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In this work, we study the mechanical behavior of non-crosslinked networks of fibers that interact adhe-
sively. Adhesion drives fiber organization into bundles and a network of fiber bundles forms as a result of
this process. Bundles split and re-connect forming specific triangular features at all bundle intersections,
with role in network stabilization. The structure of such networks has been discussed in the literature,
but their mechanics remains largely unexplored. We show here that such networks are exceptionally sta-
ble, and despite the absence of crosslinks between fibers behave, at relatively small strains, essentially
similar to crosslinked networks, in which the role of crosslinks is played by the triangular structures at
bundle intersections. We also provide new results regarding the effect of the network architecture on
the type of strain stiffening observed in tension. The results apply to carbon nanotube structures, such as
buckypaper, and various connective biological tissue in which collagen fibrils form bundles and the tissue
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1. Introduction

Many biological and man-made soft materials have a network
of fibers as their main structural component. The extra-cellular
matrix (ECM) and connective tissues in animals are composed from
collagen and elastin fibers. F-actin networks and microtubules are
structural components of the cytoskeleton in eukaryotic cells.
Networks of polymeric nanofibers, like polyacrylonitrile (PAN),
poly-L-lactide (PLLA), polypropylene (PP) etc., are used in ap-
plications like textile, filtration, hygiene products, and tissue
engineering. The prevalence of fibrous materials in the biological
world is due to the effectiveness of reinforcement provided by
fibers: small volumes of material are used to span large spatial
domains and provide adequate stiffness and strength. Soft mate-
rials composed from molecular networks such as rubber, gels and
some adhesives accommodate large deformations and generally
exhibit high toughness (Ducrot et al., 2014; Gong, 2014).

In random fibrous assemblies, fibers interact at points of con-
tact where they may be rigidly bonded to each other (crosslinks),
or not. In the absence of crosslinks, topological interactions,
associated with the fiber non-overlapping condition, become
the controlling factor in the mechanics of the fibrous assembly
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(Schofield, 1938; Subramanian and Picu, 2011; Toll and Man-
son, 1995; van Wyk, 1946). This is the situation in clumps of fibers
such as wool and insulation material subjected to compression.

Surface interactions between fibers are often of adhesive
type. Adhesive interactions originate from various sources such as
hydrophobic attraction between filaments, hydrogen bonding, elec-
trostatic interactions, etc., each being dominant in specific material
system. Adhesion forces are generally short-ranged, and in order to
engage the interaction, fibers must be brought in contact in some
other way. For example, non-wovens are ‘mechanically activated’
in order to increase their stiffness and strength (Michielsen et al.,
2006), wet pulp is compressed to bring the cellulose fibers in
contact in order to form paper (Alava and Niskanen, 2006), while
capillarity may organize wet fibrous assemblies into bundles
(Bico et al., 2004; De Volder and Hart, 2013) as reviewed in
Style et al. (2017). In such cases, capillary forces bring the elastic
fibers in contact, after which they are held together by adhesive
forces.

At the scale of a pair of fibers interacting adhesively one may
envision two types of configurations: a crossed configuration, in
which fibers meet at a non-zero angle and the contact is estab-
lished over an elliptical domain of size of the order of the fiber di-
ameter, and a parallel configuration, in which fibers are in contact
all along their length. The first scenario is encountered mostly in
mats of spun fibers (Negi and Picu, 2019a), while the second is ob-
served in networks of fibers that self-organize under the action of
adhesion (Sengab and Picu, 2018). In the second case, fibers form
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Fig. 1. Cellular network of fiber bundles stabilized by adhesion obtained using a
bead-spring model evolved with molecular dynamics in Picu and Sengab (2018).
The inset shows the triangular structure of a node of the network.

bundles which are held together by adhesive forces. The formation
of filament bundles was observed in dense suspensions of actin
(Tempel et al., 1996) and collagen (Yunoki et al., 2015) and the
process was discussed theoretically by Zilman and Safran (2003).

An analysis of the structural organization driven by adhesive
forces in non-bonded fiber assemblies was presented in Picu and
Sengab (2018). In this work, fibrous systems were represented
with the bead-spring model commonly employed in polymer
physics and were allowed to evolve under the action of adhesive
forces. The organization and stability of the resulting structure was
analyzed. Fibers tend to bundle, and a random network of bundles
results gradually. Fig. 1 shows such an example. The nodes of this
network have a special structure. Nodes are generally three-fold
coordinated (connectivity number z=3), i.e. represent the inter-
section of three bundles. At given node, each bundle splits and
the resulting sub-bundles merge with the other bundles involved,
as shown in the inset of Fig. 1. This triangular structure is similar
to the Plateau triangles observed in foams, plays a central role
in network stabilization, and was first described and analyzed in
detail in Picu and Sengab (2018).

The evolution of an assembly of fibers under the action of
adhesive forces is controlled by two non-dimensional groups:
pLy, where Ly is the fiber length, while p is the network density
(total length of fibers per unit projected area of the network), and
W = (Lo/Lgc)?, where Lgc = /Efl¢/y is the elastocapillarity length
(Bico et al., 2004). Ef and Iy are the elastic modulus of the fiber
material and the moment of inertia of the fiber cross-section,
while y represents the work of adhesion per unit length of
contact between two fibers with parallel axes. For ‘infinite’ fibers,
i.e. fibers which are much longer than the pore size or any other
microstructural length scale, ¥ can be defined in terms of the
fiber diameter, d, which is the only intrinsic length scale of the
problem. In the present case, we work with W, =(df/LEC)2.

It was shown in Picu and Sengab (2018) that fibrous systems
evolve when ¥ > a(pLy)?, where a is a numerical constant, and
remain in the as-deposited (‘locked’) state when this condition
is not fulfilled. Large W values result if adhesion is strong (y
is large) or when Ed; is small. Since Ifwd}‘, both ¥ and W,
increase rapidly as dy decreases, and hence networks of nanofibers
are much more likely to self-organize under the action of adhe-
sion compared with networks of microfibers. Further, if pLg is
small, evolving structures may disintegrate into isolated bundles,
while a cellular network of fiber bundles forms at larger pLy.
Inter-fiber friction leads to an increase of constant a and renders
self-organization and structural evolution less likely (Sengab and
Picu, 2018). The results reported in Sengab and Picu (2018) allow

determining whether a specific system is expected to evolve under
the action of adhesion such to form a network of bundles or not.
These two articles, Picu and Sengab (2018) and Sengab and Picu
(2018), introduce cellular networks and identify the parametric
regime in which such networks exist in the presence and in the
absence of inter-fiber friction, but do not discuss the mechanics
of the resulting fibrous structures. The analysis of the mechanical
behavior of cellular networks is the objective of the present article.
The mechanics of ‘locked’ fiber mats in which non-crosslinked
fibers interact by adhesion and friction, but the network is not of
self-organized, cellular type is presented in Negi and Picu (2019a).

Buckypaper is an example of a network of bundles
(Berhan et al., 2004; Coleman et al., 2003; Liu et al, 1998;
Lu, 1997). Lgc is very small (Lgc = 10nm) for single-walled CNT
(10,10) of diameter 1.4 nm, which leads to large W values even for
relatively short CNTs (small Lgy). This can be compared for example,
with PAN nanofibers of diameter 300 nm, for which Lgc~ 30 um
and which are less likely to self-organize in networks of bundles
under the action of surface interactions. Fibers with diameter
larger than 1 um are even less likely to self-organize.

Consider now the expected behavior of such networks when
subjected to tensile loading. Two distinct classes of response exist
function of whether fibers can slide relative to each other within
bundles or not. If fibers are allowed to slide axially, bundles
behave similar to elastic-plastic rods in tension, may thin down
and rupture. The effective yield stress depends on the magni-
tude of friction. At the nanoscale, friction is not Coulombic and
is characterized by a constant shear stress, independent of the
load acting normal to the contact surface (Carpick et al., 1996;
Homola et al., 1990). Hence, the force required to pull two parallel
fibers in adhesive contact is proportional to the length of the
contact between fibers. This renders sliding along the contour of
fibers within bundles unlikely in realistic situation. In buckypaper,
which is the prototypical example of cellular networks stabilized
by adhesion, the network ruptures before extensive sliding occurs
(Stallard et al., 2018). If relative sliding is not pronounced, bundles
deform elastically, and nodal triangles evolve leading to dynamic
splitting and merging of sub-bundles. We focus the present study
on this deformation regime of cellular networks and seek to quan-
tify the role of the adhesive interactions and network elasticity in
defining the mechanics of the network.

2. Model and simulation procedure
2.1. Network geometry parametrization

The networks considered in this study are similar to that shown
in Fig. 1, i.e. they are planar, and the nodes have connectivity z=3.
We assume that all bundles contain the same number of fibers,
n. In realistic structures, n may fluctuate to some extent between
bundles forming the network, but this detail is neglected here for
simplicity. Symmetry considerations mandate that, under these
conditions, bundles meet at 120° if the node is isolated from the
network. The inter-bundle angles deviate from 120° if the values
of n of the three bundles forming a given node are not equal.
However, for a broad distribution of n values, the inter-bundle
angles deviate only slightly from the perfectly symmetric config-
uration (Appendix A), observation which supports the modeling
choice made here.

Two cases are considered (Fig. 2): Case (1) represents the nomi-
nal cellular network situation, in which nodal triangles are present
at all network nodes, while Case (2) is a limit situation in which
the nodal triangles collapse to a point, which becomes a network
node. The underlying graph topology is assumed to be of Voronoi
type. Rens et al. (2016) considered a 2D network of connectivity
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Fig. 2. (a) Realization of a cellular network showing the two cases discussed in
text. Case (1) represents nominal cellular networks with nodal triangles, whereas
Case (2) represents the corresponding structure without nodal triangles, but same
graph. The geometric parameters used in the analysis in Case (1), {l;‘j. 8ij. 8ji}, are
shown in (b).

equal to, or smaller than 3 at all nodes and stabilized by bending
interactions, somewhat similar to Case (2) considered here.

The geometry is parametrized by the bundle length [; corre-
sponding to the generic link between nodes i and j of the network,
and by nodal triangle parameters §;, 8;;,, 6;, where I, m, n are the
three nodes connected to node i (Fig. 2(b)). With l?‘j being the max-
imum length of link ij, it results that [;; = ll.*j — &jj — dji. The aver-

age of [;; over the entire structure is denoted by I¢, Ic = E Case (2)
is equivalent to Case (1) in the limit Lgc <« Ic. The set {l;*j, 8ij. 8jiks
along with the graph topology, defines the parametric model, de-
noted by M. For a given M, the corresponding network structure,
denoted by S, is obtained through a finite element (FE) simulation.

2.2. Model generation

The procedure starts with the generation of a Voronoi network
which is then used as the underlying graph for the geometric
parametrization to obtain M. For any given M, the bundles are
represented using 2D linear Timoshenko beam elements with
circular cross-section and with at least 5 elements per bundle.
Multi-Point Constraints (MPC) are also used to connect the mesh
representing the bundles with the sub-mesh representing the
nodal triangles. This produces bundle branches in the nominal
cellular network structure, S.

The moment of inertia of the bundle section is denoted by Ij.
A bundle comprising n constituent fibers which may slide axially
relative to each other has I, =nly. If no fiber sliding takes place, the
bundle section is rigid and I, ~n21f in the large n limit. In this work
we consider the low friction and/or relatively low n case, such that
I, =nly. The equivalent diameter of a bundle results dj, =n'/dy.

FE simulations to obtain the actual structure S (Fig. 3) from a
given parametric model M are performed using the commercial
finite element package ABAQUS-v1l. The explicit time integra-
tion scheme is used with appropriate time-stepping to ensure
numerical convergence.

Further, while preserving the graph structure (general connec-
tivity) of the initial Voronoi network and the network density,
the total energy, Uy, of the network structure, S, is minimized in
the phase space defined by parameters {l;;, §;}. Note, Ur=Us+ U,
where Us is total strain energy and U, is the total adhesion
energy. The energy minimization procedure involves the network
structure, S, evolution under the combined action of two pro-

Fig. 3. Periodic nominal cellular network structure, S.

cesses — process-A and process-B — corresponding to the variation
of Ur with [; and dj, respectively.

Process-A changes the bundle lengths (outside of nodal trian-
gles), while keeping the length of the nodal triangle sub-bundles
constant. It is driven by the gradient of Uy (or Us) in the phase
space of {l;}, which is calculated using a semi-analytical expres-
sion. For a bundle of length [;, bending energy ugg, axial energy
ugg, and shear energy uge (Fig. 4(a)), 0Ur/dl; is obtained as (see
Appendix B):

oUr _ 0Us _ (upe + 3uap +3usg + 12 - B)

where, 1y, is the position vector of bundle end 2 relative to the
bundle end 1, and F, is the end reaction force at bundle end 2
(Fig. 4(a)). An additional constraint on network evolution through
process-A is that of mass conservation, i.e. nXl; = const.

Process-B, also referred to in this work as ‘nodal relaxation’,
modifies {§;}. This changes the length of the nodal triangle sub-
bundles and modifies {l;} such to emulate the bundle zipping
and unzipping processes. It is driven by the gradient of Uy in the
phase space of {§;}. Referring to the geometry at a branching
point shown Fig. 4(b), dUr/d8;; is calculated as:

wr_ 1 mm
35,‘]‘ ) n+ np
—yP(ny) - yP(ny). 2)

where, E is the elastic modulus of an individual fiber, ny and
n, are the number of fibers in sub-bundles, lcl+ and lc;r are the
curvatures of the sub-bundles, and yP(n) is the adhesion energy of
a bundle of n fibers. P(n) is the number of line contacts between
fibers in the bundle of n fibers. For close-packed bundles, P(n) =
3n — /12n — 3 (Harborth, 1974). Eq. (2) was derived in Negi and
Picu (2019b) and is only valid under the assumption that I, =nly.

Evolution of the initial parametric model through the joint
processes A and B leads to the desired stable structure, S, of a
nominal cellular network. To obtain the limit-case network from
a given stable nominal cellular network, we increase the length of
bundles from I to l;} such that §;;=0. Further, we define MPC on
the mesh nodes at bundle ends such to constrain the bundles to
meet at 120°, as indicated for Case (2) in Fig. 2(a).

Egle| iy — 15 ||2 +yP(ny +ny)
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Fig. 4. (a) Representation of an individual bundle of S. [; specifies the bundle length, F; and F, are the reaction forces acting at the two ends of the bundle. (b) Represen-
tation of bundle branching. r specifies the position of the branching point along the contour of a bundle and it is related to §; parameter since dr= —dd;. ny and n, are

sub-bundle sizes, and k* are the sub-bundle curvatures at the branching point.

Periodic boundary conditions are applied as MPC on the mesh
nodes at the in-plane boundaries. The model has dimensions Ay
and Ay in the two directions of periodicity, which also make an
angle 6y, Fig. 3. A, Ay, and 0Oy, are additional degrees of freedom
provided to the FE simulation and are not known a priori. Ay, Ay,
and 6,y thus refer to the macroscopic shape and size of a periodic
cellular network and any applied macroscopic deformation on the
network can be specified by modifying these parameters.

2.3. Solution procedure

Three realizations of each network are considered. These result
from three Voronoi graphs. For each realization, we obtain stable
nominal cellular networks by minimizing the total energy Ur
through process-A and process-B acting simultaneously. To this
end, a constrained gradient descent algorithm using the gradients
of Egs. (1) and (2) is performed and the network parameters,
{l, 85}, are evolved accordingly. Specifically, at each iteration the
parametric model, M, is used to setup the FE simulation which
leads to the corresponding network structure, S. The current struc-
ture is used to calculate the gradients of Eqs. (1) and (2), which
allow evaluating the increments in the {l;, §;} phase space, and
to obtain the parameter set defining M of the next iteration. This
procedure is similar to that used in Negi and Picu (2019b). The pro-
cedure continues until the minimum total energy is reached, while
the total length of fiber bundles is maintained constant, periodicity
is imposed on the global scale, and the overall graph topology is
maintained. The limit case networks (Case (2)) are obtained from
the nominal cellular networks by bringing parameters {§;;} to zero.

The number of fibers per bundle, n, is set to be 62 in all
models. This implies that the bundle diameter is related to the
fiber diameter as dj ~ 2.81d;. The mean bundle length, I, for the
limit-case (Case 2) network is equal to 160d;~57d,. The strength
of adhesion is specified in terms of W , which is a parameter of
the problem. The fiber diameter df is taken as the unit of length
and Efd% is used as the unit of force.

Both Case (1) and Case (2), i.e. nominal cellular and limit-case
networks, are loaded in uniaxial tension by modifying the model
periodicity parameters, Ay, Ay and Oyy. During the loading process,
the minimum energy state is reached in each loading increment
only through Process-B (zipping-unzipping of bundles).

3. Results and discussion
3.1. Structural characterization of cellular networks

A cellular network stabilized by adhesion differs from the
graph-equivalent Voronoi network due to the presence of nodal

triangles and prestress in the bundles. As discussed in Section 2,
the prestress arises since the length distribution of bundles may
not be entirely compatible with the angular constraints imposed
by the nodal triangles.

The resulting structure is characterized by Ic and by the mean
nodal triangle size Iy = 2% Ir/l¢ is a non-dimensional measure of
the relative size of the nodal triangles and the connecting bundles.
The prestress in bundles (outside triangles) can be characterized
based on the respective bundle curvature. The root mean square
curvature of the bundles in the network is denoted by Kyns, and
the prestress is quantified by the non-dimensional product IcKyps,
which describes the shape of the bundles.

We perform an image analysis of the structure in Fig. 1 ob-
tained by explicitly simulating (using a bead spring model of the
fibers) the self-organization process by which the network of bun-
dles forms under the action of adhesion (Picu and Sengab, 2018)
and infer that for this structure I7/lc =0.28. We adjust the strength
of adhesion, i.e. W, to reach a value of this structural parameter
close to the value evaluated for the structure in Fig. 1. Specifically,
W, =23 x 10~* leads to Iy/l-=0.23. This value of ¥, is considered
the reference value and is denoted by W,,.

To study the effect of Iy/Ic on network properties, W, is varied
from Wy/4 to 2W, and the non-dimensional parameters Iy/lc and
IcKims are computed. In this parametric study, structures S with
different W, are obtained from structure Sy (for which W,;= W)
through process-B. The results are tabulated in Table 1 and also
shown in Fig. 5. The variation of W, has a large effect on the
network structure; the size of the nodal triangles, I, increases
rapidly as W, decreases.

To provide a reference for this numerical result, we consider
an analytic model of an isolated nodal triangle (Sengab and
Picu, 2018), inset to Fig. 5. Consider, as above, that all bundles
forming the node are composed from n fibers and the sub-bundles
forming the triangle have n/2 fibers. The structure has three-fold
symmetry, with all sub-bundles of given triangle having the same
curvature. The geometry requires that

Iy = R/3 (3)

Table 1
Geometric properties of cellular networks with various levels of
adhesion, W,. The values are the mean of three realizations.

Wy Ir/lc Ir/df IcKims
2V, 0.141 9.89 0.841
Wy 0.230 14.93 0.624
Wy /2 0.377 21.97 0.460
Wy /4 0.651 31.53 0.339
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Fig. 5. Dependence of the mean nodal sub-bundle length, I;, on the elastocapillary

length, Lgc = /Efl;/y = dy/\/ V¥, . Both analytical (red diamonds), Eq. (5), as well
as numerical (blue, solid circles) results are shown. The error bars show standard
error from 3 realizations.

where R is the radius of curvature of the sub-bundles. R can
be evaluated by imposing the condition of equilibrium of the
branching points of a triangular structure:

R—\/ nEfIf
YV 2(P(n) -2P(n/2))y

Hence, Ir/d; can be expressed as:

b _ (7 n Lec (5)
d; ~ \ 3\ 2(m) —2P(/2)) ) 4;

where, Lgc = /Efly/y =dg/\/Vy .This relation is shown in
Fig. 5 along with the numerical data.

In this analysis, W, is varied after the graph defining the
network is defined. In this case, the variation of this parameter
affects only the nodal triangle size and the residual stress in the
structure, but not the overall graph. This somewhat artificial way
of investigating the effect of adhesion is selected in view of the
specific goal of the present study, i.e. that of determining the
structural stability of the network once it is formed. In a broader
sense, as discussed in Sengab and Picu (2018), W, controls the
graph defining the network as well as the size of nodal triangles.

(4)

3.2. Mechanical behavior of cellular networks

The Cauchy stress vs. true strain response of nominal cellular
networks with the reference set of parameters (i = 62, [} = 160d)
and I7/lc=0.23, 0.38, and 0.65 is shown in Fig. 6a. The stress
is normalized with pE@A;, where p is the network density, Ay is
the cross-sectional area of fibers, Ap~ d2, and the true strain, &,
is evaluated as the logarithm of the stretch, A. The behavior is
generally hyperelastic since no inelastic mechanism operates.

Fig. 6b shows the tangent stiffness K = pE}Ang"[ versus the
computed based on the curves in

normalized stress, 6 = ﬁ
Fig. 6a. Three regimes are visible: a linear elastic regime I (up to
point A) in which K is constant, a first strain stiffening regime
Il in which the slope of the respective curve is S =14 (A to B),
and a second strain stiffening regime III in which a slope of ~0.5
develops (beyond B).

Two curves are shown for each value of I7/I: one in which bun-
dles may zip and unzip via Process-B, and a second curve obtained

4
5 X 10 . ‘
a
4l ( ) —Ir/lc = 0.65 |
—l7p/le = 0.38
3t —lr/lc =0.23 |
® — With Process-B
! |
=== Without Process-B
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0 .
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In(\)
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Fig. 6. (a) Stress-stretch curves for the uniaxial behavior of cellular networks with
adhesion. The stress is normalized by pEfAy, & = ;7. The continuous curves rep-
resent the response of the system in which nodal triangles evolve during loading,
while the dashed lines represent networks in which triangles are prevented from
evolving. (b) Data in (a) repotted as tangent stiffness vs. stress. The error bars show
standard error from 3 realizations.

with geometrically identical networks in which nodal triangles
are not allowed to evolve and retain the size at the beginning
of loading. The second type of curve is shown with dashed line
and is labeled “without Process-B”. It is seen that the difference
between the two curves is minimal. This indicates that, although
the nodal triangles evolve during stretching, the contribution of
this process to the overall stress-strain curve is minimal.

This is supported by Fig. 7a which shows the increase of the
adhesion energy AU, and the strain energy AUs during loading,
for the network with I7/lc =0.65. The variation of the strain energy
in the structure is much more pronounced than the variation of
the adhesion energy. Fig. 7b shows the variation of the mean
triangle size, Iy, during deformation; it shows that nodal triangles
deform and change size as the network is stretched. These results
indicate that the network behaves as if it were crosslinked at
the location of triangles. This is somewhat surprising, given the
absence of physical crosslinks and indicates that nodal triangles
are strongly stabilizing the structure.
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Fig. 7. (a) Variation of the adhesion, AU,, and strain energy AUs, normalized by the adhesion energy of the unloaded network Uy, during loading of nominal cellular
network having W, =W,/4 and I7/lc=0.65. (b) Variation of parameter Iy, Aly, defining the mean size of nodal triangles during loading. Alr is normalized with the value of
Ir in the unloaded network, Ip. The error bars show standard error from three realizations.

Further, we modify W4, which leads to a variation of I7/I¢ in the
unloaded structures. Fig. 6b shows that this parameter has little
effect on the stress-strain curves. The small strain stiffness changes
little as W, is varied. Also, the nature of strain stiffening does
not change. However, the stress-strain curves of Fig. 6a gradually
shift to the right as Iy/lc decreases, which indicates that only
the transition strain between regimes I and II is affected, while
the nature of strain stiffening is insensitive to this parameter.
Specifically, as the strength of adhesion decreases, the range of the
linear elastic regime I increases. A similar observation was made
in Negi and Picu (2019b), where the mechanics of cross-linked
networks with adhesion is discussed.

3.3. On the nature of strain stiffening

The nature of strain stiffening is defined by the slope of the
regime Il segment of the stiffness-stress curve in Fig. 6b. With
K ~ &# after a transition strain &y (and stress o, corresponding
to point A in Fig. 6b), it results that the network strain stiffens
as oog=(1—(B—-1)eleg—1))"UE=D for ¢ > g, in the strain
stiffening regime II

It is broadly reported in the literature that cross-linked
networks of Voronoi type, whether in 2D or 3D, strain stiffen ex-
ponentially (8=1) i.e. o/og=exp(e/eq—1) for € > gy (Ban et al.,
2016; Deogekar and Picu, 2017; Licup et al, 2015). It was also
reported that fibrous networks, i.e. networks created in 3D by
the deposition of straight fibers with random positions and ori-
entations, and crosslinked at all points of inter-fiber proximity,
strain stiffen following a power law, with exponents S in the
range [0.5,1) (Islam and Picu, 2018). Recent experimental results
on reconstructed collagen networks also indicate the power-law
strain stiffening behavior of the type K ~ é#, with B in the range
1 - 1.6 for temperature range 26-37 °C (Jansen et al., 2018).

It becomes of interest to investigate the origin of the strain
stiffening observed here, with 8 > 1. To this end, we evaluate
two hypotheses: (i) that the residual stress inherent in these
cellular networks is at the origin of the modified strain stiffening
behavior observed, and (ii) that this behavior is a consequence of
the structure of the network and is not associated with adhesion
or residual stress.

3.3.1. Effect residual stress
To evaluate the effect of the residual stress, we consider
the nominal cellular network with nodal triangles characterized

Fig. 8. A realization of the nominal cellular network structure, with I7/lc =0.23, be-
fore (a) and after (b) bundle length perturbation with c=0.4.

by Ir/lc=0.23. The residual stress in this structure is gradually
increased by perturbing the length of the bundles as:

Iilj = 11(1 + ZC(SU - 05)) (6)

where I'; and I; are the lengths of a generic bundle after and be-
fore modification, respectively, &;; is a stochastic variable uniformly
distributed in the interval [0,1] and c is a parameter controlling the
magnitude of the perturbation. Note that this structural modifica-
tion disturbs the equilibrium between the adhesive forces and the
force associated with the variation of the strain energy, and hence
the perturbed model needs to be re-equilibrated after the bundle
lengths are perturbed and before uniaxial testing. The nodal tri-
angles are allowed to fully adjust during this equilibration to the
new network configuration. Fig. 8a and b show a network before
and after the bundle length modification and full relaxation. The
curvature of bundles in Fig. 8b is larger, with the nondimensional
parameter I/K}, increasing from 0.62 for the structure in Fig. 8a, to
0.75 for the structure in Fig. 8b. As per Eq. (6), 't does not change
upon perturbation. Interestingly, even after nodal relaxation, Iy, as
well as the average size of the nodal triangles do not change. This
is, in fact, an expected result based on the data in Fig. 5, which
indicates that § depends only on the elastocapillarity length Lgc.
Fig. 9 shows the tangent stiffness-stress curve for the network
with ¢=0, and two perturbed cases, with c=0.2 and 0.4. It is seen
that the regime II slope remains 8 =1.4 in networks with residual
stress for all ¢ values considered. This indicates that the origin of
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Fig. 9. Tangent stiffness K vs. stress & curves for cellular networks with three lev-
els of perturbation, c. The residual stress in the structure increases with c. Both
stiffness and stress are normalized by pEAy. The error bars show standard error for
three realizations.
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Fig. 10. Tangent stiffness vs. stress curves for Iy/lc=0.23 (blue diamonds) and
Ir/lc =0 (red circles) and for a Voronoi network (green stars). Note that cellular net-
works with I7/lc =0.23 undergo relaxation via the evolution of the nodal triangles
during loading, which is not happening in the Ir/lc =0 case or the Voronoi network.

the modified strain stiffening behavior of cellular networks is not
associated with the residual stress intrinsically present in these
structures.

3.3.2. Effect of network architecture

The second hypothesis tested is that the functional form of
strain stiffening is determined by the structure of the network.
Fig. 10 shows the tangent stiffness-stress curve for the cellular
network with I7/lc=0.23 (Case (1)) and for the limit-case cellular
network of Case (2), with I/lc— 0. In Case (2), the effect of
adhesion is not present since triangles are eliminated. The two
curves overlap, which demonstrates again that adhesion and the
evolution of nodal triangles during network deformation do not
contribute significantly to defining the stress-strain curve. Cellular
networks with adhesion behave, in the range of strains considered
and in the absence of relative fiber sliding within bundles, sim-

ilar to crosslinked networks of the same graph. As discussed in
Picu and Sengab (2018), this points to the strong stabilizing role of
nodal triangles whose effective mechanical function results be to
identical to that of a crosslink.

We include in Fig. 10 the tangent stiffness-stress curve for
Voronoi networks. As expected, this curve exhibits in regime
II a slope of 1 which implies exponential stiffening. It results
that the nature of strain stiffening is controlled by the network
architecture and not by the presence of residual stresses or the
presence of adhesive interactions. This observation indicates that
the functional form of the stress-stretch curve can be modified in
a broad range by adjusting the underlying graph.

4. Conclusions

Previous work established that adhesive inter-fiber interactions
drive the self-organization of ensembles of fibers. If adhesion is
weak, self-organization does not take place and the fibers remain
locked in the as-deposited mat configuration. If adhesion is suf-
ficiently strong, cellular networks of fiber bundles result. Cellular
networks are composed form fiber bundles which split and merge
with other bundles at intersection points, forming characteristic
nodal triangles. This preliminary work focused on the structure
and stability of non-crosslinked fibrous assemblies stabilized by
adhesion, but did not investigate their mechanics.

The present article discusses the mechanical behavior of
cellular networks subjected to uniaxial tension. During loading
triangles may evolve by zipping and unzipping, which leads to
the variation of the length of adjacent bundles. Such networks of
bundles store residual stresses and adhesion energy. The residual
stress results from the incompatibility between the structure of
the nodal triangles and the topological constraints of the network
architecture. We observe that the stress-strain curve of networks
in which triangles are allowed to evolve during loading, and
that of the equivalent networks in which triangles are prevented
from evolving, are approximately identical and have hyperelastic
characteristics. Therefore, nodal triangles have a strong stabilizing
effect causing the network to behave as if it were crosslinked. The
stiffening behavior observed is different from that of the Voronoi
networks. We show that this modified stiffening is due to the
structure of the network, and not to the presence of residual stress
or to inter-fiber adhesion. These results shed light on the behavior
of buckypaper and of some collagen-based biological networks in
which fiber bundles are observed.
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Appendix A

The equilibrium configuration of an isolated nodal triangle is
discussed in this Appendix. This was also analyzed in Picu and Sen-
gab (2018); here we focus on the dependence of the inter-bundle
angles on the variability of the structural parameters. To this end,
consider the structure in Fig. A1, which shows a triangle formed by
three bundles, AA’, BB’, and CC’ of nq, n, and n3 fibers, respectively.
The outer ends of the bundles are free. This represents an isolated
nodal triangle or a nodal triangle in a network in which bundles
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Fig. A1. Parameters defining a nodal triangle.
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Fig. A2. Probability distribution function of angles «; and «, defining the geometry
of a minimum energy triangle with variable bundle sizes, ny, n, and ns. Triangles
with very different values of n; take almost symmetric configurations with o, o
and o3 close to 120°.

remain straight and store no strain energy. The sub-bundles AB, AC
and BC store strain energy and are arcs of circle of radii Ry, R, and
R3. At the splitting points A, B and C, the sub-bundles are tangent
to each other. Bundles AA’, BB’ and CC’ form angles o1, o and «s.

The total energy of this structure, Uy, including strain and ad-
hesion energy components, can be calculated in terms of these
parameters. For each set n;, i=1...3, minimization of the total en-
ergy provides the equilibrium angles ¢, i=1...3 (restricted by the
condition «q + oy + 3 =27 ). This procedure is applied to a large
number of configurations with bundle sizes ny, n, and n3 sam-
pled from a discrete, binomial distribution of set mean and broad
and adjustable variance. Fig. A2 shows the probability distribution
function of angles «; and «5. Although the distribution of n; is

broad, the triangle configuration that minimizes the total energy is
close to being equilateral, with oy =y =3 ~ 120°.

Appendix B

In this Appendix, we derive the approximation of the gradient
of the total network energy Ur with respect to the variation of
one of the bundle lengths, I;;, used in the minimization procedure,
Eq. (1). For simplicity of notations, we drop the indices ij in this
appendix.

Consider a fiber of length I in a network as shown in Fig. B1(a).
Let U be the total strain energy of the network and u be the strain
energy of this particular fiber. Let r be the position vector of node
B from node A and F be the end reaction force acting on the fiber
at node B. Three steps are taken to find dU/dl:

Step 1: decouple the fiber from the network at the nodes and
fix the kinematic boundary conditions at the nodes for both the
fiber and the reminder of the network.

The fiber is then scaled by a factor «, where @ = 1+da and
da =dl/l, as shown in Fig. B1(b). The increment in the energy of
the fiber du is:

ou
du = (M)a1da (B.1)

The end reaction force F change by dF such that dF=hdo,
where h is the gradient of F with respect to «. The relative po-
sition of the fiber nodes, r, changes by dr and dr=rdo for affine
scaling. Note that the affine scaling does not change the tangent
versors at the end nodes.

Step 2: the fiber is deformed and re-coupled with the surround-
ing network, fulfilling the original kinematic boundary conditions,
as shown in Fig. B1(c). At the end of this operation, the forces at
the end nodes are again modified and can be generically shown
as F+gda, where g is an unknown gradient vector. The net work
done on the fiber to re-establish the original kinematic boundary
conditions is dw and reads:

dw = —(F+0.5(g + hyde) - dr (B.2)

In principle, the moments at the end nodes, M, may also need
to be modified to satisfy the kinematic boundary conditions in this
step. However, since the tangent versors remain unchanged in the
process, the moments do not contribute to the work increment,
dw.

Replacing dr =rdo and ignoring higher order terms in Eq. (B.2),
we obtain

dw = —F - rdo (B.3)

Therefore, the net strain energy increment with respect to the
initial configuration at the end of Step 2, dv/, is

o= (%) o)
@ a=1

Step 3: release the kinematic boundary conditions at the end
nodes of the fiber and allow the system to re-equilibrate, as shown
in Fig. B1(d). Let the difference in the energy of the fiber in the
final configuration, Fig. B1(d), and the initial configuration, Fig.
B1(a), be du’’:

du” = du’ +du,y

(B.4)

(B.5)

where, du,y is the energy variation in the fiber due to the redistri-
bution between itself and the surrounding network.

Likewise, the incremental change in the energy of the surround-
ings, ie. the network excluding the fiber, is dUJ"". Therefore, the
increment of total energy of the network dU can be written:

Ju
W= ((aa> ‘F’r>d“+durd+ aug (B6)
a=1
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Fig. B1. Process used to evaluate the approximation of the network energy gradient of Eq. (1). (a) Initial configuration of a fiber of length I in a network. r is the position
vector of node B relative to node A and F is the reaction force acting on the fiber at B (b) Affine scaling of the fiber (with node A as center) by (1 +dI/I) (c) Reapplying the
initial kinematic boundary conditions to the scaled fiber (d) Relaxing the nodes for re-equilibration of the system.

where, du,y and dUS™ are unknown energy increments of order
O(dar). However, since the final configuration, Fig. B1(d), is at equi-
librium and the configuration of Fig. B1(c) is infinitesimally close to
it (by order O(dw)), the strain energy exchange between the fiber
and its surrounding, i.e. du,+ dUS™, must be of order O(da?).
Therefore, Eq. (B.6) reduces to:

au 2
du = ((&x)m F.r>da+o(da) (B.7)
Ignoring the higher order terms in Eq. (B.7) it results:
au au
w_ ((8&)] - F~r) (85)

For any curved fiber in equilibrium, u, has bending energy (ugg),
axial energy (uag), and shear energy (usg) components. The affine
deformation of the fiber by factor « in Step 1 leads to the variation
of these quantities as:

Ugg UaE Usg
—, Upp(a) = =, usp(a) = —= B.9
a AE( ) o3 SE( ) o3 ( )
Eq. (B.9) results by solving the static equilibrium equation of a
fiber whose curvature is not trivially zero throughout.
Therefore, (%)a:] in Eq. (B.8) can be written:

upg (@) =

Jau
() = —(upe + 3uag + 3 usg) (B.10)
oo et
and considering da =dl/l it results:
37U=7 (uge + 3uag + 3 usg +F-1) (B.11)
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