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Mechanical behavior of nonwoven
non-crosslinked fibrous mats with
adhesion and friction

V. Negi and R. C. Picu *

We present a study of the mechanical behavior of planar fibrous mats stabilized by inter-fiber adhesion.

Fibers of various degrees of tortuosity and of infinite and finite length are considered in separate models.

Fibers are randomly distributed, are not cross-linked, and interact through adhesion and friction. The

variation of structural parameters such as the mat thickness and the mean segment length between

contacts along given fibers with the strength of adhesion is determined. These systems are largely

dissipative in that most of the work performed during deformation is dissipated frictionally and only a

small fraction is stored as strain energy. The response of the mats to tensile loading has three regimes: a

short elastic regime in which no sliding at contacts is observed, a well-defined sliding regime

characterized by strain hardening, and a rapid stiffening regime at larger strains. The third regime is due

to the formation of stress paths after the fiber tortuosity is pulled out and is absent in mats of finite

length fibers. Networks of finite length fibers lose stability during the second regime of deformation. The

scaling of the yield stress, which characterizes the transition between the first and the second regimes,

and of the second regime’s strain hardening modulus, with system parameters such as the strength of

adhesion and friction and the degree of fiber tortuosity are determined. The strength of mats of finite

length fibers is also determined as a function of network parameters. These results are expected to

become useful in the design of electrospun mats and other planar fibrous non-cross-linked networks.

1. Introduction

Fiber networks form the key microstructural component of
many soft biological and man-made materials. Collagen fibers
form athermal network structures providing strength to the
extra-cellular matrix (ECM) and to connective tissues in animals.
F-actin networks and microtubules are structural components of
the cytoskeleton in eukaryotic cells. Networks of various polymeric
nanofibers, like polyacrylonitrile (PAN), poly-L-lactide (PLLA), poly-
propylene (PP) etc., are used in applications like textiles, filtration,
hygiene products, and tissue engineering. The abundance of
examples of soft materials whose mechanics is controlled by a
network is due to the superior specific properties (per unit
weight of network materials) of such structures.

Crosslinked athermal fiber networks with inter-fiber permanent
bonds have been studied extensively, as reviewed in ref. 1 and 2.
Such networks show mechanical response dependent on whether
the strain energy is stored predominantly in the bending or axial
deformation modes of fibers. High network density, r, and high

fiber axial stiffness result in stiff, affine, axial energy-dominated,
and mostly linear response. However, a highly nonlinear, bend-
ing dominated, and non-affine response is obtained at low
network densities r. The nature of the inter-fiber bonds, i.e.
rigid, pin-jointed or flexible, also influences the mechanical
properties of fiber networks.

Less understood are the properties of non-crosslinked fiber
networks with non-bonded interactions such as excluded volume,
adhesion, and friction. Non-crosslinked networks can be woven
or non-woven. Woven networks, like textiles, have patterned
layouts of fibers designed to enhance (predominantly frictional)
inter-fiber interactions. Nonwoven networks have random layouts
of fibers. Electrospinning has been widely used to produce planar
mats of nonwoven fiber networks of various polymeric materials,
fiber diameters, and fiber tortuosity.3–6 These networks have
found multiple applications. When used in tissue engineering,
as scaffolds, the networks must be biocompatible and should
have mechanical properties similar to those of the ECM.3,7 Thus,
it is important to establish the structure–property relationship for
these nonbonded networks in order to achieve control of their
properties.

Electrospun nanofibrous mats typically show in tension a
bilinear stress–strain response, with an initial linear regime,
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a knee-region of yielding transition, and a long strain-hardening
plastic regime of constant slope.3,5,8–10 Their small-strain elastic
modulus is weakly dependent on the fiber diameter.9,10 Increasing
fiber diameter is found to decrease the yield stress and the tangent
slope in the strain-hardening plastic region (also termed the strain-
hardening modulus), but increases the strain-to-failure.9,10 Heat
treatment leading to fusion of fibers at contacts8 and chemical
crosslinking11 of such electrospun mats dramatically increases the
small-strain modulus, the yield stress, and the strain-hardening
modulus, but reduces the failure strain at the same time. This
indicates that the physics of deformation and stress production
changes upon network crosslinking.

Cellulose nanofibrillar (CNF) sheets (cellulose nanopaper)
exhibit similar bi-linear behavior.12 Their linear elastic response
lasts up to 0.2–0.3% strain, followed by a long strain-hardening
inelastic regime which extends up toB10% strain.12–15 Henriksson
et al.14 reported that decreasing the porosity of CNF nanopaper
increases the small-strain elastic modulus, the yield stress, the
strain-hardening modulus, and the failure stress, while the yield
and failure strains remain largely unaffected. Zhu et al.15 reported a
sharp increase of the failure stress and strain when decreasing the
fiber diameter from 27 mm to 11 nm, while maintaining the fiber
density of the mats in the range of 1.2–0.8 g cm�3. An experimental
study by Benı́tez et al.16 revealed that increasing the relative
humidity decreases the small-strain modulus, the yield stress and
the strain-hardening modulus. On the other hand, dry CNF nano-
paper showed negligible inelasticity. Mao et al.13 used Digital Image
Correlation to study the deformation of the nanopaper during
loading and found the deformation to be homogeneous during
the strain-hardening inelastic regime. Several mechanisms have
been proposed to explain the post-yield regime including slippage
at contacts assisted by the breakage and reformation of hydrogen
bonds,14–16 and molecular mechanisms at the level of individual
cellulose nanofibers.13

Semi-analytical17 and numerical finite element (FE) based
analyses18–20 have attributed the elastic-plastic response of cross-
linked nanofibrous mats to the elastic-plastic behavior of their
constituent fibers. Zündel et al.20 developed a 3D model of quasi-
planar electrospun mats with crosslinks between fibers. The
stress–strain response observed is bilinear owing to the elastic-
plastic fiber constitutive properties. Goutianos et al.21 modeled the
stress–strain response of cellulose nanopaper 3D fibrousmats with
breakable bonds and elastic-plastic fiber constitutive behavior. The
response observed was brittle and it was found that, for the values
of bond strength considered,21 fibers do not undergo yielding
before mat fracture. Liu and Dzenis22 explored the mechanics of
sparse electrospun mats with straight, non-bonded fibers running
boundary-to-boundary, with Coulombic inter-fiber friction. This
configuration leads to affine behavior, independent of the fiber
properties, and, as expected, it was found that the mat-scale
plasticity is associated with the plastic deformation of fibers.

The effect of excluded volume interactions (contacts between
fibers) in non-crosslinked networks has been studied. A theoretical
treatment of the compression of non-crosslinked elastic fiber
networks without inter-fiber friction or adhesion is reported in
ref. 23–25. It is found that the compressive stress increases rapidly,

as a power function of the fiber volume fraction, due to the
increase of the number density of contacts. Experimental results
support this observation.26,27 Numerical analyses using the
bead-spring model28,29 and FE representations of the fibers30

also indicate rapid stiffening in compression. Hysteresis during
compression cycles is observed when inter-fiber friction is
present, or if fibers re-arrange during the cyclic loading.

Adhesion in fiber networks governs both network morphology
and mechanics. Adhesion may drive fibers to self-organize into
bundles, which form a network of bundles on larger scales. Such
structural changes have been observed in carbon nanotube (CNT)
networks,31 collagen,32 and actin filaments.33 Numerical studies
of the self-assembly of nonbonded fibers in ref. 34 reveal that
when the strength of adhesion is high enough to overcome the
strain energy penalty of fiber self-assembly, cellular networks of
bundles, with bundle branching and merging, are formed. In the
case of cross-linked networks, adhesive interactions lead to net-
work shrinkage.35 In such cases, adhesion stabilizes the structure
of pre-stressed, highly bent fibers. Their mechanical behavior
is quite different from that of cross-linked networks without
adhesion.

Structural self-organization is inhibited by inter-fiber friction.36

In such cases, adhesion stabilizes the fiber–fiber contacts and may
act as a compacting force. Kulachenko and Uesaka30 performed a
3D beam-to-beam contact FE-based numerical study to investigate
the small strain response and failure behavior of finite-length fiber
planar mats with excluded volume, adhesion, and friction inter-
actions. Deformation localizes at small strains (1–2%) leading to
strain softening, but a friction-stabilized post-localization response
which extends to larger strains is observed. The effect of fiber
crimp was found to be negligible at modest crimp values.

Crimp, also known as fiber tortuosity, is an important
structural feature of random fiber networks. It is known to exist
in collagen in vivo,37,38 while most nonwoven fibrous materials
made through processes like electrospinning have tortuous
fibers.3,5 The effect of crimp on the mechanics of cross-linked
fiber networks has been studied numerically in ref. 39 and 40
and experimentally in ref. 39. In cross-linked networks, crimp
decreases the small-strain elastic modulus, while the functional
form of the large strain response is independent of crimp.40

Chao et al.5 synthesized and mechanically tested electrospun
mats with crimped poly-L-lactic acid (PLLA) fibers. They report a
decrease of the yield stress with increasing levels of fiber crimp.
However, the post-yield strain-hardening modulus is found to
increase with increasing crimp.5

These studies show that the physics of non-woven and non-
bonded fibrous mats is governed by interactions such as excluded
volume, adhesion, and friction. In these systems, crimp (fiber
waviness) and the fiber bending stiffness play an important role.
However, a comprehensive description relating the fundamental
interactions and geometrical features to the macroscale stress–
strain behavior in non-woven and non-bondedmats is still lacking.

In this work, we perform a detailed study of the effect of
fiber crimp and contact properties (adhesion and friction) on
the mechanics of non-crosslinked fibrous mats stabilized by
adhesion. We show that the mechanics of nanofibrous mats of
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this type is dominated by frictional energy dissipation. The
relationship between the yield stress and post-yield strain
hardening, and the geometric and adhesion/friction para-
meters of the system is defined. Networks with infinite and
finite length fibers are studied, and it is observed that their
mechanics is identical, except at large strains, when networks
of infinite fibers strain stiffen, while those of finite length fibers
become unstable. Given the prevalence of such fibrous materials
in many soft materials, both biological and artificial materials,
we expect that the present results will prove useful in the design
and general system evaluation.

2. Models and methodology
2.1 Network generation

We consider linear elastic athermal fibers of elastic modulus E,
fiber diameter d, and contour length Lf. The fiber diameter d is
used here as the unit of length and Ed2 is considered the unit of
force. Fibers form a quasi-2D network in the form of a mat,
such as that shown in Fig. 1(a). The structure is three-
dimensional, as fibers are not allowed to cross. The plane of the
mat is X–Y and the mat thickness is measured in the Z direction.

Fibers are allowed to be wavy in their undeformed state and
the degree of waviness is characterized by the persistence
length, LP. The directional auto-correlation of the fiber tangent

vector can be characterized by computing cos y0ðlÞ, where y0(l) is
the angle between the tangent versors at two points along a
given fiber separated by the contour length l, and an overbar
indicates averaging over multiple fibers and reference points.
The directional auto-correlation function is approximated as

cos y0ðlÞ � exp �l=LPð Þ, from where the persistence length para-
meter, LP, is obtained. This parameter characterizes the magnitude
of fiber waviness.

Although, in general, fibers may show waviness in 3D, we
allow fibers to be wavy only in the X–Y plane, which is adequate for
mats produced by additive processes such as electrospinning.

Each fiber is created as a series of coplanar equal-sized
rectilinear segments of length ls. We use angularly restricted
correlated random walk in 2D to generate the wavy fibers. To
this end, we choose a starting point p0 and a starting direction
n0 for the random walk, which is then generated with step
length ls. The angular deviation between consecutive steps i
and i + 1, i.e. cos�1(ni�ni+1), where ni, which denotes the
direction of the walk at step i, is sampled from a Uniform
Distribution in the interval (�a,a). Similarmodels have been used to
characterize and represent planar fibrous biomaterials.4,19 For this
procedure, LP is related to a as LP/ls = 6/a2, which is accurate for
small values of a, as discussed in the Appendix. Furthermore, the
root mean-square end to end distance of the fiber is

rrms ¼
ffiffiffiffiffiffiffiffi
r2h i

p
¼ LP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 exp �Lf=LPð Þ � 1þ Lf=LPð Þp

.41 An alternate,
equivalent measure of crimp used in the literature is the
relative fiber slack represented by Lf/rrms � 1,42 or alternateivly
as hLf/ri � 1.5,30,40

Fibers are generated in a box of size LD � LD � H and parallel
to the X–Y plane, Fig. 1(a). Each such planar fiber is given a
random offset in the Z direction between �H/2 and +H/2.
We study two types of networks with ‘infinite’ fibers (which
percolate across the simulation domain), and with fibers of
finite length. To generate an infinite fiber, we randomly chose a
point on one of the four side boundaries and a random inward
pointing direction to initiate the random walk. In the finite
length fiber case, we follow the Mikado network generation
process.43,44 We randomly select a point p0 inside the X–Y plane
and a random direction n0. Assuming p0 to be the mid-point of
a wavy fiber, we start two random walks of length Lf/2 in the n0
and �n0 directions. A walk always stops at the domain boundary.
In order to limit size effects in the computed effective properties
of the network, the characteristic lengths of fibers, LP and Lf (in
the infinite and finite length cases, respectively), are taken 2 to
3 times smaller than the model size, LD.

This process creates an aperiodic assembly of planar wavy
fibers. The actual structure of the quasi-2D network is obtained
by applying a temporary compacting (body) force-field in the Z
direction, as shown by the dashed arrows in Fig. 1(a). The
compaction process is simulated with inter-fiber interactions such
as excluded volume, friction, and adhesion activated (Section 2.2).
This enables adhesion to stabilize the network. The body force is
removed after the compaction process.

2.2 Inter-fiber interactions

The types of interactions between fibers considered here are of
non-bonded type: excluded volume, adhesion, and friction.
Unlike bonded type interactions such as permanent crosslinks,
which act at pre-determined sites, non-bonded interactions act
only at inter-fiber contacts during the duration of the contact.

Fig. 1 (a) Representation of a quasi-2D network of wavy fibers. The red
dashed arrows show the compaction force used in the network generation
step. LD and H are the model in-plane and thickness dimensions. (b) A
realization of a compacted, adhesion stabilized quasi-2D fiber network
resulting from (a). The mat thickness after compaction is h. The figure also
shows a schematic of the boundary conditions applied when probing the
mechanical behavior of the mat.
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Contacts can be of line or point type. The line contacts prevail
in networks in which fibers bundle. Such structures were
studied by Negi and Picu35 and Sengab and Picu,36 where it is
shown that adhesion-driven self-organization is prevented once
inter-fiber friction is accounted for. Point contacts prevail in the
presence of friction and adhesion. This motivates the exclusive
consideration of point contacts in this work.

Fig. 2 shows a schematic of a point contact between two
fibers, f1 and f2. A point contact is established when the minimum
separation distance, gmin, between the centerlines of two fibers
becomes less than d. The local normal direction of the contact, N,
is defined by the cross-product of the tangent versors to the two
fibers at the contact point. It is noted that N is a unit vector (versor).

The excluded volume interaction, FEVN = Kphd� gminiN, where
hi is the Macaulay bracket, leads to a repulsive force acting on
the fibers forming the contact in the direction of N of each of
the fibers in contact. Kp is a constant penalty stiffness for inter-
fiber penetration which ensures numerical convergence and
accuracy of the simulation procedure.30

In this work, we implement adhesion by applying a normal
attractive force of magnitude FAdhN at each established contact,
when d � gmin 4 0, in addition to the excluded volume
interaction. Hence, the net normal contact force is FN =
[Kphd � gmini � FAdhN H(d � gmin)]N, where H() is the unit step
function. This renders the equilibrium d � gmin slightly negative
at all contacts in the absence of any external load. In general,
adhesion at a contact point is specified using a force–separation
relationship between the normal force at a contact FN and
contact–penetration (d� gmin). Various force–separation relation-
ships are proposed in the literature for different strengths of
adhesion and stiffness of contacting fibers, such as the Derjaguin–
Muller–Toporov (DMT)45 and the Johnson–Kendall–Roberts (JKR)46

models. Experimental studies show that contacts between poly-
meric fibers follow the JKR model.47,48 In the present simulations
we do not represent explicitly the dynamics of contact opening and
closing on time scales defined by the local elasticity at each
individual fiber contact. Instead, we use a threshold condition
defined in terms of the separation force: the contact opens when
the force is larger than a critical value. We observe (Section 3.3) that
very few contacts (less than 5%) open during deformation up to 5%
strain.

The tangential force required for sliding of contacts between
fibers is denoted as FFricT . This frictional force can be either of
the Coulomb type, i.e. proportional to the normal external load
applied to the contact, or proportional to the contact area. In
the case of nanofibers, it is more likely that this force is of the
second type. This case is described by Bowden and Tabor49

theory of adhesive friction where FFricT = At0, with A being the
contact area and t0 the ‘frictional shear stress’. t0 is considered
constant for given contacting surfaces in a given environment.
Experimental studies of Homola et al.50 and Carpick et al.51

provide support to this description. In the present models, we
adopt this physical view. The contact is considered circular in
most models. In Section 3.5, we discuss the more realistic case
in which the contact area is allowed to be non-circular and
dependent on the angle y between fibers.

Therefore, the inter-fiber point contact is defined by two para-
meters, FAdh

N and F Fric
T . These forces can be non-dimensionalized

using Ed2, which gives the non-dimensional force parameters
CAdh

N = F Adh
N /Ed2 and CFric

T = FFricT /Ed2.

2.3 Numerical modeling

The fibers are meshed using two-node Timoshenko 3D beam
elements with element size le equal to the segment size ls of the
geometrical discretization described in Section 2.1. The aspect
ratio of the elements, le/d, is taken to be 5 for computational
efficiency.

The model is solved using the commercial Finite Element
package ABAQUS (2017). Excluded volume interactions are
represented using the penalty stiffness model of beam-to-beam
contact in ABAQUS. Attractive adhesive force FAdhN is applied
at each contact during the simulation using a user-defined
FORTRAN subroutine. In this subroutine, the nodal displace-
ments/positions are extracted at every solution increment by
defining them as ‘sensor-output’ data in ABAQUS. Furthermore,
at each solution increment the contacting elements are deter-
mined from the nodal positions using a global contact detection
algorithm inspired by the Cell Linked-List (CLL) algorithm in
molecular dynamics.52 Specifically, a fixed simulation box is
created encompassing the elements. This simulation box is
divided into cubic cells with edge length larger than, or equal,
to le. The elements are associated with their respective cells
based on their centroid position and stored as a linked-list data
structure. The detection of contacting elements for each element
involves searching over its own cell’s elements as well as elements
in the neighboring 26 (in 3D) cells. This algorithm offers an
advantage of having O(n) time complexity, with n being the
number of elements in the simulation.

FFricT is defined by using the VFRICTION subroutine in
ABAQUS. Furthermore, contact damping is also applied for
numerical stability. The simulations are carried out using the
explicit time integration scheme at sufficiently low loading
rates to represent quasi-static conditions.

2.4 Solution procedure

After the initial fiber layout process described in Section 2.1,
the network is compacted by applying a temporary body (line)

Fig. 2 Schematic representation of a point contact between two fibers.
Note that the contact normal N shown in the figure is with respect to
fiber f2. The contact normal for fiber f1 is �N.
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force on fibers in the Z-direction, FZ, such that FZ = �P0B(t)z,
where P0 is proportional to the maximum magnitude of the
force and B(t) describes the variation of the force-field with
time. B(t) smoothly increases from 0 to 1 and returns to 0 during
the compaction process. This procedure enables the formation
of contacts which remain stable even after the removal of FZ
due to the adhesive forces. The value of P0 is selected as the
minimum value above which the number of contacts at the end
of mat compaction is independent of this parameter. A realization
of the compacted quasi-2D network is shown in Fig. 1(b).

Similar approaches of fiber deposition have been used in the
literature.19,21,22,30 The compaction force is taken to be either a
model parameter or equal to the gravitational force.19,21 In
these cases, the compaction force is permanent and determines
the final structure of the mat, i.e. the density of contacts, the
mat porosity, etc. Liu and Dzenis22 compacted the network by
forcing the ends of long fibers to belong to a common plane.
Kulachenko and Uesaka30 successively deposited straight, flexible
fibers such that every newly deposited fiber bends at contacts and
conforms to the underlying fibers up to the level where the slope of
the resulting fiber undulations in the direction perpendicular to
the mat plane does not exceed 301.

To probe the mechanics of these networks, the mats (Fig. 1(b))
are loaded in uniaxial tension by imposing displacements along
the two model boundaries perpendicular to the X direction.
Traction free conditions are applied along the model boundaries
perpendicular to the Y and Z directions. We report the work
conjugate second Piola–Kirchhoff stress Pxx and the Green–
Lagrange strain exx. Pxx is computed as the force per unit length

of the boundary and is non-dimensionalized as P̂ ¼ P=Ed.

3. Results
3.1 System parameters

In order to develop a broad physical picture of the structure–
property relation for these networks, the system parameters
described above, CAdh

N , CFric
T , and LP, are varied in a range

relevant for applications. CAdh
N and CFric

T vary in the range of
2.5 � 10�6–2.5 � 10�4. For a polymeric fiber of elastic modulus
E, diameter d, and surface energy (J m�2) g, CAdh

N of a point
contact between two perpendicular fibers calculated as per JKR
theory46 is 1.5pg/Ed. For a polyacrylonitrile (PAN) nanofiber
with surface energy g B 0.050 J m�253 and E B 3 GPa, CAdh

N is
B2.62 � 10�4 for d = 300 nm and B2.62 � 10�6 for d = 30 mm.
Likewise, for polystyrene (PS) with EB 3 GPa, gB 0.041 J m�2,53

and d = 300 nm and 30 mm CAdh
N B 2.15 � 10�4 and B2.15 �

10�6 respectively. These values are typical for various polymeric
nanofibers. CFric

T is also taken to be in the same range as CAdh
N .

While, g and E may not vary significantly from one polymeric
material to another, it is by adjusting the fiber diameter, d, that
CAdh

N and CFric
T acquire a broad range of variation. LP is taken to

be N, 500d, 250d, 167d, and 100d in separate simulations. The
network density, denoted by r, is measured as the total fiber
length per unit projected area of the mat in the X–Y plane. rd is

the nondimensional network density, which is taken here to be
in the range of 0.48 to 1.92.

Table 1 presents specific cases considered in this work.
Three realizations are considered for each of these cases and
the average response of these realizations is presented. Cases I
and II represent networks of straight infinite fibers of two
densities, rd = 0.96 and 1.92 respectively. Cases III to VI
represent networks of infinite wavy fibers of the same density
but increasing persistence length, LP. Cases VII and VIII corre-
spond to networks of finite length fibers which are wavy and
straight, respectively, but having the same network density.

Fig. 3(a) shows the parametric space of these systems. The
space is defined by the fiber material property Ed2, the geometric
parameter, LP, and the contact properties F Adh

N and F Fric
T . The

figure highlights the region of the parametric space considered in
this work. The region where CAdh

N and CFric
T { 2.5 � 10�6 (the

slopes indicated in Fig. 3(a) and (b) represent CAdh
N and CFric

T )
corresponds to the trivial case of negligible inter-fiber inter-
actions, in which the response of the mat is simply the average of
the response of individual wavy fibers loaded by the far field (no
fiber–fiber interactions and ‘‘infinite’’ fibers). When CAdh

N and
CFric

T c 2.5 � 10�4, adhesion is strong and it is expected that it
drives fiber alignment and bundling leading to non-crosslinked
networks such as those discussed in ref. 34. Furthermore,
straight fibers (LP - N) running across the problem domain
are too stiff to be affected by contact forces. In such networks,
the mechanics is governed largely by the constitutive behavior of
the fibers.22 Likewise, the regime of very small LP is not realistic.
Therefore, the scope of this work is limited to the shaded range
in Fig. 3. Fig. 3(b) shows a projection of the parametric space in
Fig. 3(a) along with the locus corresponding to a broad range of
polymeric mats of nano- and micro-fibers. Most of this locus is
covered by the range of parameters considered here (shaded region).

3.2 Structure of fiber mats

The structure of the mats is characterized by the mean fiber
contour length between contacts, lc, and the mat thickness, h.
These result from the collective organization of the fibers for a
given set of network parameters r, d, andCAdh

N . The objective of
this section is to define this relationship.

Parameter lc depends on the degree of mat compaction under
the action of adhesion and hence is controlled byCAdh

N . Note that

Table 1 Parameters of networks considered in this work. Lf/d = N
indicates ‘infinite’ fibers and LP/d = N indicates straight fibers. rd is the
nondimensional density. t is the tortuosity, defined as t ¼ Lf=r� 1, where r
is the end-to-end distance of a fiber and the overbar indicates averaging
over the entire fiber set

Case no. LP/d Lf/d CAdh
N CFric

N rd t

I N N Various CAdh
N /10 0.96 0

II N N Various CAdh
N /10 1.92 0

III 250 N Various Various 0.48 1.24
IV 100 N 2.5 � 10�5 2.5 � 10�5 0.48 2.91
V 167 N 2.5 � 10�5 2.5 � 10�5 0.48 1.85
VI 500 N 2.5 � 10�5 2.5 � 10�5 0.48 0.39
VII 250 250 2.5 � 10�4 2.5 � 10�5 0.48 0.15
VIII N 250 2.5 � 10�4 Various 0.48 0
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lc is significantly larger than the Kallmes–Corte54 prediction for a
set of straight lines placed at random on a plane (2D Mikado
network), p/2r, because in the 3D structure fibers do not make
contacts at all points at which they cross in the X–Y projection.
Similarly, the thickness of the mat, h, is also an outcome of the
model. h is evaluated as twice the standard deviation of the mass
distribution in the Z direction after compaction (Fig. 1(a)).

Fig. 4(a) shows the relation between lc and CAdh
N . The curves

correspond to three densities (Table 1). It is seen that r and LP
have essentially no effect on lc, while a power law is established
between lc and CAdh

N :

lc � cAdh�0:29

N (1)

This indicates that, as opposed to the purely geometric
analysis leading to the Kallmes–Corte relation where lc is an
extensive quantity related to r, the segment length lc in this
problem is defined by mechanics and it is intensive in nature,
i.e. independent of r.

Fig. 4(b) shows that lc is proportional to h. As r increases, the
network thickness increases at a constant internal structure
and lc, Fig. 4(a). Therefore, the thickness of the networks h

must be proportional to r. We report h/rd2 as a normalized
(intensive) measure of height. The overlap of the h/rd2 vs. lc/d
curves for networks of various r in Fig. 4(b) confirms the
intensive nature of this parameter. Combining the results in
Fig. 4(a) and (b), it is observed that hB rd2CAdh

N
�0.29. Note that,

as stated above, all these results correspond to the state of the
mat after removing the compaction force.

Since the effective volume of the mat is hLD
2 and LD is

essentially independent of CAdh
N , the proportionality relation in

Fig. 4(b) implies:

lc / hdLD
2

rd2LD
2
/ d

f
(2)

where f is the volume fraction of fibers in the network.
Forced packing of slender fibers under compression without

inter-fiber adhesion or friction was studied analytically in
ref. 24 and 25 for 3D networks, and in ref. 23 for quasi 2D
networks. A general expression derived for lc in ref. 25 and 55 is
lc = pd/8f, where f depends on fiber orientation ( f is p/4 and 2/p
for 3D and 2D random orientations respectively). Eqn (2) is in
agreement with this analytical result.

Fig. 3 (a) Parametric space of the present problem, with the region considered in this study shaded (in red). (b) Projection of the space shown in
(a) showing regimes discussed in the text and the locus corresponding to polymeric nano and microfiber mats (curved dashed arrow). The slopes
indicated in (a) and (b) represent CAdh

N and CFric
T .

Fig. 4 (a) Variation of lc with CAdh
N for systems listed in Table 1. (b) Relation between the mat thickness h, the density, r, and the mean segment contour

length lc. The bars represent the standard error of 3 realizations.

Paper Soft Matter



This journal is©The Royal Society of Chemistry 2019 Soft Matter, 2019, 15, 5951--5964 | 5957

These analyses also indicate that the pressure required to
compact the network to achieve fiber volume fraction is p p
EI(fn � fn

0), where f0 is the volume fraction of the as-deposited
packing, and n is 3 and 5 for 3D24 and 2D23 networks respec-
tively. The networks considered in the present work are held
together by the inter-fiber adhesion, with no external pressure
being applied. To understand the scaling relations in Fig. 4 in
the context of previous results on pressure-driven compaction,
we consider that the adhesion forces act as an equivalent
pressure of magnitude:

peff � r
FAdh
N

lc
(3)

Using peff in the pressure–density relation for quasi-2D mats,
p p EI(f5 � f5

0),
23 and assuming f0 { f, it is found that:

peff � r
FAdh
N

lc
� EIf5 � EI

d

lc

� �5

(4)

which implies that

FAdhN p lc
�4 (5)

Eqn (5) implies that lc B CAdh
N

�0.25 which is in good agreement
with the results in Fig. 4(a) and eqn (1).

The deviation from the power-law scaling for CAdh
N o 2.5 �

10�6 seen in Fig. 4(a) is attributed to the size-effect which
comes into play when lc approaches the simulation domain size
LD. On the other hand, the deviation observed when CAdh

N 4
2.5 � 10�4 is a result of lc approaching the 2D lower bound
predicted by the Kallmes–Corte relations (p/2r), a situation in
which the present concepts do not apply. This is supported by
the observation that the deviation increases with decreasing
r (compare case III (rd = 0.48) with cases I (rd = 0.96) and
II (rd = 1.92)).

3.3 Tensile response of mats with infinite wavy fibers

In this section we discuss the dependence of the tensile response
of themats of infinite wavy fibers on system parameters describing
friction and adhesion, CFric

T and CAdh
N , and on fiber tortuosity, LP.

Fig. 5(a) shows stress–strain curves obtained with mats belonging
to case III (Table 1), having the sameCAdh

N (CAdh
N = 2.5� 10�5) and

LP (LP = 250d), and different CFric
T . The curves exhibit two regimes.

The first regime (OA) is linear elastic and is observed at very small
strains. In this regime, the contacts are not loaded enough for
sliding to occur, and hence they behave similar to permanent
bonds. Once the tangential load exceeds CFric

T at some contacts,
slippage begins. In regime II, (AB) a moving phase percolating
across the model forms, thereby producing global plastic flow.
The curves are described by two parameters: the effective yield

stress, P̂y, and the strain hardening modulus observed in

regime II, K̂T . The yield stress is defined conventionally as the
intercept of the tangent to the regime II branch of the curve with
the vertical axis.

Fig. 5(b) shows the stress–strain response of cases III, IV, V,
and VI, i.e. networks with CAdh

N = CFric
T = 2.5 � 10�5 and various

LP. These curves exhibit the two regimes described above, and a

third regime of rapid strain stiffening at larger strains (BC in
Fig. 5(b)). This regime is observed only in the case of infinite
fibers when some of the wavy fibers straighten out and are
loaded axially forming stress-paths. This phenomenon is also
observed in cross-linked networks subjected to tension at large
strains.42,56 The onset of regime III depends on LP and moves to
larger strains as LP decreases.

In order to understand the behavior shown in Fig. 5, it is
useful to discuss the nature of stress in these networks.
We show here that mechanics is associated with frictional
dissipation at contacts, which contrasts with the usual situation
in cross-linked networks, where stress is associated with the
variation of the strain energy during deformation.

To this end, consider a fiber of the mat, having elastic
modulus E, diameter d, bending stiffness EI, persistence length
LP, contour length Lf, and end-to-end distance r. The effective
small-strain stiffness of the wavy fiber measured by stretching
in the direction of the end-to-end vector can be estimated as
45LPEI/Lf

4.42 If a small strain e is applied, the strain energy is
(45LPEI/Lf

4)r2e2/2. On the other hand, energy is dissipated at

Fig. 5 Stress–strain curves for networks with (a) different CFric
T and the

same LP, and (b) different LP and the same CFric
T . CAdh

N = 2.5 � 10�5 in all
cases. The bars represent the standard error of the 3 realizations.
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sliding contacts with other fibers. Assuming affine deformation
of the fiber, the expected frictional work performed during
sliding is estimated to be approximately FFricT reLf/2lc. The mechanics
is dominated by frictional dissipation if FFricT reLf/2lc c (45LPEI/
Lf
4)r2e2/2. This simplifies toCFric

T 4 2.2e(lcLPrd
2/Lf

5). For parameters
such as those considered here (specifically, lc = 15d, r E Lf E
LD = 500d, e = 0.05, and LP = 250d) this inequality can be written
as CFric

T 4 6.5 � 10�9. Since CFric
T A (2.5 � 10�6, 2.5 � 10�5) in

the current models, mechanics is dissipation-dominated (non-
conservative) rather than strain energy-dominated (conservative).
This is also observed by directly comparing the strain energy
variation during deformation, which is the energetic component
of stress, with the work performed by the tractions applied at
the boundary of the model. The strain energy represents only
B15% of the total work, which supports the conclusion that
the mechanics in these systems is associated with frictional
dissipation.

With this understanding of the origin of stress, we discuss
now the kinematics. To this end, we consider case III networks

whose stress–strain curves are shown in Fig. 5(a). These have
the same LP and different CFric

T . Three parameters are mon-
itored: the total number of contacts, Nc, the number of actively
sliding contacts in each strain increment, Na, and the rate
of slip in the active contacts. The mean rate of slip is defined as
%s = hds/dexxi, where s is the magnitude of slip occurring at a
contact, ds/dexx is the rate of slip at given contact versus the
applied far-field strain, and the angular bracket indicates
averaging over all contacts in the model. The variation with
the strain of these three parameters is shown in Fig. 6. Fig. 6(a)
shows Nc and Na normalized by the total number of contacts in
the initial configuration, at zero strain, N0. The total number
of contacts remains constant during deformation, up to the
maximum strain applied (5%). The number of actively sliding
contacts, Na, increases fast during regime I of the stress–strain
curve and remains constant in regime II. Na decreases with
increasing CFric

T . The mean slip rate at contacts, %s, increases
continuously with strain in regime II and is essentially independent
of CFric

T , Fig. 6(b).

Fig. 6 Variation during deformation of ((a) and (c)) the total number of contacts, Nc, and of the number of actively sliding contacts, Na, and of ((b) and (d))
the mean slip rate at actively sliding contacts, %s = hds/dexxi. Nc andNa are normalized by the total number of contacts in the strain-free state, N0. (a) and (b)
correspond to mats of different CFric

T and same LP = 250d (case III in Table 1), while (c) and (d) correspond to mats of different LP and same CFric
T = 2.5 �

10�5 (cases III to VI in Table 1). The stress–strain curves for these networks are shown in Fig. 5(a) and (b), respectively. The bars indicate the standard error
of three realizations.
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Considering that the external work performed by the applied
stress corresponds to frictional dissipation at contacts, one
may write:

P̂ � dWfric=dexx � CFric
T Na�s (6)

Eqn (6) also indicates the dependence of K̂ T on CFric
T , Na and %s:

K̂T � d CFric
T Na�s

� ��
dexx ¼ CFric

T Nad�s=dexx (7)

Hence, for each of the stress–strain curves in Fig. 5(a) (given
CFric

T ), the strain hardening modulus K̂ T should be non-zero
since %s increases continuously with strain, Fig. 6(b). This traces
the origin of the regime II strain hardening to the gradual
increase of the sliding distance per increment of the applied
far-field strain observed in Fig. 6(b).

Since d%s/dexx is independent of CFric
T and Na decreases with

increasing CFric
T , K̂ T should increase sub-linearly with CFric

T .
Fig. 7(a) shows the variation of K̂ T with CFric

T determined from
the curves in Fig. 5(a). It is seen that

K̂ T B CFric
T

3/4 (8)

Fig. 7(b) shows the variation of K̂ T with CAdh
N obtained with

case III type models having the same CFric
T . Again, we observe a

power-law relation:

K̂ T B CAdh
N

0.38 (9)

Eqn (1) indicates that CAdh
N changes the structure of the net-

work. The number of contacts, Nc, is inversely proportional to lc
(at given LP), and using eqn (7) one infers that K̂ T B Na B Nc B
lc
�1B CAdh

N
0.29. This is in reasonable agreement with the

exponent in eqn (9), which provides support for the physical
interpretation proposed here.

The dependence of the yield stress P̂y on system parameters
can also be understood based on eqn (6) and the data in
Fig. 6(a) and (b). At yield, %s is independent of CFric

T , while Na

decreases with increasing CFric
T . Therefore, P̂y increases sub-

linearly with CFric
T , as can be seen in Fig. 5(a). More precisely,

P̂y � CFric3=4

T which is a relation similar to eqn (8).

The dependence of the stress–strain curve on the fiber
persistence length parameter, LP, shown in Fig. 5(b) can be
understood along the same lines. Fig. 6(c) and (d) show the
variation of Na and %s during the deformation of networks with
various LP and the same CAdh

N and CFric
T . We observe that Na is

independent of LP (Fig. 6(c)), while d%s/dexx increases continuously
with increasing LP (Fig. 6(d)) – a situation opposite to that observed
when CFric

T is varied at constant LP. This indicates that, based on
eqn (7), K̂T should increase with LP. This function is shown in Fig. 8.
Furthermore, %s at yield increases with increasing LP (Fig. 6(d)), while
Na is independent of LP (Fig. 6(c)). Based on eqn (6), it is observed
that the yield stress should increase with increasing LP, which
justifies the trend observed in Fig. 5(b).

3.4 Contacts with stochastic properties in mats of infinite
wavy fibers

In the previous section it is assumed that all contacts in a given
model have identical CAdh

N and CFric
T . Since this is not the case

in realistic mats, it is of interest to investigate the effect of

Fig. 7 Dependence of regime II strain hardening, K̂ T, on (a) CFric
T (with CAdh

N = 2.5 � 10�5) and (b) CAdh
N (with CFric

T = 2.5 � 10�5).

Fig. 8 Variation of the strain hardening modulus K̂T in regime II with the
fiber persistence length, LP. Note that this increase of K̂T as fibers become
less tortuous is not a result of gradual pulling out of crimp, which becomes
dominant only in regime III and in networks of infinite fibers.
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stochasticity of contact properties on the stress–strain
response. For this purpose, CFric

T for each contact in the model
is sampled from a Gamma distribution with a specified mean,
�CFric
T , and a coefficient of variation, cC (also characterized by

shape parameter (Ssp) and scale parameter (Ssc)). CAdh
N was

taken to be identical at all contacts. Case III type networks

are chosen for this analysis, with CAdh
N ¼ �CFric

T ¼ 2:5� 10�5.
The coefficient of variation of CFric

T , cC, is varied in the interval
(0, 1.6). Alternatively, Ssp is in the range of (0.39, N) and

Ssc

.
�CFric
T is in the range of (0, 2.56) respectively.

Fig. 9(a) shows the stress–strain responses for various cC
values. The yield stress P̂y decreases as cC increases, while K̂T is

unaffected. Fig. 9(b) shows the variation of P̂y with cC indicating

that P̂y � 1� 0:4cC. In various other systems with stochastic
microstructures, it is observed that system-scale properties decrease
with increasing magnitude of fluctuations of local material proper-
ties. The effective yield stress of a continuum with spatially fluctu-
ating local yield stress values decreases upon increasing the ampli-
tude of these fluctuations.57,58 The stiffness of crosslinked networks
of fibers of non-identical elastic properties also decreases as the
variability of fiber properties increases.40 This applies to various
types of continua, as discussed in ref. 59. Likewise, the strength of
crosslinked networks in which the crosslink strength is sampled
from a distribution decreases as the coefficient of variation of the
distribution increases, while its mean is kept constant.60

We also considered networks in which CAdh
N is stochastic,

while CFric
T is identical at all contacts. We observe that fluctuations

of CAdh
N have no effect on the stress–strain curve, which is identical

to that of a system of homogeneous friction and adhesion with
CAdh

N being equal to the mean of the distribution of CAdh
N values

of the stochastic case.

3.5 Effect of elliptical contacts in mats of infinite wavy fibers

A key assumption of the analysis presented in the previous
sections is that contacts are circular. This implies thatCAdh

N and
CFric

T are independent of the inter-fiber angle (y) (see the inset

to Fig. 10). Since two cylinders establish elliptical contacts of
area dependent on the angle between the cylinder axes, it is
important to evaluate the error introduced in the present models
by ignoring this geometric feature. To this end, we allow contacts
to be elliptical if y o 901. The elliptical contact model used is
based on the approximation of JKR contacts described in ref. 61
and 62. The curvatures of the contact surface at the major and
minor semi-axes is R0 = 0.5d/(1 � cosy) and R00 = 0.5d/(1 + cosy).
We combine R0 and R00 to calculate an equivalent radius of

curvature Re ¼
ffiffiffiffiffiffiffiffiffiffiffi
R0R00p ¼ 0:5d=siny, which is assigned to an

equivalent circular contact.61,62 Using this radius in the standard
JKR model of circular contact area, we obtain the normal separa-
tion force (scales linear with Re) and the area of the contact (scales
as R4/3e ).46 According to the friction model used in this work,
the friction force is proportional to the contact area. Hence, the
y-dependent CAdh

N and CFric
T become:

CAdh
N yð Þ ¼ �CAdh

N

�
sin y (10a)

Fig. 9 (a) Stress–strain curves for networks with stochastic CFric
T , for increasing coefficient of variation of CFric

T , cC, and at constant mean of the
respective distribution, �CFric

T . (b) Variation of the yield stress of the curves in (a) with cC.

Fig. 10 Stress–strain curves for networks with elliptical contacts and for
cases (i) and (ii) described in the text.
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CFric
T yð Þ ¼ �CFric

T

.
ðsin yÞ4=3 (10b)

where �CAdh
N and �CFric

T are the normalized normal and tangential
separation forces at y = 901. The analysis in ref. 61 and 62 indicates
that this method leads to errors in the contact separation force on
the order of 20% to 30% for R00/R0 as high as 25. Furthermore, in
order to prevent the unphysical divergence of expressions (10)
when y is small, we assign the values corresponding to y = 101 to
all contacts formed by fibers crossing at angles smaller than 101.
The analysis was performed using case III type networks with
�CAdh
N ¼ �CFric

T ¼ 2:5� 10�5.
We observe that the structure of mats (defined by lc and

h/rd2, Fig. 4(b)) with elliptical contacts of variable CAdh
N (y)

(eqn (10a)) is identical to that of mats of circular contacts
and identical CAdh

N set equal to the mean of the CAdh
N (y)

distribution. This result is identical to that noted in Section 3.4.
Furthermore, we compare the stress–strain curves of mats

with elliptical contacts of parameters described by eqn (10),
with that of geometrically identical mats with circular contacts
and with either: (case I) CAdh

N set equal to the mean of CAdh
N (y),

and CFric
T set equal to the mean of CFric

T (y) (circular contacts of
identical properties), and (case II)CAdh

N set equal to the mean of
CAdh

N (y), and CFric
T rendered stochastic and y-independent, with

its mean and coefficient of variation cC equal to the mean and
the coefficient of variation of CFric

T (y). Fig. 10 shows the stress–
strain curves for these three cases. It is seen that the model with
elliptical contacts behaves identically to case II in which contacts
are circular, but has stochastic properties. In agreement with the
results presented in Section 3.4, neglecting the stochasticity of
contact properties leads to an increase of the yield stress, but to no
variation of regime II strain hardening, K̂T.

3.6 Tensile response of mats with finite length wavy fibers

In this section, we consider networks of finite length wavy
fibers corresponding to types VII and VIII, Table 1. The contour
fiber length is set at Lf = 250d. To limit size effects, the domain size
is taken three times larger than Lf (LD = 3Lf).C

Adh
N = 2.5� 10�4 in all

cases andCFric
T is varied. As in the case of infinite fibers (Section 3.3),

the circular contact model with no variability is selected for this
study. In models corresponding to type VII networks, LP = Lf = 250d,
while in type VIII networks, fibers are straight, with LP = N.

Stress–strain curves for type VIII networks of finite length
straight fibers with various CFric

T values but the same CAdh
N are

shown in Fig. 11(a). All networks undergo localization immediately
after entering regime II and the load carrying capacity reduces
gradually over a prolonged post-localization regime. This is the
stabilizing consequence of inter-fiber friction. Fig. 11(b) shows the

peak stress of the curves in Fig. 11(a), i.e. the network strength, P̂f ,
function of CFric

T . A linear relation between these two quantities
emerges, which is a result of the frictional nature of stress in these
networks. It is of interest to observe that in crosslinked networks
that fail due to crosslink rupture, the strength of the network is
also proportional to the strength of the crosslinks, as observed
in numerical60,63 and experimental64 studies.

The effect of the persistence length LP is shown in Fig. 12.
Case VII and case VIII networks are considered, having the
same contact properties, CAdh

N = 2.5 � 10�4 and CFric
T = 2.5 �

10�5, the same Lf, and the same density rd = 0.48 (Table 1). The
case VII networks have finite LP, while case VIII networks have
straight fibers. The stress–strain curve of the mat with straight
fibers has a well-defined peak corresponding to strain localiza-
tion. The peak moves to larger strains, and it is less pronounced
(localization is more diffuse) in the case of wavy fibers. Based
on the post-localization response, it can be stated that the mat
with straight fibers is more brittle compared to that with wavy
fibers, with more energy being dissipated in the second case.
A similar stress–strain response for finite length straight fiber
networks was also observed in ref. 30.

The kinematics of these networks is based on two main
mechanisms: straightening of wavy fibers and fiber pull-out.
The mechanics of straightening of wavy fibers is identical to that
discussed for mats of infinite wavy fibers. The gradual removal of
fiber slack during straining leads to some level of strain stiffening
(non-zero K̂ T). Slip at consecutive contacts along given fiber is
largely uncorrelated when waviness is pronounced. As fibers

Fig. 11 (a) Stress–strain curves for networks of finite length, straight fibers with different values of CFric
T . In all cases,CAdh

N = 2.5� 10�4 and LP = Lf = 250d.
Arrows indicate the peak stress. (b) Variation of the peak stress with CFric

T . The bars represent the standard error of 3 realizations.
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straighten, axial stress develops gradually. Since this is an
energetically unfavorable mode, fiber pullout and consequently,
localization may follow. The resistance to fiber pullout depends
on the total number of contacts per fiber and CFric

T . Straight
chopped fibers have no slack and therefore accommodate strain
only through fiber pullout which explains the localization at
small strains. Thus, fiber waviness delays strain localization
thereby rendering the network more ductile.

4. Conclusions

Adhesion in quasi-2D mat-like networks of fibers determines
their structure and mechanical properties. In such adhesion-
stabilized networks, power laws are established between the
mean contour length between contacts, the network thickness,
and the strength of adhesion. Fiber tortuosity has little effect on
the structural parameters such as the mean contour length
between contacts and the network thickness.

The effect of fiber tortuosity, adhesion, and friction on the
tensile mechanical response of these networks is discussed. It
is shown that mechanics is controlled by frictional dissipation
rather than by the variation of the strain energy during defor-
mation. The stress–strain response is, in general, bi-linear. The
post-yielding strain hardening modulus increases with increas-
ing friction sub-linearly. It is found that the deviation from the
expected linear relation is due to a decrease in the number of
actively slipping contacts with increasing tangential contact
separation force. Normal contact separation force affects the
tangent stiffness by increasing the total number of contacts in
the network. Strain hardening also increases upon increasing
the persistence length of the fibers. It is shown that variability
in normal and tangential contact separation forces does not
affect the mat structure or the degree of strain hardening.
However, the yield stress decreases with increasing variability
of the tangential contact separation force at contacts.

If fibers are of finite length, strain localization occurs at a
critical strain which decreases with increasing fiber tortuosity.

Finite length straight fibers show no post-yield strain hard-
ening and undergo strain localization shortly after yielding.
Thus, tortuosity in fibrous mats with adhesion and friction
renders the network more ductile.

This work provides guidelines for designing fibrous mats
with desired mechanical properties by controlling the fiber
tortuosity, contact adhesion and friction. These data are expected
to be of importance for the design of electrospun mats for
bioengineered tissues, spun fibrous materials for various consumer
products and geotextiles, and other applications in biology and
engineering.
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Appendix

Consider an angularly restricted correlated random walk of step
length ls, as shown in Fig. 13. The angular deviation between
consecutive steps i and i + 1, i.e. Dyi = cos�1(ni�ni+1), where ni,
which denotes the direction of the walk at step i, is sampled from a
uniform distribution in the interval (�a,a). The directional spatial
auto-correlation, Cy, needs to be found, as a function of the
number of steps, n, in order to calculate the persistence length, LP.

CyðnÞ ¼ E cos
Xn
i¼1

Dyi

 ! !
(A1)

where E() is the expectation function, and Dyi is sampled from a
uniform distribution in the interval (�a,a). The distribution has

mean zero and variance a2/3.
Pn
i¼1

Dyi forms an Irwin–Hall

distribution. This distribution, however, converges to the normal
distribution rapidly with increasing n. The mean of the normal
distribution approximating the Irwin–Hall distribution for large
enough n (the approximation is already quite good at n = 10) is
zero and its variance is na2/3.

Fig. 12 Stress–strain curves for networks of straight (case VIII) and wavy
(case VII) fibers of finite length and the same friction and adhesion
parameters.

Fig. 13 Schematic showing the angularly restricted correlated random
walk.
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The expectation of cos(X) for X being sampled from a normal
distribution, @ð0; s2Þ, where s2 is the variance is:

EðX Þ ¼ e�
s2
2 (A2)

Substituting s2 = na2/3 in eqn (A2) provides the desired
approximation of (A1):

CyðnÞ ¼ E cos
Xn
i¼1

Dyi

 ! !
� e

� n
6=a2 (A3)

where n is the number of steps or l/ls (l is the contour length of
the path).

The persistence length, LP, is approximated by fitting
exp(�l/LP) (or exp(�n/(LP/ls))) to the directional spatial auto-
correlation function, Cy(n). From, eqn (A3) it can be concluded that

LP/ls E 6/a2. (A4)

Fig. 14(a) shows LP/ls evaluated numerically for various values
of a. The data are replotted in Fig. 14(b) as LP/ls vs. 1/a2

(symbols) to demonstrate the level of accuracy of eqn (A4)
represented by the line.
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