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Random fiber networks with inclusions: The mechanism of reinforcement
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The mechanical behavior of athermal random fiber networks embedding particulate inclusions is studied in
this work. Composites in which the filler size is comparable with the mean segment length of the network
are considered. Inclusions are randomly distributed in the network at various volume fractions, and cases in
which fibers are rigidly bonded to fillers and in which no such bonding is imposed are studied separately. In
the presence of inclusions, the small strain modulus increases, while the ability of the network to strain stiffen
decreases relative to the unfilled network case. The reinforcement induced by fillers is most pronounced in
sparse networks of floppier filaments that deform in the bending-dominated mode in the unfilled state. As the
unfilled network density or the bending stiffness of fibers increases, the effect of filling diminishes rapidly.
Fillers lead to a transition from the soft, bending-dominated, to the stiffer, stretching-dominated, deformation
mode of the network, a transition which is primarily responsible for the observed overall reinforcement. The
confinement, i.e., the restriction on network kinematics imposed by fillers, causes this transition. These results
provide a justification for the observed difference in reinforcement obtained in sparsely versus densely cross-
linked networks at a given filling fraction and provide guidance for the further development of network-based

materials.
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I. INTRODUCTION

Many soft materials have a random fiber network as their
primary structural component. Examples include the cellular
cytoskeleton [1], the extracellular matrix, various connective
tissues [2], and biomaterials such as mycelium [3], as well as
synthetic materials such as paper [4], nonwovens [5], rubber
[6] and hydrogels [7]. In general, network-based materials
are heterogeneous and often contain inclusions with dis-
similar mechanical properties. For example, hydrogels rein-
forced with nanoparticles [8], particle-filled collagen scaffolds
[9-11], and mycelium network embedding particles [12] are
some prominent examples. In all these systems, inclusions
influence the deformation mechanisms and the stress distri-
bution in the underlying network, thus affecting critically the
macroscopic behavior of the material. Despite the prevalence
of such examples, a fundamental understanding of how in-
clusions alter the mechanical properties of the underlying
network remains elusive, which limits our ability to design
filled network based materials.

The mechanics of fiber networks has been an active re-
search area for more than a decade [13-16]. Most fiber
networks of practical importance are subisostatic (i.e., their
average connectivity is below the threshold defined by the
Maxwell criterion for structures of trusses [17]) and predom-
inantly derive rigidity at small strains from fiber bending
[18,19]. Subisostatic networks acquire nonzero stiffness in the
presence of residual stresses [20] or upon straining [21]. Net-
work elasticity is controlled by fiber density, degree of cross-
linking, and fiber stretching and bending rigidities [18,19,22].
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Dense networks with fibers relatively stiff in bending deform
(approximately) affinely and store strain energy mostly in the
stretching deformation mode of fibers. Office paper, densely
cross-linked nonwovens, and some textiles are examples of
this type of network. Low-density and/or sparsely cross-linked
networks, as well as networks of fibers soft in bending, deform
in a highly nonaffine manner, storing energy mostly in the
softer, bending deformation mode of fibers. Most biological
networks belong to this class of structures. Experimental
and theoretical works have also shown that networks stiffen
with increasing strain, which results in “J-shaped” stress-
strain curve [23,24]. This nonlinear behavior is geometric
in nature, being primarily associated with the reorientation
of fibers, or fiber segments, during loading [25] and, in
relatively sparsely crosslinked networks, is less due to the
nonlinearity of the individual fiber constitutive behavior [26].
Therefore, strain stiffening is highly dependent on network
architecture [27].

Reinforcement of manmade networks with fillers has been
used technologically for a long time, while biological tissue
also contains “inclusions” such as cells and proteoglycans.
Furthermore, nanoparticles are embedded in the cellular cy-
toplasm [28] or in the extracellular matrix [29] and used to
apply loads (when moved using external fields) or as tracers
of deformation. The effect of such inclusions on the stiffness
and rheology of the embedding medium is still a matter of
debate.

The effect of fillers on network stiffness is different in
densely and sparsely cross-linked cases. Particulate-filled
epoxies exhibit modest stiffness enhancement upon filling
with nanoscale or microscale particles [30]. Reinforcement of
athermal collagen structures with nanofillers produces much
stronger effects [9-11].
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FIG. 1. (a) 3D crosslinked fibrous network. (b) The network in panel (a) filled with spherical inclusions. The fillers occupy ¢ = 5% of the
model volume in this realization. (c) Zoomed view of the discrete interface between an inclusion and surrounding network. The green lines
represent fibers, red lines mark the cross-links, and the blue spheres are inclusions.

To explore the effect of fillers in fibrous materials, we con-
sider in this work three-dimensional (3D) models of random
athermal fiber networks containing spherical rigid inclusions
of radius comparable to the mean segment length of the
network. These are relevant for cases in which the network
behavior is primarily enthalpic, including filled nonwovens
of various kinds and connective tissue composed of largely
athermal collagen or/and elastin filaments. The inclusions are
caged by the network and are rigidly bonded to the fibers
they contact. The slippery interface case is also considered
in separate simulations. We explore the effect of the filler
volume fraction on the linear and nonlinear components of
the mechanical response of networks loaded in tension. We
observe that the addition of fillers has a large effect if the
base network is sparsely cross-linked and/or it is composed
from filaments which have soft bending deformation modes.
On the other hand, the reinforcement effect is weak in dense
networks. We show that fillers have a strong confining effect
on the surrounding network, whose dominant deformation
mode changes to the stiffer stretching mode. This transition
is responsible for the increase of the small strain modulus
and the reduction of the ability of the network to strain stiffen
under large deformations. The model definition is presented in
the next section. In the results section we discuss the generic
effect of fillers on network behavior, describe a crossover
from the bending to the stretching deformation mode as the
filler volume fraction increases, and explore the mechanism
responsible for the observed reinforcement effect.

II. MODELS AND METHODS

To model the discrete fiber network with embedded in-
clusions, a 3D network of straight fibers, each of length Ly,
is constructed using a procedure similar to that developed
previously [27]. In this approach, sparse fiber assemblies are
generated first based on the random sequential adsorption
algorithm where fibers of length, Ly, are deposited sequen-
tially with random spatial location and orientation in the
cubic domain while satisfying nonoverlapping constraint. Six
such fiber assemblies are generated and placed around the
final model domain, similar to the method of fiber packing

described in Ref. [31]. Dynamic finite element simulations are
subsequently performed to pack the fibers of all six assemblies
within the specified cubic volume of the model, V. Fibers
are represented using Timoshenko beam elements during this
packing process, and surface-based contact interaction is en-
forced to satisfy nonoverlapping constraint [31].

Next, fiber-to-fiber crosslinks are introduced at locations
where the interfiber distance is smaller than 2d, where d
is the fiber diameter. After the cross-linking process, fibers
not cross-linked to the network and fiber dangling ends are
removed such to obtain a fully crosslinked fiber network, as
shown in Fig. 1(a). The size of the model, V!/3, is at least
three times larger than L, to reduce the model size effect. In
the reminder of this paper, we refer to this model [Fig. 1(a)]
as “the unfilled network.”

To introduce inclusions within the unfilled network, spher-
ical inclusions are placed randomly inside the cubic domain,
and fibers are trimmed at their intersection with inclusions.
Finally, fiber-to-inclusion cross-links are introduced to obtain
a fully connected structure, as shown in Fig. 1(b). Figure 1(c)
shows the discrete interface between an inclusion and the
surrounding fibers. The fiber-inclusion cross-links are of the
same nature as those between fibers and transmit both forces
and moments (are of “welded” type).

The important network parameters are the network volume
fraction, p,, and the fiber properties. p, is related to the
network density (defined as the total length of fiber per unit
volume) p, as p, = pA, where A is the cross-sectional area
of fibers. All fibers in the model have the same length, L,
which is taken here to be the unit of length, and, hence, it is
used as normalization factor for all length. Segments between
neighboring cross-links along a given fiber have length /; this
quantity is Poisson distributed, and the mean segment length is
denoted by /.. The mean number of cross-links per fiber (7.) is
n. = Lo/l + 1. In the models used in this study, n. &~ 5, and
the network density p is kept constant at ,oL% = 103.2, with
é_; = 0.25.

The fiber material is considered linear elastic, with Young’s
modulus Ey. The fiber bending and axial rigidities are pro-
portional to EyI and EyA, respectively, where I is the axial
moment of inertia of the fiber cross section. We consider fibers
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with circular cross section; networks of fiber with noncircular
cross section present additional complexities associated with
the existence of two principal bending modes [32]. It has been
determined earlier [18,22,33,34] that the mechanical behavior
of networks formed by filaments of the same type depends
on the fiber bending and axial rigidities exclusively through
a parameter with units of length, /, = \/EI/EA. For fibers
with a circular section [, = d /4. We note that if the filaments
cannot be considered beams, /, simply represents the ratio of
the bending and axial rigidities and is not necessarily linked
to any geometric parameter of the fiber cross section. We take
this view in the present work and vary I, /Ly in the range 10~
to 0.15.

Fillers are defined by their diameter, D, and their volume
fraction ¢. Parameter ¢, computed as the total volume of
inclusions divided by the model volume, V, is varied in the
range 2% to 10%. The filler diameter is taken to be D =
2[. in all models, and all inclusions in given model are of
same size. Inclusions much smaller than /. are also smaller
than the typical interfiber distance and are likely in contact
with a single fiber. Their reinforcement is likely limited. If
D > 2I., the network appears as a continuum on the scale
of the inclusion, and the standard view of a particle-filled
continuum applies [35]. We expect that interesting behavior
emerges when the scale of the filler, D, is comparable with the
characteristic length scale of the network, /.. This motivates
the present choice of parameters.

Inclusions are considered rigid. This represents all situa-
tions in which fillers are much stiffer than the surrounding
network or matrix, such as an electrospun network filled with
nanoparticles [36], epoxy filled with nanoparticles [37], or
reconstructed collagen networks with nanofillers [9-11].

Fibers are discretized with Timoshenko beam elements
of aspect ratio 5. Inclusions are modeled using rigid shell
elements (approximately 300 elements per inclusion). The
excluded volume constraints between fibers and between
fibers and inclusions are enforced using the general contact
algorithm in Abaqus [38]. All cross-links, between fibers
and between fillers and fibers, are modeled using rigid con-
nector elements which are not allowed to fail. The model
is deformed uniaxially in tension by imposing equal and
opposite displacement boundary conditions on two opposite
boundaries. Traction-free boundary conditions are imposed
on model surfaces parallel to the loading direction. These
are also constrained to remain planar during deformation.
The model is free to contract in the direction transverse to
the loading. The solution is obtained using the finite element
solver Abaqus/Explicit (version 6.13-1).

III. RESULTS AND DISCUSSION

A. Reinforcement depends on the type of network
used as matrix

Figure 2 shows the tensile stress-stretch response of
filled networks with four inclusion volume fractions, ¢ =
2%, 5%, 8%, and 10%. Figure 2(a) shows curves for systems
in which the unfilled network deformation is nonaffine, with
ly/Ly = 0.008, while Fig. 2(b) corresponds to cases in which
the unfilled network deformation is approximately affine, with
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FIG. 2. Nominal stress versus stretch curves for fiber networks
with rigid inclusions: (a) corresponding to [,/Ly = 0.008 and
(b) corresponding to [,/Ly = 0.04 Results for four inclusion volume
fractions, ¢, are reported. The stress-stretch curve of the unfilled
network, ¢ = 0%, is shown for reference. Each curve is obtained
by averaging the response of three realizations of the same net-
work parameters. The bars shown for ¢ = 8% (red diamonds) and
¢ = 10% (blue upward triangles) represent the range of the three
realizations. The bars are not shown for the other curves for which
the range of variability is comparable to the size of the symbols. The
arrows in panel (a) indicate transitions between the three regimes of
deformation for the unfilled network (black arrows) and the filled
network with ¢ = 10% (red arrows). The curves corresponding to
¢ = 0 and 10% from panel (a) are replotted in panel (c) as tangent
stiffness versus stress. This representation outlines better the three
regimes described in the text and the transition points between them
(marked by arrows).

Iy/Lo = 0.04 The stress-stretch curves of the corresponding
unfilled networks are also shown for reference. The stress
measure used in this work is the nominal (first Piola-Kirchoff)
stress, S, and the deformation measure used is the stretch ratio,
A. The reported stress is normalized by the fiber modulus, E¥,
which is considered here the unit of stress.

It is observed that inclusions stiffen the network and the
effect increases with increasing ¢. Both filled and unfilled
networks demonstrate three distinct regimes during uniaxial
deformation, which are identical to those usually observed for
unfilled networks [27]. The deformation is linear elastic (of
modulus Ep) in the first regime, for 1 < A < 1.05. Beyond
this critical stretch (A.; ~ 1.05), a second regime is observed
in which strain stiffening is pronounced. Strain stiffening
is primarily due to the gradual orientation of fibers in the
loading direction. Fibrous networks of small /,/Ly values
strain stiffen quadratically, i.e., S ~ (A — 1)? [27]. In the third
regime, the stress-stretch curve becomes linear again. In this
regime, multiple stress paths form and transmit loads across
the sample, while the majority of fibers are not loaded. In most
applications (e.g., collagen networks in connective tissue) the
network functions in regimes I and II. Networks with large
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FIG. 3. (a) Scaling of the small strain modulus (E,) of filled
networks with /,/L, for different filler volume fractions, ¢. The
vertical axis is normalized by the affine modulus of the unfilled
network, EX/ . The vertical dashed line indicates approximately
the transition from bending (unfilled symbols) to stretching (filled
symbols)-dominated network response for the unfilled networks. The
transition shifts gradually to the left as ¢ increases. (b) Data in panel

(a) replotted as Ey(¢) /Eé’f function of I, /L.

lp/Ly, which deform mostly in the stretching mode, exhibit
little strain stiffening up to large stress values. The three
regimes are visible in Fig. 2(a) for cases with low /L, while
the stress-strain response is approximately linear throughout
the entire strain history in Fig. 2(b). The arrows in Fig. 2(a)
indicate the transition between regimes I and II and between
regimes II and III for the unfilled network (black arrows) and
the filled network with ¢ = 10% (red arrows). The transitions
between these three regimes are better visualized when the
stress-stretch curves of Fig. 2(a) are replotted as tangent
stiffness versus stress, as shown in Fig. 2(c). The normalized
tangent stiffness is calculated as E,/E; = d(S/E;)/dA. The
initial linear regime appears as a plateau at small stress values
in Fig. 2(c).

We observe that the stretch at the first transition, A.q, is
largely unaffected by the presence of inclusions, while the
second transition, A., depends on the filling fraction. A
decreases with increasing ¢, and hence the range of stretch
ratios corresponding to regime II decreases with increasing
¢ (see Fig. S1 of the Supplemental Material [39]). A more
detailed discussion of this aspect is deferred to Sec. III C.

The effect of filling is discussed further in terms of the
linear elastic modulus and strain stiffening. Figure 3(a) shows
the variation of Ej as a function of [,/L, for filled networks
with various inclusion volume fractions, ¢. The vertical axis
is normalized by the affine modulus of the unfilled network,
E:éne. Data for unfilled networks, E(L)‘f (black circles), are
shown for comparison. The effective modulus E:r"gne is evalu-
ated by assuming that each filament deforms affinely with the
imposed macrodeformation, which restricts their deformation
to the stretching mode, leading to E:fgne = BpErA. Asis well
known [40], the affine modulus scales linearly with the density
and is proportional to EfA. The constant 8 depends on the
network architecture and, for the models considered here,
B = 0.12. The plot exhibits the two distinct regimes [defined
approximately by the vertical dashed line in Fig. 3(a)] broadly
discussed in the literature on fiber networks [14,18,19] and
reviewed in the introduction: the modulus approaches the

affine prediction at large /L, and ng ~ E¢A, while at small
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FIG. 4. The degree of reinforcement Ey(¢) /ng function of the
volume fraction of rigid fillers, ¢, as predicted by the present network
models with two values of [,/Ly, from Fig. 3(b) (lines with filled
symbols), and by the generalized self-consistent scheme for con-
tinuum composites (dashed line). Data for different collagen-based
composites reinforced with hydroxyapatite particles (plus symbols)
[11], Al;O3-ZnO nanoparticles (open pentagon symbols) [9], and
polyacrylic acid nanoparticles (open triangle symbols) [10] and fibrin
network with embedded platelets (diamonds) [40] are shown. The
shaded domain represents the range of reinforcement values reported
for filled epoxy materials based on data from Ref. [37].

Iy/Lo, EY ~ EAI2 = E/I, the deformation is nonaffine and
the bending deformation mode of fibers prevails.

Filled networks exhibit qualitatively the same general be-
havior, but with important distinguishing differences. The
transition from the stretching-dominated to the bending-
dominated regimes takes place at smaller values of [,/Ly as ¢
increases. The transition is also broader, and in this regime one
can approximate Ey(¢) ~ E:énelg“ ~ (EfA) "7(ED)
where o = f(¢) < 1. The exponent « varies from 0.99 (¢ =
2%) to 0.695 (¢ = 10%) in the given range of filler density.
This implies that, at given [,/Ly, the contribution of the
stretching deformation mode to the small strain modulus
increases with ¢. This issue is discussed further in Sec. III B.

Fillers reinforce the network in all cases, and hence
Ey(¢p) > E(')’f = Ey(0). However, reinforcement is much more
pronounced in the bending-dominated regime. To emphasize
this result, the data in Fig. 3(a) are replotted in Fig. 3(b) by
normalizing the filled network modulus with the modulus of
the corresponding unfilled network, i.e., EQ(¢)/E(I;f . While
in the stretching-dominated regime the modulus increases
by a factor of ~3 upon the addition of up to 10% volume
fraction of rigid fillers, in the bending-dominated regime the
reinforcement is more than one order of magnitude larger.
This is the first important result of the present work.

Figure 4 compares the reinforcement observed experi-
mentally in two types of nanocomposites: epoxy filled with
nanoparticles and filled reconstructed collagen and fibrin net-
works. Epoxies are densely cross-linked networks in which
the strands are rather stiff in bending. Elasticity is enthalpic
in these systems. The data are presented as E0(¢)/E(';f (ie.,
the reinforcement) versus the filling fraction (vol%). The
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domain representing filled epoxies is based on experimental
data from Refs. [30,37]. The figure includes data for sev-
eral collagen-based composites incorporating hydroxyapatite
whisker particles [11], Al;O3-ZnO, nanoparticles [9], and
polyacrylic acid nanoparticles [10], in which the collagen is
in the usual fibrillar form, as well as data from a study of
fibrin networks embedding platelets [41]. The two data sets
separate in the vertical direction, with the reinforcement of
the sparsely cross-linked networks of flexible strands being
much more pronounced. The results from Fig. 3(b) are also
shown, for /,/Ly = 3.8 x 1073 and 3.8 x 1072. As discussed
above, the reinforcement obtained in a network of flexible
fibers is much larger than that of a network of fibers stiff
in bending filled with the same volume fraction of rigid
fillers.

It is further of interest to compare the reinforcement ob-
served here with that expected for a particulate composite
with continuum matrix of stiffness identical to the stiffness
of the corresponding unfilled network. To this end, we add to
Fig. 4 predictions for the continuum equivalent composites
obtained with the generalized self-consistent method [42].
These continuum-based models are based exclusively on the
filler volume fraction and predict lower reinforcement than
both network models and most of the experimental values for
all ¢. This difference has at least two sources: (1) network
models are intrinsically heterogeneous and do not deform
exactly affinely even at large values of [,/Ly; (2) classical
local continuum models with no internal length scale are not
adequate to represent the deformation of fiber networks at
a scale comparable with the fiber segment length. Nonlocal
formulations that take into account the micropolar nature of
stress in these structures are more appropriate [43]. Further-
more, we expect that networks filled with inclusions of size
much larger than any internal length scale of the network (/,
Ly) would exhibit behavior closer to that predicted by the
equivalent continuum models. The numerical data in Fig. 4
also indicate that the effective modulus scales linearly with
the filling fraction in this range of ¢, which is expected based
on continuum mechanics results [42].

The observation that low-density networks of filaments
soft in bending change their small strain modulus by or-
ders of magnitude upon the addition to the network of a
small fraction of rigid filaments has been made before using
two-dimensional models [44]. In this work, Mikado models
with bending-dominated and stretching-dominated deforma-
tion were considered, and a small fraction of very stiff fibers
were added. The overall modulus of the composite structure
increased by more than two orders of magnitude in the case
of the bending-dominated base networks, even before the
reinforcing fibers were dense enough to produce a percolated
subnetwork of stiff filaments. This effect is associated with
the fact that stiff filaments restrict the deformation of the base
network filaments with which they come in contact to the
stretching deformation mode. The effect is more pronounced
as the nonaffinity of the base network increases. A similar
stiffening effect was reported in Ref. [45] for 2D models but
was not observed in the 3D models reported in Ref. [46]. The
discussion in Ref. [44] is limited to the small strain modulus
of the composite network and does not address the nonlinear
behavior of the material.
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FIG. 5. (a) Data from Fig. 2(a) normalized such to emphasize the
effect of ¢ on the nonlinear component of the stress-stretch curves.
(b) The curves in panel (a) represented as tangent stiffness versus
stress such to emphasize the three regimes of deformation and the
differences of strain stiffening in filled and unfilled networks.

It is of interest to discuss the effect of inclusions on the
larger strains, nonlinear behavior of filled networks. To facili-
tate the direct comparison of curves corresponding to different
filling fractions, we normalize the stress with the small strain
modulus of the respective filled network and plot in Fig. 5(a)
the normalized stress, S/Ey, versus stretch for networks with
I,/Ly =8 x 1073, As ¢ increases, strain stiffening becomes
less pronounced. The data in Fig. 5(a) are replotted in Fig. 5(b)
as tangent stiffness versus stress. The normalized tangent
stiffness E,/Ey = d(S/Ep)/dX is equal to 1 at small strains
by definition. Networks enter the strain stiffening regime II at
a critical stretch A.; which is approximately ¢-independent
(Fig. S1 [39]). Since E; increases with ¢, the transition
appears shifted to larger stresses in this representation as
indicated by the arrows (shown for ¢ = 0% and 8% only).
The unfilled network stiffens in regime II as S ~ (A — 1?2,
as also observed in Ref. [27]. Filled networks exhibit similar
stiffening. While the regime I to II transition is rapid in the
case of unfilled networks, it is more gradual in filled networks
of larger ¢. In addition, the transition from regime II to III
takes place at smaller stretches, A.o, for the filled networks
(Fig. S1 [39]). This renders regime II less well defined in the
filled networks case, which leads to the appearance of weaker
nonlinear behavior seen in Fig. 5(a).

B. Filler-controlled transition from bending
to stretching-dominated deformation

The transition of the dominant deformation mode of fibers
from the stretching to the bending mode as either or both
the network density decreases or fibers become softer in
bending (I, decreases) is well documented in the literature
[47,48]. Here we show that a similar transition takes place
when the filler volume fraction increases. Specifically, when
a bending-dominated network is reinforced with increasing
volume fractions of rigid fillers, it stores gradually more
energy in the stretching deformation mode of fibers. This
effect is demonstrated in Fig. 6 for a network with [,/Ly =
8 x 1073, The curves represent the fraction of the total strain
energy stored in the stretching and bending modes. The other
deformation modes (torsion and shear) store less than 5%
of the strain energy in all cases. The unfilled network stores
more than 80% of the strain energy in the bending mode. As
deformation proceeds, the two fractions become comparable,
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FIG. 6. Evolution of energy partition with stretch for a network
with [,/Ly = 8 x 1073 and at different filler volume fractions, ¢. For
each case, only the stretching (solid lines) and bending (dashed lines)
energy fractions are shown; the shear and torsional modes carry less
than 5% of the total energy at any stage of the deformation history.

and eventually the stretching mode becomes dominant. The
transition takes place at A ~ 1.2, which corresponds to the
middle region of regime II of the stress-stretch curve in
Fig. 2(a). As ¢ increases, the fraction of strain energy stored
in the bending mode at small strains decreases and the stretch
at which the modes switch dominance decreases. The network
with ¢ = 10% is stretching-dominated almost throughout the
entire deformation history. This indicates that fillers constrain
the deformation of fibers in their neighborhood to deform
in the stretching mode. This effect was also discussed in
Ref. [44] in the context of 2D Mikado networks, and its
mechanistic origins are further analyzed in Sec. IIIC The
observation that the deformation mechanism of the network is
modified by the presence of inclusions is the second important
conclusion of this work.

C. Physical origins of the reinforcement effect

Three hypotheses regarding the physical origins of the
reinforcement effect are analyzed in this section. We first

analyze the hypothesis that reinforcement is due to the fact
that fillers act as additional network cross-links with high
connectivity. The second hypothesis relates to the excluded
volume effect, i.e., the requirement that fibers do not overlap
other fibers and do not penetrate fillers during deformation.
The third hypothesis is based on the idea that fillers constrain
the deformation of the network, with the degree of confine-
ment increasing as the wall-to-wall distance between fillers
decreases.

1. Connectivity hypothesis

The stiffness of fiber networks depends markedly on the
mean nodal connectivity, Z [21]. Increasing Z may also cause
a transition from the bending-dominated to the stretching-
dominated deformation mode. In filled networks, each filler
comes in contact with many fibers and may be thought of as a
network node with excluded volume and large z. Hence, it is of
interest to inquire to what extent the observed reinforcement
is associated with the increase of the effective average z of the
network.

To clarify this issue, we consider filled networks in which
fillers are replaced by high-z nodes as shown in Fig. 7.
Figure 7(a) shows the original filled network with ¢ = 5%,
whereas Fig. 7(b) illustrates the equivalent network with high-
z nodes. Specifically, each filler is replaced by fiber segments
[red lines in Fig. 7(b)] continuing the fibers that come in
contact with the respective filler surface to a node located at its
geometric center, as illustrated in Fig. 7(c). The connectivity
number of this node, z, is equal to the number of fibers in
contact with the respective filler. The fiber segments added
in this process have the same stretching and bending rigidity
as all other fibers of the network. Since fillers are effectively
removed via this procedure, the excluded volume constraint
they impose is eliminated.

Figure 8(a) shows stress-stretch curves for a filled net-
work with /Ly = 8 x 1073 and ¢ = 5%, for the equivalent
unfilled network and for the network in which fillers are
replaced by high-z nodes. The curve corresponding to the
modified network with high connectivity overlaps that of the
unfilled network and does not exhibit the reinforcement ob-
served in the actual filled network case. The modified network
has higher Z compared with the unfilled network, but the

Network fiber
Original  pear the filler wall
filler

Filler center

Added fiber
to create high
z node

FIG. 7. (a) Original filled network with ¢ = 5%, (b) equivalent network with high-z nodes where each filled is replaced by additional fiber
segments (red lines) connecting the neighboring network fibers (green lines) to the filler center, and (c) a schematic illustrating how additional

fiber segments are introduced to create the high-z node for each filler .
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FIG. 8. (a) Comparison of stress-stretch curves for a filled net-
work with [,/Ly = 8 x 107% and ¢ = 5% (filled), the corresponding
unfilled network (unfilled) and the network that results from the filled
one by replacing fillers with nodes of high connectivity (high-z). The
vertical axis is normalized with the density of the network in order to
compensate for the density variation associated with the substitution
of high-z nodes for fillers. (b) Energy partition for the three cases in
panel (a).

difference is small, given that there are many more regular
network nodes per unit volume than high-z nodes. Figure 8(b)
shows the energy partition in these three types of structures.
Once, again, the energy partition in the network with high-z
nodes is quite similar to that of the unfilled, reference network.
We conclude that this mechanism is not responsible for the
observed reinforcement in filled networks.

2. Excluded volume hypothesis

It is of interest to inquire to what extent the excluded
volume condition (the fact that fibers cannot cross each other
and cannot penetrate fillers) is responsible for the observed
reinforcement.

To clarify this issue, we compare in Fig. 9 stress-stretch
curves for networks with [,/Ly = 8 x 1073, and ¢ =5%
and 10%, obtained with and without enabling the contact
constraints during simulation. The data indicate that contacts
make little contribution to the overall mechanical response
in tension. This is due to the large free volume of the
network. Contacts become slightly more important in shear
and are essential in compression [27,49]. We conclude that

25
With contacts
2| Without contacts
u\j’_ 15 [
(7))
1} $=10%
$=5%
057
0 n . .
1 1.1 1.2 1.3

A

FIG. 9. Stress-stretch curves for networks with [, /Ly = 8 x 1073
and ¢ = 5% and 10% obtained with and without the excluded
volume constraint.

12 o Unfilled
Filled, D/Ic=2, w/lc=2.8

o Filled, D/l =3, w/l =4.2
c c

Stretching (symbols)

Strain energy fraction

FIG. 10. (a) Stress-stretch curves for the unfilled network with
I,/Ly =8 x 1073 and two filled networks with ¢ = 5% and filler
diameter D/Il. = 2 and 3, respectively. (b) Energy partition for the
three cases shown in panel (a).

reinforcement is not directly associated with the occurrence
of interfiber, fiber-filler, or filler-filler contacts in the effect ob-
served here in uniaxial tension. The excluded volume of fillers
is expected to become important at large filling fractions, but
these situations are of importance in a limited number of
practical applications.

3. Confinement hypothesis

To explore the effect of confinement, we modify the size
of inclusions at constant ¢ (¢ = 5%), from D = 2[. to D =
3[.. This leads to an increase of the average wall-to-wall
distance between fillers, w, from w/l. = 2.8 to w/l. = 4.2.
Figure 10(a) shows the stress-stretch curves for the unfilled
network with [,/Ly = 8 x 1073, and for the filled network
with ¢ = 5% with two values of D. Increasing the wall-to-
wall distance decreases the degree of confinement, which has
a strong effect on reinforcement. The curve corresponding to
the large w/I, value is close to that of the unfilled network.
Figure 10(b) shows the energy partition for all cases presented
in Fig. 10(a). Once again, increasing w/I. brings the filled
network closer to the situation of the unfilled network, pro-
moting the bending dominated deformation and postponing to
larger strains the transition to stretching dominance. It results
that the effects discussed in this article originate from the
confinement imposed by fillers on the surrounding network
which restricts the softer bending deformation mode of fibers
and promotes the stiffer stretching mode.

D. Fillers reduce the Poisson effect

Networks with large free volume, which are not embed-
ded in a continuum matrix, exhibit large Poisson contraction
when subjected to uniaxial tension [50-52]. This is due to
the reorientation of filaments in the loading direction during
regime II of deformation [Fig. 2(a)]. The same nonlinear
mechanism causes the Poynting effect under shear loading
[53]. Figure 11(a) shows the incremental Poisson ratio of
unfilled and a series of filled networks with ,,/Ly = 8 x 1073
and increasing ¢. The incremental Poisson ratio is computed
as

_d[In(A;)]
d[In(M)]’

where A and A; are stretches in the loading and transverse
directions, respectively. The incremental Poisson ratio v;

i =
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AVIV

o Network
$=2%
$=5%

o ¢=8%
o $=10%
1.3 1.4

FIG. 11. (a) Variation of the incremental Poisson ratio of the
unfilled network with [,/Ly = 8 x 1073 and of filled networks with
various ¢. (b) The corresponding volumetric strains. The arrows
indicate transitions between regimes I and II and regimes II and III,
respectively (see also Fig. 2), for the unfilled network and for the
filled network with ¢ = 10%.

reduces to the conventional Poisson ratio, vy, at infinitesimal
strains. The unfilled network exhibits a rapid increase of v;
during regime II (marked by arrows). A maximum is reached
towards the end of regime II, beyond which v; decreases. The
origin of this behavior is discussed in Ref. [52]. Filled net-
works exhibit similar trends, but the maxima of the respective
curves decrease as ¢ increases.

Figure 11(b) shows the variation of the model volume
relative to the volume of the unloaded model for all cases
shown in Fig. 11(a). The strong volume reduction observed
during regime II is associated with the large increase of the
incremental Poisson ratio [Fig. 11(a)]. The volume reduc-
tion decreases in magnitude as ¢ increases, and for ¢ =
10% the network volume is almost constant during defor-
mation. This demonstrates that the constraints imposed by
fillers on the deformation of the surrounding network lead
to deformation conditions closer to isochoric even in the
presence of a large free volume in the network. This can be
understood based on the observation that fillers render the
deformation more stretching-dominated. Unfilled stretching-
dominated (and therefore almost affinely-deforming) net-
works exhibit much weaker Poisson effect than the equivalent

bending-dominated networks. Figure 12 shows corre-
sponding deformed and undeformed networks with ¢ =
0%, 5%, and 10%, respectively, demonstrating the reduction
of the Poisson effect associated with the presence of fillers.

E. Nonbonded filler-network interfaces

A related perspective on the constraints imposed by fillers
on network deformation can be obtained by modifying the
state of the filler-network interface. In all cases discussed
above, fibers are connected to fillers through “welded” bonds
that transmit both forces and moments. We gradually relax
these constraints to investigate their relative effect on confine-
ment and reinforcement. In the first stage, the fiber-filler bonds
are represented as “pin joints,” which transmit only forces.
Figure 13 shows the stress-stretch curves for the filled network
with I,/Ly = 8 x 1073 and ¢ = 5% and with “welded” and
“pin-jointed” network-filler bonds. Reducing the kinematic
constraint at the filler-network interface causes a significant
reduction of the reinforcement. Taking one step further and
removing all bonds between fillers and the network, while
ensuring that fibers do not penetrate fillers (state denoted
by “unbonded”) leads to an even more drastic reduction of
reinforcement. Note that the curve for this last case falls
below that of the unfilled network (Fig. 13). In fact, the
filled network with unbonded interfaces may be compared
with a network in which inclusions are replaced by spherical
holes of same size and same total volume fraction with the
fillers. This network (denoted by “porous”) is obviously softer
than the unfilled network. This is seen in Fig. 13, where the
curves for the “unbonded” and “porous” cases overlap. This
observation reemphasizes the results discussed in Sec. I1I C 2,
which indicate that excluded volume effects are weak in these
networks subjected to uniaxial tension.

Finally, it is of interest to discuss the role of the as-
sumption that fillers are rigid. While the rigid case is
an appropriate representation for most polymeric nanocom-
posites, biological networks generally embed soft but
(generally) volume-preserving inclusions. Examples include

(b)

FIG. 12. Deformed (green) model configurations of (a) unfilled network, (b) filled network with ¢ = 5%, and (c) filled network with
¢ = 10%. Undeformed configurations (black) are overlaid to demonstrate the reduction of the Poisson effect in the presence of inclusions.
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FIG. 13. Stress-stretch curves for the filled network with [, /Ly =
8 x 1073 and ¢ = 5%, and with various states of the filler-network
interface: “welded” and “pinned” correspond to fiber-filler bonds that
transmit both forces and moments, and only forces, respectively.
“Unbonded” corresponds to models in which there are no bonds
between fibers and fillers, but the excluded volume constraint is
imposed. “Porous” corresponds to a system in which fillers are
replaced by holes.

cell-seeded biopolymer networks and artificial tissue scaf-
folds and platelet-reinforced fibrin clots. This case requires
a separate study. However, based on the present results it
can be conjectured that reducing the stiffness of fillers would
decrease the reinforcement effect because the constraint im-
posed by fillers on fibers would be partially relaxed. Since
here we observe that the excluded volume constraint has a
weak impact on reinforcement, we expect the condition that

inclusions volume remains constant to have a weak or no
effect on the overall filled network behavior.

IV. CONCLUSIONS

The mechanical behavior of cross-linked athermal fiber
networks embedding rigid spherical inclusions is investigated
in this work. Inclusions increase the small strain network
stiffness but reduce the strain stiffening ability of the net-
work at larger strains in the nonlinear regime. Reinforcement
depends on the nature of the network, being pronounced in
networks which are bending-dominated in the unfilled state,
and rather weak in networks which are stretching-dominated
when unfilled. The effect is associated with the kinematic
restrictions imposed by fillers on fibers in their vicinity.
This confinement promotes the much stiffer stretching defor-
mation mode of fibers. A gradual transition from bending-
dominated to stretching-dominated deformation is observed
as the filling volume fraction increases. Decreasing the wall-
to-wall distance between inclusions, while maintaining the
filling fraction constant, enhances the reinforcement effect
and promotes the stretching deformation mode of the network.
Further, inclusions restrict fiber reorientation during loading
and limit the overall Poisson effect. These results shed light
on the physical basis of reinforcement in a number of material
systems of high practical interest.
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