dynamics of teamwork. McGrath
et al. (2000) argue that teams are complex systems, describing them as “complex entities embedded
in a hierarchy of levels and characterized by multiple, bidirectional, and nonlinear causal relations”
(p. 98). Even more, Kozlowski and Chao (Kozlowski and Chao 2018) describe how team processes
can evolve over time based on interactions between team member traits, behaviors and changing task
demands. Hackman and Morris (Hackman and Morris 1975) also describe how properties of a team
and its members can both affect team processes and be affected by them. For example, team processes
can lead to emergent states, such as team cohesion, which can have a positive effect on future team
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processes, team cohesion, and team outcomes, resulting in a positive feedback loop between these
variables (Marks et al. 2001). Thus, the IPO components of teamwork can impact each other in dynamic
and nonlinear ways over time. As such, simply examining correlations between input, process and
outcome variables may obscure the mechanisms underlying the emergence of collective intelligence
and team performance.

By developing a causal understanding of how team member traits and team processes impact
the emergence of collective intelligence and team performance, it may be possible to pinpoint how
given team processes influence these outcomes over time, as well as how individual team members
impact this relationship. It may also be possible to predict the collective intelligence of teams given
team member traits and interaction patterns or to determine how changes to interaction patterns may
impact levels of collective intelligence. In order to achieve this level of understanding, developments
in research methods, theory and analysis are needed. In this regard, we can gain many insights from
the field of animal behavior, which has a long history of investigating the mechanisms underlying
intelligent group-level behaviors.

4. The Advantages of Studying Swarm Intelligence

The study of animal groups has been effective for gaining insights into swarm intelligence for
a number of reasons. First, many studies focus on animals that are relatively simple, such as social
insects (Krause et al. 2010; Garnier et al. 2007) or fish (Jolles et al. 2017). Since many of the group-wide
phenomena under study are clearly outside the capabilities of an individual (or specifically require
other individuals, as in the case of complex behavioral coordination), performance on a task must
be studied by focusing on the interactions between group members. For example, army ants (Eciton
burchellii) are capable of building bridges out of their own bodies to enable others in the colony to cross
gaps in their trail. Studies of these “living bridges” examine how individual behaviors and interactions
enable bridges to be constructed over gaps of various sizes, to shift location towards the most efficient
path over a gap, and to break apart once traffic over the bridge dies down (Reid et al. 2015). In addition,
while animals have an impressive ability to work together, their societies are comparatively simple,
which promotes the extraction of the fundamental mechanisms underlying their success.

Because we do not have access to the inner workings of animal minds, the field of animal behavior
has a long history of measuring and studying behaviors (Altmann 1974). Even more, the ability
to measure behavioral variables has recently been enhanced by the development of automated
technologies that enable the tracking of behaviors of some or all group members simultaneously both in
the lab and in the field (Kays et al. 2015; Fehlmann and King 2016; Graving et al. 2019b). Thus, biologists
are capable of obtaining precise data on individual behaviors and interactions over extended time
periods. With the aid of these data, biologists have developed both theoretical and statistical models of
the dynamics underlying the emergence of swarm intelligence, which have enabled great advances
in the field (Couzin and Krause 2003; Garnier et al. 2007; Couzin 2009). In addition, the processes
underlying swarm intelligence in a variety of species have been found to share similar properties,
and researchers have even found similarities with the cognitive processes within the human brain
(Passino et al. 2008; Couzin 2007, 2009). Thus, studies of animal swarm intelligence are likely to provide
insight into fundamental principles that underlie many collective phenomena, making animal groups
a natural focus for insights into the collective intelligence of human teams.

5. Principles of Swarm Intelligence

5.1. Measuring, Analyzing and Modeling Swarm Intelligence

Methodological, analytical and theoretical developments in the field of collective behavior have
facilitated a precise understanding of how group-wide behaviors emerge from interactions among
group members. Sumpter et al. (2012) describe how researchers can use a combination of both empirical
studies and theoretical models to study individual behaviors and group-wide properties, and how
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these two levels of analysis connect with one another. This process is facilitated by the collection of
detailed time-varying data on individual behaviors, interactions, and group properties. This level of
detail is important because many social behaviors involve dynamic interactions between individuals
over time. For example, many behaviors are socially contagious (Giganti and Zilli 2011; Hare et al.
2014; Reby et al. 1999). By provoking similar behavior in adjacent individuals, a display by one or a few
individuals can rapidly propagate throughout an entire group. In addition, many animal decisions
are known to be mediated by quorum responses, where individuals display nonlinear reactions to
increasing numbers of individuals already performing a given behavior (Seeley and Visscher 2004;
Walker et al. 2017; Bousquet et al. 2011; Sumpter and Pratt 2009). In order to capture these dynamics,
frequent or continuous measurements of these behaviors must be obtained. Progress in this area has
been aided by new technological advances in data collection that enable the acquisition of precise
spatiotemporal data on the behavior of many group members. Some examples of this technology
include software that can characterize individual trajectories (Moussaid et al. 2010; Herbert-Read et al.
2011) or poses (Graving et al. 2019a) from video data and tracking devices that monitor the behavior,
relative positions, and/or vocalizations of free-ranging animals (King et al. 2012; O’Bryan et al. 2019;
King et al. 2018; Fehlmann and King 2016).

With detailed data on individual behaviors, interactions and outcomes, researchers can use
data-driven approaches to analyze both individual behaviors and group-wide properties. For example,
in their study of how army ants use their bodies to create bridges over gaps in the trail, Garnier et
al. (Garnier et al. 2013) examined correlations between the duration in which an ant remains part of
a bridge and variables such as the flow rate of ants over the bridge and the ant’s social caste. Analyses
of individual behaviors such as these enable researchers to gain insight into the behavioral “rules” that
underly the emergence of group-wide outcomes. In another study of bridge-building behavior, Reid et
al. (Reid et al. 2015) focused on group-wide properties by measuring the length and width of the bridge
over time as well as how far it shifted across an ever-widening gap. Analyses of group properties such
as these enable researchers to track the progression of the group outcome over time and gain insight
into important group-wide properties that may have functional consequences for the group.

In addition to collecting data on real groups, researchers also use theoretical models to explore
how the aggregate of many individual behaviors and interactions result in group-wide properties.
For instance, individual-based models are a popular means through which to explore how individual
behaviors scale up to create collective patterns (Gueron et al. 1996; Perna et al. 2012). Once models
are validated by comparing the group-wide properties of a simulated group to those of real groups,
researchers can systematically alter individual behaviors or interactions within the simulation model
to explore how variation in key parameters affects performance. Such models can be used to generate
new predictions for how groups may respond in specific contexts, which researchers can then test by
collecting new data on real groups. Should multiple potential models exist for a given phenomenon,
researchers can compare their fit to real data through model selection (Farine et al. 2016; Sumpter et al.
2012). In the following sections, we provide two detailed examples of how researchers have applied
these techniques to the study of collective behavior and swarm intelligence followed by a discussion of
how similar approaches could be used in the study of collective intelligence in human teams.

5.2. Honey Bee Nest-Site Selection—A Focus on Processes

Studies of honey bee nest-site selection exemplify how gaining a mechanistic understanding of
processes like communication can facilitate a deeper understanding of how individual communication
behaviors are combined into a group-level outcome. Honey bee nest-site selection is one of
the best-studied animal models for collective decision making that emphasizes the key role of
communication between group members (Seeley and Buhrman 1999). Occasionally, honey bee colonies
must move to a new nest site, which is a critical transition that can affect the well-being of the colony.
In order to find the best nest site to transfer to, information on the qualities of a variety of potential
nest sites must be collectively processed. Even though the majority of bees in the hive never visit any
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of the sites, and most of the bees that do visit sites only visit one (Camazine et al. 1999), groups are
consistently capable of coming to consensus on the best nest site (Seeley and Buhrman 1999). Key to
this process is the waggle dance—a well-studied signal that enables scouts searching for new nest sites
to provide information about the location and quality of potential sites to groupmates back at the hive
(Von Frisch 1967).

Important individual behaviors that facilitate the decision-making process of honey bees are the
fact that the intensity of a scout’s dance positively correlates with the perceived quality of a nest site,
the likelihood that other scouts are attracted to a given site positively correlates with others” dance
intensities for that site and the intensities of all dances decay at a consistent rate over time (Seeley 2003;
Kameda et al. 2012). This means that a positive feedback loop exists where more scouts are recruited
to high quality sites, who then return to recruit even more scouts. Furthermore, because individual
dances for lower quality sites both die out more quickly and have a lower rate of recruitment than
dances for high quality sites, a negative feedback loop causes support for lower quality sites to decline
relatively rapidly (Seeley 2003). By video recording dancing behavior over time, researchers can track
the progression of the decision-making process. Indeed, studies indicate that, although an array of site
options are supported through waggle dances early on in the decision-making process, the decision is
usually distilled to only two options and then finally one during later stages of the decision-making
process (Makinson et al. 2014). The decision point for when to leave the current nest and move
towards the chosen site is controlled by quorum sensing. That is, hive transfer is triggered when the
accumulation of a sufficient number of scouts is perceived at one of the nest sites (Seeley and Visscher
2004). Thus, while much of the honey bee nest selection process is self-organized, with individuals
responding to their personal information and interactions with group members, key transitions in the
decision-making process are controlled by individual monitoring of group-level properties (Sumpter
2005).

By understanding how specific individual behaviors lead to group outcomes, researchers have
been able to use simulation models to modify the parameters of the decision-making process in order
to better understand their impact on the outcome. For example, Passino and Seeley (2006) developed
a simulation model that captured the key properties of the honey bee (Apis mellifera) nest-site selection
process. Using this model, they systematically varied the level of the quorum threshold, the decay
rate of dances, the tendency for individuals to explore their surroundings versus be recruited, and the
relative qualities of the nest sites in order to understand the impact these variables have on the
decision-making process. They found that evolution has tuned many of these parameters to balance
the trade-off between the speed and accuracy of decision making. In other words, compared to the
manipulated values of these parameters, the values observed in real groups promote efficient decision
making while reducing the likelihood that groups make incorrect choices. This example highlights
the dynamic social processes that underlie the honey bee nest-site selection process and the value
of gaining a mechanistic understanding of how individual behaviors and interactions impact group
outcomes. Although static summaries of this decision-making process may reveal that communication
is necessary for, or correlates with, effective nest-site selection, such summaries would not enable this
level of detailed understanding regarding the inner workings of this swarm intelligence and how each
component of the process influences the outcome.

5.3. Collective Navigation in Fish Shoals-Effects of Individual Variation

Rather than focusing on individual traits that are measured using surveys or tests, researchers
studying swarm intelligence focus on inter-individual variation that results in measurable differences
in behavior and interactions. In this way, individual variation can be integrated into the overall
understanding of group interaction processes to explore how it impacts the outcome. This approach is
well exemplified by research on how fish perform intelligent group-wide behaviors such as coordinating
their behavior within schools, collectively avoiding predators, and searching for food. The impressive
synchrony of cohesive animal groups, such as bird flocks and fish schools, has long been a topic
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of fascination (Selous 1931). Couzin et al. (2002) significantly advanced understanding of these
phenomena by developing a theoretical model of how individuals’ simple responses to their neighbors’
positions and trajectories allow them to move in a coordinated manner. They proposed that each
individual follows three rules: (1) move away from close neighbors, (2) align with neighbors that are at
an ideal distance and (3) move towards neighbors that are too far away. Using a simulation model,
Couzin et al. were able to show that, if all group members follow these simple rules, the group displays
coordination of behavior similar to behavior seen in real groups. Furthermore, they found that if they
adjusted the range of interaction zones in which individuals attract, align or repel, groups take on
different shapes, which may have functional consequences in different settings, such as during predation
or while foraging. In order to test whether these proposed rules actually reflect how real individuals
interact with one another, Herbert-Read et al. (Herbert-Read et al. 2011) used video recordings of
mosquitofish (Gambusia holbrooki) to extract data on how each individual responds to the movements of
its neighbors. They verified that individuals respond to one another according to the rules proposed by
Couzin et al. (Couzin et al. 2002). They also refined this understanding by discovering that individuals
primarily respond to the position and behavior of their single nearest neighbor and that the alignment
response was the most important for understanding the observed patterns.

While the studies described above demonstrate how basic rules of interaction lead to the emergence
of coordinated travel in fish shoals, elaborations of this understanding have revealed how consistent
between-individual differences in these rules can affect performance. For example, a study by Jolles et
al. (Jolles et al. 2017) examined how individual traits influence group movement dynamics and foraging
performance in stickleback (Gasterosteus aculeatus) shoals. They focused their study on how individual
differences in the traits of “sociability” and “boldness” impact how quickly a group can find food.
Their measure of sociability reflects how closely individuals stay to others while swimming and their
measure of boldness correlates with individuals’ tendencies to explore their surroundings. They found
that individuals lower in sociability tend to swim faster, and are thus more likely to emerge as leaders,
which have higher levels of influence on the direction of group motion. Furthermore, groups composed
of individuals with lower levels of sociability and higher levels of boldness displayed faster group
swim speeds and greater levels of goal-orientation. Accordingly, these groups found and depleted
food patches more quickly than other groups. Taken together, these combinations of theoretical and
empirical studies have revealed the key behaviors that contribute to patterns of coordinated group
movement in fish and also how variation in these behaviors, both by individuals and the group as
a whole, affects their performance.

6. Going Forward: Analyzing the Collective Intelligence of Teams from an Animal
Behavior Perspective

Researchers can set the stage for improving the analysis and modeling of collective intelligence by
continuing to build tools and techniques for measuring team member behaviors, interactions and team
outcomes and by validating these measures against known psychological constructs. The advent and
improvement of new technologies could promote the collection of precise, time-varying data on team
behaviors, especially on teams “in the wild”. For example, Olguin et al. (2009) have begun developing
and using new technologies, such as wearable badges that record audio, movement and proximity
data, to record behaviors and interactions between individuals (Tripathi and Burleson 2012; Curhan
and Pentland 2007; Anmol et al. 2004; Woolley et al. 2010). In addition to wearable badges, data can be
collected during observations using hand-held devices and data-coding software (Jones et al. 2018;
Tejani et al. 2010), through video recordings (Jayagopi et al. 2009), or extracted from email interactions
or collaborative documents (Wise 2014). Using these tools, basic behavioral measures can be collected,
such as the timing, duration and directedness of speaking turns, eye gaze, face-to-face interactions,
edits to online documents and email exchanges, as well as the timing and duration of team member
engagement in teamwork-related tasks. In addition to behaviors and interactions, it is also important
to develop frequent measures of team outcome variables (or precursors to them) so that the progression
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of teamwork can be tracked over time and linked to the unfolding of team processes. For example,
using speech recognition technology, words and phrases related to decision making could be tracked
to examine the progression of the team’s decision-making progress over time, comparable to similar
manual efforts to track such behaviors (Meyers et al. 1991). If team members are working on a physical
outcome, analysis of video data could be used to measure the progression of this outcome at regular
intervals, similar to how researchers measured the progress of bridge building in army ants (Reid et al.
2015). In addition, software has been developed that can track the revision history of online documents
over time which could enable the monitoring of team progress on collaborative documents (Nunes et
al. 2008).

In order to make use of these data collection techniques, researchers must develop means of
processing high-dimensional data. This problem is a key focus of research in machine learning where
researchers are developing algorithms to process speech (Deng and Li 2013), audio (O’Bryan et al. 2019),
movement (Fehlmann et al. 2017; Cao et al. 2017; Graving et al. 2019a), and text data (Khan et al. 2010),
to name a few (Valletta et al. 2017). Work is also needed to align objective measures of behavior with
constructs known to be important in the psychological literature (Chaffin et al. 2017). Objective measures
of individual traits could be developed by examining correlations between behavioral measures and
traits such as personality, intelligence, task-specific knowledge, social sensitivity, team member role,
and/or demographic variables. For example, research suggests that people with higher levels of
agreeableness spend more time looking at others, and a pair’s summed level of agreeableness positively
correlates with the duration of their mutual gaze (Broz et al. 2012). In addition, data on conversational
turn-taking, face-to-face interactions, eye gaze, or email exchanges could be used to generate interaction
networks between team members. This would enable the calculation of social network measures,
such as node centrality and network density, which could be related to psychological constructs,
such as individual leadership and group cohesion, respectively (Chaffin et al. 2017; Wise 2014). Thus,
psychologists and engineers have the potential for productive collaborations in which they can work
together to design tools for measuring team behaviors, interactions, and outcomes, to process the data
streams that these tools produce and to align behavioral measures with meaningful psychological
constructs (Buengeler et al. 2017).

Many studies using new tools to obtain more objective and continuous levels of data on team
behaviors and interactions are lacking in their theoretical framework. For example, Tripathi and
Burleson (Tripathi and Burleson 2012) were able to predict days of high and low creativity (determined
from self-rated and expert-coded creativity scores) from how much physical movement and face-to-face
interaction time three teams displayed within an industrial research and development laboratory.
While such measurements may provide more accurate measures of the team members’ levels of
movement and interaction, compared to self-reports or observations, this level of understanding does
not provide insight into the mechanisms through which movement or face-to-face interactions impact
creativity. For example, it is unlikely that simply telling teams to “move more” will increase creativity.
In this regard, new ways of analyzing and modeling these data are required for linking individual
behaviors and interactions to the emergence of team outcomes.

6.1. Analysis and Modeling of the Emergence of Collective Intelligence

New ways of modeling and analyzing collective intelligence in human teams could be inspired by
approaches used in studies of swarm intelligence in animals. With regards to humans, this approach
has most commonly been applied to studies of human crowd behavior, where “social forces” movement
models (inspired by particle physics and animal movement studies) have been highly successful in
predicting crowd dynamics (Moussaid et al. 2009; Moussaid et al. 2009). While humans are individually
complex, they often respond to one another in relatively simple and predictable ways in crowd contexts,
similar to the examples of fish shoaling behavior described previously. For example, many dynamics
of pedestrian behaviors, such as lane formation and responses to bottlenecks, can come about simply
due to individuals’” motivations to move in a particular direction and to avoid collisions with others
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and with structures (Moussaid et al. 2009; Moussaid et al. 2009). Furthermore, studies have built
upon this understanding by building in human-specific nuances, such as walking in a line to facilitate
conversation within small groups, enabling a more precise understanding of human-specific dynamics
in more relaxed movement settings (Moussaid et al. 2010). By similarly linking human team behaviors
to comparable behaviors in animal groups, researchers could not only gain inspiration for new ways of
modeling and analyzing these behaviors, but also gain insight into the behaviors that follow similar
social principles to animal groups and those that involve higher-level processes (Moussaid et al. 2009).

Communication is a key process in the emergence of collective intelligence and other team
outcomes (Woolley et al. 2010; Wise 2014). While humans have a more complex communication
system than the honey bee waggle dance (described above), their communication behaviors can follow
predictable patterns (Pentland 2007). For example, human conversational turn-taking is a dynamic
process in which each individual’s likelihood of speaking is influenced by both their own motivation
to speak and the timing of others” speaking turns (Sacks et al. 1978). Such temporal dynamics are
analogous to those observed in Japanese tree frogs (Hyla japonica) (Aihara et al. 2008; O’Dell and
Nieminen 2009) and marmoset monkeys (Callithrix jacchus) (Takahashi et al. 2013), which have been
studied using coupled-oscillator models. Adapting such models to studies of turn-taking in human
teams could facilitate understanding of how the “rules” of turn-taking impact group-level properties
of communication, such as node centrality and network density, which may reflect constructs such
as leadership (Mullen et al. 1989) and team cohesion (Wise 2014), respectively. By systematically
adjusting parameter values among “individuals” in the model to simulate teams that vary in trait (e.g.,
personality) composition, these models could be used to predict the interaction dynamics and aggregate
speaking patterns of diverse teams, which could be tested with data on real teams. Using these methods,
we may gain new insights into the group-level trait combinations that increase the likelihood that some
team members will dominate a conversation while others become overpowered. This knowledge could
be used to build better teams or design interventions to target anticipated inequities in speaking time.
In doing so, we could better equalize speaking behaviors and, subsequently, improve team outcomes
(Woolley et al. 2010).

For teams that interact over long periods, it is possible that team processes may change over
time. As mentioned previously, effective team processes have the potential to positively impact the
emergence of team cohesion, which can have a positive impact on future team processes, team cohesion
and team outcomes (Marks et al. 2001). Thus, it may be necessary to link emergent properties of
the group back to individual behaviors. This approach is comparable to how models of honey bee
behavior have linked a quorum of group members at one particular nest site to individual transitions
between recruiting and preparing for hive transfer (Seeley and Visscher 2004). As Wise (Wise 2014)
demonstrated, measures of interactions between team members could be used to calculate network
density as an objective measure of team cohesion. By linking changes in network density to changes in
individual communication behaviors over time, for instance, it could be possible to examine whether
the global state of the group has an impact on behavioral changes at the individual level.

The above examples demonstrate how a team process like communication can be studied in
a dynamic way to gain more insight into how this process unfolds over time and is influenced
by the traits of team members. However, researchers must also improve understanding of how
individual inputs are transformed by team processes into group outcomes, which is fundamental to
the study of collective intelligence (Weschsler 1971). This topic could be approached by linking the
expression of team member knowledge, ideas, or opinions to the output of the group. Inspiration
on how to approach this challenge could be gained from studies of movement decisions in animal
groups. For example, studies have examined how group member preferences in travel direction
(as indicated by their positions and initiation movements) impact the final direction chosen by the
group (Strandburg-Peshkin et al. 2015; Couzin et al. 2005). Since individual preferences and social
influences in a movement context can be studied by analyzing individual movement trajectories,
the entirety of the decision-making process can be visualized and analyzed. In a similar manner,
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team member contributions and team outcomes could be represented in multi-dimensional coordinate
space, where team members’ contributions and the final team outcome could be compared. For example,
political scientists have used this approach to visualize and compare voting ideologies in Switzerland
within ideological space (Leuthold et al. 2007). Through this approach, it could be possible to study
how individual contributions change over the interaction period to result in the final team output.
In addition, the effect team processes have on the progression of team outcomes in coordinate space
could be examined by linking changes in the outcome’s trajectory to features of team processes,
such as the timing or intensity of communication behaviors. This approach is comparable to how the
occurrences of vocalizations have been linked to changes in animal movement trajectories (Gall and
Manser 2017; O’Bryan et al. 2019).

While the above examples have largely focused on collective intelligence that emerges though
communication behaviors, similar approaches could also be used to study more task-focused team
behaviors. Studies of ant colonies have long focused on the mechanisms through which self-organized
division of labor allows a colony to meet its requirements and adjust to its changing needs (Beshers
and Fewell 2000). For example, differential equation models have been used to model task allocation in
social insects by taking into account the different thresholds individuals have for working on available
tasks, the need for a given task to be completed, and communication between individuals regarding
the need to complete these tasks (Kang and Theraulaz 2016). Such models could be applied to studies
of teamwork with interrelated task demands, such as surgical teams or engineering design teams.
Differences in team members’ roles, task-specific skill levels, personality (e.g., conscientiousness)
or motivation could be represented by different response thresholds for performing available tasks.
These models could be used to generate predictions for the dynamics of task completion in teams with
different team compositions, task demands, and patterns of communication. Predictions could then
be compared to the dynamics observed in real teams, using data collected through either traditional
observational techniques or more automated means of data collection (Jones et al. 2018).

6.2. Principles of Group-Level Intelligence

Sumpter (Sumpter 2005) argues that the benefit of understanding behavioral mechanisms is that
a given algorithm can be compared and analyzed across systems. For example, Konstantinos and
King (Katsikopoulos and King 2010) developed a theoretical model of swarm intelligence where group
members must make a binary choice. They used the model to examine how the size of the group
and the diversity of group members’ information impacted how much better (or worse) the group
performed compared to an expert. Through these methods, they were able to define a set of conditions
in which it could be beneficial to work as a group rather than rely on an expert. In a similar manner,
team researchers could create a simulation model of team behavior using mechanistic knowledge of
how individual traits and interactions impact collective intelligence. This simulation could then be
modified in systematic ways to examine how variation in individual behaviors, interactions, and/or
specifics of the task impact collective intelligence. This approach could even be extended to compare
the performance of mechanisms underlying different forms of group-level intelligence. For example,
Rosenberg et al. (Rosenberg et al. 2016) examined the emergence of group-level intelligence in a sports
prediction context. They found that a method of combining individual predictions that simulates
processes involved in swarm intelligence performed better than the simple averaging of group member
predictions (i.e., comparable to traditional studies of wisdom of the crowd). By extending methods such
as these to a variety of challenges faced by groups, and systematically manipulating group member
contributions, behaviors, and interactions, researchers could directly compare mechanisms underlying
different forms of group-level intelligence and gain a deeper understanding of fundamental social
principles underlying its emergence.
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7. Conclusions

While the topic of team performance has long been studied by researchers within I/O Psychology,
many improvements can be made to enhance our understanding of the emergent properties of teams
which enable them to perform better than the individuals within them. Due to the impressive collective
feats that many animals are capable of producing, the study of animal swarm intelligence is a prime
area for inspiration into the mechanisms underlying the emergence of collective intelligence and
the research approaches that reveal them. By drawing upon studies in this field to improve the
measurement, modeling and analysis of team behaviors, we have the potential to gain a more detailed
understanding of collective intelligence and use this knowledge to improve our teams. In addition,
by adapting mechanistic models of swarm intelligence to studies of collective intelligence, a comparative
framework of group-level intelligence can be developed that can provide insight into fundamental
principles of group-level intelligence as well as the inputs and social processes that can maximize it in
different contexts.
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