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a b s t r a c t 

We study the effect of inter-fiber adhesion on the mechanical behavior of cross-linked ran- 

dom fiber networks in two dimensions. To this end, we consider networks with connectiv- 

ity number, z , below, at, and above the isostaticity limit of the structure without adhesion, 

z c . Fibers store energy in the axial and bending deformation mode and the cross-links are 

of freely rotating type. Adhesive forces lead to fiber bundling and to a reduction of the 

total volume of the network. The degree of shrinkage is determined as a function of the 

strength of adhesion and network parameters. The mechanical response of these struc- 

tures is further studied in uniaxial tension and compression. The stress-strain curves of 

networks without inter-fiber adhesion exhibit an initial linear regime, followed by strain 

stiffening in tension and strain softening and strain localization in compression. In pres- 

ence of adhesion, the response becomes more complex. The initial linear regime persists, 

with the effective modulus decreasing and increasing with increasing adhesion in cases 

with z > z c and z < z c , respectively. The strain range of the linear regime increases signif- 

icantly with increasing adhesion. Networks with z > z c subjected to tension strain-stiffen 

at rates that depend on the adhesion strength, but eventually enter a large strain/stress 

regime in which the response is independent of this parameter. Networks with z < z c are 

stabilized by adhesion in the unloaded state. Beyond the initial linear regime their tangent 

modulus gradually decreases, only to increase again at large strains. Adhesive interactions 

lead to similar effects in compression. Specifically, in the z > z c case, increasing the adhe- 

sion strength reduces the linear elastic modulus and significantly increases the range of 

the linear regime, delaying strain localization. This first investigation of the mechanics of 

cross-linked random networks with inter-fiber adhesion opens the door to the design of 

soft materials with novel properties. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Many materials of everyday use are made from fibers or have a fiber network as their main structural component. Build- 

ing three-dimensional constructs from filaments increases the effectiveness of material use, reducing material consumption 

and leading to lightweight products. This is extensively exploited in the biological world where most materials are fibrous. 

Collagen and elastin fibers form all connective tissues and membranes in animal bodies, the structural component of eu- 

karyotic cells – the cytoskeleton – is a complex network of protein filaments, plant stems are fibrous, and fungi grow by 

extending tubular filaments called hyphae. 
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Engineered fibrous materials include non-wovens as well as various types of woven structures such as cloth, tissue, 

filters, insulation, etc. Molecular networks, such as gels and rubber, are also widely used. These are usually soft materials 

that accommodate large deformations and exhibit high toughness ( Darnell et al., 2013; Erman and Mark, 1997 ). 

Interactions in fiber networks are of bonded and non-bonded type. In bonded networks, inter-fiber bonds engage the 

axial, bending and torsional deformation modes of fibers. Topological interactions, associated with the condition that fibers 

do not cross or overlap, are of non-bonded type and become important in compression, under large deformations, in both 

bonded and non-bonded networks ( Picu and Subramanian, 2011; Toll, 1998 ). 

Fibers can also interact adhesively, which leads to fiber bundling. Adhesive interactions may originate from various 

sources such as hydrophobic attraction between filaments, hydrogen bonding, electrostatic interactions, etc, each being 

dominant in specific material systems. Adhesion forces are short-ranged, and fibers must be brought in close contact by 

other agents for adhesion to become active. Examples include ‘mechanical activation’ of non-wovens which is known to in- 

crease their stiffness and strength ( Linares et al., 2009 ), and elastocapillarity which organizes fibrous assemblies into bundles 

( De Volder and Hart, 2013 ). Capillarity may be used to produce a variety of effects in soft matter, as reviewed in ( Style et al., 

2017 ). In all cases, capillary forces bring elastic structures (fibers or foils) in contact, after which these are held together by 

adhesive forces. Suspensions of rigid and flexible fibers undergo flocculation as the concentration increases. The formation 

of filament bundles was observed in dense suspensions of actin ( Tempel et al., 1996 ) and collagen ( Yunoki et al., 2015 ) and 

the process was discussed theoretically by Zilman and Safran (2003) . 

The effect of adhesion can be evaluated in terms of the elastocapillary length L EC = 

√ 

E f I/γ ( Bico et al., 2004 ), which 

captures the physics of bending-dominated elasticity in presence of surface forces ( Israelachvili, 2011 ). The parameters E f 
and I are the elastic modulus of the fiber material and the moment of inertia of the fiber cross-section, while γ represents 

the work of adhesion per unit length of contact between two fibers with parallel axes. Adhesion becomes important when 

L EC is comparable to other characteristic lengths of the fibrous structure, such as the fiber length, L 0 , or the mean segment 

length of the fiber network (i.e. the mean distance between two cross-links along given fiber), l c ( Picu and Sengab, 2018 ). 

L EC for PAN nanofibers of diameter 300 nm is approximately 34 μm, L EC = 10 nm for single-walled CNT (10,10) of diameter 

1.4 nm, and 7 μm to 20 μm for microtubules ( Picu and Sengab, 2018 ). For actin filaments, having E f I = 7 . 3 × 10 −26 N m 

2 

( Gittes et al., 1993 ) and effective γ ∼ 0.40 ±0.188 pN ( Streichfuss et al., 2011 ) in the presence of M g 2+ ions, L EC takes values 
in the range 0.35 μm to 0.59 μm. L EC was used to rationalize the adhesion-driven organization of carbon nanotubes in buck- 

ypaper and formation of nanotube bundles ( Berhan et al., 2004; Coleman et al., 2003; Liu et al., 1998; Lu, 1997 ). The size 

and structure of bundles depends on the bending stiffness (i.e. whether the buckypaper contains single wall or multiwall 

CNTs) and the length of filaments. 

A detailed analysis of the structural organization driven by adhesive forces in non-bonded fiber assemblies was presented 

in ( Picu and Sengab, 2018 ). The non-dimensional parameters that control the evolution of the structure are ρL 0 , where L 0 
is the fiber length and ρ is the network density (total length of fibers per unit area of the fiber mat), and � = ( L 0 / L EC ) 

2 . 

It was shown that the fibrous system evolves when � > a ( ρL 0 ) 
2 , where a is a numerical parameter, and remains in the 

as-deposited state when this condition is not fulfilled. Further, evolving structures may disintegrate into isolated bundles 

at small values of ρL 0 , while a cellular network of fiber bundles forms at larger ρL 0 . The boundary between non-evolving 

and evolving network states depends on the presence and the magnitude of friction between fibers ( Sengab and Picu, 2018 ). 

Friction leads to an increase of parameter a and extends the range of non-evolving structures to larger values of � . 

Substantial work was dedicated to the mechanics of cross-linked networks of fibers both in the mechanics of materials 

and physics literature (see reviews ( Broedersz and MacKintosh, 2014; Picu, 2011 )). Generically, networks without adhesive 

interactions subjected to either uniaxial tension or shear exhibit three regimes: a linear elastic response at small strains, 

followed by strain stiffening at intermediate strains, and by a third linear regime at even larger strains. Network deformation 

is generally non-affine, with the local strains being different from the applied far-field strain and varying with the position 

in the network. A transition from quasi-affine deformation, observed at high network densities, ρ , and when fibers are stiff
in bending (large E f I ), to strongly non-affine deformation at low ρ and E f I was reported ( Head et al., 2003 ). In non-affine 

conditions, the small strain modulus of the network, E 0 , varies linearly with ρ
x E f I , where the exponent x depends on the 

network architecture and embedding space dimensionality ( Heussinger and Frey, 2007; Islam and Picu, 2018; Shahsavari and 

Picu, 2013 ). This relation becomes E 0 ∼ρE f A in affine conditions, where A is the cross-sectional area of fibers. Beyond the 

first linear elastic regime, networks strain-stiffen either exponentially or as a power function of strain. The type of stiffening 

depends on the network architecture ( Islam and Picu, 2018 ). Exponential stiffening is broadly reported in the biomechanics 

literature related to soft tissue mechanics ( Fung, 1993 ). During this process, fibers gradually orient in the loading direction 

and the network becomes mechanically anisotropic. When fiber orientation ceases, the load is transmitted exclusively along 

‘stress paths’ that percolate across the sample and the stress-strain curve enters the third linear elastic regime. 

In compression, networks also exhibit three regimes. The first regime is linear elastic and the effective modulus in com- 

pression is identical to that measured in tension. A gradual reduction of the tangent modulus is observed at intermediate 

strains. Similar to the compressive behavior of cellular materials ( Gibson and Ashby, 1999 ), this is associated with strain 

localization. However, the more disordered structure of random fiber networks prevents localization in a narrow band, as 

usually observed in the cellular case. The segment of the strain-strain curve corresponding to this localization regime has 

positive slope, with the tangent stiffness increasing with increasing the degree of structural disorder of the network. Pro- 

nounced strain stiffening is observed at larger strains, which is due to the formation of contacts between fiber segments. 

This regime is well described by the model proposed by Toll (1998) . 
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While the mechanical behavior of bonded networks without adhesion is, in general terms, well understood, the effect of 

adhesion on the mechanics of such structures has not been explored to date. This article is devoted to the investigation of 

this effect. The studies discussed above related to the effect of adhesion on non-bonded network mechanics ( Picu and Sen- 

gab, 2018; Sengab and Picu, 2018 ) indicated that adhesion may significantly re-organize the network. Such re-organization is 

expected to also occur in the case of bonded networks, although its extent should be limited due to the constraints imposed 

by the bonds. To clarify this aspect, we study first the network re-organization and observe significant, �-dependent shrink- 

age under the action of inter-fiber adhesion. Further, we study the mechanical behavior of these structures in tension and 

compression. To preserve simplicity, in this first study of such systems we consider two-dimensional (2D) networks. How- 

ever, the trends observed are expected to be more generally applicable to three-dimensional networks and to architectures 

other than those considered here. We observe that adhesion modifies substantially the mechanics of the network, signifi- 

cantly modifying the effective small-strain stiffness, drastically increasing the range of the linear elastic response, postponing 

strain localization in compression, and even leading to a regime in which the tangent modulus decreases with increasing 

strain in uniaxial tension. 

2. Models and methods 

2.1. Models 

We consider models in which fibers are made from the same linear elastic material of Young’s modulus, E f , and have 

identical cross-sectional area, A , and moment of inertia, I . The cross-section and bending rigidity are considered sufficiently 

large for fibers to be athermal and behave as beams. Inter-fiber adhesion is defined by the energy gain per unit area of 

contact when two surfaces are brought together, γ 0 . In the case of cylindrical filaments, the contact is established over an 

area of width c 0 . In absence of chirality, the two cylinders in contact remain parallel. The Johnson-Kendall-Roberts (JKR) and 

the Derjaguin-Muller-Toporov (DMT) theories predict that c 0 ∼ ( γ 0 A / E 0 ) 
1/3 ( Derjaguin et al., 1994; Johnson, 1985; Persson, 

2006 ). The adhesion energy per unit length of filament contact, or the work of separation, is γ = γ0 c 0 ( Schmied et al., 2012 ). 
Since the range of adhesive forces is small compared with the other length scales of the problem, we take here an 

energetic view similar to that used in the JKR theory ( Johnson et al., 1971 ). This allows us to avoid accounting explicitly 

for the effect of adhesion forces in system dynamics. In contact mechanics, the validity of this approach is determined by 

the Tabor parameter ( Tabor, 1977 ), ( R γ 2 / E 2 q 3 ) 1/3 , where R and E are the equivalent radius of curvature and the equivalent 

modulus of the two surfaces in contact, and q is a parameter proportional to the range of the adhesive forces. The JKR 

theory is found to be applicable only for high values of the Tabor parameter. This approximation is used in the present 

representation of the inter-fiber contacts. 

We consider here 2D networks of Delaunay (DN) and Voronoi (VN) type, Fig. 1 (a) and 1(b). Periodic networks are gen- 

erated by performing the respective tessellation using a set of randomly distributed points in 2D. These points are repeated 

in plane using periodic lengths λx = λy = L in the two in-plane directions, which defines the model size. In such structures, 

fibers have two cross-links at the two ends. The length of fibers is defined by the network generation algorithm and has a 

Poisson distribution characterized by the mean fiber length, l c . Parameter L 0 used in the context of non-crosslinked networks 

is replaced in this case by l c , which becomes the only characteristic length associated with the network structure. 

The mean connectivity number, z̄ , i.e. the number of fibers emerging from a node, is z̄ = 6 and z̄ = 3 . 5 in the Delaunay 

and Voronoi cases considered, respectively. Note that the Voronoi procedure leads to 2D networks with z̄ = 3 . We increase z̄ 

in the present case by merging the nodes that bound the shortest segments. This procedure is applied until z̄ = 3 . 5 , which 

corresponds to collagen biopolymer networks ( Lindström et al., 2010 ). The nodes are considered as pin-joints, and hence 

transmit forces, but do not transmit moments between fibers. This facilitates the relative rotation of neighboring fibers to 

enable adhesive interactions. 

Pin-jointed structures in 2D with z̄ < 4 are sub-isostatic ( Maxwell, 1864 ) and their stiffness vanishes under infinitesimal 

perturbations. Hence, we consider both isostatic (Delaunay) and sub-isostatic (Voronoi) networks. In addition, a diluted 

Delaunay network (DDN) with z̄ = 4 is studied for specific system parameters. This network is obtained from a Delaunay 

network by eliminating fibers. We eliminate fibers for which the sum of the value of z at the two end nodes is significantly 

larger than 8, such to minimize the variance of z in the resulting network. 

It is also important to note that pin-jointed networks without adhesion are actually networks of trusses, since moments 

are not transmitted at cross-links between fibers, and bending is not engaged. In the presence of adhesion, the bending 

deformation mode is activated by the adhesive interactions and plays an essential role in mechanics ( Section 3 ). 

Given that adhesive interactions are short range, adhesion has to be enabled by an external agent. This ‘activation’ can 

be produced mechanically, by capillary forces or by other means. Specifically, consider the detail of the Delaunay network 

in Fig. 1 (a) shown in Fig. 2 . The fibers of the network in Fig. 2 (a) do not interact adhesively in the initial configuration since 

they are too far apart. To enable such interactions, we use a proximity criterion. Specifically, we select pairs of neighboring 

fibers and allow them to rotate at node O such to align their tangents. Neighboring fibers are paired if the angle separating 

them is smaller than a specified threshold θ th ( θth = 45 0 for DN and θth = 180 0 for VN and DDN). In the DN case, modify- 

ing the threshold to 70 0 or larger does not lead to different structures after relaxation since de-bundling takes place. The 

threshold of θth = 180 0 used for VN and DDN means that all fibers merging into a node are initially bundled. Debundling 

takes place during structural relaxation as dictated by the balance of strain and adhesion energies ( Section 2.2 ). Stochastic 
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Fig. 1. Examples of 2D (a) Delaunay, (b) Voronoi and (c) diluted Delaunay networks considered in this study. 

Fig. 2. Detail of a Delaunay network showing (a) the initial state before activation and (b) the stable, relaxed configuration resulting from the activated 

state resulting from (a). 

bundling, i.e. bundling of fibers which are not immediately adjacent, could in principle take place in 3D, but such struc- 

tures are expected to have higher strain energy and hence should not be favored relative to those bundled based on fiber 

proximity. 

Since the network may bundle in numerous ways and multiple locally stable states exist in the phase space of all possible 

bundled topologies, the phase space was sampled by devising a geometric parametrization scheme which uniquely defines a 

specific bundled topology. Further, an energy minimization procedure was employed to search for a local energy minimum 
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Fig. 3. (a) Initial and (b) relaxed states of a DN network. 

in this topological phase space. The relaxed configuration resulting from the activated state of the initial configuration in 

Fig. 2 (a) is shown in Fig. 2 (b). 

The physical quantities used to describe this problem are E f I, E f A, l c , and γ . The Buckingham- π dimensional analysis 

indicates that two non-dimensional groups can be produced using these quantities. These may be written as � = ( l c / L EC ) 
2 = 

γ l 2 c / E f I and φ= l 2 c E f A/ E f I, which have physical meaning. � indicates the strength of adhesion and φ is the square of 

the mean slenderness-ratio of the fibers (considering fibers of circular section, l 2 
b 

= E f I/ E f A ∼ d 2 , with d being the fiber 

diameter). Parameter � is central to the present discussion. We consider networks of large φ (in the range 2.5 ×10 3 to 10 4 ) 

such to allow adhesion to effectively produce fiber bundling. Bundling becomes less effective as φ decreases and the network 

mechanics reverts to that of usual cross-linked networks without adhesion. Note that the high slenderness ratio case is also 

relevant for most biological networks of nanofibers. 

In the following, we refer to four states of the network: (1) ‘initial,’ which represents the geometry produced by the 

Delaunay or Voronoi procedures, (2) ‘activated,’ which represents the initial state of bundling, (3) ‘relaxed,’ representing the 

stable structure of bundled fibers obtained by energy minimization from the ‘activated’ state, and (4) ‘loaded,’ representing 

any of the network states subjected to an imposed deformation. Fig. 3 (a) shows an example of DN in the initial state, while 

Fig. 3 (b) shows the corresponding relaxed state. 

2.2. Solution method 

The parametrization used to define bundling is shown in Fig. 2 . For a generic fiber i , parameter r ij defines the length of 

bundling with fiber j . This length is measured along the curvilinear contour of the fiber ( Fig. 2 (b)). The problem considered 

in this work is defined in the space of the set of parameters { r ij } and a set of vector-valued displacement functions { 	 

w k } , one 
for each fiber in the network. The deformed position of the k th fiber is 

	 

x k (s ) = 

	 

X k (s ) + 

	 

w k (s ) , where 
	 

X k is the undeformed 

position and s is the contour-length parameter. The topology of the network is entirely defined by { r ij } and { 	 

w k } . 
The total strain energy of the system U s is a functional of the set of displacement functions, 

	 

U s ( { 	 

w k } ) . The total adhe- 
sion energy U γ is a function of parameters { r ij }, 

	 

U γ ( { r i j } ) . A feasible set of displacement functions { 	 

w k } must satisfy the 
kinematic constraints imposed by parameters { r ij }. These bundling constraints are of equality type and can be symbolically 

expressed as 
	 

C ( { 	 

w k } , { r i j } ) = 0 . The periodic stress-free and fixed/Dirichlet boundary conditions of a periodic network can 

be described by introducing additional solution variables {a k } (traction-free) and/or pre-specified parameter set {b k } (Dirich- 

let boundary condition), as described in Section 2.3 . These boundary conditions also place equality-type constraints on the 

system and hence can be generically expressed as 
	 

B ( { 	 

w k } , { a k } , { b k } ) = 0 . 

The solution to the problem can be obtained by minimizing the total energy, with {b k } specified, as shown in Eq. (1) . 

Note that while { r ij } and {a k } form a real-valued vector space, { 	 

w k } forms a vector space of functions. 
min { 

	 
w k 

} 
, { r i j } , { a k } 

	 

U s 

({ 

	 

w k 

} )
−

	 

U γ

({
r i j 

})

s.t. 
	 

C 

({ 

	 

w k 

} 

, 
{
r i j 

})
= 0 ;

	 

B 

({ 

	 

w k 

} 

, { a k } , { b k } 
)

= 0 (1) 

This minimization problem can be decomposed into a sequential two-level minimization procedure outlined by Eq. (2). 

The two steps of the solution are defined over different spaces. The minimization expressed by Eq. (2a) is denoted as the 

‘main problem,’ while Eq. (2b) represents the ‘sub-problem.’ 

min { r i j } 
	 

U s 

({ 

	 

w 

∗
k 

(
r i j 

)} )
−

	 

U γ

({
r i j 

})
(2a) 
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Fig. 4. Representation of a bundle branching for given. { 	 W 

∗
k } . r defines the position of the branching point, n 1 and n 2 are bundle sizes, and κ+ are the 

curvatures at the branching point of the smaller bundles. 

min { 
	 

W k 

} 
, { a k } 

	 

U s 

({ 

	 

w k 

} )
s.t. 

	 

C 

({ 

	 

w k 

} 

, 
{
r i j 

})
= 0 ;

	 

B 

({ 

	 

w k 

} 

, { a k } , { b k } 
)

= 0 (2b) 

{ 	 

w 

∗
k } in Eq. (2a) represents the solution to the minimization sub-problem of Eq. (2b) , with { r ij } and {b k } as inputs. 

The solution method is based on the first order Karush–Kuhn–Tucker (KKT) stability conditions for the main problem of 

Eq. (2a) . The stability conditions require ∂ 
	 

U s ( { 	 

w 

∗
k ( r i j ) } ) /∂ r lm 

and ∂ 
	 

U γ ( { r i j } ) /∂ r lm 

for a given bundled topology, { 	 

w 

∗
k } , to 

be obtained from solving the sub-problem of Eq. (2b) . 

Semi-analytic expressions are derived for ∂ 
	 

U s ( { 	 

w 

∗
k ( r i j ) } ) /∂ r lm 

and ∂ 
	 

U γ ( { r i j } ) /∂ r lm 

. Consider a branched bundle, as 

shown in Fig. 4 . The branching point is defined by a contour parameter r (we drop the two subscripts since r refers to 

a generic bundle length, i.e. it can be any term of the set { r ij }). At the branching point a parent bundle having ( n 1 + n 2 ) 

constituent fibers splits into bundles of sizes n 1 and n 2 fibers. These bundles are cotangent and coincident at the branching 

point. The number of contacts between the constituent fibers in a bundle of size n is denoted by a function P ( n ). P ( n ) is 

determined assuming that the maximum possible number of line contacts are formed, i.e. the bundle is close packed. In this 

case, P (n ) = 3 n − √ 

12 n − 3 ( Harborth, 1974 ). The partial derivative of the adhesive energy, ∂ 
	 

U γ ( { r i j } ) /∂r, can be written: 

∂ 
	 

U γ

({
r i j 

})
/∂r = γ P ( n 1 ) + γ P ( n 2 ) − γ P ( n 1 + n 2 ) (3) 

The partial derivative of the total strain energy ∂ 
	 

U s ( { 	 

w 

∗
k ( r i j ) } ) /∂r is derived assuming that fibers are inextensible. 

Eq. (4) shows the expression of this derivative in terms of the bundle sizes and curvatures, κ+ 
1 
and κ+ 

2 
(the derivation 

of Eq. (4) is provided in the Appendix ). This expression applies to each branching point in the network provided there are 

no body forces, and the boundary conditions, 
	 

B ( { 	 

w k } , { a k } , { b k } ) , are either fixed and/or traction-free, i.e. no work is done 
by external forces. 

∂ 
	 

U s 

({ 

	 

w 

∗
k 

(
r i j 

)} )
∂r 

= 

1 

2 

n 1 n 2 
n 1 + n 2 

EI 
∥∥κ+ 

1 − κ+ 
2 

∥∥2 (4) 

∂ 
	 

U s ( { 	 

w 

∗
k ( r i j ) } ) /∂r determines the driving force for bundle unzipping which leads to a decrease of r . On the other hand, 

	 

U γ ( { r i j } ) /∂r, which is equal to the work of separation per unit length of the bundle at the branching point, determines the 
driving force for zipping and increase of r . The stability of a bundle branching is, therefore, determined by the equilibrium 

between these two opposing forces as per the first-order necessary KKT conditions. Note that the second-order sufficiency 

KKT conditions cannot be evaluated since ∂ 2 
	 

U s ( { 	 

w 

∗
k ( r i j ) } ) /∂ r∂ r ′ , where r and r ′ are two { r ij } parameters in the system, 

cannot be computed analytically. 

The sub-problem ( Eq. 2(b) ) is a variational problem, as it is defined over a vector space of functions { 	 

w k } , with con- 
straints. This becomes a purely beam mechanics problem with constraint forces and moments required to satisfy the 

bundling and boundary conditions for the respective beam. The first-order necessary stability conditions of this problem 

are, therefore, just the governing equations of beam mechanics. The method used to obtain the solution of the sub-problem 

and main problem is described in Section 2.3 . 

Two stages of the network evolution are discussed: a relaxation stage, in which the network evolves from the activated 

state to the corresponding relaxed state of minimum energy under traction-free boundary conditions, and a loading stage, 

in which the network deforms starting from the relaxed state, under prescribed displacement or mixed boundary condition. 
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2.3. Implementation 

The numerical solution of the sub-problem requires discretization of the vector space of the displacement functions { 	 

w k } . 
A finite element (FEM) procedure is employed for this purpose. The fibers are represented with 2 node linear Timoshenko 

beam elements. The bundling of two fibers and the co-location and co-tangency at the point of their separation are rep- 

resented through linear kinematic constraint equations. This requires placing mesh nodes at bundle branching points and 

these nodes must be mobile for the discretization to adapt to the evolving bundles during loading and relaxation, i.e. the 

discretization for the sub-problem depends on { r ij }. 

The mesh nodes are classified into four categories denoted as order zero to order three. The ‘zero-order’ nodes are those 

representing the cross-links of the network. The ‘order one’ nodes are created directly from the lengths { r ij } of the bundling 

fibers and define the point of separation of the respective fiber pair, e.g. points A and A ′ and B and B ′ in Fig. 2 (a). However, 
at any such branching point, force and moment redistribution takes place between all fibers in the participating bundle. 

Hence, it becomes necessary to introduce ‘order two’ nodes on all fibers in the respective bundle, co-located with the ‘order 

one’ node of each sub-bundle that branches out. In Fig. 2 (a), nodes C and C ′ are of ‘order one,’ while node C ′′ , which is 
a ‘order two’ node, is introduced on fiber O2 at the location of the separation of fibers O3 and O4, co-located with C and 

C ′ . The ‘order two’ nodes are created based on the ‘order one’ nodes using a Depth-First Tree Traversal method of a node 
projection operation ( Even, 1979 ). The ‘order three’ nodes are used for mesh refinement and are introduced between the 

‘order one’ and/or ‘order two’ nodes on each fiber such that there are at least 30 elements per each segment of length l c . 

Periodic boundary conditions are applied to the network in both in-plane directions. These are defined by the periodic 

lengths λx and λy ( Fig. 3 ). In the initial state of the network, before relaxation, λx = λy = L . Relaxation under the action 

of adhesive forces introduces eigenstrains and the simulation cell distorts, such that the directions of periodicity may not 

remain orthogonal ( Fig. 3 (b)). 

The applied deformation is defined by the global deformation gradient 

F = 

[
1 + ξ11 ξ12 

ξ12 1 + ξ22 

]
(5) 

in terms of which the periodic boundary conditions can be written as: x ∗ = x + F · ( X 

∗ − X ) , where x ∗, x are the deformed 
position of any two corresponding points on the periodic boundaries and X 

∗, X are the respective undeformed positions. 

Parameters ξ 11 , ξ 12 , ξ 22 are not specified for the relaxation simulation, { a k } = { ξi j } and { b k } = ∅ , such that the structure 
evolves from the activated state under traction free boundary conditions. The global deformation gradient obtained for the 

relaxed state at the end of the evolution is denoted by F R . The imposed deformation is performed under mixed boundary 

conditions and represents uniaxial tension. Specifically, an applied deformation gradient, F d , is defined with respect to the 

relaxed state in which parameter ξ d 
22 

is specified, while { ξ d 
11 
, ξ d 

12 
} are set free, i.e. { a k } = { ξ d 

11 
, ξ d 

12 
} and { b k } = { ξ d 

22 
} . Thus, 

the global deformation gradient with respect to the initial state is F = F d · F R . 
The FEM analysis is performed quasi-statically using the explicit time integration scheme in the commercial finite el- 

ement software ABAQUS, version 6.11. The analysis requires an iteration that has two steps: solution mapping and incre- 

mental loading. In the solution mapping step, the nodal solution of the sub-problem from the previous iteration of the 

main-problem is mapped onto the current mesh nodes using spline interpolation. This helps maintain the continuity of the 

evolution trajectory and also reduces the simulation time. In the incremental loading step, the linear kinematic constraint 

equations and the boundary conditions corresponding to { r ij } and {b k } for the current iteration of the main-problem are 

applied. 

To solve the main problem, we use a gradient descent algorithm. The gradients of 
	 

U s ( { 	 

w 

∗
k ( r i j ) } ) and 

	 

U γ ( { r i j } ) in the { r ij } 
space are available once the sub-problem is solved for a given { r ij }. However, the solution state variables { r ij } are bounded 

{ r i j | r i j ≥ 0 & r i j ≤ min ( l i , l j ) } , where l i and l j are the lengths of the fibers associated with parameter r ij . This implies that 
the first order optimality conditions are modified as ∂ 

	 

U s ( { 	 

w 

∗
k ( r i j ) } ) /∂ r lm 

− ∂ 
	 

U γ ( { r i j } ) /∂ r lm 

= 0 only if r lm 

> 0 & r lm 

< 

min ( l l , l m 

) and ∂ 
	 

U s ( { 	 

w 

∗
k ( r i j ) } ) /∂ r lm 

− ∂ 
	 

U γ ( { r i j } ) /∂ r lm 

≤0 if r lm 

= min ( l l , l m 

) and ≥0 if r lm 

= 0 . However, the case of 

r lm 

= 0 is not physically possible since unstable fiber bundles of 0 sticking lengths cannot exist. Therefore, if a certain r lm 

reaches zero during the evolution, and ∂ 
	 

U s ( { 	 

w 

∗
k ( r i j ) } ) /∂ r lm 

- ∂ 
	 

U γ ( { r i j } ) /∂ r lm 

> 0 , the particular parameter, r lm 

, is removed 

from the parameters list { r ij } and the co-tangency condition between the l th and the m th fibers is eliminated. This modifies 

the main problem allowing for de-bundling of fiber pairs, which implies that the dimensionality of the parameter space { r ij } 

decreases. The gradient descent optimization is performed with a small but adaptive step-size. We verify that the resulting 

state is independent of the step-size. The stopping criterion of the minimization requires that the total energy variation over 

5 iterations is smaller than 0.5%. 

3. Results 

The structure and the response to uniaxial tension and compression of DN, VN and DDN are discussed in this section. 

Adhesion is defined in terms of the non-dimensional parameter � = ( l c / L EC ) 
2 which takes values between 0.3 and 11 for 

the DN case, and between 0.3 and 3 for the VN case. The connection with specific network systems has to be established 
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Fig. 5. Relaxed state network configurations for DN with (a) � = 1 (b) � = 11. 

via L EC , which is a material property. The ranges of � considered correspond to networks with mean segment length l c in 

the range 0.5 L EC – 3.3 L EC in the DN case, and to l c ∈ (0.5 L EC – 1.7 L EC ) in the VN case. Thus, for the case of actin networks, l c 
is in the range 0.23 μm – 0.8 μm which would correspond to (unbundled) 3D networks of density in the range 0.26 mg/ml –

3 mg/ml. Likewise, for the microtubules case, l c covered in this study is in the range 6.75 μm – 22.95 μm, which corresponds 

to unbundled 3D networks of densities 0 . 3 × 10 −2 mg / ml to 3 . 6 × 10 −2 mg / ml . The conversion from 2D to 3D densities 

was made assuming 3D Voronoi networks of same l c as the 2D model, and a linear mass for F-actin of 16,0 0 0 Da/nm and 

for microtubules of 160,0 0 0 Da/nm. 

The DDN is used to study the effect of mean connectivity, z̄ , for � = 2 . Three realizations are considered for each � and 

for each type of network, and the results reported represent the average of the response of these realizations. 

3.1. The structure of cross-linked networks with adhesion 

Under zero traction boundary conditions, adhesion leads to a �-dependent reduction of the total area of the structure. 

In this process, the (absolute value) adhesion energy and the strain energy increase. Evolution stops when the incremental 

increase of the strain energy becomes larger than the corresponding increase of the adhesion energy. 

Fig. 5 shows the relaxed state of Delaunay networks with � = 1 ( Fig. 5 (a)) and � = 11 ( Fig. 5 (b)). The variation with �

of the absolute value of the dilatation strain δ = 1 − J = 1 − A 0 /A (where J is the Jacobian of the transformation and A 0 , A are 

the model areas in the initial and relaxed states, respectively) during relaxation is shown in Fig. 6 (a). In the low adhesion 

regime, � < 1, the number of bundles varies rapidly with � , while the individual bundle size is approximately constant. For 

larger � values, the number of bundles is approximately independent of � , while the bundle size increases. This second 

regime is characterized by a power law dependence of δ on � , with exponent 1.22. 

The variation of the strain, U s , and adhesion, U γ , energies of the relaxed DN state with � is shown in Fig. 6 (b). To 

facilitate the interpretation, the two energies are written as: 

U s = 

(
N f E f I 

l c 

)(
κ2 l 2 c 
2 

)
= 

(
N f E f I 

l c 

)
ˆ U s (6a) 

U γ = 

(
N f l c γ

)(P ( n ) 

n 

)
= 

(
N f l c γ

)
ˆ U γ (6b) 

Here N f represents the number of fibers in the structure and the groups 
N f E f I 

l c 
and N f l c γ do not vary during relaxation 

or deformation. The non-dimensional energies ˆ U s and ˆ U γ are shown in Fig. 6 (b). These quantities vanish in the initial state. 

The curves exhibit a dependence on � qualitatively similar to that of δ. For � > 1 the dependence of ˆ U s and ˆ U γ on � can 

be described by power laws of exponents, 1.35 and 0.57, respectively. A more rapid variation is observed for � < 1. 

Fig. 6 (c) shows the data in Figs. 6 (a) and (b), with the two energy components being plotted versus the dilatation strain, 

δ, for the entire range of variation of � . Two power laws emerge, ˆ U s ∼ δ and ˆ U γ ∼ δ1 / 2 , which are well defined over three 

orders of magnitude range of δ. The linear scaling of ˆ U s ∼ κ2 with δ is expected since the structure undergoes large de- 

formations as it collapses under the action of adhesive forces. The situation is equivalent to the post-buckling regime of a 

beam. The variation of ˆ U γ as the square root of the dilatation strain represents the re-organization of the structure under 

the action of adhesive forces and cannot be explained based on simple considerations. 



426 V. Negi, R.C. Picu / Journal of the Mechanics and Physics of Solids 122 (2019) 418–434 

Fig. 6. Variation of (a) the reduction of area and (b) the normalized strain and adhesion energies of DN between the initial and relaxed states as function 

of � . The reduction of area is shown versus the normalized energies in (c). The bars represent the standard error for three replicas for each system. 

The VN exhibits quite different behavior. This type of network is sub-isostatic in the initial state and adhesive forces 

produce dramatic structural collapse. The network area decreases by over 80% between the initial and relaxed states, even 

for rather small values of � . The dependence of the total shrinkage on � is weak for any � , Fig. 7 (a). The area reduction 

is finite for finite � , unlike the DN case in which δ → 0 as � → 0. Fig. 7 (b) shows the variation of the normalized energies 

of Eq. (6) with � . These are power functions for the entire range of variation considered for � , ˆ U s ∼ �1 . 35 and ˆ U γ ∼ �0 . 37 . 

The exponents are close to those obtained for DN ( Fig. 6 ) since the same physics controls the structural collapse. 

The DDN network with z̄ = 4 is at the isostatic critical point. The network with � = 2 develops a large dilatation strain δ
of approximately 40%, which is between the corresponding values obtained for the same � for DN and VN, i.e. δ = 5% and 

δ = 88% , respectively. Since adhesion stabilizes sub-isostatic networks, the state characterized by z̄ = 4 is not a critical point 

for these structures. 

From a practical point of view, this result indicates that in the presence of adhesion networks are always mechanically 

stable. Adhesion-stabilized configurations are states of the network qualitatively different from cross-linked networks with- 

out adhesion and which exhibit specific mechanical behavior, as discussed in the next section. 

It is also of interest to discuss the dependence of the degree of bundling on � . Fig. 8 shows the variation of the mean 

number of fibers in a bundle, s̄ b , with � for DN and VN in the relaxed state. Un-bundled single fibers are not considered in 

this averaging. s̄ b is normalized by the average connectivity number, z̄ , in the respective structure. In the DN case, with z̄ = 6 , 

the limit as � tends to 0 is 2/6 since at least two fibers are required to form a bundle. The degree of bundling increases 

continuously with � , as expected. A similar trend is observed for the VN relaxed states. For the VN, the normalization is 

done with z̄ = 3 . 5 . It is insightful to note that the s̄ b for VN is higher than for DN at any given � even though the DN has 

a higher mean coordination number than VN. For example, at � = 3 the DN has s̄ b = 2 . 22 whereas VN has s̄ b = 2 . 73 . This 

highlights a significantly higher level of bundling in the VN compared to DN owing to their floppy nature. 

3.2. Response in tension 

Relaxed DN and VN structures are deformed in uniaxial tension and compression by controlling parameter ξ d 
22 

of Eq. (5) . 

A non-zero stress �22 develops, while the other stress components vanish. We use the second Piola–Kirchhoff stress, �, 

and the Green–Lagrange strain, E , as work conjugate stress and strain measures. � is computed from the nominal stress, S, 

as � = F −1 S . The stress, �, and the tangent stiffness, K t , are normalized by E f I/l 
3 
c , where l c is measured in the initial state. 

The normalized stress and elastic modulus are denoted by ˆ � and ˆ K t , respectively. 

DN without adhesion ( � = 0) subjected to uniaxial tension exhibits three regimes. Fig. 9 (a) shows the stress-strain re- 

sponse, ˆ �22 ( ̂ E 22 ) , while Fig. 9 (b) shows the tangent stiffness vs. stress plot, K t = d ̂  �22 /d ̂ E 22 vs. ˆ �22 (black dashed line). At 
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Fig. 7. Variation of (a) the reduction of area and (b) the normalized strain and adhesion energies of VN between the initial and relaxed states as function 

of � . The bars represent the standard error for three replicas for each system. 

small strains, the structure stores energy predominantly in the axial deformation mode of fibers. Fibers aligned with the 

loading direction are predominantly subjected to tension, while those oriented approximately orthogonal to the loading di- 

rection are predominantly in compression. A distinct loss of stability event is observed when the transverse fibers buckle in 

compression, leading to a decrease of the tangent stiffness. This enables the fibers to re-orient in the direction of the tensile 

loading, which leads to the formation of stress paths ( Žagar et al., 2015 ). 

These features are inherited by the DN with adhesion ( � � = 0). However, increasing � causes a rapid decrease of the 

normalized small strain modulus, ˆ K 0 , and the elastic instability observed in the � = 0 case becomes less pronounced and is 

eventually eliminated for large enough values of � . The ˆ K t vs. ˆ �22 curves corresponding to different � mer ge in the third 

regime, which indicates that in these conditions the influence of adhesion is lost, Fig. 9 (b). 

The side panels of Fig. 9 (a) show deformed configurations of a network with �= 1.23 at 5% strain and a network with 

�= 11.11 at 25%, respectively. These two states correspond to the same stress level in the range of transition from the 

adhesion-controlled part of the stress-strain curves to the network-controlled part. In these conditions, the network strain- 

stiffens, and stress paths begin to form. 

Fig. 9 (c) shows the variation of the network volume, normalized with the volume of the relaxed state, during defor- 

mation. Networks with small � contract strongly due to the large Poisson effect commonly observed in networks without 

adhesion. As � increases, this contraction is eliminated for the duration of the linear response of the network. Once the 

system enters the network-dominated strain stiffening regime, volume reduction is observed, similar to the case without 

adhesion. 

The most interesting feature observed in Fig. 9 is the significant increase of the strain range corresponding to the initial 

linear elastic regime as � increases. Adhesion reduces the effective stiffness and makes the behavior linear over a larger 

strain range. If no structural rearrangements take place (e.g. by reorganization of bundles), the response is reversible since 

adhesion brings the structure back to the initial (relaxed) configuration upon unloading. 

From a network design perspective, it is apparent that considering inter-fiber adhesion provides new opportunities. The 

results indicate that the small strain regime of the deformation is controlled by adhesive interactions, while the large strain 

regime is dominated by the behavior of the cross-linked network. Tuning adhesion allows modifying the initial material 

stiffness over a broad range and also increases the range of linear behavior up to strains as large as 20%. The strain at 
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Fig. 8. Variation of normalized mean bundle size s̄ b for (a) the DN relaxed states and (b) the VN relaxed states as a function of � . The bars represent the 

standard error for three replicas for each system. 

which strain stiffening begins is also tunable by changing � . It is likely that these effects are operating in biological fibrous 

materials. 

The variation of the normalized small strain modulus, ˆ K 0 , with � is shown in Fig. 10 . ˆ K 0 decreases rapidly with increas- 

ing � and tends toward an asymptotic value, ˆ K ∗, at large � . A well-defined power law represents this variation in the range 

of � studied. Over two decades of � , ˆ K 0 − ˆ K ∗ ∼ �−1 . 4 . The value of the asymptote has low practical importance. It results 

from the current fitting to be ˆ K ∗ = 116.64. 

A different behavior is exhibited by Voronoi networks loaded in uniaxial tension. The reference case considered above, 

� = 0 , is not relevant for VN since these structures are sub-isostatic and their effective stiffness vanishes. Fig. 11 (a) shows 

stress-strain curves for VN with various � values. A stiffening trend is observed in this case as � increases. This effect is 

entirely due to adhesion. 

A striking feature of these stress-strain curves is the reduction of the tangent modulus with increasing strain, as observed 

in Fig. 11 (a). Such response was not reported previously for any cross-linked fiber network without adhesion. The effect is 

shown in the inset of Fig. 11 (a) where the tangent stiffness is plotted versus stress. Fig. 11 (b) shows the variation of the 

small strain modulus with � . The stiffness increases with � . This is in sharp contrast to the behavior of networks which 

are isostatic ( ̄z > z c ) in the initial configuration, whose small strain modulus decreases as a power law of � ( Fig. 10 ). 

Fig. 11 (c) shows the variation of the VN volume, normalized with the volume of the relaxed state, during deformation. 

These networks are entirely controlled by adhesion. The domain expands weakly as the network is stretched, a behavior 

also seen for the large � values in the DN case ( Fig. 9 (c)). Hence, once again, adhesion modifies the typical response of the 

network without adhesion, eliminating the large contraction commonly observed during tensile loading. 

Networks of pin-jointed fibers with connectivity smaller than z c are floppy at small strains in the absence of inter-fiber 

adhesion. Adhesion reorganizes the structure and renders stiffness non-zero at all strains. This provides an opportunity to 

engineer network mechanical behavior; both the initial stiffness and the gradual reduction of the tangent modulus during 

deformation can be tuned broadly by changing � . 

In view of the apparent discrepancy of the behaviors of DN and VN structures, we turn now to the DDN case. The 

connectivity index for these structures is exactly z̄ = 4 and DDN networks without adhesion are at the limit of isostaticity. 

Adhesion stabilizes these structures which exhibit a non-zero stiffness in the relaxed configuration, similarly to all VN and 

DN networks discussed above. The stress-strain curve of the DDN with � = 2 is shown in Fig. 12 . This curve exhibits an 
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Fig. 9. (a) Normalized second Piola–Kirchhoff stress vs. Green–Lagrange strain for DN with various � subjected to uniaxial tension. The side panels repre- 

sent deformed configurations with � = 1.23 at 5% strain and with � = 11.11 at 25% strain. These states correspond to the same stress level. The data in (a) 

are re-plotted in (b) as normalized tangent stiffness, ˆ K t , vs. stress. The curve for the system with no adhesion is added for reference (dashed black line). 

The bars represent the standard error for three replicas for each system. The numbers represent the value of � for each curve. (c) Variation of the network 

volume (normalized with the volume of the relaxed state A ∗0 ) during tensile deformation. 

Fig. 10. Variation of the normalized small strain modulus, ˆ K 0 , with � for DN. The bars represent the standard error for three replicas for each system. 
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Fig. 11. (a) Normalized second Piola–Kirchhoff stress vs. Green–Lagrange strain for VN with various � subjected to tension. The inset shows the tangent 

stiffness vs. stress for � values of the main figure. (b) Variation of the normalized small strain modulus with � . The bars represent the standard error for 

three replicas for each system. (c) Variation of the network volume (normalized with the volume of the relaxed state A ∗0 ) during tensile deformation. 

Fig. 12. Normalized second Piola–Kirchhoff stress vs. Green–Lagrange strain for DDN loaded in tension. The bars represent the standard error for three 

replicas for each system. 

initial linear regime, a gradual decrease of tangent modulus with increasing strain, similar to that of the VN networks 

shown in Fig. 11 (a), and a strain-stiffening regime at larger strains, similar to that observed for DN networks, Fig. 9 (a). 

The normalized small strain stiffness ˆ K 0 for the VN ( ̄z = 3 . 5) , DDN ( ̄z = 4) and DN ( ̄z = 6) with the same level of adhesion 

( � = 2 ) is 31.1, 19.6 and 345.8. The small strain response of DDN is close to that of VN and this reflects in the similarity of 

the respective ˆ K 0 values. The DN networks are much stiffer. 

It is necessary to make a note regarding Mikado-like structures which are models adequate for biological fibrous mate- 

rials. In such cases, fibers are longer than the distance between two crosslink points and hence each fiber carries multiple 
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Fig. 13. Normalized second Piola–Kirchhoff stress vs. Green–Lagrange strain for DN networks with various � subjected to uniaxial compression. The bars 

represent the standard errors for the three realizations. 

cross-links. Moments are transmitted along individual fibers, although moments are not transmitted between fibers (if cross- 

links are represented as pin-joints). This renders the Maxwell estimate of the limit of stability inapplicable to 3D Mikado 

networks. In such situations, the strain energy penalty associated with the activation of adhesion (i.e. going from the initial 

to the relaxed configuration) is expected to be larger than that evaluated with the current model. The exact evaluation of 

this contribution is not trivial and requires a dedicated study. Nevertheless, the physics of the problem being identical (i.e. 

the competition between the bending strain energy and the adhesion energy), we expect to observe similar phenomenology 

in Mikado networks, albeit in a different parameter range. 

3.3. Response in compression 

Fiber networks exhibit in compression a response similar to that of cellular materials. An initial linear elastic regime is 

followed by strain localization. Strain stiffening is observed at large strains due to the formation of contacts between fibers. 

Two dimensional models exhibit the first two regimes, while the third regime is not reproduced due to the lack of excluded 

volume interactions. Fig. 13 shows such behavior for DN networks with � = 0 . In this case, localization leads to pronounced 

softening and instability. 

The effect of adhesion is shown for DN with � > 0 ( Fig. 13 ). Similar to the case of tension, the small strain modulus 

decreases with increasing � . In fact, the values of K 0 measured in compression for the various curves are identical to 

those evaluated in tension and reported in Fig. 10 . Strain localization and the onset of the second regime is postponed to 

much larger strains compared with the � = 0 case. This effect is identical to that observed in tension – adhesion increases 

significantly the strain range of the linear response of the network. Furthermore, deformation becomes more stable in the 

post-localization regime as softening is eliminated. 

VN networks undergo large volume reduction during relaxation. Further compression is less physically meaningful than 

in the DN case. The small strain behavior is similar to that reported in Fig. 13 for the DN networks. Since the structure 

of VN is already fairly dense due to intense bundling, further compression should lead to rapid strain stiffening commonly 

observed at large strains in non-adhesive networks and in cellular materials. This cannot be reproduced in 2D due to the 

lack of excluded volume interactions. 

4. Conclusions 

Fiber networks in which fibers interact adhesively exhibit a range of mechanical properties not encountered in similar 

systems without adhesion. Adhesion causes significant volume reduction of the network which becomes stable in a self- 

equilibrated stressed state. The dilatation strain, stored strain energy and adhesion energy increase approximately as power 

functions of � . Networks which are sub-isostatic without adhesion ( ̄z < z c ) are stabilized by the adhesive interactions and 

acquire finite stiffness. 

The small strain modulus of the network decreases with increasing the strength of adhesion as a power function of �

for isostatic networks ( ̄z > z c ). The opposite effect is observed for sub-isostatic networks ( ̄z < z c ), for which the stiffness 

increases with increasing � . Interestingly, adhesion extends the small strain linear elastic regime to considerable strains, up 

to 20%. 

The response in tension beyond the linear elastic strain range is also different in the sub-isostatic and isostatic cases. 

Isostatic networks strain-stiffen at a �–dependent rate. In sub-isostatic networks, the initial linear regime is followed by 

a gradual decrease of tangent modulus which again increases (strain-stiffens) at larger strains. This apparent decrease of 

tangent modulus is associated with gradual unbundling and hence is caused by adhesive interactions, while strain-stiffening 
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at larger strains is associated with preferential fiber orientation, as usually observed in crosslinked networks without adhe- 

sion. 

In compression, adhesive interactions produce similar effects, reducing the small strain stiffness, extending the strain 

range of the linear elastic response, and stabilizing the deformation against strain localization at larger strains. 

The physics controlling these observations is the interplay between the adhesion and strain energies. Adhesion domi- 

nates the behavior at relatively small strains, while the strain energy controls the larger strains response. This observation 

that emerges from the present 2D models should apply in 3D as well. Softer elastic modes may become available in 3D, 

which may change the range of parameters in which a specific behavior is observed, but overall the present conclusions are 

expected to apply to 3D networks as well. 

This analysis of the mechanics of cross-linked adhesive fiber networks provides the groundwork for understanding the 

effects of adhesive interactions in diverse applications ranging from man-made systems of nano-fibers to biological collagen, 

fibrin and actin networks. 
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Appendix 

The derivation of the partial derivative of the strain energy with respect to the branching point position, ∂ 
	 

U s ( { 
	 

W 

∗} ) /∂r, 
is presented here. To simplify notation, we drop the dependence on 

	 

W 

∗
and refer to the derivative of the total strain energy 

of the network with respect to a parameter, r , i.e. ∂ U s / ∂ r. r represents one of the terms in the set { r ij }, Fig. 4 . 
The coincidence and co-tangency kinematic constraints for the sub-bundles introduce constraint forces and moments 

at the bundle ends, which are applied on bundles by the adhesive forces. Consider a generic branching point having a 

constraint force F and a constraint moment M associated with it, and suppose it moves by �r , as shown in Fig. A1 , while 

all other bundle lengths are kept constant. This can be accomplished by applying forces F ∗ and moments M 

∗ which do work 
closing the gap between the two sub-bundles at r + �r. The total work associated with such evolution is: 

�W = 

3 ∑ 

k =1 

∫ 0 
�x k 

F ∗k d u k + 

3 ∑ 

k =1 

∫ 0 
�θk 

M 

∗
k d θk (A1) 

where �x k and �θ k are the k th components of displacements and rotations required to close the gap between sub-bundles 

at r + �r. All existing constraint forces and moments in the network do not perform work since they act as equal and 

opposite forces/moments at coincident and co-tangent points. One can reduce notation by observing that in the new con- 

figuration F ∗ = F + �F and M 

∗ = M + �M . Using the trapezoidal rule, the two integrals in Eq. (A1) can be written as: 

�W = αF 

( 

1 

2 

3 ∑ 

k =1 
( F k + �F k ) �x k 

) 

+ αM 

( 

1 

2 

3 ∑ 

k =1 
( M k + �M k ) �θk 

) 

(A2) 

with αF and αM 

being correction factors of order unity. 

Fig. A1. Forces and moments acting on sub-bundles at two stages of the bundle evolution defined by the extension of the bundle of size n 1 + n 2 from 

length r to length r + �r. 
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Since no external work is performed on the system and no body forces are applied, the variation of the total strain 

energy is equal to the work done, �U s = �W , and hence: 

∂ U s 

∂r 
= lim 

�r → 0 
αF 

( 

1 

2 

3 ∑ 

k =1 
( F k + �F k ) 

�x k 
�r 

) 

+ αM 

( 

1 

2 

3 ∑ 

k =1 
( M k + �M k ) 

�θk 
�r 

) 

(A3) 

Retaining only the first order terms, 

∂ U s 

∂r 
= lim 

�r → 0 
αF 

( 

1 

2 

3 ∑ 

k =1 
F k 

�x k 
�r 

) 

+ αM 

( 

1 

2 

3 ∑ 

k =1 
M k 

�θk 
�r 

) 

(A4) 

which can be concisely rewritten as: 

∂ U s 

∂r 
= lim 

�r → 0 

(
αF 

1 

2 
| F · ( τ2 − τ1 ) | 

)
+ 

(
lim 

�r → 0 
αM 

)
1 

2 

∣∣M ·
(
κ+ 
2 − κ+ 

1 

) ∣∣ (A5) 

where, τ2 and τ1 are the tangent versors of the sub-bundles at the respective branching point and κ
+ 
2 
and κ+ 

1 
are the 

curvatures of the sub-bundles at the branching point. Due to the co-tangency condition and in the limit �r → 0, τ2 = τ1 , 
and hence Eq. (A5) becomes: 

∂ U S 

∂r 
= 

(
lim 

�r → 0 
αM 

)
1 

2 

∣∣M ·
(
κ+ 
2 − κ+ 

1 

)∣∣ (A6) 

Even though the system’s behavior is non-linear, the incremental deformation can be approximated as linear. Conse- 

quently, as �r → 0, αM 

tends to 1. 

Further, considering the equilibrium of moments at the branching point, 

M = 

n 1 n 2 
n 1 + n 2 

EI 
(
κ+ 
2 − κ+ 

1 

)
(A7) 

Therefore, combining Eqs. (A6) and ( A7 ), 

∂ U S 

∂r 
= 

1 

2 

n 1 n 2 
n 1 + n 2 

EI 
∥∥κ+ 

2 − κ+ 
1 

∥∥2 (A8) 

Here, we make an assumption that bundles are inextensible, which allows considering that the contour parameter r 

is identical in the deformed and initial states of the network. Further, due to the short-range nature of adhesion forces, 

we consider the constraint forces and moments to act at a point, as opposed to being distributed over a segment of the 

bundles/fibers. 
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