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1. Motivation and significance

Many large software projects do not achieve their reliability
targets or simply fail. Some industry experts [1] attribute this
to poor reporting that leads to suboptimal outcomes, wasted
developer time, and dissatisfied customers as well as lawsuits.
Methods to assess software reliability can complement design
and testing efforts intended to produce quality software.

Software reliability growth modeling [2] is a quantitative
approach to characterize failure data collected during testing.
Some predictions enabled by Software reliability growth models
(SRGM) include number of unique defects remaining, failure in-
tensity, mean time to failure, and software reliability, defined by
the American National Standards Institute (ANSI) [3] as the prob-
ability of failure-free software operation for a specified period of
time in a specified environment. However, software engineers
may be reluctant to apply SRGM due to a lack of awareness,
knowledge of the underlying mathematics, or time to develop
expertise and apply models as they work.

To promote the application of software reliability engineering
methods, several computer-aided software reliability tools have
been developed, including Emerald [4], SRMP (Software Reliabil-
ity Modeling Programs) [5], the AT&T SRE Toolkit [6], SoRel [7],
SMERFS (Statistical Modeling and Estimation of Reliability Func-
tions for Software) [8], and CASRE (Computer Aided Software
Reliability Estimation) [9], Robust [10], SREPT [11], CARATS [12],
SRATS [13], and M-SRAT [14]. More recently, Cinque et al. [15]
proposed Debugging-Workflow-Aware SRGM, which utilize data
from issue tracking systems to improve analytical model predic-
tions as well as support debugging process improvement deci-
sions, while Carrozza et al. [16] describe the SVEVIA framework
for software quality assessment, decision support, and produc-
tivity management, which incorporates SRGM and was demon-
strated on a large-scale project in collaboration with industry
partners. While these tools have made software reliability re-
search more accessible, each contains a relatively small number
of models and are closed source. This latter limitation prevents
other researchers, graduate students, and other interested parties
from learning from implementations and contributing additional
models to compare them objectively. Moreover, these tools fre-
quently depend on a particular operating system and program-
ming language or spreadsheet tool, which require payment of a
fee prior to use.

To overcome the limitation of existing tools, a free and open
source Software Failure and Reliability Assessment Tool (SFRAT)
[17] was developed to foster a community of researchers and
users. The open source nature of the tool enables users to incor-
porate the methods into their software testing work flows and
researchers to contribute related statistical predictions.

This paper provides an overview of the SFRAT and automated
script to accelerate the application of the tool. The script outputs
a report in portable document format (PDF) and several other
standard formats, eliminating the need to work with the graphical
user interface to manually prepare reports. The script conserves
time and promotes standardized application of software reliabil-
ity models and reporting for ongoing projects. The script includes
a verbose option to help new users interpret report results. The
illustrations apply the tool to NASA project data.

The remainder of the paper is organized as follows: Section 2
provides an overview of the SFRAT, while Section 3 describes the
automated script. Section 4 states the tool’s impact. Section 5
concludes with directions for future research.

2. Software description

The Software Failure and Reliability Assessment Tool is a free
and open source tool developed to promote regular quantitative
assessment of software reliability, improve communication of
such assessments, and foster dialog between the research and
practitioner communities. The SFRAT implements early yet popu-
lar software reliability growth models, which employ techniques
from statistics to identify a curve of best fit to failure data in order
to predict future trends. Inferences enabled include the number
of failures that would be detected with additional testing, how
much the failure intensity will decrease as well as how much the
mean time to failure and reliability will increase. Such increases
are complemented by goodness of fit measures to objectively
determine which of multiple models may predict best in order to
guide release planning. For example, Major Defense Acquisition
programs specify failure intensity as a Key System Attribute,
which is a minimally acceptable value and therefore a threshold
developers must achieve to ensure the system is operationally ef-
fective and suitable at the Full-Rate Production Decision Review.
Passing this stage authorizes entry into the Full-Rate Production
and is accompanied by the commitment of substantial taxpayer
dollars.

The SFRAT is implemented in the R programming language as
well as Python and can be used on computers running Windows,
0SX, or Linux. The R source code is accessible on GitHub and
runs in RStudio or similar R environment. The Python version
runs with an interface such as Anaconda. The open source na-
ture of the tool simplifies information assurance prior to use on
sensitive failure data. Moreover, a web instance is available from
the project website as well as example failure data sets. This
eliminates the need to install software or format an organization’s
failure data in the required format before evaluation, enabling
interested individuals to assess the tool’s functionality in order
to determine if it is suitable for their needs before investing
additional time.

The initial SFRAT release supports three failure data formats,
including interfailure time, failure time, and failure count as well
as two trend tests for reliability growth to determine if appli-
cation of models is appropriate. The SFRAT presently includes
two hazard rate models, including the Jelinski-Moranda [18]
and geometric [19], as well as four failure counting models,
namely the Goel-Okumoto [20], delayed S-shaped [21], inflexion
S-shaped [22], and Weibull [23]. Two measures of goodness of
fit enable model selection. The application architecture has been
designed to support incorporation of additional models and mea-
sures of goodness of fit into the tool. Okamura and Dohi [24] have
contributed eleven models.

2.1. Select and analyze data

Fig. 1 shows the initial view of the SFRAT after loading the
NASA1 data set [25], which consists of 60 unique failures ob-
served over 168 units of test time. Input file formats include
an Excel spreadsheet (.xlsx) or a CSV (comma separated value)
(.csv). The Excel format permits one data set per worksheet,
whereas CSV can only accommodate a single data set. The Select
Sheet combo box allows the user to switch between data sets,
which updates the graph. The Failure Data View Mode combo box
enables visualization of the cumulative failures, time between
failures, and failure intensity, the latter of which is defined as the
reciprocal of the time between two successive failures.

Fig. 2 shows the Laplace Trend Test [26], which is a statistical
test of reliability growth (increasing time between failures).

Data should exhibit reliability growth because software re-
liability growth models assume that the rate at which faults
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Select, Analyze, and Subset Failure Data

Cumulative Failures vs. Cumulative Test Time of NASAL
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Fig. 1. Tab one view after upload.
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Fig. 2. Laplace trend test.

are detected toward the end of testing decreases because fewer
unique faults are discovered. If reliability growth is not present,
applying models may be inappropriate because the predictions
can be inaccurate. The value shown in Fig. 2 indicates the 90%
significance (confidence) level in red, which has been specified by
the user. Additional default levels in black include 90, 95, 99, and
99.9. Values below these lines indicate that the data exhibits re-
liability growth with the specified level of statistical significance
and it is therefore suitable to apply software reliability models.

Fig. 3 shows the running arithmetic average of the NASA1 data
set. If the time between failures increases, the running arithmetic
average then increases, indicating an increase in system reliabil-
ity. Similarly, a decreasing running arithmetic average indicates
reliability deterioration. Both the Laplace trend test and running
arithmetic average suggest that the example NASA1 data starts
to trend in the desired direction toward the end of testing, which
corresponds to the leveling off in the failure count to the right in
Fig. 1.

Selecting the Table tab above any plot displays the raw nu-
merical data used to produce the figure in a tabular format. The
save icon below plots supports .jpeg, .pdf, .png, and .tiff formats
for inclusion in reports, while numerical tables can be saved as a
CSV or PDF file.

Running Average trend test of NASA1
16

Running Average of Interfailure Times
3

Failure Number

Fig. 3. Running arithmetic average.

2.2. Set up and apply models

To apply models, the user selects the names of one or more
model in the list on the left of Fig. 1 and then clicks compute.
This executes the most complex algorithms contained in the soft-
ware, namely numerical methods [27] to compute the maximum
likelihood estimate or curve of best fit to the data.

Fig. 4 shows a plot of the inflexion S-shaped model superim-
posed on the data. The black vertical dashed line indicates the
time at which the last failure was observed. Thus, points to the
right of this line indicate prediction.

Figs. 5, 6, and 7 respectively show the times between failures,
failure intensity, and reliability growth curve (probability of zero
failures in a specified time interval) as well as with the corre-
sponding model fits. The reliability growth curve does not include
data because it is an average based on the model fitted to the data
not a measure that can be plotted directly from the data.

2.3. Query model results

Models enable several practical inferences such as the time
to achieve a specified reliability, expected number of failures
in a specified time interval, and expected time until a specified
number of future failures.

Fig. 8 shows the table of results for three models.
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Fig. 4. NASA1 cumulative failures and model fits.
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Fig. 5. NASA1 time between failures and model fit.
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Fig. 6. NASA1 failure intensity and model fit.

2.4. Model evaluation

A natural question is which model to use for prediction. There-
fore, the tool applies goodness of fit measures, including the

Reliability Growth vs. Cumulative Test Time for NASA1: Operational Time of 19.21527778 ,
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Fig. 7. NASAT1 reliability growth curve.
Time to achieve R = 0.9 Expected # of failures Expected
Model for mission of length for next 19.21527778 Nth failure times to next
1921527778 time units 1 failures
g ORI 397.04584 5.423841 1 3.349118
Shape
2 Goel-Okumoto 6.868078 1 2.797767
g [nflexionS- 49.98788 1.023417 1 18.529592
Shaped - : -
Fig. 8. Failure predictions.
Table 1
Goodness of fit measures models.
Model AIC PSSE
Inflexion S-shaped 223.00 41.85
Delayed S-Shaped 232.59 689.91
Goel-Okumoto 247.46 110.96

Akaike information criterion (AIC) [28] and predictive sum of
squares error (PSSE) [29], both of which prefer lower numerical
values.

Table 1 shows goodness of fit measures for three models. The
inflexion S-shaped model achieves the best scores with respect to
AIC and PSSE suggesting that predictions based on this model may
be more appropriate. It also indicates that the model performs
well in a statistical sense not just the visual fit attained in Fig. 4.

3. Automated SFRAT report generation

While the Software Failure and Reliability Assessment Tool of-
fers a user-friendly interface, each session requires time. In large
software engineering projects, regular assessments will consume
a fraction of an individuals time. To reduce time requirements,
support standardization, and promote wider adoption, a script
was developed in the R programming language to automatically
generate reports in pdf and other common document formats.
The user configures the script report-specifications.R by spec-
ifying values they would select via the user interface and the
R Markdown file SFRATReport.Rmd is used in the graphical re-
port generation process. This script can be incorporated into an
organization’s test and reporting process to produce consistent
documentation in a standard format.



V. Nagaraju, V. Shekar, J. Steakelum et al. / SoftwareX 10 (2019) 100357 5

3.1. Script parameters

This section describes the parameters defined in the script,
including variables that would otherwise be specified via the user
interface.

The following is an example of the variables used to generate
a report for the NASA1 data set, which is the first sheet of
NASAX.xlsx.

verbose_report <- TRUE

sheetNumber <- 1

filePath <- ¢/SFRAT/model_testing/NASAX.xlsx’

colors <- c("navy",'red", "green", "firebrick4", 'magenta')

confidence_1lvl <- 0.9

num_failures_future_prediction <-1

models_to_apply <- c(‘DSS’, ‘GM’, ‘Wei’, ‘GO’, ‘IM’,
‘ISS’)

mission_time <- 19.215

num_failures_to_predict <- 1

additional_time_software_will_run <- 19.215

desired_reliability <- 0.9

reliability_interval_length <- 19.215

percent_data_for_PSSE <- 0.9

Inline comments are supported, but have been removed here
to conserve space.
The meaning of these parameters is as follows:

e verbose_report - Enabling this option produces verbose text
output in the report, providing a brief description of each
result in the report. This setting is appropriate for users
unfamiliar with software reliability and the corresponding
statistical inferences.

o filepath - The path to the location where the data file is
located.

e sheetNumber - If the Excel file has more than one data
set (one data set per sheet), this option allows the user
to specify the data to be analyzed by indicating the sheet
number.

e colors - The set of colors used to plot different models in
the report.

3.2. Tab 1 - ‘Select, Analyze, and Filter Data’

o confidence_lvl - A confidence level between 0 and 1 for the
Laplace trend test (red line in Fig. 2) to quantify the desired
level of significance for reliability growth.

3.3. Tab 2 - ‘Set up and Apply Models’

o num_failures_future_prediction - Specify the number of
failures to predict beyond the end of testing.

o models_to_apply - Specify which software reliability growth
models to apply. The available models are the delayed s-
shape (DSS), geometric (GM), Goel-Okumoto (GO), Jelinski-
Moranda (JM), Weibull (Wei), inflexion S-shaped (ISS).

e mission_time - Extends the plot axis this amount of time
beyond the last observed failure to display model trends into
the future (for example, to the right of the vertical dotted
line in Fig. 4).

3.4. ‘Query Model Results’

e num_failures_to_predict - The number of failures to predict
beyond the end of testing.

o additional_time_software_will_run - The additional time
beyond the end of testing to predict the number of future
failures.

) SERAT report NASA1_2010-03-30,d1(page 1 f 12)
Software Failure and Reliability Assessment Tool:
Report
Author Name
2019-03-30_10:16

Tab 1: Select, Apply, and Analyze Data

in different formats:

Fig. 9. Initial view of the report using NASA1 data.

o desired_reliability - The target reliability between 0 to 1
used to estimate the time required to achieve such reliabil-
ity.

o reliability_interval_length - The duration the software
should execute without failure to estimate reliability.

3.5. ‘Evaluate Models’

o percent_data_for_PSSE - Percentage of data to be used
for model fitting. The remaining data is used to assess
model prediction using the predictive sum of squares error
goodness-of-fit measure.

3.6. Example report

Fig. 9 shows the first page of the 12-page report generated.

The left side of the report provides an outline, which cor-
responds to the plots produced in a typical run of the work-
flow defined by the graphical user interface, including plots of
the cumulative failures, time between failures, failure intensity,
trend tests, and plots with the fitted models superimposed as
well as the tables for model predictions and goodness of fit
assessments. The default file name format for report is SFRAT
report_dataName_YYYY-MM-DD.pdf.

4. Impact

The Software Failure and Reliability Assessment Tool offers to
promote communication between software reliability researchers
and practitioners. Specifically, the open source nature of the tool
promotes the inclusion of additional models and measures of
goodness of fit as well as the opportunity to extend the tool
to additional stages of the software lifecycle. Thus, researchers
contributing to the tool can rapidly transition their results to
intended audiences, while practitioners can share data to commu-
nicate practical software engineering challenges in order to foster
novel modeling research for their benefit.

Past research has overemphasized modeling and a limited
number of optimization problems based on these models. More-
over, most new models proposed in research articles are com-
pared to a handful of simpler models, which are relatively easy
to outperform with statistical measures of goodness of fit. Sim-
ilarly, optimization problems based on these models such as
effort allocation [30] and optimal release [31] have rarely if ever
demonstrated how such methods can be used in an ongoing
manner throughout the testing process as additional failure data
becomes available. The tool does not remove this barrier en-
tirely, but aspires to foster meaningful collaboration between
practitioners and researchers. The tool offers a framework for a
researcher to contribute one or more models. Instructions are
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available at https://sasdlc.org/lab/assets/projects/srt.html. These
contributions will benefit users who can compare the perfor-
mance of alternative models, while model contributors can gain
credibility when their models are successfully applied to real
projects.

The tool automates the complex mathematics required to
identify curves of best fit to input data for each model with
stable numerical methods, allowing users to focus on their day
to day work. Thus, the software substantially lowers the bar-
rier to applying software reliability engineering to quantitatively
assess software and the automated script further reduces the
time required to apply the methods, promoting standardization
and regularity of reporting within and across projects. Toward
this end, the source code can be modified and incorporated into
internal processes of an organization.

The SFRAT is presently used by Federally Funded Research
and Development Centers and Department of Defense University
Affiliated Research Centers to assess the reliability of software
intensive Major Defense Acquisition Programs to ensure that
their government customers and the taxpayers receive quality
software in support of national defense and security. The software
is also used by major defense contractors, private industry, and
the international research community (including a version with a
Japanese language interface). However, we do not require individ-
uals to register prior to download and therefore cannot accurately
state the full extent of its use.

5. Conclusion and future work

This paper presented the Software Failure and Reliability As-
sessment Tool. The SFRAT supports analysis of failure data pro-
duced during testing, including trend tests for reliability growth,
visualization of cumulative failures, time between failures, and
failure intensity as well as reliability growth. To apply software
reliability growth models to data, stable numerical methods have
been implemented, enabling reliability predictions and goodness
of fit assessment. The illustrations were provided in the context
of a NASA data set and a script to further automate and standard-
ize the software reliability assessment process was discussed.
The tool is open source to promote adoption of the methods
and support extensibility as well as further dialog between re-
searchers and practitioners. It is presently used on large software
applications acquired or developed by government and private
organizations.

Future work will explore applications to software security de-
fect (vulnerability) data discovered during penetration testing as
well as integration with other software development and testing
tools.
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