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ABSTRACT Long noncoding RNA (lncRNA) plays important roles in sexual develop-
ment in eukaryotes. In filamentous fungi, however, little is known about the expres-
sion and roles of lncRNAs during fruiting body formation. By profiling developmen-
tal transcriptomes during the life cycle of the plant-pathogenic fungus Fusarium
graminearum, we identified 547 lncRNAs whose expression was highly dynamic, with
about 40% peaking at the meiotic stage. Many lncRNAs were found to be antisense
to mRNAs, forming 300 sense-antisense pairs. Although small RNAs were produced
from these overlapping loci, antisense lncRNAs appeared not to be involved in gene
silencing pathways. Genome-wide analysis of small RNA clusters identified many si-
lenced loci at the meiotic stage. However, we found transcriptionally active small
RNA clusters, many of which were associated with lncRNAs. Also, we observed that
many antisense lncRNAs and their respective sense transcripts were induced in par-
allel as the fruiting bodies matured. The nonsense-mediated decay (NMD) pathway
is known to determine the fates of lncRNAs as well as mRNAs. Thus, we analyzed
mutants defective in NMD and identified a subset of lncRNAs that were induced
during sexual development but suppressed by NMD during vegetative growth.
These results highlight the developmental stage-specific nature and functional po-
tential of lncRNA expression in shaping the fungal fruiting bodies and provide fun-
damental resources for studying sexual stage-induced lncRNAs.

IMPORTANCE Fusarium graminearum is the causal agent of the head blight on our
major staple crops, wheat and corn. The fruiting body formation on the host plants
is indispensable for the disease cycle and epidemics. Long noncoding RNA (lncRNA)
molecules are emerging as key regulatory components for sexual development in
animals and plants. To date, however, there is a paucity of information on the roles
of lncRNAs in fungal fruiting body formation. Here we characterized hundreds of ln-
cRNAs that exhibited developmental stage-specific expression patterns during fruit-
ing body formation. Also, we discovered that many lncRNAs were induced in parallel
with their overlapping transcripts on the opposite DNA strand during sexual devel-
opment. Finally, we found a subset of lncRNAs that were regulated by an RNA sur-
veillance system during vegetative growth. This research provides fundamental
genomic resources that will spur further investigations on lncRNAs that may play im-
portant roles in shaping fungal fruiting bodies.
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Genomes of eukaryotes—from simple yeast to animals—are pervasively transcribed
from noncoding intergenic regions and in antisense orientation from genic regions

(1, 2). Long noncoding RNAs (lncRNAs) are loosely defined as noncoding transcripts
longer than 200 nucleotides, which are mostly transcribed by RNA polymerase II and
share common features with mRNAs other than protein-coding capacity (3). lncRNAs
are versatile molecules that not only regulate gene expression, but also affect enzy-
matic activities and chromosome conformation (4, 5). Since the discovery of the XIST
lncRNA required for X chromosome inactivation (6), the roles of lncRNAs in develop-
mental processes such as embryogenesis and tissue differentiation have been exten-
sively studied in animals along with the advent of transcriptome sequencing (RNA-seq)
technologies (7, 8). Yet the full scope of the developmental roles of lncRNAs is far from
understood.

In the highly divergent yeasts Saccharomyces cerevisiae (budding yeast) and Schizo-
saccharomyces pombe (fission yeast), the onset of sexual sporulation and the following
meiotic divisions are tightly regulated by elaborate mechanisms involving lncRNAs (9).
In budding yeast, a promoter-derived lncRNA suppresses the expression of IME1
(inducer of meiosis 1), the master regulator for the sexual sporulation, by inducing
heterochromatin formation in the promoter region of IME1 during vegetative growth
(10). In addition, the transcription of another lncRNA antisense to IME4 gene inhibits the
expression of IME4 by antagonizing sense transcription (11, 12). Although there is no
such conserved or analogous regulatory mechanism in fission yeast, lncRNAs also play
diverse roles in sexual sporulation: for example, sequestering RNA elimination factors
that repress meiotic gene expression (13–15) and contributing to homologous chro-
mosome pairing (16). Despite the growing evidence of the regulatory roles in yeasts,
information on lncRNA expression and function during fruiting body formation in
filamentous fungi is scarce.

RNA quality control mechanisms are crucial for the regulation of lncRNA expression
in budding yeast. The nuclear exosome is engaged in RNA processing and degradation
of transcripts, including lncRNAs that are specifically expressed during sexual sporula-
tion; the deletion of RRP6 encoding the exosome-associated exonuclease resulted in
the accumulation of noncoding transcripts that otherwise remained silenced during
vegetative growth (17–19). In human cells, promoter-derived transcripts were also
ectopically expressed upon deletion of the exosome components, including the ho-
mologous RRP6 gene, suggesting the conserved role of the exosome for lncRNA
expression in diverse eukaryotes (20). The nonsense-mediated decay (NMD) pathway is
another quality control checkpoint for aberrant transcripts in the cytoplasm and
recently emerged as a key player for fine-tuning of both coding and noncoding gene
expression (21). A genome-wide survey of human lncRNA sequences showed that most
lncRNAs harbor short open reading frames (ORFs) that would lead to activation of the
NMD pathway (22). In fact, subsets of lncRNAs found in budding yeast, the model plant
Arabidopsis, and animals are subject to degradation through the NMD pathway (23–25).

The cytoplasmic exonuclease Xrn1 is the final enzyme responsible for the degrada-
tion of decapped and deadenylated transcripts that have been recognized and pro-
cessed by NMD components. The deletion of XRN1 in budding yeast also leads to the
accumulation of more than a thousand cryptic noncoding transcripts termed “XUTs”
(Xrn1-sensitive unstable transcripts), most of which are distinct from the noncoding
transcripts that arise by exosome depletion (26). Many XUTs are antisense to annotated
genes and seemed to have repressive roles in sense transcription by modulating
chromatin status of the promoter regions (26).

It has been argued that organismal complexity is correlated with expression dy-
namics of noncoding transcripts (5, 27–29). In the kingdom Fungi, multicellular fruiting
bodies have independently evolved at least twice in the diverging lineages (30, 31).
Given the key regulatory roles of lncRNAs in sexual sporulation and morphological
transition in yeasts (32, 33), lncRNAs may have exerted their roles in evolution of
multicellularity and sexual development in filamentous fungi. Fusarium graminearum is
a plant-pathogenic fungus infecting our staple crops, such as wheat and corn, and thus
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has been a model for studying the developmental process of perithecia, the sexual
fruiting bodies of the fungus, as well as other interesting aspects of biology, including
host-pathogen interaction and mycotoxin production (34, 35). The fungus is probably
the best organism for investigating the lncRNA catalog in fruiting body-forming fungi,
as perithecia develop at sufficient synchronicity in culture media, enabling time-series
transcriptome analyses with this microscopic organism (36–38). Also, the genome
sequence assembly is complete, featuring a total of 4 chromosomes (39), and the
genome has been annotated and curated—although it still lacks lncRNA annotations
(40, 41). In addition, plentiful genetic resources have accumulated through large-scale
functional studies of perithecium development (38, 42–47).

The goal of the present study was to characterize lncRNAs that are specifically
expressed in the fungal fruiting body undergoing sexual development and to investi-
gate their developmental stage-specific expression and regulation. We identified ln-
cRNAs with a pipeline that constructs de novo transcript annotations by combining
RNA-seq data from vegetative and sexual developmental stages and then removes
those with detectable protein-coding potential or a monotonous expression profile.
Hundreds of lncRNAs that exhibit dynamic expression patterns were found, thereby
expanding the universe of genomes known to have significant noncoding roles in
development—specifically, here, the multicellular development of fungal fruiting
bodies.

RESULTS
Transcriptional reprogramming during perithecium formation. To obtain time

course transcriptome data during the sexual development of F. graminearum, we
sequenced samples from hyphae, strands of cells that make up vegetative stages of
most of the fungi (S0), and from five successive sexual stages (S1 to S5 [Fig. 1A]) that
capture key morphological transitions during the development of perithecia (48),
defined at the formation of the following: S1, perithecial initials (hyphal curls that give
rise to the perithecial tissues); S2, perithecial walls; S3, paraphyses (sterile cells sup-
porting perithecia); S4, asci (saclike structures in which ascospores develop); and S5,
ascospores (meiospores). A total of 480 million RNA-seq reads were generated from 18
samples (6 stages � 3 replicates), and there were an average of 25 million mapped
reads per sample (see Fig. A in Text S1 in the supplemental material). We validated our
sampling scheme by perithecial morphology for 3 biological replicates, using the BLIND
program (49), which determined the sequence of the developmental time course data
without prior information other than gene expression data (see Fig. B in Text S1).

Differentially expressed (DE) genes between any two successive developmental
stages (�4-fold at a 5% false-discovery rate [FDR]) were mostly unique compared to
other pairwise stage comparisons (Fig. 1B). Overrepresented Gene Ontology database
(GO) terms for the stage-specific DE genes reflected key biological processes during the
morphological transitions (see Table A in Text S1). For example, the GO term “lipid
metabolism” had the highest representation in the “S0 versus S1” comparison, although
it was statistically nonsignificant (Fig. 1C). The accumulated lipids in hyphae and
perithecial initials are vital for development of paraphyses and asci (50). Perithecia
dramatically increased in size and became more rigid during S2 and S3, which is
accompanied by GO terms related to carbohydrate metabolism (Fig. 1C). Finally, when
the asci develop from the fertile layer during S3 and S4, meiosis-related genes were
significantly enriched for GO terms, including “meiotic cell cycle process” and “asco-
spore formation” at a 5% FDR (Fig. 1C). It is noteworthy that most of the DE genes were
upregulated in the later developmental stages (see Fig. C in Text S1), indicating that
gene activation is the most common means of gene regulation during sexual devel-
opment.

Identification of lncRNA in perithecia. To discover lncRNAs expressed during
perithecial development, we adopted an established protocol for novel transcript
identification (51), with some modifications (see Fig. D in Text S1). First, we constructed
de novo transcript annotations (28,872 transcripts expressed from 20,459 genomic loci)
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and identified potentially novel transcripts that were absent in the reference annota-
tions (Table 1). For identification of noncoding transcripts, the coding potential of the
novel transcripts was computed by using the CPAT program (52). To maximize both
sensitivity and specificity for noncoding transcript detection, the program was trained
on the F. graminearum genome data set, and the threshold was set to a CPAT score of
0.540 (see Fig. D in Text S1) (cf. 0.364 for humans and 0.440 for mice [53]). The
transcripts with a low coding potential (CPAT score of �0.540) were further scanned
against the Pfam and Rfam databases to filter out transcripts encoding protein domains
and harboring any known structural RNA motifs, respectively (E value of �10�10

[Table 1]). Finally we only retained transcripts that were differentially expressed in at

FIG 1 Transcriptome of F. graminearum perithecia. (A) Emergence of new tissues at the defined developmental stages during perithecial formation (S1 to S5
[not drawn to scale]). (B) Venn diagram showing the number of differentially expressed (DE) genes between two successive developmental stages (�4-fold;
5% FDR). Note that most of the DE genes were unique in each comparison. (C) Functional enrichment analyses for DE genes between two successive
developmental stages. Fifty-three GO terms—which can be broadly categorized into 7 biological processes—were assessed for degree of functional enrichment
and were projected to two-dimensional semantic spaces. Only GO terms with a P value of �0.05 are depicted in each panel.

TABLE 1 Identification of lncRNAs expressed during sexual development

Transcript class (code)a

No. of transcripts

Novelb Noncodingc DEd

Splicing variants (J) 5,185 92 17
Tandem transcripts (P) 740 388 100
Intergenic transcripts (U) 2,215 1,054 167
Antisense transcripts (X) 2,892 1,040 263
Sum 11,032 2,574 547
aTranscript class codes were tagged by the gffcompare program (122).
bAmong a total of 11 transcript class codes, transcripts tagged with the class codes J, P, U, and X were
considered novel transcripts (see Text S1 for details).

cNoncoding transcripts were identified by the coding potential assessment tool (CPAT) program (52) and
further filtered by Pfam and Rfam database searches.

dDifferentially expressed (DE) noncoding transcripts of at least one developmental stage were identified as
F. graminearum lncRNAs.
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least one developmental stage (5% FDR), yielding a total of 547 lncRNA candidates
(Table 1; see Table S1 in the supplemental material).

The identified lncRNAs were distributed across the 4 chromosomes and were
generally shorter, with fewer exons than mRNAs (transcripts with a CPAT score of
�0.540) (Fig. 2A to C). Based on the relative position to mRNAs, lncRNAs can be
classified as antisense lncRNA (ancRNA) or long intergenic ncRNA (lincRNA). There were
280 ancRNAs that overlapped more than 100 bp of an mRNA on the opposite strand
and 237 lincRNAs that were situated between annotated genes (Table S1). The mean
A/U content of ancRNA and lincRNA sequences falls between the coding sequences of
the mRNAs and the intergenic regions (Fig. 2D). These distinctive genomic features of
the lncRNA sequences are commonly observed in other eukaryotes (29, 54–57). How-
ever, we identified only 5 lncRNAs that showed similarity to lncRNAs in other eu-
karyotes (E value of �10�10; see Table B in Text S1), suggesting either the poor status
of lncRNA annotations in filamentous fungi or a high degree of sequence divergence
in fungal lncRNAs.

Developmental expression of lncRNA. The sexual stage transcriptome data
showed predominance of lncRNAs at the meiotic stage (S4), where the expression of
many lncRNAs peaked (234 out of 547 [Fig. 2E]). We compared the degree of differential
expression of lncRNAs to that of mRNAs (9,457 transcripts differentially expressed in at
least one developmental stage at 5% FDR). The ratio of the maximum expression
among six developmental stages to the mean expression over the remaining five stages
was calculated for lncRNAs and the differentially expressed mRNAs. By this metric,
lncRNA was prone to be more differentially expressed than mRNA (P � 2.2 � 10�16;
Komolgorov-Smirnov test statistic, D � 0.39), with the third quartile value of the ratio
measuring 2.93 for lncRNA and 1.88 for mRNA (Fig. 2F). Also, we identified seven
coexpressed clusters of lncRNAs that showed developmental stage-specific expression

FIG 2 Genomic features of F. graminearum lncRNA. (A) Distribution of mRNA (blue bars) and lncRNA (red bars) across the four
chromosomes. (B) Distribution of exon numbers per transcript. (C) Transcript length distribution. (D) A/U content of mRNA coding
regions (CDS), 5= untranslated regions (UTRs), 3’ UTRs, intergenic regions, long intergenic lncRNA (lincRNA), and antisense lncRNA
(ancRNA). Box and whisker plots indicate the median, interquartile range between the 25th and 75th percentiles (box), and 1.5
interquartile range (whisker). (E) Distribution of developmental stages at which mRNA and lncRNA showed the highest expression
level. (F) Cumulative distributions of ratios of maximum and mean expression values across the developmental stages. Blue lines
indicate mRNA, and red lines indicate lncRNA.

Sexual Stage-Induced lncRNAs in F. graminearum ®

July/August 2018 Volume 9 Issue 4 e01292-18 mbio.asm.org 5

 on June 9, 2020 by guest
http://m

bio.asm
.org/

D
ow

nloaded from
 

http://mbio.asm.org
http://mbio.asm.org/


patterns, suggesting distinct roles of lncRNAs in different stages of perithecial devel-
opment (Fig. 3A).

In addition to the sexual stage data set, we obtained transcriptome data during
spore germination to investigate the degree of lncRNA expression in vegetative stages.
The data set was comprised of four spore germination stages: G0, fresh spore; G1, polar
growth; G2, doubling of long axis; and G3, branching of hyphae (see Fig. E in Text S1).
Overall expression of the lncRNA gradually increased over the course of perithecial
development, peaking at S4, while most of the lncRNA remained unexpressed or had
low expression in the germination stages, indicating that most of the lncRNA expres-
sion is sexual stage specific (Fig. 3B).

Verification of lncRNA production. To validate lncRNA expression, we chose eight
lncRNAs and performed PCR with 3= rapid amplification of cDNA ends (RACE-PCR) and
Sanger sequencing. All the selected lncRNAs were amplified from total RNA extracts,
and their polyadenylation sites were determined (see Fig. F in Text S1). Also, to examine
if there is an intraspecific conservation in the lncRNA content and expression, we
utilized degradome-seq data from another F. graminearum wild-type (WT) strain sam-
pled at the meiotic stage (47). Degradation of lncRNA transcripts expressed at S4 was
evident, which in turn confirmed the consistent lncRNA production in the two strains
(Fig. 4; also see Fig. 5B below).

Fungal genomes are known for having shorter intergenic spaces than other eukary-
otic genomes. Therefore, fungal lncRNAs could be a transcriptional noise arising from
neighboring genes. To test this, we examined global patterns of the expression
correlation between lncRNA and neighboring genes, with close examination of some
selected examples whose expression was confirmed by 3= RACE-PCR. The lncRNAs
antisense to ORC1, ORC2, and CENP-T each had an upstream gene in close proximity on
the same strand (Fig. 4; see Fig. F in Text S1). However, the sexual stage expression
between the lncRNAs and their respective upstream genes was not correlated (|r| �

0.50 [see Table C in Text S1]). Positive correlation was observed in expression levels
between lncRNAs and their divergently transcribed genes as in the HIR1 and NSE4 loci

FIG 3 Sexual stage-induced lncRNA in F. graminearum. (A) Coexpressed clusters of lncRNAs. Trend plots of Z-score normalized
expression values for lncRNAs (numbers in parentheses) in a given cluster are presented. (B) Expression distribution of mRNA (upper
panel) and lncRNA (lower panel) for the sexual development transcriptome (gray boxes) and the vegetative growth transcriptome
(white boxes). Box and whisker plots indicate the median, interquartile range between the 25th and 75th percentiles (box), and 1.5
interquartile range (whisker).

Kim et al. ®

July/August 2018 Volume 9 Issue 4 e01292-18 mbio.asm.org 6

 on June 9, 2020 by guest
http://m

bio.asm
.org/

D
ow

nloaded from
 

http://mbio.asm.org
http://mbio.asm.org/


(r � 0.8 [Fig. 4; see Table C in Text S1]), indicating prevalence of bidirectional promoters
for lncRNA transcription (2, 58, 59). On the other hand, the expression of lncRNAs and
their convergently transcribed genes tend not to be correlated, as in the CENP-T and
RMD1 loci (|r| � 0.50 [Fig. 4; see Table C in Text S1]). These patterns were globally
observed in lncRNA-associated loci (see Fig. F in Text S1), suggesting that the lncRNAs
were not likely to be misannotated extensions of neighboring genes (54, 60, 61).

Identification of sRNA-enriched loci associated with lncRNAs. We found 300
sense mRNA-ancRNA pairs with different orientations: 5=¡5= partial, 3=¡3= partial, and
full overlaps. One of the most common mechanisms involving antisense transcription
is the RNA interference (RNAi) pathway incorporating small RNAs (sRNAs) generated
from the double-stranded RNA regions. To investigate the degree and effect of sRNA
production in the ancRNA loci, we analyzed the previously published sRNA-seq and
degradome-seq data at the meiotic stage (47). As expected, sRNA reads were mapped
at a higher frequency to ancRNAs than to mRNAs without overlapping antisense
transcripts, the sense mRNAs, or lincRNAs (P � 1.2 � 10�8; Kruskal-Wallis test statistic,
H � 155 [Fig. 5A]), suggesting that the ancRNA loci may serve as a major source for
endogenous sRNA production. However, the correlation of the degradome-seq and our
RNA-seq data at S4 showed that sRNA-mediated endonucleolytic cleavage of ancRNAs
and sense mRNAs was comparable to that of mRNAs without antisense transcripts
(Fig. 5B), implying that the ancRNA loci were not preferentially targeted by RNAi
machinery, posttranscriptionally.

It remains paradoxical that gene silencing induced by heterochromatin formation
requires sRNA production via cotranscriptional processes, sometimes from lncRNAs
(62–66). To search for any lncRNAs associated with sRNA-enriched loci that could be
indicative of transcriptional gene silencing events, we examined the top 80 sRNA
clusters ranked by the number of mapped reads, which accounted for 62% of mapped
sRNA reads (see Table D in Text S1). Production of sRNAs in the top 80 clusters was
dependent on Dicers and Argonautes (47), indicating that the sRNAs were produced by

FIG 4 Examples of lncRNA expression across the sexual development stages. Per-base coverage of transcripts was plotted for both DNA strands in a 5-kb
window. For the perithecial transcriptome data sets (S0 to S5), mapped reads of 3 biological replicates were pooled and then subsampled to 60 million reads
for visual comparison of expression levels across the stages. For the degradome-seq data sets (DG), mapped reads of 2 replicates were pooled and displayed.
The positions of lncRNAs (red arrows) and their neighboring genes (white arrows) are shown in the annotation track with the genome coordinate at the bottom
of each panel. The genes overlapping lncRNAs on the opposite strand are labeled with abbreviated gene names in boldface: CENP-T, centromere protein T
(FGRRES_16954), HIR1, histone regulatory protein 1 (FGRRES_05344); NSE4, nonstructural maintenance of chromosome element 4 (FGRRES_17018); ORC1, origin
recognition complex subunit 1 (FGRRES_01336); RMD1, required for meiotic division 1 (FGRRES_06759). In relation to lncRNA position, neighboring genes are
also labeled as follows: div., divergently transcribed gene on the opposite strand; conv., convergently transcribed gene on the opposite strand; up., upstream
gene in tandem on the same strand.
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RNAi machinery (Fig. 5C). Most of the sRNA clusters were found in genic regions,
containing at least one annotated gene, to which a large portion of sRNA reads were
mapped (Fig. 5D). We observed that the coding genes closest to the centers of sRNA
clusters exhibited overall low expression (�0.5 read per kilobase per million [RPKM] in
22 out of the 80 clusters) (Fig. 5D). A significant portion of sRNAs were also derived from
noncoding transcripts and genic regions overlapped with antisense transcripts, some of
which were identified as lncRNAs (Fig. 5D; see Fig. S1 in the supplemental material).
Unexpectedly, the lncRNAs associated with sRNA clusters exhibited moderate expres-
sion (n � 19; median expression of 5.2 RPKM). In addition, the coding genes closest to
the centers of the sRNA clusters showed higher expression levels (n � 19; median
expression of 4.0 RPKM) than those without an associated lncRNA (n � 61; median
expression of 1.3 RPKM; P � 0.029; Mann-Whitney test statistic, U � 747).

Coexpression of lncRNAs and their sense transcripts. We could not find strong
evidence for sRNA-mediated transcriptional and posttranscriptional gene silencing in

FIG 5 lncRNA associated with small RNA-enriched loci. (A) sRNA reads mapped to mRNAs without antisense transcripts (10,928 loci), sense mRNAs
for ancRNAs (295 loci), ancRNAs (276 loci), and lincRNA (235 loci) are represented as RPKM. The number of sRNA reads aligned to ancRNA loci
was more than those of the other classes of transcripts (Benjamini-Hochberg adjusted P value of �0.0001; Dunn’s pairwise multiple comparisons).
(B) Correlation analysis between transcript abundance and degradome tag count at the meiotic stage. Lines depict regressions for different classes
of transcripts. (C) sRNA reads mapped to the top 80 sRNA clusters in different genotypes are represented as counts per million (CPM). The numbers
of sRNA reads mapped to the clusters were significantly reduced in the Δdicer1/2 mutant, with double deletion of Dicer genes (FGRRES_09025
and FGRRES_04408), and the Δago1/2 mutant, with double deletion of Argonaute genes (FGRRES_16976 and FGRRES_00348) (47). (D) Fractions
of sRNA reads mapped to intergenic regions (white), coding genes (blue), overlapped regions (purple), and noncoding genes (red), including
lncRNAs marked with asterisks in the top 80 sRNA clusters. Overlapped regions were defined if coding or noncoding genes in the region were
present on the both sides of DNA in the de novo annotations. Expression values (RPKM) for the closest coding gene (mRNA) to the center of each
sRNA cluster are shown as heat maps, along with expression values for ncRNAs, if any, that were present in the same cluster.
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the ancRNA loci. Interestingly, we did observe gene expression correlation in many
ancRNAs and sense mRNA pairs across the sexual stages (85 out of the 300 pairs with
Pearson’s correlation |r| � 0.70; Fisher’s exact test, P � 0.05 [Fig. 6]), most of which were
positively correlated (76 out of the 85 pairs). We asked whether the ancRNAs are
antisense to genes involved in a specific biological process. We found that 17 genes in
the ancRNA loci were involved in DNA metabolic processes such as DNA replication,
repair, and recombination (Table 2). Notably, the positively correlated sense mRNAs
were enriched for the GO term “DNA metabolism” at a 5% FDR (8 out of the 76 genes
[see Table E in Text S1]), and among them, five genes (FGRRES_00736, FGRRES_01614,
FGRRES_06286, FGRRES_07280, and FGRRES_08658) appeared to have functions re-
lated to DNA damage repair (Table 2). In addition, we surveyed previously published
research for the 295 sense genes to determine if there are any genes known to affect
sexual development. We found one gene, RGSC (FGRRES_09585; encoding a regulator
of G proteins), whose knockout phenotype was defective in ascospore morphology
(67).

Identification of lncRNAs affected by the NMD pathway. The NMD pathway is
known to regulate the expression of noncoding genes, as well as coding genes, for
sexual sporulation in yeasts. To identify the sexual stage-induced lncRNAs that were
affected by NMD, we generated a deletion strain lacking XRN1 (FGRRES_06799) that
encodes a 5=¡3= exonuclease. The Δxrn1 deletion mutant displayed a lower growth
rate on different growth media compared to the wild type (WT); however, it produced
normal-shaped asexual spores (Fig. 7A; see Fig. G in Text S1). We observed that
perithecial development was significantly delayed and ascus development was defec-
tive in the Δxrn1 strain, producing variable ascospore sizes (Fig. 7A; see Fig. G in
Text S1). The defective sexual phenotype was restored by genetic complementation
with XRN1 (see Fig. G in Text S1).

FIG 6 Parallel induction of sense mRNA and antisense lncRNA pairs during sexual development.
Expression data of sense mRNA and antisense lncRNA pairs in 18 samples for the perithecia transcrip-
tome (S0 to S5) were reordered by the BLIND program. The RPKM values of sense mRNA and antisense
lncRNA pairs with absolute Pearson’s correlation greater than 0.7 (P � 0.05; Fisher’s exact test) were
clustered by Euclidean distance, and heat maps of Z-score normalized RPKM values are presented.

Sexual Stage-Induced lncRNAs in F. graminearum ®

July/August 2018 Volume 9 Issue 4 e01292-18 mbio.asm.org 9

 on June 9, 2020 by guest
http://m

bio.asm
.org/

D
ow

nloaded from
 

http://mbio.asm.org
http://mbio.asm.org/


TABLE 2 Sense transcripts encoding DNA metabolism-related gene products

Gene ID no. Putative function Protein domain (E value)a Correlation with ancRNAb

FGRRES_00667 Similar to chromatin assembly complex subunit p60 Pfam12894 (3.69e�08) 0.76 (lncRNA-026)
FGRRES_00736 Similar to DNA damage response protein WSS1 Pfam08325 (3.75e�79) 0.89 (lncRNA-030)
FGRRES_01336 Origin recognition complex subunit 1 Cd04720 (3.48e�37) 0.69 (lncRNA-065)
FGRRES_01614 Similar to DNA mismatch repair protein MLH3 COG0323 (5.15e�39) 0.88 (lncRNA-083)
FGRRES_05344 Histone regulatory protein 1 (HIR1) Pfam07569 (6.27e�99) 0.29 (lncRNA-324)
FGRRES_05737 ssDNA/RNA-binding protein Pfam00076 (1.73e�15) 0.91 (lncRNA-342)
FGRRES_05781 Similar to TCB2 transposase Pfam01498 (3.32e�08) 0.97 (lncRNA-344)
FGRRES_06122 Origin recognition complex subunit 2 Pfam04084 (3.98e�163) 0.39 (lncRNA-356)
FGRRES_06231 Origin recognition complex subunit 4 Pfam14629 (1.82e�70) 0.01 (lncRNA-367)
FGRRES_06286 Similar to DNA repair polymerase RAD30 Cd01703 (6.27e�145) 0.75 (lncRNA-369)
FGRRES_06339 DNA primase small subunit Pfam01896 (8.59e�42) 0.40 (lncRNA-373)
FGRRES_07280 Similar to DNA repair helicase ERCC3/RAD25 Pfam16203 (6.04e�173) 0.70 (lncRNA-461)
FGRRES_08650 Similar to SEN1 helicase Pfam12726 (0e�00) 0.66 (lncRNA-214)
FGRRES_08658 Similar to DNA repair endonuclease ERCC4/RAD16 Pfam02732 (2.80e�25) 0.77 (lncRNA-216)
FGRRES_09872 Similar to DNA repair dioxygenase AlkB COG3145 (4.37e�07) �0.02 (lncRNA-144)
FGRRES_16954 Centromere protein T (CENP-T) Pfam15511 (6.41e�47) �0.36 (lncRNA-235)
FGRRES_17018 Nonstructural maintenance of chromosome element 4 (NSE4) Pfam08743 (3.83e�45) 0.10 (lncRNA-201)
aBLAST search for associated protein domains related to DNA metabolic processes.
bPearson’s correlation for the expression levels of sense transcripts and ancRNAs across the sexual development stages. Values greater than 0.7 are marked in
boldface.

FIG 7 Identification of lncRNAs regulated by the NMD pathway. (A) Asexual spore (macroconidia) morphology (upper panels) and sexual spore (ascospore)
morphology (lower panels). Note the size variation of ascospores in the Δxrn1 mutant. Scale bars � 20 �m. (B) Principal-component analysis of the perithecial
transcriptome data from the wild type (S0 to S5 [blue circles]) and Δxrn1 transcriptome data (S0 and S4 [yellow circles]). (C) Venn diagram showing the overlap
of Xrn1-sensitive unstable transcripts (XUTs) at S0 and S4 (D) Two-dimensional plots of different classes of transcripts between the wild-type (abscissa) and Δxrn1
mutant (ordinate) expression data at S0 and S4 (diagonal [gray line]). The yellow dashed line shows regression for the XUTs. (E) Expression distribution of 25
lncRNAs that were identified as XUTs at S0 and S4. Box and whisker plots indicate the median, interquartile range between the 25th and 75th percentiles (box),
and 1.5 interquartile range (whisker).
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To identify lncRNA whose expression was affected by NMD activity, we analyzed the
transcriptome data from the WT and the Δxrn1 strain at the vegetative (S0) and meiotic
(S4) stages. The transcriptome data of the Δxrn1 strain were distinct from, but most
similar to, those of WT at the corresponding stages, indicating drastic effects of XRN1
on gene expression levels as a major component for RNA turnover (Fig. 7B). After
expression values were normalized with 124 ribosomal protein genes that were known
to be relatively insensitive to NMD activity (26), we identified a total of 1,122 XUTs that
were differentially expressed at S0 or S4 in the Δxrn1 strain (�3-fold increase at 5% FDR
[Fig. 7C; see Table S2 in the supplemental material]). After the normalization, the XUTs
identified at S0 and S4 showed median 5.0- and 5.8-fold increases in the Δxrn1 mutant,
respectively (Fig. 7D; Table S2). Many XUTs were previously annotated transcripts or
isoforms of them (70% [781/1,122]), and only 11% of XUTs (122/1,122) were predicted
to be noncoding transcripts (CPAT score of �0.540) (Table S2). Among the noncoding
XUTs, we identified 25 lncRNAs whose expression was elevated upon the Xrn1 deple-
tion at S0 and showed increasing patterns across the sexual stages (Fig. 7E; see Fig. S2
in the supplemental material). In addition, many of the coding XUTs identified at S0
were also induced as the sexual development progressed (see Fig. H in Text S1).
Interestingly, we found that key components of the RNA-induced silencing complex
(RISC) (68) were also identified as XUTs, such as DICER2 (FGRRES_04408), AGO1
(FGRRES_16976), Neurospora crassa QIP homologue (FGRRES_06722), and RDRP genes
(coding for RNA-dependent RNA polymerases [FGRRES_01582, _04619, and _09076]).

DISCUSSION

Here we profiled transcriptomes of vegetative and sexual stages that span the entire
life cycle of F. graminearum. lncRNAs are usually an order of magnitude less abundant
than mRNAs (69, 70), so the unprecedented depth of the sequencing data we gener-
ated (total of 938 million mapped reads) enabled us to capture scantly expressed
noncoding transcripts. This study has revealed global properties of lncRNAs during
perithecial development, characterized by dynamic and developmental stage-specific
expression. In the last step of our lncRNA identification pipeline, we only included
differentially expressed noncoding transcripts to discern lncRNAs of biological signifi-
cance. This filtering step allowed us to identify low-abundance lncRNAs that alone
could be argued to be transcriptional noise (71, 72). For many antisense lncRNAs, we
detected parallel induction with their respective sense transcripts across sexual devel-
opment and identified a subset of lncRNAs that are sensitive to NMD activity before
sexual induction.

Our lists of F. graminearum lncRNAs contain many confident lncRNA annotations,
but are still far from complete. This is primarily due to difficulty in unequivocal
determination of whether a transcript is coding or noncoding (73). Although protein
products from most of the bona fide lncRNAs with predicted ORFs have not been
detected in cells (74, 75), many lncRNAs with one or more ORFs have been shown to
be associated with ribosomes in budding yeast, Arabidopsis, and animals (76–81). By
scrutinizing the sRNA-enriched loci, we identified several transcripts with short ORFs
(ranging from 49 to 227 amino acids) as putative lncRNAs. These novel transcripts were
initially filtered out by the CPAT program; however, another annotation tool, CPC2 (82),
classified them as lncRNAs, and the lncRNA annotations were also supported by the
lack of cross-species conservation of the deduced polypeptides (E value of �10�10 [see
Table F in Text S1]).

Another source of false negatives in our data set may have arisen from poly(A)-
based library preparation that excluded some lncRNAs lacking poly(A) tail. This may
account for the inclusion of fewer lncRNAs in our XUT identification process, as
deadenylation often takes place prior to 5=¡3= degradation by Xrn1. More precise
identification of lncRNAs, especially for those undergoing deadenylation by the RNA
quality control machineries, should be accompanied by cap analysis gene expression
(CAGE)-seq (83–85). However, most lncRNAs identified in this study were also detected
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by degradome-seq (47), another sequencing method (also known as parallel analysis of
RNA ends [86]), which further validates their authenticity.

To better understand how the expression of lncRNAs was controlled during perith-
ecial development, we identified XUTs, as the NMD pathway has been shown to
determine the fate of lncRNAs (21, 84). However, only 5% of the sexual stage-induced
lncRNAs (25/547) were affected by Xrn1 activity, and the majority of the lncRNAs
seemed to escape from the RNA surveillance system. The proportion of XUTs among
the lncRNAs in F. graminearum is comparable to that in other eukaryotes, where
approximately 4 to 14% of noncoding transcripts are known to undergo NMD (25).
Interestingly, sexually induced RISC components were highly upregulated in the Δxrn1
mutant, indicating a possible link between the gene silencing pathway and the NMD
pathway. Further studies on lncRNAs and the RNAi machinery that were affected by
NMD activity will provide novel insights into regulatory mechanisms via altered RNA
metabolism during sexual development.

We initially aimed to dissect the roles of other exosome and NMD components in
lncRNA expression, such as RRP6 (FGRRES_06049), DBP2 (FGRRES_16145), and MTR4
(FGRRES_01656) (84, 87). However, efforts to obtain deletion strains lacking either the
DBP2, MTR4, or RRP6 gene were unsuccessful (W. Kim and F. Trail, unpublished data),
suggesting these genes may be essential in F. graminearum, as they are in another
filamentous fungus, Neurospora crassa (88, 89). In fission yeast, the nuclear exosome
mediates gene silencing of coding and noncoding loci during vegetative growth, and
the sexual sporulation is triggered by disassembly of heterochromatin on the silenced
loci (90). Therefore, it will be interesting to see if the regulation of lncRNA expression
is achieved by modulation of chromatin status before and after the sexual induction in
F. graminearum.

Antisense transcription can influence synthesis, expression kinetics, and stability of
sense transcripts through a variety of mechanisms (5, 91). Antagonism of lncRNAs
against meiotic gene expression has been documented in yeasts (10, 11, 92–95).
Nevertheless, there has been growing evidence that lncRNAs activate repressed genes
by modulating local chromatin structures, which can facilitate coordinated gene ex-
pression in budding yeast (96, 97) and other eukaryotes (98–101). In favor of this
regulatory phenomenon, we hypothesize that the F. graminearum lncRNAs, which
showed parallel induction with DNA metabolism-related genes across the sexual
development stages, may play a role during meiosis that requires DNA break and repair
for homologous recombination, according to “guilt by association” (1, 29). However,
lncRNAs often exhibited cell-type-specific expression (100, 102, 103) and even allele-
specific expression within the same nucleus (104). Therefore, we cannot rule out the
possibility that the positively correlated pairs of lncRNA and sense transcript are in fact
mutually exclusively expressed in different tissues or cell types in the perithecia,
inhibiting each other.

Although genes found in sRNA-enriched loci are usually silenced by RNAi-dependent
heterochromatin formation, some of the sRNA clusters involving lncRNAs, paradoxically,
were transcriptionally active at the meiotic stage in F. graminearum. In our developmental
transcriptome data, we observed that many stage-specific genes were induced over the
course of sexual development, which may play key roles in the corresponding perithecial
tissue development. It is conceivable that the silenced genes in vegetative tissues were
derepressed by lncRNA expression by yet unknown mechanisms upon sexual induction. In
N. crassa, molecular studies on the circadian clock gene locus revealed a periodic gene
activation and repression mechanism involving lncRNA and facultative heterochromatin
formation. The expression of an lncRNA antisense to the circadian clock gene promotes
sense transcription by generating a more transcriptionally permissive chromatin that has
been silenced by sRNA-mediated heterochromatin formation (105).

This study presents genome-wide characterization of lncRNAs during fruiting body
development. The transcriptome landscape, including lncRNAs during the life cycle of
F. graminearum, provides fundamental genomic resources to the Fusarium community.
The detailed molecular study of newly identified lncRNAs, with its established tools for
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rapid genetic analyses and ample genetic resources, will contribute to the understand-
ing of how fungi utilize noncoding genomes for laying out their multicellular body plan.

MATERIALS AND METHODS
Data generation and processing. The F. graminearum genome assembly (39) and the Ensembl

annotation version 32 (40) of wild-type strain PH-1 (accession no. FGSC 9075 and NRRL 31084) were used
throughout this study. For total RNA extraction, synchronized fungal tissues were collected from carrot
agar cultures at the previously defined developmental stages during perithecial formation (36–38, 48).
For transcriptome data of spore germination stages, asexual spores (macroconidia) were spread on Bird
agar medium (106) overlaid with a cellophane membrane and sampled at the indicated spore germi-
nation stages (see Fig. E in Text S1). Strand-specific cDNA libraries were constructed from poly(A)-
captured RNAs, using the Kapa stranded RNA-Seq library preparation kit (Kapa Biosystems, Wilmington,
MA), and sequenced on the Illumina HiSeq 2500 platform (Illumina, Inc., San Diego, CA) at the Michigan
State University Research Technology Support Facility (https://rtsf.natsci.msu.edu/genomics). Following
quality control for raw reads (Text S1), filtered reads were mapped to the repeat-masked genome using
the HISAT2 program (v2.0.4) (107), and a genome-guided transcriptome assembly was performed using
the StringTie program (v1.3.0) to generate de novo transcript annotations (108).

Differential expression and functional enrichment analyses. Read counts for gene loci were
calculated using the htseq-count program (v0.6.1) (109). On average, 87% of mapped reads were
overlapped to exons in the de novo annotations. Gene expression levels in counts per million (CPM)
values were computed and normalized by effective library size estimated by trimmed mean of M values,
using the edgeR R package (v3.14.0) (110). Only genes with CPM values greater than 1 in at least 3
samples were kept for further analyses (15,476 out of 20,459 gene loci). Then, differentially expressed
(DE) genes showing greater than 4-fold difference at an FDR of 5% were identified between two
successive developmental stages, using the limma R package (v3.28.21) (111). GO terms were assigned
to the de novo annotations, using the Trinotate program (v3.0.1) (112). The list of GO terms was
customized by adding several GO terms related to developmental processes to the GO Slim terms
specific for fission yeast (113). Functional enrichment analyses for DE genes were performed using the
GOseq R package (v1.24.0), including only those genes annotated by one or more GO terms (114). To
assess enrichment of GO terms, the Wallenius approximation (an extension of the hypergeometric
distribution) and Benjamini-Hochberg method were used to calculate the FDR-corrected P value.

Conserved lncRNA search. To search for conserved lncRNAs, the 547 lncRNAs were queried against
the RNAcentral database version 5 (http://rnacentral.org), using the nhmmer program, which detects
remote homologies, in the HMMER software (v3.1b2) (115). Search hits with an E value of �10�10 were
reported.

Coexpression network analysis. The weighted gene correlation network analysis (WGCNA) R
package (v1.51) (116) was used to cluster lncRNAs by averaged RPKM values for developmental stages.
The “pickSoftThreshold” function was used to determine soft-thresholding power that measures the
strength of correlation based on not just the direct correlation value of pairs of genes, but also the
weighted correlations of all of their shared neighbors in the network space (117). The soft-thresholding
power of 26 was selected, which is the lowest power for which the scale-free topology model fit index
reaches 0.80. A range of treecut values were tested for cluster detection, and the value was set to 0.18
(corresponding to a correlation of 0.82). All other WGCNA parameters remained at their default settings.

Identification of small RNA clusters. The sRNA-seq and degradome-seq data were obtained from
NCBI GEO (GSE87835) and NCBI SRA (PRJNA348145), respectively (47). In filamentous fungi, the size of a
majority of sRNAs ranges from 17 to 27 nucleotides (nt), with a strong 5= U preference (70 to 82%) (47,
118). Thus, clusters of 17- to 27-nt-long 5=-U sRNA reads were detected across the genome, using the
ShortStack program (v3.8.2) (119) with the option arguments “--pad 22” and “--mincov 20.” Subsequently,
the number of 5= U sRNA reads aligned to different genomic features (e.g., coding regions) were counted
for each sRNA cluster, using the htseq-count program (v0.8.0) (109). The degradome-seq data set was
processed according to the previous study (47).

Expression correlation analysis. The expression value matrix for the 18 RNA-seq data (6 stages �
3 replicates) were rearranged by the BLIND program (see Fig. B in Text S1). Pearson’s correlation and the
associated P value by Fisher’s exact test were calculated for the expression levels of the 300 sense
mRNA-antisense lncRNA pairs, using an R script (29). For sense mRNAs only, which showed positive
correlation with antisense lncRNAs, we performed functional enrichment analyses, using the GOseq R
package (v1.24.0) (114), as done for DE genes between two successive developmental stages (see above).

XUT identification. Generation, confirmation, and complementation of the Δxrn1 mutant are
described in Text S1, and the primers used in this study are listed in Table S3 in the supplemental
material. To incorporate novel transcripts that were only expressed in the Δxrn1 mutant due to loss of
NMD activity, the RNA-seq reads for the Δxrn1 mutant were independently processed, and the assembled
transcripts were merged to the de novo annotations, using the “merge” function in the StringTie program
(v1.3.0) (108). Transcript abundance is globally affected by XRN1 deletion in budding yeast; however, the
expression of ribosomal protein genes shows only slight increases in the Δxrn1 mutant and remains
constant after lithium treatment, which inhibits 5=¡3= exonuclease activities (26, 120). Thus, before XUT
identification, expression values were normalized in such a way that ribosomal protein genes are
expressed at the same levels in the WT and Δxrn1 mutant by multiplying by 0.66 and 1.96 the RPKM
values of the WT at S0 and S4, respectively (see Fig. I in Text S1). Differential expression analyses were
performed, using the “stattest” function with the option argument “libadjust � FALSE” in the Ballgown
R package (v2.8.4) (121). The DE transcripts showing a 3-fold increase in the Δxrn1 mutant were identified
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as XUTs (5% FDR). We excluded transcripts with relatively low expression levels in the Δxrn1 mutant (�3.0
RPKM) from the putative XUTs to reduce possible false positives.

Accession number(s). The RNA-seq data generated in the present work have been deposited in
NCBI’s Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo) and are accessible through GEO
series accession no. GSE109095, which is composed of the two data sets—the sexual stage and �xrn1
mutant data set (GSE109094) and the spore germination stage data set (GSE109088).

SUPPLEMENTAL MATERIAL
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