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a b s t r a c t 

In this work, we study the mechanical behavior of non-crosslinked networks of fibers that interact adhe- 

sively. Adhesion drives fiber organization into bundles and a network of fiber bundles forms as a result of 

this process. Bundles split and re-connect forming specific triangular features at all bundle intersections, 

with role in network stabilization. The structure of such networks has been discussed in the literature, 

but their mechanics remains largely unexplored. We show here that such networks are exceptionally sta- 

ble, and despite the absence of crosslinks between fibers behave, at relatively small strains, essentially 

similar to crosslinked networks, in which the role of crosslinks is played by the triangular structures at 

bundle intersections. We also provide new results regarding the effect of the network architecture on 

the type of strain stiffening observed in tension. The results apply to carbon nanotube structures, such as 

buckypaper, and various connective biological tissue in which collagen fibrils form bundles and the tissue 

is a network of collagen fibril bundles. 

© 2019 Elsevier Ltd. All rights reserved. 

1. Introduction 

Many biological and man-made soft materials have a network 

of fibers as their main structural component. The extra-cellular 

matrix (ECM) and connective tissues in animals are composed from 

collagen and elastin fibers. F-actin networks and microtubules are 

structural components of the cytoskeleton in eukaryotic cells. 

Networks of polymeric nanofibers, like polyacrylonitrile (PAN), 

poly-L-lactide (PLLA), polypropylene (PP) etc., are used in ap- 

plications like textile, filtration, hygiene products, and tissue 

engineering. The prevalence of fibrous materials in the biological 

world is due to the effectiveness of reinforcement provided by 

fibers: small volumes of material are used to span large spatial 

domains and provide adequate stiffness and strength. Soft mate- 

rials composed from molecular networks such as rubber, gels and 

some adhesives accommodate large deformations and generally 

exhibit high toughness ( Ducrot et al., 2014 ; Gong, 2014 ). 

In random fibrous assemblies, fibers interact at points of con- 

tact where they may be rigidly bonded to each other (crosslinks), 

or not. In the absence of crosslinks, topological interactions, 

associated with the fiber non-overlapping condition, become 

the controlling factor in the mechanics of the fibrous assembly 
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( Schofield, 1938 ; Subramanian and Picu, 2011 ; Toll and Man- 

son, 1995 ; van Wyk, 1946 ). This is the situation in clumps of fibers 

such as wool and insulation material subjected to compression. 

Surface interactions between fibers are often of adhesive 

type. Adhesive interactions originate from various sources such as 

hydrophobic attraction between filaments, hydrogen bonding, elec- 

trostatic interactions, etc., each being dominant in specific material 

system. Adhesion forces are generally short-ranged, and in order to 

engage the interaction, fibers must be brought in contact in some 

other way. For example, non-wovens are ‘mechanically activated’ 

in order to increase their stiffness and strength ( Michielsen et al., 

2006 ), wet pulp is compressed to bring the cellulose fibers in 

contact in order to form paper ( Alava and Niskanen, 2006 ), while 

capillarity may organize wet fibrous assemblies into bundles 

( Bico et al., 2004 ; De Volder and Hart, 2013 ) as reviewed in 

Style et al. (2017) . In such cases, capillary forces bring the elastic 

fibers in contact, after which they are held together by adhesive 

forces. 

At the scale of a pair of fibers interacting adhesively one may 

envision two types of configurations: a crossed configuration, in 

which fibers meet at a non-zero angle and the contact is estab- 

lished over an elliptical domain of size of the order of the fiber di- 

ameter, and a parallel configuration, in which fibers are in contact 

all along their length. The first scenario is encountered mostly in 

mats of spun fibers ( Negi and Picu, 2019a ), while the second is ob- 

served in networks of fibers that self-organize under the action of 

adhesion ( Sengab and Picu, 2018 ). In the second case, fibers form 

https://doi.org/10.1016/j.ijsolstr.2019.11.003 
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Fig. 1. Cellular network of fiber bundles stabilized by adhesion obtained using a 

bead-spring model evolved with molecular dynamics in Picu and Sengab (2018) . 

The inset shows the triangular structure of a node of the network. 

bundles which are held together by adhesive forces. The formation 

of filament bundles was observed in dense suspensions of actin 

( Tempel et al., 1996 ) and collagen ( Yunoki et al., 2015 ) and the 

process was discussed theoretically by Zilman and Safran (2003) . 

An analysis of the structural organization driven by adhesive 

forces in non-bonded fiber assemblies was presented in Picu and 

Sengab (2018) . In this work, fibrous systems were represented 

with the bead-spring model commonly employed in polymer 

physics and were allowed to evolve under the action of adhesive 

forces. The organization and stability of the resulting structure was 

analyzed. Fibers tend to bundle, and a random network of bundles 

results gradually. Fig. 1 shows such an example. The nodes of this 

network have a special structure. Nodes are generally three-fold 

coordinated (connectivity number z = 3), i.e. represent the inter- 

section of three bundles. At given node, each bundle splits and 

the resulting sub-bundles merge with the other bundles involved, 

as shown in the inset of Fig. 1 . This triangular structure is similar 

to the Plateau triangles observed in foams, plays a central role 

in network stabilization, and was first described and analyzed in 

detail in Picu and Sengab (2018) . 

The evolution of an assembly of fibers under the action of 

adhesive forces is controlled by two non-dimensional groups: 

ρL 0 , where L 0 is the fiber length, while ρ is the network density 

(total length of fibers per unit projected area of the network), and 

� = ( L 0 / L EC ) 
2 , where L EC = 

√ 

E f I f /γ is the elastocapillarity length 

( Bico et al., 2004 ). E f and I f are the elastic modulus of the fiber 

material and the moment of inertia of the fiber cross-section, 

while γ represents the work of adhesion per unit length of 

contact between two fibers with parallel axes. For ‘infinite’ fibers, 

i.e. fibers which are much longer than the pore size or any other 

microstructural length scale, � can be defined in terms of the 

fiber diameter, d f , which is the only intrinsic length scale of the 

problem. In the present case, we work with �d = ( d f / L EC ) 
2 . 

It was shown in Picu and Sengab (2018) that fibrous systems 

evolve when � > a ( ρL 0 ) 
2 , where a is a numerical constant, and 

remain in the as-deposited (‘locked’) state when this condition 

is not fulfilled. Large � values result if adhesion is strong ( γ
is large) or when E f I f is small. Since I f ∼ d 4 

f 
, both � and �d 

increase rapidly as d f decreases, and hence networks of nanofibers 

are much more likely to self-organize under the action of adhe- 

sion compared with networks of microfibers. Further, if ρL 0 is 

small, evolving structures may disintegrate into isolated bundles, 

while a cellular network of fiber bundles forms at larger ρL 0 . 

Inter-fiber friction leads to an increase of constant a and renders 

self-organization and structural evolution less likely ( Sengab and 

Picu, 2018 ). The results reported in Sengab and Picu (2018) allow 

determining whether a specific system is expected to evolve under 

the action of adhesion such to form a network of bundles or not. 

These two articles, Picu and Sengab (2018) and Sengab and Picu 

(2018) , introduce cellular networks and identify the parametric 

regime in which such networks exist in the presence and in the 

absence of inter-fiber friction, but do not discuss the mechanics 

of the resulting fibrous structures. The analysis of the mechanical 

behavior of cellular networks is the objective of the present article. 

The mechanics of ‘locked’ fiber mats in which non-crosslinked 

fibers interact by adhesion and friction, but the network is not of 

self-organized, cellular type is presented in Negi and Picu (2019a) . 

Buckypaper is an example of a network of bundles 

( Berhan et al., 2004 ; Coleman et al., 2003 ; Liu et al., 1998 ; 

Lu, 1997 ). L EC is very small ( L EC = 10 nm) for single-walled CNT 

(10,10) of diameter 1.4 nm, which leads to large � values even for 

relatively short CNTs (small L 0 ). This can be compared for example, 

with PAN nanofibers of diameter 300 nm, for which L EC ~ 30 μm 

and which are less likely to self-organize in networks of bundles 

under the action of surface interactions. Fibers with diameter 

larger than 1 μm are even less likely to self-organize. 

Consider now the expected behavior of such networks when 

subjected to tensile loading. Two distinct classes of response exist 

function of whether fibers can slide relative to each other within 

bundles or not. If fibers are allowed to slide axially, bundles 

behave similar to elastic-plastic rods in tension, may thin down 

and rupture. The effective yield stress depends on the magni- 

tude of friction. At the nanoscale, friction is not Coulombic and 

is characterized by a constant shear stress, independent of the 

load acting normal to the contact surface ( Carpick et al., 1996 ; 

Homola et al., 1990 ). Hence, the force required to pull two parallel 

fibers in adhesive contact is proportional to the length of the 

contact between fibers. This renders sliding along the contour of 

fibers within bundles unlikely in realistic situation. In buckypaper, 

which is the prototypical example of cellular networks stabilized 

by adhesion, the network ruptures before extensive sliding occurs 

( Stallard et al., 2018 ). If relative sliding is not pronounced, bundles 

deform elastically, and nodal triangles evolve leading to dynamic 

splitting and merging of sub-bundles. We focus the present study 

on this deformation regime of cellular networks and seek to quan- 

tify the role of the adhesive interactions and network elasticity in 

defining the mechanics of the network. 

2. Model and simulation procedure 

2.1. Network geometry parametrization 

The networks considered in this study are similar to that shown 

in Fig. 1 , i.e. they are planar, and the nodes have connectivity z = 3. 

We assume that all bundles contain the same number of fibers, 

n . In realistic structures, n may fluctuate to some extent between 

bundles forming the network, but this detail is neglected here for 

simplicity. Symmetry considerations mandate that, under these 

conditions, bundles meet at 120 ° if the node is isolated from the 

network. The inter-bundle angles deviate from 120 ° if the values 
of n of the three bundles forming a given node are not equal. 

However, for a broad distribution of n values, the inter-bundle 

angles deviate only slightly from the perfectly symmetric config- 

uration ( Appendix A ), observation which supports the modeling 

choice made here. 

Two cases are considered ( Fig. 2 ): Case (1) represents the nomi- 

nal cellular network situation, in which nodal triangles are present 

at all network nodes, while Case (2) is a limit situation in which 

the nodal triangles collapse to a point, which becomes a network 

node. The underlying graph topology is assumed to be of Voronoi 

type. Rens et al. (2016) considered a 2D network of connectivity 
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Fig. 2. (a) Realization of a cellular network showing the two cases discussed in 

text. Case (1) represents nominal cellular networks with nodal triangles, whereas 

Case (2) represents the corresponding structure without nodal triangles, but same 

graph. The geometric parameters used in the analysis in Case (1) , { l ∗
i j 
, δi j , δ ji } , are 

shown in (b). 

equal to, or smaller than 3 at all nodes and stabilized by bending 

interactions, somewhat similar to Case (2) considered here. 

The geometry is parametrized by the bundle length l ij corre- 

sponding to the generic link between nodes i and j of the network, 

and by nodal triangle parameters δil , δim 

, δin where l , m , n are the 

three nodes connected to node i ( Fig. 2 (b)). With l ∗
i j 
being the max- 

imum length of link ij , it results that l i j = l ∗
i j 

− δi j − δ ji . The aver- 

age of l ij over the entire structure is denoted by l C , l C = l i j . Case (2) 

is equivalent to Case (1) in the limit L EC � l C . The set { l ∗i j , δi j , δ ji } , 
along with the graph topology, defines the parametric model, de- 

noted by M . For a given M , the corresponding network structure, 

denoted by S , is obtained through a finite element (FE) simulation. 

2.2. Model generation 

The procedure starts with the generation of a Voronoi network 

which is then used as the underlying graph for the geometric 

parametrization to obtain M . For any given M , the bundles are 

represented using 2D linear Timoshenko beam elements with 

circular cross-section and with at least 5 elements per bundle. 

Multi-Point Constraints (MPC) are also used to connect the mesh 

representing the bundles with the sub-mesh representing the 

nodal triangles. This produces bundle branches in the nominal 

cellular network structure, S . 

The moment of inertia of the bundle section is denoted by I b . 

A bundle comprising n constituent fibers which may slide axially 

relative to each other has I b = nI f . If no fiber sliding takes place, the 

bundle section is rigid and I b ~n 
2 I f in the large n limit. In this work 

we consider the low friction and/or relatively low n case, such that 

I b = nI f . The equivalent diameter of a bundle results d b = n 1/4 d f . 

FE simulations to obtain the actual structure S ( Fig. 3 ) from a 

given parametric model M are performed using the commercial 

finite element package ABAQUS-v11. The explicit time integra- 

tion scheme is used with appropriate time-stepping to ensure 

numerical convergence. 

Further, while preserving the graph structure (general connec- 

tivity) of the initial Voronoi network and the network density, 

the total energy, U T , of the network structure, S , is minimized in 

the phase space defined by parameters { l ij , δij }. Note, U T = U S + U γ

where U S is total strain energy and U γ is the total adhesion 

energy. The energy minimization procedure involves the network 

structure, S , evolution under the combined action of two pro- 

Fig. 3. Periodic nominal cellular network structure, S . 

cesses – process-A and process-B – corresponding to the variation 

of U T with l ij and δij , respectively. 
Process-A changes the bundle lengths (outside of nodal trian- 

gles), while keeping the length of the nodal triangle sub-bundles 

constant. It is driven by the gradient of U T (or U S ) in the phase 

space of { l ij }, which is calculated using a semi-analytical expres- 

sion. For a bundle of length l ij , bending energy u BE , axial energy 

u BE , and shear energy u SE ( Fig. 4 (a)), ∂ U T / ∂ l ij is obtained as (see 
Appendix B ): 

∂ U T 

∂ l i j 
= 

∂ U S 

∂ l i j 
= − ( u BE + 3 u AE + 3 u SE + r 12 · F 2 ) 

l i j 
(1) 

where, r 12 is the position vector of bundle end 2 relative to the 

bundle end 1, and F 2 is the end reaction force at bundle end 2 

( Fig. 4 (a)). An additional constraint on network evolution through 

process-A is that of mass conservation, i.e. n �l ij = const . 

Process-B, also referred to in this work as ‘nodal relaxation’, 

modifies { δij }. This changes the length of the nodal triangle sub- 
bundles and modifies { l ij } such to emulate the bundle zipping 

and unzipping processes. It is driven by the gradient of U T in the 

phase space of { δij }. Referring to the geometry at a branching 
point shown Fig. 4 (b), ∂ U T / ∂ δij is calculated as: 

∂ U T 

∂ δi j 
= −1 

2 

n 1 n 2 
n 1 + n 2 

E f I f 
∥∥κ+ 

1 − κ+ 
2 

∥∥2 + γ P ( n 1 + n 2 ) 

−γ P ( n 1 ) − γ P ( n 2 ) , (2) 

where, E f is the elastic modulus of an individual fiber, n 1 and 

n 2 are the number of fibers in sub-bundles, κ
+ 
1 
and κ+ 

2 
are the 

curvatures of the sub-bundles, and γ P ( n ) is the adhesion energy of 

a bundle of n fibers. P ( n ) is the number of line contacts between 

fibers in the bundle of n fibers. For close-packed bundles, P (n ) = 

3 n − √ 

12 n − 3 ( Harborth, 1974 ). Eq. (2) was derived in Negi and 

Picu (2019b) and is only valid under the assumption that I b = nI f . 

Evolution of the initial parametric model through the joint 

processes A and B leads to the desired stable structure, S , of a 

nominal cellular network. To obtain the limit-case network from 

a given stable nominal cellular network, we increase the length of 

bundles from l ij to l 
∗
i j 
, such that δij = 0. Further, we define MPC on 

the mesh nodes at bundle ends such to constrain the bundles to 

meet at 120 °, as indicated for Case (2) in Fig. 2 (a). 
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Fig. 4. (a) Representation of an individual bundle of S . l ij specifies the bundle length, F 1 and F 2 are the reaction forces acting at the two ends of the bundle. (b) Represen- 
tation of bundle branching. r specifies the position of the branching point along the contour of a bundle and it is related to δij parameter since dr = − d δij . n 1 and n 2 are 

sub-bundle sizes, and κ+ are the sub-bundle curvatures at the branching point. 

Periodic boundary conditions are applied as MPC on the mesh 

nodes at the in-plane boundaries. The model has dimensions λx 

and λy in the two directions of periodicity, which also make an 

angle θ xy , Fig. 3 . λx , λy , and θ xy are additional degrees of freedom 

provided to the FE simulation and are not known a priori. λx , λy , 

and θ xy thus refer to the macroscopic shape and size of a periodic 

cellular network and any applied macroscopic deformation on the 

network can be specified by modifying these parameters. 

2.3. Solution procedure 

Three realizations of each network are considered. These result 

from three Voronoi graphs. For each realization, we obtain stable 

nominal cellular networks by minimizing the total energy U T 

through process-A and process-B acting simultaneously. To this 

end, a constrained gradient descent algorithm using the gradients 

of Eqs. (1) and (2) is performed and the network parameters, 

{ l ij , δij }, are evolved accordingly. Specifically, at each iteration the 
parametric model, M , is used to setup the FE simulation which 

leads to the corresponding network structure, S . The current struc- 

ture is used to calculate the gradients of Eqs. (1) and (2) , which 

allow evaluating the increments in the { l ij , δij } phase space, and 
to obtain the parameter set defining M of the next iteration. This 

procedure is similar to that used in Negi and Picu (2019b) . The pro- 

cedure continues until the minimum total energy is reached, while 

the total length of fiber bundles is maintained constant, periodicity 

is imposed on the global scale, and the overall graph topology is 

maintained. The limit case networks (Case (2)) are obtained from 

the nominal cellular networks by bringing parameters { δij } to zero. 
The number of fibers per bundle, n , is set to be 62 in all 

models. This implies that the bundle diameter is related to the 

fiber diameter as d b ~ 2.81 d f . The mean bundle length, l C , for the 

limit-case (Case 2) network is equal to 160 d f ~ 57 d b . The strength 

of adhesion is specified in terms of �d , which is a parameter of 

the problem. The fiber diameter d f is taken as the unit of length 

and E f d 
2 
f 
is used as the unit of force. 

Both Case (1) and Case (2), i.e. nominal cellular and limit-case 

networks, are loaded in uniaxial tension by modifying the model 

periodicity parameters, λx , λy and θ xy . During the loading process, 

the minimum energy state is reached in each loading increment 

only through Process-B (zipping-unzipping of bundles). 

3. Results and discussion 

3.1. Structural characterization of cellular networks 

A cellular network stabilized by adhesion differs from the 

graph-equivalent Voronoi network due to the presence of nodal 

triangles and prestress in the bundles. As discussed in Section 2 , 

the prestress arises since the length distribution of bundles may 

not be entirely compatible with the angular constraints imposed 

by the nodal triangles. 

The resulting structure is characterized by l C and by the mean 

nodal triangle size l T = 2 δi j . l T / l C is a non-dimensional measure of 
the relative size of the nodal triangles and the connecting bundles. 

The prestress in bundles (outside triangles) can be characterized 

based on the respective bundle curvature. The root mean square 

curvature of the bundles in the network is denoted by K rms , and 

the prestress is quantified by the non-dimensional product l C K rms , 

which describes the shape of the bundles. 

We perform an image analysis of the structure in Fig. 1 ob- 

tained by explicitly simulating (using a bead spring model of the 

fibers) the self-organization process by which the network of bun- 

dles forms under the action of adhesion ( Picu and Sengab, 2018 ) 

and infer that for this structure l T / l C = 0.28. We adjust the strength 

of adhesion, i.e. �d , to reach a value of this structural parameter 

close to the value evaluated for the structure in Fig. 1 . Specifically, 

�d = 23 ×10 −4 leads to l T / l C = 0.23. This value of �d is considered 

the reference value and is denoted by �0 . 

To study the effect of l T / l C on network properties, �d is varied 

from �0 /4 to 2 �0 and the non-dimensional parameters l T / l C and 

l C K rms are computed. In this parametric study, structures S with 

different �d are obtained from structure S 0 (for which �d = �0 ) 

through process-B. The results are tabulated in Table 1 and also 

shown in Fig. 5 . The variation of �d has a large effect on the 

network structure; the size of the nodal triangles, l T , increases 

rapidly as �d decreases. 

To provide a reference for this numerical result, we consider 

an analytic model of an isolated nodal triangle ( Sengab and 

Picu, 2018 ), inset to Fig. 5 . Consider, as above, that all bundles 

forming the node are composed from n fibers and the sub-bundles 

forming the triangle have n /2 fibers. The structure has three-fold 

symmetry, with all sub-bundles of given triangle having the same 

curvature. The geometry requires that 

l T = πR/ 3 (3) 

Table 1 

Geometric properties of cellular networks with various levels of 

adhesion, �d . The values are the mean of three realizations. 

�d l T / l C l T / d f l C K rms 

2 �0 0.141 9.89 0.841 

�0 0.230 14.93 0.624 

�0 /2 0.377 21.97 0.460 

�0 /4 0.651 31.53 0.339 
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Fig. 5. Dependence of the mean nodal sub-bundle length, l T , on the elastocapillary 

length, L EC = 

√ 

E f I f /γ = d f / 
√ 

�d . Both analytical (red diamonds), Eq. (5) , as well 

as numerical (blue, solid circles) results are shown. The error bars show standard 

error from 3 realizations. 

where R is the radius of curvature of the sub-bundles. R can 

be evaluated by imposing the condition of equilibrium of the 

branching points of a triangular structure: 

R = 

√ 

n E f I f 

2 ( P ( n ) − 2 P ( n/ 2 ) ) γ
(4) 

Hence, l T / d f can be expressed as: 

l T 
d f 

= 

(
π

3 

√ 

n 

2 ( P ( n ) − 2 P ( n/ 2 ) ) 

)
L EC 
d f 

(5) 

where, L EC = 

√ 

E f I f /γ = d f / 
√ 

�d .This relation is shown in 

Fig. 5 along with the numerical data. 

In this analysis, �d is varied after the graph defining the 

network is defined. In this case, the variation of this parameter 

affects only the nodal triangle size and the residual stress in the 

structure, but not the overall graph. This somewhat artificial way 

of investigating the effect of adhesion is selected in view of the 

specific goal of the present study, i.e. that of determining the 

structural stability of the network once it is formed. In a broader 

sense, as discussed in Sengab and Picu (2018) , �d controls the 

graph defining the network as well as the size of nodal triangles. 

3.2. Mechanical behavior of cellular networks 

The Cauchy stress vs. true strain response of nominal cellular 

networks with the reference set of parameters ( ̄n = 62 , l ∗c = 160 d) 

and l T / l C = 0.23, 0.38, and 0.65 is shown in Fig. 6 a. The stress 

is normalized with ρE f A f , where ρ is the network density, A f is 

the cross-sectional area of fibers, A f ∼ d 2 
f 
, and the true strain, εt , 

is evaluated as the logarithm of the stretch, λ. The behavior is 
generally hyperelastic since no inelastic mechanism operates. 

Fig. 6 b shows the tangent stiffness ˆ K = 

1 
ρE f A f 

dσ
d ε t 

versus the 

normalized stress, ˆ σ = 

σ
ρE f A f 

computed based on the curves in 

Fig. 6 a. Three regimes are visible: a linear elastic regime I (up to 

point A) in which ˆ K is constant, a first strain stiffening regime 

II in which the slope of the respective curve is β = 1.4 (A to B), 

and a second strain stiffening regime III in which a slope of ~0.5 

develops (beyond B). 

Two curves are shown for each value of l T / l C : one in which bun- 

dles may zip and unzip via Process-B, and a second curve obtained 

Fig. 6. (a) Stress-stretch curves for the uniaxial behavior of cellular networks with 

adhesion. The stress is normalized by ρE f A f , ˆ σ = 

σ
ρE f A f 

. The continuous curves rep- 

resent the response of the system in which nodal triangles evolve during loading, 

while the dashed lines represent networks in which triangles are prevented from 

evolving. (b) Data in (a) repotted as tangent stiffness vs. stress. The error bars show 

standard error from 3 realizations. 

with geometrically identical networks in which nodal triangles 

are not allowed to evolve and retain the size at the beginning 

of loading. The second type of curve is shown with dashed line 

and is labeled “without Process-B”. It is seen that the difference 

between the two curves is minimal. This indicates that, although 

the nodal triangles evolve during stretching, the contribution of 

this process to the overall stress-strain curve is minimal. 

This is supported by Fig. 7 a which shows the increase of the 

adhesion energy �U γ and the strain energy �U S during loading, 

for the network with l T / l C = 0.65. The variation of the strain energy 

in the structure is much more pronounced than the variation of 

the adhesion energy. Fig. 7 b shows the variation of the mean 

triangle size, l T , during deformation; it shows that nodal triangles 

deform and change size as the network is stretched. These results 

indicate that the network behaves as if it were crosslinked at 

the location of triangles. This is somewhat surprising, given the 

absence of physical crosslinks and indicates that nodal triangles 

are strongly stabilizing the structure. 
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Fig. 7. (a) Variation of the adhesion, �U γ , and strain energy �U S , normalized by the adhesion energy of the unloaded network U γ 0 , during loading of nominal cellular 

network having �d = �0 /4 and l T / l C = 0.65. (b) Variation of parameter l T , �l T , defining the mean size of nodal triangles during loading. �l T is normalized with the value of 

l T in the unloaded network, l T 0 . The error bars show standard error from three realizations. 

Further, we modify �d , which leads to a variation of l T / l C in the 

unloaded structures. Fig. 6 b shows that this parameter has little 

effect on the stress-strain curves. The small strain stiffness changes 

little as �d is varied. Also, the nature of strain stiffening does 

not change. However, the stress-strain curves of Fig. 6 a gradually 

shift to the right as l T / l C decreases, which indicates that only 

the transition strain between regimes I and II is affected, while 

the nature of strain stiffening is insensitive to this parameter. 

Specifically, as the strength of adhesion decreases, the range of the 

linear elastic regime I increases. A similar observation was made 

in Negi and Picu (2019b) , where the mechanics of cross-linked 

networks with adhesion is discussed. 

3.3. On the nature of strain stiffening 

The nature of strain stiffening is defined by the slope of the 

regime II segment of the stiffness-stress curve in Fig. 6 b. With 
ˆ K ∼ ˆ σβ after a transition strain ε0 (and stress σ 0 , corresponding 

to point A in Fig. 6 b), it results that the network strain stiffens 

as σ / σ 0 = (1 − ( β −1)( ε / ε 0 −1)) −1/( β −1) for ε ≥ ε 0 , in the strain 
stiffening regime II. 

It is broadly reported in the literature that cross-linked 

networks of Voronoi type, whether in 2D or 3D, strain stiffen ex- 

ponentially ( β = 1) i.e. σ / σ 0 = exp( ε / ε 0 −1) for ε ≥ ε0 ( Ban et al., 
2016 ; Deogekar and Picu, 2017 ; Licup et al., 2015 ). It was also 

reported that fibrous networks, i.e. networks created in 3D by 

the deposition of straight fibers with random positions and ori- 

entations, and crosslinked at all points of inter-fiber proximity, 

strain stiffen following a power law, with exponents β in the 

range [0.5,1) ( Islam and Picu, 2018 ). Recent experimental results 

on reconstructed collagen networks also indicate the power-law 

strain stiffening behavior of the type ˆ K ∼ ˆ σβ , with β in the range 

1 – 1.6 for temperature range 26–37 °C ( Jansen et al., 2018 ). 
It becomes of interest to investigate the origin of the strain 

stiffening observed here, with β > 1. To this end, we evaluate 

two hypotheses: (i) that the residual stress inherent in these 

cellular networks is at the origin of the modified strain stiffening 

behavior observed, and (ii) that this behavior is a consequence of 

the structure of the network and is not associated with adhesion 

or residual stress. 

3.3.1. Effect residual stress 

To evaluate the effect of the residual stress, we consider 

the nominal cellular network with nodal triangles characterized 

Fig. 8. A realization of the nominal cellular network structure, with l T / l C = 0.23, be- 

fore (a) and after (b) bundle length perturbation with c = 0.4. 

by l T / l C = 0.23. The residual stress in this structure is gradually 

increased by perturbing the length of the bundles as: 

l ′ i j = l i j 
(
1 + 2 c 

(
ξi j − 0 . 5 

))
(6) 

where l ′ ij and l ij are the lengths of a generic bundle after and be- 
fore modification, respectively, ξ ij is a stochastic variable uniformly 

distributed in the interval [0,1] and c is a parameter controlling the 

magnitude of the perturbation. Note that this structural modifica- 

tion disturbs the equilibrium between the adhesive forces and the 

force associated with the variation of the strain energy, and hence 

the perturbed model needs to be re-equilibrated after the bundle 

lengths are perturbed and before uniaxial testing. The nodal tri- 

angles are allowed to fully adjust during this equilibration to the 

new network configuration. Fig. 8 a and b show a network before 

and after the bundle length modification and full relaxation. The 

curvature of bundles in Fig. 8 b is larger, with the nondimensional 

parameter l ′ C K b increasing from 0.62 for the structure in Fig. 8 a, to 

0.75 for the structure in Fig. 8 b. As per Eq. (6) , l ′ T does not change 
upon perturbation. Interestingly, even after nodal relaxation, l ′ T , as 
well as the average size of the nodal triangles do not change. This 

is, in fact, an expected result based on the data in Fig. 5 , which 

indicates that δ̄ depends only on the elastocapillarity length L EC . 

Fig. 9 shows the tangent stiffness-stress curve for the network 

with c = 0, and two perturbed cases, with c = 0.2 and 0.4. It is seen 

that the regime II slope remains β = 1.4 in networks with residual 

stress for all c values considered. This indicates that the origin of 
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Fig. 9. Tangent stiffness ˆ K vs. stress ˆ σ curves for cellular networks with three lev- 

els of perturbation, c . The residual stress in the structure increases with c . Both 

stiffness and stress are normalized by ρE f A f . The error bars show standard error for 

three realizations. 

Fig. 10. Tangent stiffness vs. stress curves for l T / l C = 0.23 (blue diamonds) and 

l T / l C = 0 (red circles) and for a Voronoi network (green stars). Note that cellular net- 

works with l T / l C = 0.23 undergo relaxation via the evolution of the nodal triangles 

during loading, which is not happening in the l T / l C = 0 case or the Voronoi network. 

the modified strain stiffening behavior of cellular networks is not 

associated with the residual stress intrinsically present in these 

structures. 

3.3.2. Effect of network architecture 

The second hypothesis tested is that the functional form of 

strain stiffening is determined by the structure of the network. 

Fig. 10 shows the tangent stiffness-stress curve for the cellular 

network with l T / l C = 0.23 (Case (1)) and for the limit-case cellular 

network of Case (2), with l T / l C → 0. In Case (2), the effect of 

adhesion is not present since triangles are eliminated. The two 

curves overlap, which demonstrates again that adhesion and the 

evolution of nodal triangles during network deformation do not 

contribute significantly to defining the stress-strain curve. Cellular 

networks with adhesion behave, in the range of strains considered 

and in the absence of relative fiber sliding within bundles, sim- 

ilar to crosslinked networks of the same graph. As discussed in 

Picu and Sengab (2018) , this points to the strong stabilizing role of 

nodal triangles whose effective mechanical function results be to 

identical to that of a crosslink. 

We include in Fig. 10 the tangent stiffness-stress curve for 

Voronoi networks. As expected, this curve exhibits in regime 

II a slope of 1 which implies exponential stiffening. It results 

that the nature of strain stiffening is controlled by the network 

architecture and not by the presence of residual stresses or the 

presence of adhesive interactions. This observation indicates that 

the functional form of the stress-stretch curve can be modified in 

a broad range by adjusting the underlying graph. 

4. Conclusions 

Previous work established that adhesive inter-fiber interactions 

drive the self-organization of ensembles of fibers. If adhesion is 

weak, self-organization does not take place and the fibers remain 

locked in the as-deposited mat configuration. If adhesion is suf- 

ficiently strong, cellular networks of fiber bundles result. Cellular 

networks are composed form fiber bundles which split and merge 

with other bundles at intersection points, forming characteristic 

nodal triangles. This preliminary work focused on the structure 

and stability of non-crosslinked fibrous assemblies stabilized by 

adhesion, but did not investigate their mechanics. 

The present article discusses the mechanical behavior of 

cellular networks subjected to uniaxial tension. During loading 

triangles may evolve by zipping and unzipping, which leads to 

the variation of the length of adjacent bundles. Such networks of 

bundles store residual stresses and adhesion energy. The residual 

stress results from the incompatibility between the structure of 

the nodal triangles and the topological constraints of the network 

architecture. We observe that the stress-strain curve of networks 

in which triangles are allowed to evolve during loading, and 

that of the equivalent networks in which triangles are prevented 

from evolving, are approximately identical and have hyperelastic 

characteristics. Therefore, nodal triangles have a strong stabilizing 

effect causing the network to behave as if it were crosslinked. The 

stiffening behavior observed is different from that of the Voronoi 

networks. We show that this modified stiffening is due to the 

structure of the network, and not to the presence of residual stress 

or to inter-fiber adhesion. These results shed light on the behavior 

of buckypaper and of some collagen-based biological networks in 

which fiber bundles are observed. 

Declaration of competing interest 

The authors declare that they have no known competing finan- 

cial interests or personal relationships that could have appeared to 

influence the work reported in this paper. 

Acknowledgment 

This work was supported by the NSF , US ( US National Science 

Foundation ) through grant No. CMMI-1634328 . 

Appendix A 

The equilibrium configuration of an isolated nodal triangle is 

discussed in this Appendix. This was also analyzed in Picu and Sen- 

gab (2018) ; here we focus on the dependence of the inter-bundle 

angles on the variability of the structural parameters. To this end, 

consider the structure in Fig. A1 , which shows a triangle formed by 

three bundles, AA’, BB’, and CC’ of n 1 , n 2 and n 3 fibers, respectively. 

The outer ends of the bundles are free. This represents an isolated 

nodal triangle or a nodal triangle in a network in which bundles 
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Fig. A1. Parameters defining a nodal triangle. 

Fig. A2. Probability distribution function of angles α1 and α2 defining the geometry 

of a minimum energy triangle with variable bundle sizes, n 1 , n 2 and n 3 . Triangles 

with very different values of n i take almost symmetric configurations with α1 , α2 

and α3 close to 120 °. 

remain straight and store no strain energy. The sub-bundles AB, AC 

and BC store strain energy and are arcs of circle of radii R 1 , R 2 and 

R 3 . At the splitting points A, B and C, the sub-bundles are tangent 

to each other. Bundles AA’, BB’ and CC’ form angles α1 , α2 and α3 . 

The total energy of this structure, U T , including strain and ad- 

hesion energy components, can be calculated in terms of these 

parameters. For each set n i , i = 1…3, minimization of the total en- 

ergy provides the equilibrium angles αi , i = 1…3 (restricted by the 

condition α1 + α2 + α3 = 2 π ). This procedure is applied to a large 
number of configurations with bundle sizes n 1 , n 2 and n 3 sam- 

pled from a discrete, binomial distribution of set mean and broad 

and adjustable variance. Fig. A2 shows the probability distribution 

function of angles α1 and α2 . Although the distribution of n i is 

broad, the triangle configuration that minimizes the total energy is 

close to being equilateral, with α1 = α2 = α3 ≈ 120 °. 

Appendix B 

In this Appendix, we derive the approximation of the gradient 

of the total network energy U T with respect to the variation of 

one of the bundle lengths, l ij , used in the minimization procedure, 

Eq. (1) . For simplicity of notations, we drop the indices ij in this 

appendix. 

Consider a fiber of length l in a network as shown in Fig. B1 (a). 

Let U be the total strain energy of the network and u be the strain 

energy of this particular fiber. Let r be the position vector of node 

B from node A and F be the end reaction force acting on the fiber 

at node B. Three steps are taken to find ∂ U / ∂ l : 
Step 1: decouple the fiber from the network at the nodes and 

fix the kinematic boundary conditions at the nodes for both the 

fiber and the reminder of the network. 

The fiber is then scaled by a factor α, where α = 1 + d α and 

d α = dl / l , as shown in Fig. B1 (b). The increment in the energy of 

the fiber du is: 

d u = 

(
∂u 

∂α

)
α=1 

d α (B.1) 

The end reaction force F change by d F such that d F = h d α, 
where h is the gradient of F with respect to α. The relative po- 
sition of the fiber nodes, r , changes by d r and d r = r d α for affine 

scaling. Note that the affine scaling does not change the tangent 

versors at the end nodes. 

Step 2: the fiber is deformed and re-coupled with the surround- 

ing network, fulfilling the original kinematic boundary conditions, 

as shown in Fig. B1 (c). At the end of this operation, the forces at 

the end nodes are again modified and can be generically shown 

as F + g d α, where g is an unknown gradient vector. The net work 
done on the fiber to re-establish the original kinematic boundary 

conditions is dw and reads: 

dw = −( F + 0 . 5 ( g + h ) dα) · d r (B.2) 

In principle, the moments at the end nodes, M , may also need 

to be modified to satisfy the kinematic boundary conditions in this 

step. However, since the tangent versors remain unchanged in the 

process, the moments do not contribute to the work increment, 

dw . 

Replacing d r = r d α and ignoring higher order terms in Eq. (B.2) , 

we obtain 

dw = −F · r dα (B.3) 

Therefore, the net strain energy increment with respect to the 

initial configuration at the end of Step 2, du ′ , is 

d u ′ = 

((
∂u 

∂α

)
α=1 

− F · r 
)
d α (B.4) 

Step 3: release the kinematic boundary conditions at the end 

nodes of the fiber and allow the system to re-equilibrate, as shown 

in Fig. B1 (d). Let the difference in the energy of the fiber in the 

final configuration, Fig. B1 (d), and the initial configuration, Fig. 

B1 (a), be du ′ ′ : 
d u ′′ = d u ′ + d u rd (B.5) 

where, du rd is the energy variation in the fiber due to the redistri- 

bution between itself and the surrounding network. 

Likewise, the incremental change in the energy of the surround- 

ings, i.e. the network excluding the fiber, is dU 

surr 
rd 

. Therefore, the 

increment of total energy of the network dU can be written: 

d U = 

((
∂u 

∂α

)
α=1 

− F · r 
)
d α + d u rd + d U 

surr 
rd (B.6) 
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Fig. B1. Process used to evaluate the approximation of the network energy gradient of Eq. (1) . (a) Initial configuration of a fiber of length l in a network. r is the position 

vector of node B relative to node A and F is the reaction force acting on the fiber at B (b) Affine scaling of the fiber (with node A as center) by (1 + dl / l ) (c) Reapplying the 

initial kinematic boundary conditions to the scaled fiber (d) Relaxing the nodes for re-equilibration of the system. 

where, du rd and dU 

surr 
rd 

are unknown energy increments of order 

O ( d α). However, since the final configuration, Fig. B1 (d), is at equi- 
librium and the configuration of Fig. B1 (c) is infinitesimally close to 

it (by order O ( d α)), the strain energy exchange between the fiber 
and its surrounding, i.e. d u rd + dU 

surr 
rd 

, must be of order O ( d α2 ). 

Therefore, Eq. (B.6 ) reduces to: 

d U = 

((
∂u 

∂α

)
α=1 

− F · r 
)
d α + O 

(
d α2 

)
(B.7) 

Ignoring the higher order terms in Eq. (B.7) it results: 

∂U 

∂α
= 

((
∂u 

∂α

)
α=1 

− F · r 
)

(B.8) 

For any curved fiber in equilibrium, u , has bending energy ( u BE ), 

axial energy ( u AE ), and shear energy ( u SE ) components. The affine 

deformation of the fiber by factor α in Step 1 leads to the variation 

of these quantities as: 

u BE ( α) = 

u BE 
α

, u AE ( α) = 

u AE 
α3 

, u SE ( α) = 

u SE 
α3 

(B.9) 

Eq. (B.9 ) results by solving the static equilibrium equation of a 

fiber whose curvature is not trivially zero throughout. 

Therefore, ( ∂u 
∂α

) α=1 in Eq. (B.8) can be written: (
∂u 

∂α

)
α=1 

= −( u BE + 3 u AE + 3 u SE ) (B.10) 

and considering d α = dl / l it results: 

∂U 

∂ l 
= − ( u BE + 3 u AE + 3 u SE + F · r ) 

l 
(B.11) 
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